1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ exception specification testing.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 
25 namespace clang {
26 
GetUnderlyingFunction(QualType T)27 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28 {
29   if (const PointerType *PtrTy = T->getAs<PointerType>())
30     T = PtrTy->getPointeeType();
31   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32     T = RefTy->getPointeeType();
33   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34     T = MPTy->getPointeeType();
35   return T->getAs<FunctionProtoType>();
36 }
37 
38 /// HACK: libstdc++ has a bug where it shadows std::swap with a member
39 /// swap function then tries to call std::swap unqualified from the exception
40 /// specification of that function. This function detects whether we're in
41 /// such a case and turns off delay-parsing of exception specifications.
isLibstdcxxEagerExceptionSpecHack(const Declarator & D)42 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
43   auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
44 
45   // All the problem cases are member functions named "swap" within class
46   // templates declared directly within namespace std.
47   if (!RD || RD->getEnclosingNamespaceContext() != getStdNamespace() ||
48       !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
49       !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
50     return false;
51 
52   // Only apply this hack within a system header.
53   if (!Context.getSourceManager().isInSystemHeader(D.getLocStart()))
54     return false;
55 
56   return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
57       .Case("array", true)
58       .Case("pair", true)
59       .Case("priority_queue", true)
60       .Case("stack", true)
61       .Case("queue", true)
62       .Default(false);
63 }
64 
65 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
66 /// exception specification. Incomplete types, or pointers to incomplete types
67 /// other than void are not allowed.
68 ///
69 /// \param[in,out] T  The exception type. This will be decayed to a pointer type
70 ///                   when the input is an array or a function type.
CheckSpecifiedExceptionType(QualType & T,const SourceRange & Range)71 bool Sema::CheckSpecifiedExceptionType(QualType &T, const SourceRange &Range) {
72   // C++11 [except.spec]p2:
73   //   A type cv T, "array of T", or "function returning T" denoted
74   //   in an exception-specification is adjusted to type T, "pointer to T", or
75   //   "pointer to function returning T", respectively.
76   //
77   // We also apply this rule in C++98.
78   if (T->isArrayType())
79     T = Context.getArrayDecayedType(T);
80   else if (T->isFunctionType())
81     T = Context.getPointerType(T);
82 
83   int Kind = 0;
84   QualType PointeeT = T;
85   if (const PointerType *PT = T->getAs<PointerType>()) {
86     PointeeT = PT->getPointeeType();
87     Kind = 1;
88 
89     // cv void* is explicitly permitted, despite being a pointer to an
90     // incomplete type.
91     if (PointeeT->isVoidType())
92       return false;
93   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
94     PointeeT = RT->getPointeeType();
95     Kind = 2;
96 
97     if (RT->isRValueReferenceType()) {
98       // C++11 [except.spec]p2:
99       //   A type denoted in an exception-specification shall not denote [...]
100       //   an rvalue reference type.
101       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
102         << T << Range;
103       return true;
104     }
105   }
106 
107   // C++11 [except.spec]p2:
108   //   A type denoted in an exception-specification shall not denote an
109   //   incomplete type other than a class currently being defined [...].
110   //   A type denoted in an exception-specification shall not denote a
111   //   pointer or reference to an incomplete type, other than (cv) void* or a
112   //   pointer or reference to a class currently being defined.
113   if (!(PointeeT->isRecordType() &&
114         PointeeT->getAs<RecordType>()->isBeingDefined()) &&
115       RequireCompleteType(Range.getBegin(), PointeeT,
116                           diag::err_incomplete_in_exception_spec, Kind, Range))
117     return true;
118 
119   return false;
120 }
121 
122 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
123 /// to member to a function with an exception specification. This means that
124 /// it is invalid to add another level of indirection.
CheckDistantExceptionSpec(QualType T)125 bool Sema::CheckDistantExceptionSpec(QualType T) {
126   if (const PointerType *PT = T->getAs<PointerType>())
127     T = PT->getPointeeType();
128   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
129     T = PT->getPointeeType();
130   else
131     return false;
132 
133   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
134   if (!FnT)
135     return false;
136 
137   return FnT->hasExceptionSpec();
138 }
139 
140 const FunctionProtoType *
ResolveExceptionSpec(SourceLocation Loc,const FunctionProtoType * FPT)141 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
142   if (FPT->getExceptionSpecType() == EST_Unparsed) {
143     Diag(Loc, diag::err_exception_spec_not_parsed);
144     return nullptr;
145   }
146 
147   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
148     return FPT;
149 
150   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
151   const FunctionProtoType *SourceFPT =
152       SourceDecl->getType()->castAs<FunctionProtoType>();
153 
154   // If the exception specification has already been resolved, just return it.
155   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
156     return SourceFPT;
157 
158   // Compute or instantiate the exception specification now.
159   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
160     EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
161   else
162     InstantiateExceptionSpec(Loc, SourceDecl);
163 
164   return SourceDecl->getType()->castAs<FunctionProtoType>();
165 }
166 
167 void
UpdateExceptionSpec(FunctionDecl * FD,const FunctionProtoType::ExceptionSpecInfo & ESI)168 Sema::UpdateExceptionSpec(FunctionDecl *FD,
169                           const FunctionProtoType::ExceptionSpecInfo &ESI) {
170   // If we've fully resolved the exception specification, notify listeners.
