1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #include "SkString.h"
11 #include "SkFixed.h"
12 #include "SkThread.h"
13 #include "SkUtils.h"
14 #include <stdarg.h>
15 #include <stdio.h>
16 
17 // number of bytes (on the stack) to receive the printf result
18 static const size_t kBufferSize = 1024;
19 
20 #ifdef SK_BUILD_FOR_WIN
21     #define VSNPRINTF(buffer, size, format, args) \
22         _vsnprintf_s(buffer, size, _TRUNCATE, format, args)
23     #define SNPRINTF    _snprintf
24 #else
25     #define VSNPRINTF   vsnprintf
26     #define SNPRINTF    snprintf
27 #endif
28 
29 #define ARGS_TO_BUFFER(format, buffer, size, written)      \
30     do {                                                   \
31         va_list args;                                      \
32         va_start(args, format);                            \
33         written = VSNPRINTF(buffer, size, format, args);   \
34         SkASSERT(written >= 0 && written < SkToInt(size)); \
35         va_end(args);                                      \
36     } while (0)
37 
38 ///////////////////////////////////////////////////////////////////////////////
39 
SkStrEndsWith(const char string[],const char suffixStr[])40 bool SkStrEndsWith(const char string[], const char suffixStr[]) {
41     SkASSERT(string);
42     SkASSERT(suffixStr);
43     size_t  strLen = strlen(string);
44     size_t  suffixLen = strlen(suffixStr);
45     return  strLen >= suffixLen &&
46             !strncmp(string + strLen - suffixLen, suffixStr, suffixLen);
47 }
48 
SkStrEndsWith(const char string[],const char suffixChar)49 bool SkStrEndsWith(const char string[], const char suffixChar) {
50     SkASSERT(string);
51     size_t  strLen = strlen(string);
52     if (0 == strLen) {
53         return false;
54     } else {
55         return (suffixChar == string[strLen-1]);
56     }
57 }
58 
SkStrStartsWithOneOf(const char string[],const char prefixes[])59 int SkStrStartsWithOneOf(const char string[], const char prefixes[]) {
60     int index = 0;
61     do {
62         const char* limit = strchr(prefixes, '\0');
63         if (!strncmp(string, prefixes, limit - prefixes)) {
64             return index;
65         }
66         prefixes = limit + 1;
67         index++;
68     } while (prefixes[0]);
69     return -1;
70 }
71 
SkStrAppendU32(char string[],uint32_t dec)72 char* SkStrAppendU32(char string[], uint32_t dec) {
73     SkDEBUGCODE(char* start = string;)
74 
75     char    buffer[SkStrAppendU32_MaxSize];
76     char*   p = buffer + sizeof(buffer);
77 
78     do {
79         *--p = SkToU8('0' + dec % 10);
80         dec /= 10;
81     } while (dec != 0);
82 
83     SkASSERT(p >= buffer);
84     char* stop = buffer + sizeof(buffer);
85     while (p < stop) {
86         *string++ = *p++;
87     }
88     SkASSERT(string - start <= SkStrAppendU32_MaxSize);
89     return string;
90 }
91 
SkStrAppendS32(char string[],int32_t dec)92 char* SkStrAppendS32(char string[], int32_t dec) {
93     uint32_t udec = dec;
94     if (dec < 0) {
95         *string++ = '-';
96         udec = ~udec + 1;  // udec = -udec, but silences some warnings that are trying to be helpful
97     }
98     return SkStrAppendU32(string, udec);
99 }
100 
SkStrAppendU64(char string[],uint64_t dec,int minDigits)101 char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) {
102     SkDEBUGCODE(char* start = string;)
103 
104     char    buffer[SkStrAppendU64_MaxSize];
105     char*   p = buffer + sizeof(buffer);
106 
107     do {
108         *--p = SkToU8('0' + (int32_t) (dec % 10));
109         dec /= 10;
110         minDigits--;
111     } while (dec != 0);
112 
113     while (minDigits > 0) {
114         *--p = '0';
115         minDigits--;
116     }
117 
118     SkASSERT(p >= buffer);
119     size_t cp_len = buffer + sizeof(buffer) - p;
120     memcpy(string, p, cp_len);
121     string += cp_len;
122 
123     SkASSERT(string - start <= SkStrAppendU64_MaxSize);
124     return string;
125 }
126 
SkStrAppendS64(char string[],int64_t dec,int minDigits)127 char* SkStrAppendS64(char string[], int64_t dec, int minDigits) {
128     uint64_t udec = dec;
129     if (dec < 0) {
130         *string++ = '-';
131         udec = ~udec + 1;  // udec = -udec, but silences some warnings that are trying to be helpful
132     }
133     return SkStrAppendU64(string, udec, minDigits);
134 }
135 
SkStrAppendFloat(char string[],float value)136 char* SkStrAppendFloat(char string[], float value) {
137     // since floats have at most 8 significant digits, we limit our %g to that.
