1
2 /*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10 #include "SkString.h"
11 #include "SkFixed.h"
12 #include "SkThread.h"
13 #include "SkUtils.h"
14 #include <stdarg.h>
15 #include <stdio.h>
16
17 // number of bytes (on the stack) to receive the printf result
18 static const size_t kBufferSize = 1024;
19
20 #ifdef SK_BUILD_FOR_WIN
21 #define VSNPRINTF(buffer, size, format, args) \
22 _vsnprintf_s(buffer, size, _TRUNCATE, format, args)
23 #define SNPRINTF _snprintf
24 #else
25 #define VSNPRINTF vsnprintf
26 #define SNPRINTF snprintf
27 #endif
28
29 #define ARGS_TO_BUFFER(format, buffer, size, written) \
30 do { \
31 va_list args; \
32 va_start(args, format); \
33 written = VSNPRINTF(buffer, size, format, args); \
34 SkASSERT(written >= 0 && written < SkToInt(size)); \
35 va_end(args); \
36 } while (0)
37
38 ///////////////////////////////////////////////////////////////////////////////
39
SkStrEndsWith(const char string[],const char suffixStr[])40 bool SkStrEndsWith(const char string[], const char suffixStr[]) {
41 SkASSERT(string);
42 SkASSERT(suffixStr);
43 size_t strLen = strlen(string);
44 size_t suffixLen = strlen(suffixStr);
45 return strLen >= suffixLen &&
46 !strncmp(string + strLen - suffixLen, suffixStr, suffixLen);
47 }
48
SkStrEndsWith(const char string[],const char suffixChar)49 bool SkStrEndsWith(const char string[], const char suffixChar) {
50 SkASSERT(string);
51 size_t strLen = strlen(string);
52 if (0 == strLen) {
53 return false;
54 } else {
55 return (suffixChar == string[strLen-1]);
56 }
57 }
58
SkStrStartsWithOneOf(const char string[],const char prefixes[])59 int SkStrStartsWithOneOf(const char string[], const char prefixes[]) {
60 int index = 0;
61 do {
62 const char* limit = strchr(prefixes, '\0');
63 if (!strncmp(string, prefixes, limit - prefixes)) {
64 return index;
65 }
66 prefixes = limit + 1;
67 index++;
68 } while (prefixes[0]);
69 return -1;
70 }
71
SkStrAppendU32(char string[],uint32_t dec)72 char* SkStrAppendU32(char string[], uint32_t dec) {
73 SkDEBUGCODE(char* start = string;)
74
75 char buffer[SkStrAppendU32_MaxSize];
76 char* p = buffer + sizeof(buffer);
77
78 do {
79 *--p = SkToU8('0' + dec % 10);
80 dec /= 10;
81 } while (dec != 0);
82
83 SkASSERT(p >= buffer);
84 char* stop = buffer + sizeof(buffer);
85 while (p < stop) {
86 *string++ = *p++;
87 }
88 SkASSERT(string - start <= SkStrAppendU32_MaxSize);
89 return string;
90 }
91
SkStrAppendS32(char string[],int32_t dec)92 char* SkStrAppendS32(char string[], int32_t dec) {
93 uint32_t udec = dec;
94 if (dec < 0) {
95 *string++ = '-';
96 udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful
97 }
98 return SkStrAppendU32(string, udec);
99 }
100
SkStrAppendU64(char string[],uint64_t dec,int minDigits)101 char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) {
102 SkDEBUGCODE(char* start = string;)
103
104 char buffer[SkStrAppendU64_MaxSize];
105 char* p = buffer + sizeof(buffer);
106
107 do {
108 *--p = SkToU8('0' + (int32_t) (dec % 10));
109 dec /= 10;
110 minDigits--;
111 } while (dec != 0);
112
113 while (minDigits > 0) {
114 *--p = '0';
115 minDigits--;
116 }
117
118 SkASSERT(p >= buffer);
119 size_t cp_len = buffer + sizeof(buffer) - p;
120 memcpy(string, p, cp_len);
121 string += cp_len;
122
123 SkASSERT(string - start <= SkStrAppendU64_MaxSize);
124 return string;
125 }
126
SkStrAppendS64(char string[],int64_t dec,int minDigits)127 char* SkStrAppendS64(char string[], int64_t dec, int minDigits) {
128 uint64_t udec = dec;
129 if (dec < 0) {
130 *string++ = '-';
131 udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful
132 }
133 return SkStrAppendU64(string, udec, minDigits);
134 }
135
SkStrAppendFloat(char string[],float value)136 char* SkStrAppendFloat(char string[], float value) {
137 // since floats have at most 8 significant digits, we limit our %g to that.