171   if (!isUnresolvedExceptionSpec(ESI.Type))
172     if (auto *Listener = getASTMutationListener())
173       Listener->ResolvedExceptionSpec(FD);
174 
175   for (auto *Redecl : FD->redecls())
176     Context.adjustExceptionSpec(cast<FunctionDecl>(Redecl), ESI);
177 }
178 
179 /// Determine whether a function has an implicitly-generated exception
180 /// specification.
hasImplicitExceptionSpec(FunctionDecl * Decl)181 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
182   if (!isa<CXXDestructorDecl>(Decl) &&
183       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
184       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
185     return false;
186 
187   // For a function that the user didn't declare:
188   //  - if this is a destructor, its exception specification is implicit.
189   //  - if this is 'operator delete' or 'operator delete[]', the exception
190   //    specification is as-if an explicit exception specification was given
191   //    (per [basic.stc.dynamic]p2).
192   if (!Decl->getTypeSourceInfo())
193     return isa<CXXDestructorDecl>(Decl);
194 
195   const FunctionProtoType *Ty =
196     Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
197   return !Ty->hasExceptionSpec();
198 }
199 
CheckEquivalentExceptionSpec(FunctionDecl * Old,FunctionDecl * New)200 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
201   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
202   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
203   bool MissingExceptionSpecification = false;
204   bool MissingEmptyExceptionSpecification = false;
205 
206   unsigned DiagID = diag::err_mismatched_exception_spec;
207   bool ReturnValueOnError = true;
208   if (getLangOpts().MicrosoftExt) {
209     DiagID = diag::ext_mismatched_exception_spec;
210     ReturnValueOnError = false;
211   }
212 
213   // Check the types as written: they must match before any exception
214   // specification adjustment is applied.
215   if (!CheckEquivalentExceptionSpec(
216         PDiag(DiagID), PDiag(diag::note_previous_declaration),
217         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
218         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
219         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
220         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
221     // C++11 [except.spec]p4 [DR1492]:
222     //   If a declaration of a function has an implicit
223     //   exception-specification, other declarations of the function shall
224     //   not specify an exception-specification.
225     if (getLangOpts().CPlusPlus11 &&
226         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
227       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
228         << hasImplicitExceptionSpec(Old);
229       if (!Old->getLocation().isInvalid())
230         Diag(Old->getLocation(), diag::note_previous_declaration);
231     }
232     return false;
233   }
234 
235   // The failure was something other than an missing exception
236   // specification; return an error, except in MS mode where this is a warning.
237   if (!MissingExceptionSpecification)
238     return ReturnValueOnError;
239 
240   const FunctionProtoType *NewProto =
241     New->getType()->castAs<FunctionProtoType>();
242 
243   // The new function declaration is only missing an empty exception
244   // specification "throw()". If the throw() specification came from a
245   // function in a system header that has C linkage, just add an empty
246   // exception specification to the "new" declaration. This is an
247   // egregious workaround for glibc, which adds throw() specifications
248   // to many libc functions as an optimization. Unfortunately, that
249   // optimization isn't permitted by the C++ standard, so we're forced
250   // to work around it here.
251   if (MissingEmptyExceptionSpecification && NewProto &&
252       (Old->getLocation().isInvalid() ||
253        Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
254       Old->isExternC()) {
255     New->setType(Context.getFunctionType(
256         NewProto->getReturnType(), NewProto->getParamTypes(),
257         NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
258     return false;
259   }
260 
261   const FunctionProtoType *OldProto =
262     Old->getType()->castAs<FunctionProtoType>();
263 
264   FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
265   if (ESI.Type == EST_Dynamic) {
266     ESI.Exceptions = OldProto->exceptions();
267   } else if (ESI.Type == EST_ComputedNoexcept) {
268     // FIXME: We can't just take the expression from the old prototype. It
269     // likely contains references to the old prototype's parameters.
270   }
271 
272   // Update the type of the function with the appropriate exception
273   // specification.
274   New->setType(Context.getFunctionType(
275       NewProto->getReturnType(), NewProto->getParamTypes(),
276       NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
277 
278   // Warn about the lack of exception specification.
279   SmallString<128> ExceptionSpecString;
280   llvm::raw_svector_ostream OS(ExceptionSpecString);
281   switch (OldProto->getExceptionSpecType()) {
282   case EST_DynamicNone:
283     OS << "throw()";
284     break;
285 
286   case EST_Dynamic: {
287     OS << "throw(";
288     bool OnFirstException = true;
289     for (const auto &E : OldProto->exceptions()) {
290       if (OnFirstException)
291         OnFirstException = false;
292       else
293         OS << ", ";
294 
295       OS << E.getAsString(getPrintingPolicy());
296     }
297     OS << ")";
298     break;
299   }
300 
301   case EST_BasicNoexcept:
302     OS << "noexcept";
303     break;
304 
305   case EST_ComputedNoexcept:
306     OS << "noexcept(";
307     assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
308     OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
309     OS << ")";
310     break;
311 
312   default:
313     llvm_unreachable("This spec type is compatible with none.");
314   }
315   OS.flush();
316 
317   SourceLocation FixItLoc;
318   if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
319     TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
320     if (FunctionTypeLoc FTLoc = TL.getAs<FunctionTypeLoc>())
321       FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
322   }
323 
324   if (FixItLoc.isInvalid())
325     Diag(New->getLocation(), diag::warn_missing_exception_specification)
326       << New << OS.str();
327   else {
328     // FIXME: This will get more complicated with C++0x
329     // late-specified return types.