138     static const char gFormat[] = "%.8g";
139     // make it 1 larger for the terminating 0
140     char buffer[SkStrAppendScalar_MaxSize + 1];
141     int len = SNPRINTF(buffer, sizeof(buffer), gFormat, value);
142     memcpy(string, buffer, len);
143     SkASSERT(len <= SkStrAppendScalar_MaxSize);
144     return string + len;
145 }
146 
SkStrAppendFixed(char string[],SkFixed x)147 char* SkStrAppendFixed(char string[], SkFixed x) {
148     SkDEBUGCODE(char* start = string;)
149     if (x < 0) {
150         *string++ = '-';
151         x = -x;
152     }
153 
154     unsigned frac = x & 0xFFFF;
155     x >>= 16;
156     if (frac == 0xFFFF) {
157         // need to do this to "round up", since 65535/65536 is closer to 1 than to .9999
158         x += 1;
159         frac = 0;
160     }
161     string = SkStrAppendS32(string, x);
162 
163     // now handle the fractional part (if any)
164     if (frac) {
165         static const uint16_t   gTens[] = { 1000, 100, 10, 1 };
166         const uint16_t*         tens = gTens;
167 
168         x = SkFixedRoundToInt(frac * 10000);
169         SkASSERT(x <= 10000);
170         if (x == 10000) {
171             x -= 1;
172         }
173         *string++ = '.';
174         do {
175             unsigned powerOfTen = *tens++;
176             *string++ = SkToU8('0' + x / powerOfTen);
177             x %= powerOfTen;
178         } while (x != 0);
179     }
180 
181     SkASSERT(string - start <= SkStrAppendScalar_MaxSize);
182     return string;
183 }
184 
185 ///////////////////////////////////////////////////////////////////////////////
186 
187 // the 3 values are [length] [refcnt] [terminating zero data]
188 const SkString::Rec SkString::gEmptyRec = { 0, 0, 0 };
189 
190 #define SizeOfRec()     (gEmptyRec.data() - (const char*)&gEmptyRec)
191 
trim_size_t_to_u32(size_t value)192 static uint32_t trim_size_t_to_u32(size_t value) {
193     if (sizeof(size_t) > sizeof(uint32_t)) {
194         if (value > SK_MaxU32) {
195             value = SK_MaxU32;
196         }
197     }
198     return (uint32_t)value;
199 }
200 
check_add32(size_t base,size_t extra)201 static size_t check_add32(size_t base, size_t extra) {
202     SkASSERT(base <= SK_MaxU32);
203     if (sizeof(size_t) > sizeof(uint32_t)) {
204         if (base + extra > SK_MaxU32) {
205             extra = SK_MaxU32 - base;
206         }
207     }
208     return extra;
209 }
210 
AllocRec(const char text[],size_t len)211 SkString::Rec* SkString::AllocRec(const char text[], size_t len) {
212     Rec* rec;
213 
214     if (0 == len) {
215         rec = const_cast<Rec*>(&gEmptyRec);
216     } else {
217         len = trim_size_t_to_u32(len);
218 
219         // add 1 for terminating 0, then align4 so we can have some slop when growing the string
220         rec = (Rec*)sk_malloc_throw(SizeOfRec() + SkAlign4(len + 1));
221         rec->fLength = SkToU32(len);
222         rec->fRefCnt = 1;
223         if (text) {
224             memcpy(rec->data(), text, len);
225         }
226         rec->data()[len] = 0;
227     }
228     return rec;
229 }
230 
RefRec(Rec * src)231 SkString::Rec* SkString::RefRec(Rec* src) {
232     if (src != &gEmptyRec) {
233         sk_atomic_inc(&src->fRefCnt);
234     }
235     return src;
236 }
237 
238 #ifdef SK_DEBUG
validate() const239 void SkString::validate() const {
240     // make sure know one has written over our global
241     SkASSERT(0 == gEmptyRec.fLength);
242     SkASSERT(0 == gEmptyRec.fRefCnt);
243     SkASSERT(0 == gEmptyRec.data()[0]);
244 
245     if (fRec != &gEmptyRec) {
246         SkASSERT(fRec->fLength > 0);