138 static const char gFormat[] = "%.8g";
139 // make it 1 larger for the terminating 0
140 char buffer[SkStrAppendScalar_MaxSize + 1];
141 int len = SNPRINTF(buffer, sizeof(buffer), gFormat, value);
142 memcpy(string, buffer, len);
143 SkASSERT(len <= SkStrAppendScalar_MaxSize);
144 return string + len;
145 }
146
SkStrAppendFixed(char string[],SkFixed x)147 char* SkStrAppendFixed(char string[], SkFixed x) {
148 SkDEBUGCODE(char* start = string;)
149 if (x < 0) {
150 *string++ = '-';
151 x = -x;
152 }
153
154 unsigned frac = x & 0xFFFF;
155 x >>= 16;
156 if (frac == 0xFFFF) {
157 // need to do this to "round up", since 65535/65536 is closer to 1 than to .9999
158 x += 1;
159 frac = 0;
160 }
161 string = SkStrAppendS32(string, x);
162
163 // now handle the fractional part (if any)
164 if (frac) {
165 static const uint16_t gTens[] = { 1000, 100, 10, 1 };
166 const uint16_t* tens = gTens;
167
168 x = SkFixedRoundToInt(frac * 10000);
169 SkASSERT(x <= 10000);
170 if (x == 10000) {
171 x -= 1;
172 }
173 *string++ = '.';
174 do {
175 unsigned powerOfTen = *tens++;
176 *string++ = SkToU8('0' + x / powerOfTen);
177 x %= powerOfTen;
178 } while (x != 0);
179 }
180
181 SkASSERT(string - start <= SkStrAppendScalar_MaxSize);
182 return string;
183 }
184
185 ///////////////////////////////////////////////////////////////////////////////
186
187 // the 3 values are [length] [refcnt] [terminating zero data]
188 const SkString::Rec SkString::gEmptyRec = { 0, 0, 0 };
189
190 #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec)
191
trim_size_t_to_u32(size_t value)192 static uint32_t trim_size_t_to_u32(size_t value) {
193 if (sizeof(size_t) > sizeof(uint32_t)) {
194 if (value > SK_MaxU32) {
195 value = SK_MaxU32;
196 }
197 }
198 return (uint32_t)value;
199 }
200
check_add32(size_t base,size_t extra)201 static size_t check_add32(size_t base, size_t extra) {
202 SkASSERT(base <= SK_MaxU32);
203 if (sizeof(size_t) > sizeof(uint32_t)) {
204 if (base + extra > SK_MaxU32) {
205 extra = SK_MaxU32 - base;
206 }
207 }
208 return extra;
209 }
210
AllocRec(const char text[],size_t len)211 SkString::Rec* SkString::AllocRec(const char text[], size_t len) {
212 Rec* rec;
213
214 if (0 == len) {
215 rec = const_cast<Rec*>(&gEmptyRec);
216 } else {
217 len = trim_size_t_to_u32(len);
218
219 // add 1 for terminating 0, then align4 so we can have some slop when growing the string
220 rec = (Rec*)sk_malloc_throw(SizeOfRec() + SkAlign4(len + 1));
221 rec->fLength = SkToU32(len);
222 rec->fRefCnt = 1;
223 if (text) {
224 memcpy(rec->data(), text, len);
225 }
226 rec->data()[len] = 0;
227 }
228 return rec;
229 }
230
RefRec(Rec * src)231 SkString::Rec* SkString::RefRec(Rec* src) {
232 if (src != &gEmptyRec) {
233 sk_atomic_inc(&src->fRefCnt);
234 }
235 return src;
236 }
237
238 #ifdef SK_DEBUG
validate() const239 void SkString::validate() const {
240 // make sure know one has written over our global
241 SkASSERT(0 == gEmptyRec.fLength);
242 SkASSERT(0 == gEmptyRec.fRefCnt);
243 SkASSERT(0 == gEmptyRec.data()[0]);
244
245 if (fRec != &gEmptyRec) {
246 SkASSERT(fRec->fLength > 0);
247 SkASSERT(fRec->fRefCnt > 0);