330     Diag(New->getLocation(), diag::warn_missing_exception_specification)
331       << New << OS.str()
332       << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
333   }
334 
335   if (!Old->getLocation().isInvalid())
336     Diag(Old->getLocation(), diag::note_previous_declaration);
337 
338   return false;
339 }
340 
341 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
342 /// exception specifications. Exception specifications are equivalent if
343 /// they allow exactly the same set of exception types. It does not matter how
344 /// that is achieved. See C++ [except.spec]p2.
CheckEquivalentExceptionSpec(const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc)345 bool Sema::CheckEquivalentExceptionSpec(
346     const FunctionProtoType *Old, SourceLocation OldLoc,
347     const FunctionProtoType *New, SourceLocation NewLoc) {
348   unsigned DiagID = diag::err_mismatched_exception_spec;
349   if (getLangOpts().MicrosoftExt)
350     DiagID = diag::ext_mismatched_exception_spec;
351   bool Result = CheckEquivalentExceptionSpec(PDiag(DiagID),
352       PDiag(diag::note_previous_declaration), Old, OldLoc, New, NewLoc);
353 
354   // In Microsoft mode, mismatching exception specifications just cause a warning.
355   if (getLangOpts().MicrosoftExt)
356     return false;
357   return Result;
358 }
359 
360 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
361 /// exception specifications. See C++ [except.spec]p3.
362 ///
363 /// \return \c false if the exception specifications match, \c true if there is
364 /// a problem. If \c true is returned, either a diagnostic has already been
365 /// produced or \c *MissingExceptionSpecification is set to \c true.
CheckEquivalentExceptionSpec(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Old,SourceLocation OldLoc,const FunctionProtoType * New,SourceLocation NewLoc,bool * MissingExceptionSpecification,bool * MissingEmptyExceptionSpecification,bool AllowNoexceptAllMatchWithNoSpec,bool IsOperatorNew)366 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
367                                         const PartialDiagnostic & NoteID,
368                                         const FunctionProtoType *Old,
369                                         SourceLocation OldLoc,
370                                         const FunctionProtoType *New,
371                                         SourceLocation NewLoc,
372                                         bool *MissingExceptionSpecification,
373                                         bool*MissingEmptyExceptionSpecification,
374                                         bool AllowNoexceptAllMatchWithNoSpec,
375                                         bool IsOperatorNew) {
376   // Just completely ignore this under -fno-exceptions.
377   if (!getLangOpts().CXXExceptions)
378     return false;
379 
380   if (MissingExceptionSpecification)
381     *MissingExceptionSpecification = false;
382 
383   if (MissingEmptyExceptionSpecification)
384     *MissingEmptyExceptionSpecification = false;
385 
386   Old = ResolveExceptionSpec(NewLoc, Old);
387   if (!Old)
388     return false;
389   New = ResolveExceptionSpec(NewLoc, New);
390   if (!New)
391     return false;
392 
393   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
394   //   - both are non-throwing, regardless of their form,
395   //   - both have the form noexcept(constant-expression) and the constant-
396   //     expressions are equivalent,
397   //   - both are dynamic-exception-specifications that have the same set of
398   //     adjusted types.
399   //
400   // C++0x [except.spec]p12: An exception-specifcation is non-throwing if it is
401   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
402   //   constant-expression yields true.
403   //
404   // C++0x [except.spec]p4: If any declaration of a function has an exception-
405   //   specifier that is not a noexcept-specification allowing all exceptions,
406   //   all declarations [...] of that function shall have a compatible
407   //   exception-specification.
408   //
409   // That last point basically means that noexcept(false) matches no spec.
410   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
411 
412   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
413   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
414 
415   assert(!isUnresolvedExceptionSpec(OldEST) &&
416          !isUnresolvedExceptionSpec(NewEST) &&
417          "Shouldn't see unknown exception specifications here");
418 
419   // Shortcut the case where both have no spec.
420   if (OldEST == EST_None && NewEST == EST_None)
421     return false;
422 
423   FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
424   FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
425   if (OldNR == FunctionProtoType::NR_BadNoexcept ||
426       NewNR == FunctionProtoType::NR_BadNoexcept)
427     return false;
428 
429   // Dependent noexcept specifiers are compatible with each other, but nothing
430   // else.
431   // One noexcept is compatible with another if the argument is the same
432   if (OldNR == NewNR &&
433       OldNR != FunctionProtoType::NR_NoNoexcept &&
434       NewNR != FunctionProtoType::NR_NoNoexcept)
435     return false;
436   if (OldNR != NewNR &&
437       OldNR != FunctionProtoType::NR_NoNoexcept &&
438       NewNR != FunctionProtoType::NR_NoNoexcept) {
439     Diag(NewLoc, DiagID);
440     if (NoteID.getDiagID() != 0 && OldLoc.isValid())
441       Diag(OldLoc, NoteID);
442     return true;
443   }
444 
445   // The MS extension throw(...) is compatible with itself.
446   if (OldEST == EST_MSAny && NewEST == EST_MSAny)
447     return false;
448 
449   // It's also compatible with no spec.