247         SkASSERT(fRec->fRefCnt > 0);
248         SkASSERT(0 == fRec->data()[fRec->fLength]);
249     }
250 }
251 #endif
252 
253 ///////////////////////////////////////////////////////////////////////////////
254 
SkString()255 SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) {
256 }
257 
SkString(size_t len)258 SkString::SkString(size_t len) {
259     fRec = AllocRec(NULL, len);
260 }
261 
SkString(const char text[])262 SkString::SkString(const char text[]) {
263     size_t  len = text ? strlen(text) : 0;
264 
265     fRec = AllocRec(text, len);
266 }
267 
SkString(const char text[],size_t len)268 SkString::SkString(const char text[], size_t len) {
269     fRec = AllocRec(text, len);
270 }
271 
SkString(const SkString & src)272 SkString::SkString(const SkString& src) {
273     src.validate();
274 
275     fRec = RefRec(src.fRec);
276 }
277 
~SkString()278 SkString::~SkString() {
279     this->validate();
280 
281     if (fRec->fLength) {
282         SkASSERT(fRec->fRefCnt > 0);
283         if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
284             sk_free(fRec);
285         }
286     }
287 }
288 
equals(const SkString & src) const289 bool SkString::equals(const SkString& src) const {
290     return fRec == src.fRec || this->equals(src.c_str(), src.size());
291 }
292 
equals(const char text[]) const293 bool SkString::equals(const char text[]) const {
294     return this->equals(text, text ? strlen(text) : 0);
295 }
296 
equals(const char text[],size_t len) const297 bool SkString::equals(const char text[], size_t len) const {
298     SkASSERT(len == 0 || text != NULL);
299 
300     return fRec->fLength == len && !memcmp(fRec->data(), text, len);
301 }
302 
operator =(const SkString & src)303 SkString& SkString::operator=(const SkString& src) {
304     this->validate();
305 
306     if (fRec != src.fRec) {
307         SkString    tmp(src);
308         this->swap(tmp);
309     }
310     return *this;
311 }
312 
operator =(const char text[])313 SkString& SkString::operator=(const char text[]) {
314     this->validate();
315 
316     SkString tmp(text);
317     this->swap(tmp);
318 
319     return *this;
320 }
321 
reset()322 void SkString::reset() {
323     this->validate();
324 
325     if (fRec->fLength) {
326         SkASSERT(fRec->fRefCnt > 0);
327         if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
328             sk_free(fRec);
329         }
330     }
331 
332     fRec = const_cast<Rec*>(&gEmptyRec);
333 }
334 
writable_str()335 char* SkString::writable_str() {
336     this->validate();
337 
338     if (fRec->fLength) {
339         if (fRec->fRefCnt > 1) {
340             Rec* rec = AllocRec(fRec->data(), fRec->fLength);
341             if (sk_atomic_dec(&fRec->fRefCnt) == 1) {
342                 // In this case after our check of fRecCnt > 1, we suddenly
343                 // did become the only owner, so now we have two copies of the
344                 // data (fRec and rec), so we need to delete one of them.
345                 sk_free(fRec);
346             }
347             fRec = rec;
348         }
349     }
350     return fRec->data();
351 }
352 
set(const char text[])353 void SkString::set(const char text[]) {
354     this->set(text, text ? strlen(text) : 0);
355 }
356 
set(const char text[],size_t len)357 void SkString::set(const char text[], size_t len) {
358     len = trim_size_t_to_u32(len);
359 
360     if (0 == len) {
361         this->reset();
362     } else if (1 == fRec->fRefCnt && len <= fRec->fLength) {
363         // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))?