248 SkASSERT(0 == fRec->data()[fRec->fLength]);
249 }
250 }
251 #endif
252
253 ///////////////////////////////////////////////////////////////////////////////
254
SkString()255 SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) {
256 }
257
SkString(size_t len)258 SkString::SkString(size_t len) {
259 fRec = AllocRec(NULL, len);
260 }
261
SkString(const char text[])262 SkString::SkString(const char text[]) {
263 size_t len = text ? strlen(text) : 0;
264
265 fRec = AllocRec(text, len);
266 }
267
SkString(const char text[],size_t len)268 SkString::SkString(const char text[], size_t len) {
269 fRec = AllocRec(text, len);
270 }
271
SkString(const SkString & src)272 SkString::SkString(const SkString& src) {
273 src.validate();
274
275 fRec = RefRec(src.fRec);
276 }
277
~SkString()278 SkString::~SkString() {
279 this->validate();
280
281 if (fRec->fLength) {
282 SkASSERT(fRec->fRefCnt > 0);
283 if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
284 sk_free(fRec);
285 }
286 }
287 }
288
equals(const SkString & src) const289 bool SkString::equals(const SkString& src) const {
290 return fRec == src.fRec || this->equals(src.c_str(), src.size());
291 }
292
equals(const char text[]) const293 bool SkString::equals(const char text[]) const {
294 return this->equals(text, text ? strlen(text) : 0);
295 }
296
equals(const char text[],size_t len) const297 bool SkString::equals(const char text[], size_t len) const {
298 SkASSERT(len == 0 || text != NULL);
299
300 return fRec->fLength == len && !memcmp(fRec->data(), text, len);
301 }
302
operator =(const SkString & src)303 SkString& SkString::operator=(const SkString& src) {
304 this->validate();
305
306 if (fRec != src.fRec) {
307 SkString tmp(src);
308 this->swap(tmp);
309 }
310 return *this;
311 }
312
operator =(const char text[])313 SkString& SkString::operator=(const char text[]) {
314 this->validate();
315
316 SkString tmp(text);
317 this->swap(tmp);
318
319 return *this;
320 }
321
reset()322 void SkString::reset() {
323 this->validate();
324
325 if (fRec->fLength) {
326 SkASSERT(fRec->fRefCnt > 0);
327 if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
328 sk_free(fRec);
329 }
330 }
331
332 fRec = const_cast<Rec*>(&gEmptyRec);
333 }
334
writable_str()335 char* SkString::writable_str() {
336 this->validate();
337
338 if (fRec->fLength) {
339 if (fRec->fRefCnt > 1) {
340 Rec* rec = AllocRec(fRec->data(), fRec->fLength);
341 if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
342 // In this case after our check of fRecCnt > 1, we suddenly
343 // did become the only owner, so now we have two copies of the
344 // data (fRec and rec), so we need to delete one of them.
345 sk_free(fRec);
346 }
347 fRec = rec;
348 }
349 }
350 return fRec->data();
351 }
352
set(const char text[])353 void SkString::set(const char text[]) {
354 this->set(text, text ? strlen(text) : 0);
355 }
356
set(const char text[],size_t len)357 void SkString::set(const char text[], size_t len) {
358 len = trim_size_t_to_u32(len);
359
360 if (0 == len) {
361 this->reset();
362 } else if (1 == fRec->fRefCnt && len <= fRec->fLength) {
363 // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))?