450   if ((OldEST == EST_None && NewEST == EST_MSAny) ||
451       (OldEST == EST_MSAny && NewEST == EST_None))
452     return false;
453 
454   // It's also compatible with noexcept(false).
455   if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
456     return false;
457   if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
458     return false;
459 
460   // As described above, noexcept(false) matches no spec only for functions.
461   if (AllowNoexceptAllMatchWithNoSpec) {
462     if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
463       return false;
464     if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
465       return false;
466   }
467 
468   // Any non-throwing specifications are compatible.
469   bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
470                         OldEST == EST_DynamicNone;
471   bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
472                         NewEST == EST_DynamicNone;
473   if (OldNonThrowing && NewNonThrowing)
474     return false;
475 
476   // As a special compatibility feature, under C++0x we accept no spec and
477   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
478   // This is because the implicit declaration changed, but old code would break.
479   if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
480     const FunctionProtoType *WithExceptions = nullptr;
481     if (OldEST == EST_None && NewEST == EST_Dynamic)
482       WithExceptions = New;
483     else if (OldEST == EST_Dynamic && NewEST == EST_None)
484       WithExceptions = Old;
485     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
486       // One has no spec, the other throw(something). If that something is
487       // std::bad_alloc, all conditions are met.
488       QualType Exception = *WithExceptions->exception_begin();
489       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
490         IdentifierInfo* Name = ExRecord->getIdentifier();
491         if (Name && Name->getName() == "bad_alloc") {
492           // It's called bad_alloc, but is it in std?
493           if (ExRecord->isInStdNamespace()) {
494             return false;
495           }
496         }
497       }
498     }
499   }
500 
501   // At this point, the only remaining valid case is two matching dynamic
502   // specifications. We return here unless both specifications are dynamic.
503   if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
504     if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
505         !New->hasExceptionSpec()) {
506       // The old type has an exception specification of some sort, but
507       // the new type does not.
508       *MissingExceptionSpecification = true;
509 
510       if (MissingEmptyExceptionSpecification && OldNonThrowing) {
511         // The old type has a throw() or noexcept(true) exception specification
512         // and the new type has no exception specification, and the caller asked
513         // to handle this itself.
514         *MissingEmptyExceptionSpecification = true;
515       }
516 
517       return true;
518     }
519 
520     Diag(NewLoc, DiagID);
521     if (NoteID.getDiagID() != 0 && OldLoc.isValid())
522       Diag(OldLoc, NoteID);
523     return true;
524   }
525 
526   assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
527       "Exception compatibility logic error: non-dynamic spec slipped through.");
528 
529   bool Success = true;
530   // Both have a dynamic exception spec. Collect the first set, then compare
531   // to the second.
532   llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
533   for (const auto &I : Old->exceptions())
534     OldTypes.insert(Context.getCanonicalType(I).getUnqualifiedType());
535 
536   for (const auto &I : New->exceptions()) {
537     CanQualType TypePtr = Context.getCanonicalType(I).getUnqualifiedType();
538     if(OldTypes.count(TypePtr))
539       NewTypes.insert(TypePtr);
540     else
541       Success = false;
542   }
543 
544   Success = Success && OldTypes.size() == NewTypes.size();
545 
546   if (Success) {
547     return false;
548   }
549   Diag(NewLoc, DiagID);
550   if (NoteID.getDiagID() != 0 && OldLoc.isValid())
551     Diag(OldLoc, NoteID);
552   return true;
553 }
554 
555 /// CheckExceptionSpecSubset - Check whether the second function type's
556 /// exception specification is a subset (or equivalent) of the first function
557 /// type. This is used by override and pointer assignment checks.
CheckExceptionSpecSubset(const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,const FunctionProtoType * Superset,SourceLocation SuperLoc,const FunctionProtoType * Subset,SourceLocation SubLoc)558 bool Sema::CheckExceptionSpecSubset(
559     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
560     const FunctionProtoType *Superset, SourceLocation SuperLoc,
561     const FunctionProtoType *Subset, SourceLocation SubLoc) {
562 
563   // Just auto-succeed under -fno-exceptions.
564   if (!getLangOpts().CXXExceptions)
565     return false;
566 
567   // FIXME: As usual, we could be more specific in our error messages, but
568   // that better waits until we've got types with source locations.
569 
570   if (!SubLoc.isValid())
571     SubLoc = SuperLoc;
572 
573   // Resolve the exception specifications, if needed.
574   Superset = ResolveExceptionSpec(SuperLoc, Superset);
575   if (!Superset)
576     return false;
577   Subset = ResolveExceptionSpec(SubLoc, Subset);
578   if (!Subset)
579     return false;
580 
581   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
582 
583   // If superset contains everything, we're done.
584   if (SuperEST == EST_None || SuperEST == EST_MSAny)
585     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
586 
587   // If there are dependent noexcept specs, assume everything is fine. Unlike
588   // with the equivalency check, this is safe in this case, because we don't
589   // want to merge declarations. Checks after instantiation will catch any
590   // omissions we make here.
591   // We also shortcut checking if a noexcept expression was bad.
592 
593   FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
594   if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
595       SuperNR == FunctionProtoType::NR_Dependent)
596     return false;
597 
598   // Another case of the superset containing everything.