364         // just use less of the buffer without allocating a smaller one
365         char* p = this->writable_str();
366         if (text) {
367             memcpy(p, text, len);
368         }
369         p[len] = 0;
370         fRec->fLength = SkToU32(len);
371     } else if (1 == fRec->fRefCnt && (fRec->fLength >> 2) == (len >> 2)) {
372         // we have spare room in the current allocation, so don't alloc a larger one
373         char* p = this->writable_str();
374         if (text) {
375             memcpy(p, text, len);
376         }
377         p[len] = 0;
378         fRec->fLength = SkToU32(len);
379     } else {
380         SkString tmp(text, len);
381         this->swap(tmp);
382     }
383 }
384 
setUTF16(const uint16_t src[])385 void SkString::setUTF16(const uint16_t src[]) {
386     int count = 0;
387 
388     while (src[count]) {
389         count += 1;
390     }
391     this->setUTF16(src, count);
392 }
393 
setUTF16(const uint16_t src[],size_t count)394 void SkString::setUTF16(const uint16_t src[], size_t count) {
395     count = trim_size_t_to_u32(count);
396 
397     if (0 == count) {
398         this->reset();
399     } else if (count <= fRec->fLength) {
400         // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))
401         if (count < fRec->fLength) {
402             this->resize(count);
403         }
404         char* p = this->writable_str();
405         for (size_t i = 0; i < count; i++) {
406             p[i] = SkToU8(src[i]);
407         }
408         p[count] = 0;
409     } else {
410         SkString tmp(count); // puts a null terminator at the end of the string
411         char*    p = tmp.writable_str();
412 
413         for (size_t i = 0; i < count; i++) {
414             p[i] = SkToU8(src[i]);
415         }
416         this->swap(tmp);
417     }
418 }
419 
insert(size_t offset,const char text[])420 void SkString::insert(size_t offset, const char text[]) {
421     this->insert(offset, text, text ? strlen(text) : 0);
422 }
423 
insert(size_t offset,const char text[],size_t len)424 void SkString::insert(size_t offset, const char text[], size_t len) {
425     if (len) {
426         size_t length = fRec->fLength;
427         if (offset > length) {
428             offset = length;
429         }
430 
431         // Check if length + len exceeds 32bits, we trim len
432         len = check_add32(length, len);
433         if (0 == len) {
434             return;
435         }
436 
437         /*  If we're the only owner, and we have room in our allocation for the insert,
438             do it in place, rather than allocating a new buffer.
439 
440             To know we have room, compare the allocated sizes
441             beforeAlloc = SkAlign4(length + 1)
442             afterAlloc  = SkAligh4(length + 1 + len)
443             but SkAlign4(x) is (x + 3) >> 2 << 2
444             which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2
445             and we can then eliminate the +1+3 since that doesn't affec the answer
446         */
447         if (1 == fRec->fRefCnt && (length >> 2) == ((length + len) >> 2)) {
448             char* dst = this->writable_str();
449 
450             if (offset < length) {
451                 memmove(dst + offset + len, dst + offset, length - offset);
452             }
453             memcpy(dst + offset, text, len);
454 
455             dst[length + len] = 0;
456             fRec->fLength = SkToU32(length + len);
457         } else {
458             /*  Seems we should use realloc here, since that is safe if it fails
459                 (we have the original data), and might be faster than alloc/copy/free.
460             */
461             SkString    tmp(fRec->fLength + len);
462             char*       dst = tmp.writable_str();
463 
464             if (offset > 0) {
465                 memcpy(dst, fRec->data(), offset);
466             }
467             memcpy(dst + offset, text, len);
468             if (offset < fRec->fLength) {
469                 memcpy(dst + offset + len, fRec->data() + offset,
470                        fRec->fLength - offset);
471             }
472 
473             this->swap(tmp);
474         }
475     }
476 }
477 
insertUnichar(size_t offset,SkUnichar uni)478 void SkString::insertUnichar(size_t offset, SkUnichar uni) {
479     char    buffer[kMaxBytesInUTF8Sequence];
480     size_t  len = SkUTF8_FromUnichar(uni, buffer);
481 
482     if (len) {
483         this->insert(offset, buffer, len);
484     }
485 }
486 
insertS32(size_t offset,int32_t dec)487 void SkString::insertS32(size_t offset, int32_t dec) {
488     char    buffer[SkStrAppendS32_MaxSize];
489     char*   stop = SkStrAppendS32(buffer, dec);
490     this->insert(offset, buffer, stop - buffer);
491 }
492 
insertS64(size_t offset,int64_t dec,int minDigits)493 void SkString::insertS64(size_t offset, int64_t dec, int minDigits) {
494     char    buffer[SkStrAppendS64_MaxSize];
495     char*   stop = SkStrAppendS64(buffer, dec, minDigits);
496     this->insert(offset, buffer, stop - buffer);
497 }