364 // just use less of the buffer without allocating a smaller one
365 char* p = this->writable_str();
366 if (text) {
367 memcpy(p, text, len);
368 }
369 p[len] = 0;
370 fRec->fLength = SkToU32(len);
371 } else if (1 == fRec->fRefCnt && (fRec->fLength >> 2) == (len >> 2)) {
372 // we have spare room in the current allocation, so don't alloc a larger one
373 char* p = this->writable_str();
374 if (text) {
375 memcpy(p, text, len);
376 }
377 p[len] = 0;
378 fRec->fLength = SkToU32(len);
379 } else {
380 SkString tmp(text, len);
381 this->swap(tmp);
382 }
383 }
384
setUTF16(const uint16_t src[])385 void SkString::setUTF16(const uint16_t src[]) {
386 int count = 0;
387
388 while (src[count]) {
389 count += 1;
390 }
391 this->setUTF16(src, count);
392 }
393
setUTF16(const uint16_t src[],size_t count)394 void SkString::setUTF16(const uint16_t src[], size_t count) {
395 count = trim_size_t_to_u32(count);
396
397 if (0 == count) {
398 this->reset();
399 } else if (count <= fRec->fLength) {
400 // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))
401 if (count < fRec->fLength) {
402 this->resize(count);
403 }
404 char* p = this->writable_str();
405 for (size_t i = 0; i < count; i++) {
406 p[i] = SkToU8(src[i]);
407 }
408 p[count] = 0;
409 } else {
410 SkString tmp(count); // puts a null terminator at the end of the string
411 char* p = tmp.writable_str();
412
413 for (size_t i = 0; i < count; i++) {
414 p[i] = SkToU8(src[i]);
415 }
416 this->swap(tmp);
417 }
418 }
419
insert(size_t offset,const char text[])420 void SkString::insert(size_t offset, const char text[]) {
421 this->insert(offset, text, text ? strlen(text) : 0);
422 }
423
insert(size_t offset,const char text[],size_t len)424 void SkString::insert(size_t offset, const char text[], size_t len) {
425 if (len) {
426 size_t length = fRec->fLength;
427 if (offset > length) {
428 offset = length;
429 }
430
431 // Check if length + len exceeds 32bits, we trim len
432 len = check_add32(length, len);
433 if (0 == len) {
434 return;
435 }
436
437 /* If we're the only owner, and we have room in our allocation for the insert,
438 do it in place, rather than allocating a new buffer.
439
440 To know we have room, compare the allocated sizes
441 beforeAlloc = SkAlign4(length + 1)
442 afterAlloc = SkAligh4(length + 1 + len)
443 but SkAlign4(x) is (x + 3) >> 2 << 2
444 which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2
445 and we can then eliminate the +1+3 since that doesn't affec the answer
446 */
447 if (1 == fRec->fRefCnt && (length >> 2) == ((length + len) >> 2)) {
448 char* dst = this->writable_str();
449
450 if (offset < length) {
451 memmove(dst + offset + len, dst + offset, length - offset);
452 }
453 memcpy(dst + offset, text, len);
454
455 dst[length + len] = 0;
456 fRec->fLength = SkToU32(length + len);
457 } else {
458 /* Seems we should use realloc here, since that is safe if it fails
459 (we have the original data), and might be faster than alloc/copy/free.
460 */
461 SkString tmp(fRec->fLength + len);
462 char* dst = tmp.writable_str();
463
464 if (offset > 0) {
465 memcpy(dst, fRec->data(), offset);
466 }
467 memcpy(dst + offset, text, len);
468 if (offset < fRec->fLength) {
469 memcpy(dst + offset + len, fRec->data() + offset,
470 fRec->fLength - offset);
471 }
472
473 this->swap(tmp);
474 }
475 }
476 }
477
insertUnichar(size_t offset,SkUnichar uni)478 void SkString::insertUnichar(size_t offset, SkUnichar uni) {
479 char buffer[kMaxBytesInUTF8Sequence];
480 size_t len = SkUTF8_FromUnichar(uni, buffer);
481
482 if (len) {
483 this->insert(offset, buffer, len);
484 }
485 }
486
insertS32(size_t offset,int32_t dec)487 void SkString::insertS32(size_t offset, int32_t dec) {
488 char buffer[SkStrAppendS32_MaxSize];
489 char* stop = SkStrAppendS32(buffer, dec);
490 this->insert(offset, buffer, stop - buffer);
491 }
492
insertS64(size_t offset,int64_t dec,int minDigits)493 void SkString::insertS64(size_t offset, int64_t dec, int minDigits) {
494 char buffer[SkStrAppendS64_MaxSize];
495 char* stop = SkStrAppendS64(buffer, dec, minDigits);
496 this->insert(offset, buffer, stop - buffer);
497 }
498
insertU32(size_t offset,uint32_t dec)499 void SkString::insertU32(size_t offset, uint32_t dec) {
500 char buffer[SkStrAppendU32_MaxSize];
501 char* stop = SkStrAppendU32(buffer, dec);