599   if (SuperNR == FunctionProtoType::NR_Throw)
600     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
601 
602   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
603 
604   assert(!isUnresolvedExceptionSpec(SuperEST) &&
605          !isUnresolvedExceptionSpec(SubEST) &&
606          "Shouldn't see unknown exception specifications here");
607 
608   // It does not. If the subset contains everything, we've failed.
609   if (SubEST == EST_None || SubEST == EST_MSAny) {
610     Diag(SubLoc, DiagID);
611     if (NoteID.getDiagID() != 0)
612       Diag(SuperLoc, NoteID);
613     return true;
614   }
615 
616   FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
617   if (SubNR == FunctionProtoType::NR_BadNoexcept ||
618       SubNR == FunctionProtoType::NR_Dependent)
619     return false;
620 
621   // Another case of the subset containing everything.
622   if (SubNR == FunctionProtoType::NR_Throw) {
623     Diag(SubLoc, DiagID);
624     if (NoteID.getDiagID() != 0)
625       Diag(SuperLoc, NoteID);
626     return true;
627   }
628 
629   // If the subset contains nothing, we're done.
630   if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
631     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
632 
633   // Otherwise, if the superset contains nothing, we've failed.
634   if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
635     Diag(SubLoc, DiagID);
636     if (NoteID.getDiagID() != 0)
637       Diag(SuperLoc, NoteID);
638     return true;
639   }
640 
641   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
642          "Exception spec subset: non-dynamic case slipped through.");
643 
644   // Neither contains everything or nothing. Do a proper comparison.
645   for (const auto &SubI : Subset->exceptions()) {
646     // Take one type from the subset.
647     QualType CanonicalSubT = Context.getCanonicalType(SubI);
648     // Unwrap pointers and references so that we can do checks within a class
649     // hierarchy. Don't unwrap member pointers; they don't have hierarchy
650     // conversions on the pointee.
651     bool SubIsPointer = false;
652     if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
653       CanonicalSubT = RefTy->getPointeeType();
654     if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
655       CanonicalSubT = PtrTy->getPointeeType();
656       SubIsPointer = true;
657     }
658     bool SubIsClass = CanonicalSubT->isRecordType();
659     CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
660 
661     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
662                        /*DetectVirtual=*/false);
663 
664     bool Contained = false;
665     // Make sure it's in the superset.
666     for (const auto &SuperI : Superset->exceptions()) {
667       QualType CanonicalSuperT = Context.getCanonicalType(SuperI);
668       // SubT must be SuperT or derived from it, or pointer or reference to
669       // such types.
670       if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
671         CanonicalSuperT = RefTy->getPointeeType();
672       if (SubIsPointer) {
673         if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
674           CanonicalSuperT = PtrTy->getPointeeType();
675         else {
676           continue;
677         }
678       }
679       CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
680       // If the types are the same, move on to the next type in the subset.
681       if (CanonicalSubT == CanonicalSuperT) {
682         Contained = true;
683         break;
684       }
685 
686       // Otherwise we need to check the inheritance.
687       if (!SubIsClass || !CanonicalSuperT->isRecordType())
688         continue;
689 
690       Paths.clear();
691       if (!IsDerivedFrom(CanonicalSubT, CanonicalSuperT, Paths))
692         continue;
693 
694       if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
695         continue;
696 
697       // Do this check from a context without privileges.
698       switch (CheckBaseClassAccess(SourceLocation(),
699                                    CanonicalSuperT, CanonicalSubT,
700                                    Paths.front(),
701                                    /*Diagnostic*/ 0,
702                                    /*ForceCheck*/ true,
703                                    /*ForceUnprivileged*/ true)) {
704       case AR_accessible: break;
705       case AR_inaccessible: continue;
706       case AR_dependent:
707         llvm_unreachable("access check dependent for unprivileged context");
708       case AR_delayed:
709         llvm_unreachable("access check delayed in non-declaration");
710       }
711 
712       Contained = true;
713       break;
714     }
715     if (!Contained) {
716       Diag(SubLoc, DiagID);
717       if (NoteID.getDiagID() != 0)
718         Diag(SuperLoc, NoteID);
719       return true;
720     }
721   }
722   // We've run half the gauntlet.
723   return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
724 }
725 
CheckSpecForTypesEquivalent(Sema & S,const PartialDiagnostic & DiagID,const PartialDiagnostic & NoteID,QualType Target,SourceLocation TargetLoc,QualType Source,SourceLocation SourceLoc)726 static bool CheckSpecForTypesEquivalent(Sema &S,
727     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
728     QualType Target, SourceLocation TargetLoc,
729     QualType Source, SourceLocation SourceLoc)
730 {
731   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
732   if (!TFunc)
733     return false;
734   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
735   if (!SFunc)
736     return false;
737 
738   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
739                                         SFunc, SourceLoc);
740 }
741 
742 /// CheckParamExceptionSpec - Check if the parameter and return types of the
743 /// two functions have equivalent exception specs. This is part of the
744 /// assignment and override compatibility check. We do not check the parameters
745 /// of parameter function pointers recursively, as no sane programmer would
746 /// even be able to write such a function type.