498 
insertU32(size_t offset,uint32_t dec)499 void SkString::insertU32(size_t offset, uint32_t dec) {
500     char    buffer[SkStrAppendU32_MaxSize];
501     char*   stop = SkStrAppendU32(buffer, dec);
502     this->insert(offset, buffer, stop - buffer);
503 }
504 
insertU64(size_t offset,uint64_t dec,int minDigits)505 void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) {
506     char    buffer[SkStrAppendU64_MaxSize];
507     char*   stop = SkStrAppendU64(buffer, dec, minDigits);
508     this->insert(offset, buffer, stop - buffer);
509 }
510 
insertHex(size_t offset,uint32_t hex,int minDigits)511 void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) {
512     minDigits = SkPin32(minDigits, 0, 8);
513 
514     static const char gHex[] = "0123456789ABCDEF";
515 
516     char    buffer[8];
517     char*   p = buffer + sizeof(buffer);
518 
519     do {
520         *--p = gHex[hex & 0xF];
521         hex >>= 4;
522         minDigits -= 1;
523     } while (hex != 0);
524 
525     while (--minDigits >= 0) {
526         *--p = '0';
527     }
528 
529     SkASSERT(p >= buffer);
530     this->insert(offset, p, buffer + sizeof(buffer) - p);
531 }
532 
insertScalar(size_t offset,SkScalar value)533 void SkString::insertScalar(size_t offset, SkScalar value) {
534     char    buffer[SkStrAppendScalar_MaxSize];
535     char*   stop = SkStrAppendScalar(buffer, value);
536     this->insert(offset, buffer, stop - buffer);
537 }
538 
printf(const char format[],...)539 void SkString::printf(const char format[], ...) {
540     char    buffer[kBufferSize];
541     int length;
542     ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
543 
544     this->set(buffer, length);
545 }
546 
appendf(const char format[],...)547 void SkString::appendf(const char format[], ...) {
548     char    buffer[kBufferSize];
549     int length;
550     ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
551 
552     this->append(buffer, length);
553 }
554 
appendVAList(const char format[],va_list args)555 void SkString::appendVAList(const char format[], va_list args) {
556     char    buffer[kBufferSize];
557     int length = VSNPRINTF(buffer, kBufferSize, format, args);
558     SkASSERT(length >= 0 && length < SkToInt(kBufferSize));
559 
560     this->append(buffer, length);
561 }
562 
prependf(const char format[],...)563 void SkString::prependf(const char format[], ...) {
564     char    buffer[kBufferSize];
565     int length;
566     ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
567 
568     this->prepend(buffer, length);
569 }
570 
prependVAList(const char format[],va_list args)571 void SkString::prependVAList(const char format[], va_list args) {
572     char    buffer[kBufferSize];
573     int length = VSNPRINTF(buffer, kBufferSize, format, args);
574     SkASSERT(length >= 0 && length < SkToInt(kBufferSize));
575 
576     this->prepend(buffer, length);
577 }
578 
579 
580 ///////////////////////////////////////////////////////////////////////////////
581 
remove(size_t offset,size_t length)582 void SkString::remove(size_t offset, size_t length) {
583     size_t size = this->size();
584 
585     if (offset < size) {
586         if (length > size - offset) {
587             length = size - offset;
588         }
589         SkASSERT(length <= size);
590         SkASSERT(offset <= size - length);
591         if (length > 0) {
592             SkString    tmp(size - length);
593             char*       dst = tmp.writable_str();
594             const char* src = this->c_str();
595 
596             if (offset) {
597                 memcpy(dst, src, offset);
598             }
599             size_t tail = size - (offset + length);
600             if (tail) {
601                 memcpy(dst + offset, src + (offset + length), tail);
602             }
603             SkASSERT(dst[tmp.size()] == 0);
604             this->swap(tmp);
605         }
606     }
607 }
608 
swap(SkString & other)609 void SkString::swap(SkString& other) {
610     this->validate();
611     other.validate();
612 
613     SkTSwap<Rec*>(fRec, other.fRec);
614 }
615 
616 ///////////////////////////////////////////////////////////////////////////////
617 
SkStringPrintf(const char * format,...)618 SkString SkStringPrintf(const char* format, ...) {
619     SkString formattedOutput;
620     char buffer[kBufferSize];
621     SK_UNUSED int length;
622     ARGS_TO_BUFFER(format, buffer, kBufferSize, length);
623     formattedOutput.set(buffer);
624     return formattedOutput;
625 }
626 
SkStrSplit(const char * str,const char * delimiters,SkTArray<SkString> * out)627 void SkStrSplit(const char* str, const char* delimiters, SkTArray<SkString>* out) {
628     const char* end = str + strlen(str);
629     while (str != end) {
630         // Find a token.
631         const size_t len = strcspn(str, delimiters);
632         out->push_back().set(str, len);
633         str += len;
634         // Skip any delimiters.
635         str += strspn(str, delimiters);
636     }
637 }
638 
639 #undef VSNPRINTF
640 #undef SNPRINTF
641