502 this->insert(offset, buffer, stop - buffer);
503 }
504
insertU64(size_t offset,uint64_t dec,int minDigits)505 void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) {
506 char buffer[SkStrAppendU64_MaxSize];
507 char* stop = SkStrAppendU64(buffer, dec, minDigits);
508 this->insert(offset, buffer, stop - buffer);
509 }
510
insertHex(size_t offset,uint32_t hex,int minDigits)511 void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) {
512 minDigits = SkPin32(minDigits, 0, 8);
513
514 static const char gHex[] = "0123456789ABCDEF";
515
516 char buffer[8];
517 char* p = buffer + sizeof(buffer);
518
519 do {
520 *--p = gHex[hex & 0xF];
521 hex >>= 4;
522 minDigits -= 1;
523 } while (hex != 0);
524
525 while (--minDigits >= 0) {
526 *--p = '0';
527 }
528
529 SkASSERT(p >= buffer);
530 this->insert(offset, p, buffer + sizeof(buffer) - p);
531 }
532
insertScalar(size_t offset,SkScalar value)533 void SkString::insertScalar(size_t offset, SkScalar value) {
534 char buffer[SkStrAppendScalar_MaxSize];
535 char* stop = SkStrAppendScalar(buffer, value);
536 this->insert(offset, buffer, stop - buffer);
537 }
538
printf(const char format[],...)539 void SkString::printf(const char format[], ...) {
540 char buffer[kBufferSize];
541 int length;
542 ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
543
544 this->set(buffer, length);
545 }
546
appendf(const char format[],...)547 void SkString::appendf(const char format[], ...) {
548 char buffer[kBufferSize];
549 int length;
550 ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
551
552 this->append(buffer, length);
553 }
554
appendVAList(const char format[],va_list args)555 void SkString::appendVAList(const char format[], va_list args) {
556 char buffer[kBufferSize];
557 int length = VSNPRINTF(buffer, kBufferSize, format, args);
558 SkASSERT(length >= 0 && length < SkToInt(kBufferSize));
559
560 this->append(buffer, length);
561 }
562
prependf(const char format[],...)563 void SkString::prependf(const char format[], ...) {
564 char buffer[kBufferSize];
565 int length;
566 ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
567
568 this->prepend(buffer, length);
569 }
570
prependVAList(const char format[],va_list args)571 void SkString::prependVAList(const char format[], va_list args) {
572 char buffer[kBufferSize];
573 int length = VSNPRINTF(buffer, kBufferSize, format, args);
574 SkASSERT(length >= 0 && length < SkToInt(kBufferSize));
575
576 this->prepend(buffer, length);
577 }
578
579
580 ///////////////////////////////////////////////////////////////////////////////
581
remove(size_t offset,size_t length)582 void SkString::remove(size_t offset, size_t length) {
583 size_t size = this->size();
584
585 if (offset < size) {
586 if (length > size - offset) {
587 length = size - offset;
588 }
589 SkASSERT(length <= size);
590 SkASSERT(offset <= size - length);
591 if (length > 0) {
592 SkString tmp(size - length);
593 char* dst = tmp.writable_str();
594 const char* src = this->c_str();
595
596 if (offset) {
597 memcpy(dst, src, offset);
598 }
599 size_t tail = size - (offset + length);
600 if (tail) {
601 memcpy(dst + offset, src + (offset + length), tail);
602 }
603 SkASSERT(dst[tmp.size()] == 0);
604 this->swap(tmp);
605 }
606 }
607 }
608
swap(SkString & other)609 void SkString::swap(SkString& other) {
610 this->validate();
611 other.validate();
612
613 SkTSwap<Rec*>(fRec, other.fRec);
614 }
615
616 ///////////////////////////////////////////////////////////////////////////////
617
SkStringPrintf(const char * format,...)618 SkString SkStringPrintf(const char* format, ...) {
619 SkString formattedOutput;
620 char buffer[kBufferSize];
621 SK_UNUSED int length;
622 ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
623 formattedOutput.set(buffer);
624 return formattedOutput;
625 }
626
SkStrSplit(const char * str,const char * delimiters,SkTArray<SkString> * out)627 void SkStrSplit(const char* str, const char* delimiters, SkTArray<SkString>* out) {
628 const char* end = str + strlen(str);
629 while (str != end) {
630 // Find a token.
631 const size_t len = strcspn(str, delimiters);
632 out->push_back().set(str, len);
633 str += len;
634 // Skip any delimiters.
635 str += strspn(str, delimiters);
636 }
637 }
638
639 #undef VSNPRINTF
640 #undef SNPRINTF
641