CheckParamExceptionSpec(const PartialDiagnostic & NoteID,const FunctionProtoType * Target,SourceLocation TargetLoc,const FunctionProtoType * Source,SourceLocation SourceLoc)747 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &NoteID,
748                                    const FunctionProtoType *Target,
749                                    SourceLocation TargetLoc,
750                                    const FunctionProtoType *Source,
751                                    SourceLocation SourceLoc) {
752   if (CheckSpecForTypesEquivalent(
753           *this, PDiag(diag::err_deep_exception_specs_differ) << 0, PDiag(),
754           Target->getReturnType(), TargetLoc, Source->getReturnType(),
755           SourceLoc))
756     return true;
757 
758   // We shouldn't even be testing this unless the arguments are otherwise
759   // compatible.
760   assert(Target->getNumParams() == Source->getNumParams() &&
761          "Functions have different argument counts.");
762   for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
763     if (CheckSpecForTypesEquivalent(
764             *this, PDiag(diag::err_deep_exception_specs_differ) << 1, PDiag(),
765             Target->getParamType(i), TargetLoc, Source->getParamType(i),
766             SourceLoc))
767       return true;
768   }
769   return false;
770 }
771 
CheckExceptionSpecCompatibility(Expr * From,QualType ToType)772 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
773   // First we check for applicability.
774   // Target type must be a function, function pointer or function reference.
775   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
776   if (!ToFunc || ToFunc->hasDependentExceptionSpec())
777     return false;
778 
779   // SourceType must be a function or function pointer.
780   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
781   if (!FromFunc || FromFunc->hasDependentExceptionSpec())
782     return false;
783 
784   // Now we've got the correct types on both sides, check their compatibility.
785   // This means that the source of the conversion can only throw a subset of
786   // the exceptions of the target, and any exception specs on arguments or
787   // return types must be equivalent.
788   //
789   // FIXME: If there is a nested dependent exception specification, we should
790   // not be checking it here. This is fine:
791   //   template<typename T> void f() {
792   //     void (*p)(void (*) throw(T));
793   //     void (*q)(void (*) throw(int)) = p;
794   //   }
795   // ... because it might be instantiated with T=int.
796   return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
797                                   PDiag(), ToFunc,
798                                   From->getSourceRange().getBegin(),
799                                   FromFunc, SourceLocation());
800 }
801 
CheckOverridingFunctionExceptionSpec(const CXXMethodDecl * New,const CXXMethodDecl * Old)802 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
803                                                 const CXXMethodDecl *Old) {
804   // If the new exception specification hasn't been parsed yet, skip the check.
805   // We'll get called again once it's been parsed.
806   if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
807       EST_Unparsed)
808     return false;
809   if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
810     // Don't check uninstantiated template destructors at all. We can only
811     // synthesize correct specs after the template is instantiated.
812     if (New->getParent()->isDependentType())
813       return false;
814     if (New->getParent()->isBeingDefined()) {
815       // The destructor might be updated once the definition is finished. So
816       // remember it and check later.
817       DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old));
818       return false;
819     }
820   }
821   // If the old exception specification hasn't been parsed yet, remember that
822   // we need to perform this check when we get to the end of the outermost
823   // lexically-surrounding class.
824   if (Old->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
825       EST_Unparsed) {
826     DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old));
827     return false;
828   }
829   unsigned DiagID = diag::err_override_exception_spec;
830   if (getLangOpts().MicrosoftExt)
831     DiagID = diag::ext_override_exception_spec;
832   return CheckExceptionSpecSubset(PDiag(DiagID),
833                                   PDiag(diag::note_overridden_virtual_function),
834                                   Old->getType()->getAs<FunctionProtoType>(),
835                                   Old->getLocation(),
836                                   New->getType()->getAs<FunctionProtoType>(),
837                                   New->getLocation());
838 }
839 
canSubExprsThrow(Sema & S,const Expr * CE)840 static CanThrowResult canSubExprsThrow(Sema &S, const Expr *CE) {
841   Expr *E = const_cast<Expr*>(CE);
842   CanThrowResult R = CT_Cannot;
843   for (Expr::child_range I = E->children(); I && R != CT_Can; ++I)
844     R = mergeCanThrow(R, S.canThrow(cast<Expr>(*I)));
845   return R;
846 }
847 
canCalleeThrow(Sema & S,const Expr * E,const Decl * D)848 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
849   assert(D && "Expected decl");
850 
851   // See if we can get a function type from the decl somehow.
852   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
853   if (!VD) // If we have no clue what we're calling, assume the worst.
854     return CT_Can;
855 
856   // As an extension, we assume that __attribute__((nothrow)) functions don't
857   // throw.
858   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
859     return CT_Cannot;
860 
861   QualType T = VD->getType();
862   const FunctionProtoType *FT;
863   if ((FT = T->getAs<FunctionProtoType>())) {
864   } else if (const PointerType *PT = T->getAs<PointerType>())
865     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
866   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
867     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
868   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
869     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
870   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
871     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
872 
873   if (!FT)
874     return CT_Can;
875 
876   FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
877   if (!FT)
878     return CT_Can;
879 
880   return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
881 }
882 
canDynamicCastThrow(const CXXDynamicCastExpr * DC)883 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
884   if (DC->isTypeDependent())
885     return CT_Dependent;
886 
887   if (!DC->getTypeAsWritten()->isReferenceType())
888     return CT_Cannot;
889 
890   if (DC->getSubExpr()->isTypeDependent())
891     return CT_Dependent;
892 
893   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
894 }
895 
canTypeidThrow(Sema & S,const CXXTypeidExpr * DC)896 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
897   if (DC->isTypeOperand())
898     return CT_Cannot;
899 
900   Expr *Op = DC->getExprOperand();
901   if (Op->isTypeDependent())
902     return CT_Dependent;
903 
904   const RecordType *RT = Op->getType()->getAs<RecordType>();
905   if (!RT)
906     return CT_Cannot;
907 
908   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
909     return CT_Cannot;
910 
911   if (Op->Classify(S.Context).isPRValue())
912     return CT_Cannot;
913 
914   return CT_Can;
915 }
916 
canThrow(const Expr * E)917 CanThrowResult Sema::canThrow(const Expr *E) {
918   // C++ [expr.unary.noexcept]p3:
919   //   [Can throw] if in a potentially-evaluated context the expression would
920   //   contain:
921   switch (E->getStmtClass()) {
922   case Expr::CXXThrowExprClass:
923     //   - a potentially evaluated throw-expression
924     return CT_Can;
925 
926   case Expr::CXXDynamicCastExprClass: {
927     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
928     //     where T is a reference type, that requires a run-time check
929     CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
930     if (CT == CT_Can)
931       return CT;
932     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
933   }
934 
935   case Expr::CXXTypeidExprClass:
936     //   - a potentially evaluated typeid expression applied to a glvalue
937     //     expression whose type is a polymorphic class type
938     return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
939 
940     //   - a potentially evaluated call to a function, member function, function
941     //     pointer, or member function pointer that does not have a non-throwing
942     //     exception-specification
943   case Expr::CallExprClass:
944   case Expr::CXXMemberCallExprClass:
945   case Expr::CXXOperatorCallExprClass:
946   case Expr::UserDefinedLiteralClass: {
947     const CallExpr *CE = cast<CallExpr>(E);
948     CanThrowResult CT;
949     if (E->isTypeDependent())
950       CT = CT_Dependent;
951     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
952       CT = CT_Cannot;
953     else if (CE->getCalleeDecl())
954       CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
955     else
956       CT = CT_Can;
957     if (CT == CT_Can)
958       return CT;
959     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
960   }
961 
962   case Expr::CXXConstructExprClass:
963   case Expr::CXXTemporaryObjectExprClass: {
964     CanThrowResult CT = canCalleeThrow(*this, E,
965         cast<CXXConstructExpr>(E)->getConstructor());
966     if (CT == CT_Can)
967       return CT;
968     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
969   }
970 
971   case Expr::LambdaExprClass: {
972     const LambdaExpr *Lambda = cast<LambdaExpr>(E);
973     CanThrowResult CT = CT_Cannot;
974     for (LambdaExpr::capture_init_iterator Cap = Lambda->capture_init_begin(),
975                                         CapEnd = Lambda->capture_init_end();
976          Cap != CapEnd; ++Cap)
977       CT = mergeCanThrow(CT, canThrow(*Cap));
978     return CT;
979   }
980 
981   case Expr::CXXNewExprClass: {
982     CanThrowResult CT;
983     if (E->isTypeDependent())
984       CT = CT_Dependent;
985     else
986       CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
987     if (CT == CT_Can)
988       return CT;
989     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
990   }
991 
992   case Expr::CXXDeleteExprClass: {
993     CanThrowResult CT;
994     QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
995     if (DTy.isNull() || DTy->isDependentType()) {
996       CT = CT_Dependent;
997     } else {
998       CT = canCalleeThrow(*this, E,
999                           cast<CXXDeleteExpr>(E)->getOperatorDelete());
1000       if (const RecordType *RT = DTy->getAs<RecordType>()) {
1001         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1002         const CXXDestructorDecl *DD = RD->getDestructor();
1003         if (DD)
1004           CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
1005       }
1006       if (CT == CT_Can)
1007         return CT;
1008     }
1009     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1010   }
1011 
1012   case Expr::CXXBindTemporaryExprClass: {
1013     // The bound temporary has to be destroyed again, which might throw.
1014     CanThrowResult CT = canCalleeThrow(*this, E,
1015       cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
1016     if (CT == CT_Can)
1017       return CT;
1018     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1019   }
1020 
1021     // ObjC message sends are like function calls, but never have exception
1022     // specs.
1023   case Expr::ObjCMessageExprClass:
1024   case Expr::ObjCPropertyRefExprClass:
1025   case Expr::ObjCSubscriptRefExprClass:
1026     return CT_Can;
1027 
1028     // All the ObjC literals that are implemented as calls are
1029     // potentially throwing unless we decide to close off that
1030     // possibility.
1031   case Expr::ObjCArrayLiteralClass:
1032   case Expr::ObjCDictionaryLiteralClass:
1033   case Expr::ObjCBoxedExprClass:
1034     return CT_Can;
1035 
1036     // Many other things have subexpressions, so we have to test those.
1037     // Some are simple:
1038   case Expr::ConditionalOperatorClass:
1039   case Expr::CompoundLiteralExprClass:
1040   case Expr::CXXConstCastExprClass:
1041   case Expr::CXXReinterpretCastExprClass:
1042   case Expr::CXXStdInitializerListExprClass:
1043   case Expr::DesignatedInitExprClass:
1044   case Expr::ExprWithCleanupsClass:
1045   case Expr::ExtVectorElementExprClass:
1046   case Expr::InitListExprClass:
1047   case Expr::MemberExprClass:
1048   case Expr::ObjCIsaExprClass:
1049   case Expr::ObjCIvarRefExprClass:
1050   case Expr::ParenExprClass:
1051   case Expr::ParenListExprClass:
1052   case Expr::ShuffleVectorExprClass:
1053   case Expr::ConvertVectorExprClass:
1054   case Expr::VAArgExprClass:
1055     return canSubExprsThrow(*this, E);
1056 
1057     // Some might be dependent for other reasons.
1058   case Expr::ArraySubscriptExprClass:
1059   case Expr::BinaryOperatorClass:
1060   case Expr::CompoundAssignOperatorClass:
1061   case Expr::CStyleCastExprClass:
1062   case Expr::CXXStaticCastExprClass:
1063   case Expr::CXXFunctionalCastExprClass:
1064   case Expr::ImplicitCastExprClass:
1065   case Expr::MaterializeTemporaryExprClass:
1066   case Expr::UnaryOperatorClass: {
1067     CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
1068     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1069   }
1070 
1071     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1072   case Expr::StmtExprClass:
1073     return CT_Can;
1074 
1075   case Expr::CXXDefaultArgExprClass:
1076     return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
1077 
1078   case Expr::CXXDefaultInitExprClass:
1079     return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
1080 
1081   case Expr::ChooseExprClass:
1082     if (E->isTypeDependent() || E->isValueDependent())
1083       return CT_Dependent;
1084     return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
1085 
1086   case Expr::GenericSelectionExprClass:
1087     if (cast<GenericSelectionExpr>(E)->isResultDependent())
1088       return CT_Dependent;
1089     return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
1090 
1091     // Some expressions are always dependent.
1092   case Expr::CXXDependentScopeMemberExprClass:
1093   case Expr::CXXUnresolvedConstructExprClass:
1094   case Expr::DependentScopeDeclRefExprClass:
1095   case Expr::CXXFoldExprClass:
1096     return CT_Dependent;
1097 
1098   case Expr::AsTypeExprClass:
1099   case Expr::BinaryConditionalOperatorClass:
1100   case Expr::BlockExprClass:
1101   case Expr::CUDAKernelCallExprClass:
1102   case Expr::DeclRefExprClass:
1103   case Expr::ObjCBridgedCastExprClass:
1104   case Expr::ObjCIndirectCopyRestoreExprClass:
1105   case Expr::ObjCProtocolExprClass:
1106   case Expr::ObjCSelectorExprClass:
1107   case Expr::OffsetOfExprClass:
1108   case Expr::PackExpansionExprClass:
1109   case Expr::PseudoObjectExprClass:
1110   case Expr::SubstNonTypeTemplateParmExprClass:
1111   case Expr::SubstNonTypeTemplateParmPackExprClass:
1112   case Expr::FunctionParmPackExprClass:
1113   case Expr::UnaryExprOrTypeTraitExprClass:
1114   case Expr::UnresolvedLookupExprClass:
1115   case Expr::UnresolvedMemberExprClass:
1116   case Expr::TypoExprClass:
1117     // FIXME: Can any of the above throw?  If so, when?
1118     return CT_Cannot;
1119 
1120   case Expr::AddrLabelExprClass:
1121   case Expr::ArrayTypeTraitExprClass:
1122   case Expr::AtomicExprClass:
1123   case Expr::TypeTraitExprClass:
1124   case Expr::CXXBoolLiteralExprClass:
1125   case Expr::CXXNoexceptExprClass:
1126   case Expr::CXXNullPtrLiteralExprClass:
1127   case Expr::CXXPseudoDestructorExprClass:
1128   case Expr::CXXScalarValueInitExprClass:
1129   case Expr::CXXThisExprClass:
1130   case Expr::CXXUuidofExprClass:
1131   case Expr::CharacterLiteralClass:
1132   case Expr::ExpressionTraitExprClass:
1133   case Expr::FloatingLiteralClass:
1134   case Expr::GNUNullExprClass:
1135   case Expr::ImaginaryLiteralClass:
1136   case Expr::ImplicitValueInitExprClass:
1137   case Expr::IntegerLiteralClass:
1138   case Expr::ObjCEncodeExprClass:
1139   case Expr::ObjCStringLiteralClass:
1140   case Expr::ObjCBoolLiteralExprClass:
1141   case Expr::OpaqueValueExprClass:
1142   case Expr::PredefinedExprClass:
1143   case Expr::SizeOfPackExprClass:
1144   case Expr::StringLiteralClass:
1145     // These expressions can never throw.
1146     return CT_Cannot;
1147 
1148   case Expr::MSPropertyRefExprClass:
1149     llvm_unreachable("Invalid class for expression");
1150 
1151 #define STMT(CLASS, PARENT) case Expr::CLASS##Class:
1152 #define STMT_RANGE(Base, First, Last)
1153 #define LAST_STMT_RANGE(BASE, FIRST, LAST)
1154 #define EXPR(CLASS, PARENT)
1155 #define ABSTRACT_STMT(STMT)
1156 #include "clang/AST/StmtNodes.inc"
1157   case Expr::NoStmtClass:
1158     llvm_unreachable("Invalid class for expression");
1159   }
1160   llvm_unreachable("Bogus StmtClass");
1161 }
1162 
1163 } // end namespace clang
1164