1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
18 #define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
19
20 #include <stdint.h>
21 #include <memory>
22
23 #include "common_runtime_test.h"
24 #include "globals.h"
25 #include "mirror/array-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/class_loader.h"
28 #include "mirror/object-inl.h"
29 #include "scoped_thread_state_change.h"
30 #include "zygote_space.h"
31
32 namespace art {
33 namespace gc {
34 namespace space {
35
36 class SpaceTest : public CommonRuntimeTest {
37 public:
38 jobject byte_array_class_;
39
SpaceTest()40 SpaceTest() : byte_array_class_(nullptr) {
41 }
42
43 void AddSpace(ContinuousSpace* space, bool revoke = true) {
44 Heap* heap = Runtime::Current()->GetHeap();
45 if (revoke) {
46 heap->RevokeAllThreadLocalBuffers();
47 }
48 heap->AddSpace(space);
49 heap->SetSpaceAsDefault(space);
50 }
51
GetByteArrayClass(Thread * self)52 mirror::Class* GetByteArrayClass(Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
53 StackHandleScope<1> hs(self);
54 auto null_loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
55 if (byte_array_class_ == nullptr) {
56 mirror::Class* byte_array_class =
57 Runtime::Current()->GetClassLinker()->FindClass(self, "[B", null_loader);
58 EXPECT_TRUE(byte_array_class != nullptr);
59 byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class);
60 EXPECT_TRUE(byte_array_class_ != nullptr);
61 }
62 return reinterpret_cast<mirror::Class*>(self->DecodeJObject(byte_array_class_));
63 }
64
Alloc(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)65 mirror::Object* Alloc(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
66 size_t* bytes_allocated, size_t* usable_size,
67 size_t* bytes_tl_bulk_allocated)
68 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
69 StackHandleScope<1> hs(self);
70 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
71 mirror::Object* obj = alloc_space->Alloc(self, bytes, bytes_allocated, usable_size,
72 bytes_tl_bulk_allocated);
73 if (obj != nullptr) {
74 InstallClass(obj, byte_array_class.Get(), bytes);
75 }
76 return obj;
77 }
78
AllocWithGrowth(space::MallocSpace * alloc_space,Thread * self,size_t bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)79 mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space, Thread* self, size_t bytes,
80 size_t* bytes_allocated, size_t* usable_size,
81 size_t* bytes_tl_bulk_allocated)
82 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
83 StackHandleScope<1> hs(self);
84 Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
85 mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
86 bytes_tl_bulk_allocated);
87 if (obj != nullptr) {
88 InstallClass(obj, byte_array_class.Get(), bytes);
89 }
90 return obj;
91 }
92
InstallClass(mirror::Object * o,mirror::Class * byte_array_class,size_t size)93 void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
94 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
95 // Note the minimum size, which is the size of a zero-length byte array.
96 EXPECT_GE(size, SizeOfZeroLengthByteArray());
97 EXPECT_TRUE(byte_array_class != nullptr);
98 o->SetClass(byte_array_class);
99 if (kUseBakerOrBrooksReadBarrier) {
100 // Like the proper heap object allocation, install and verify
101 // the correct read barrier pointer.
102 if (kUseBrooksReadBarrier) {
103 o->SetReadBarrierPointer(o);
104 }
105 o->AssertReadBarrierPointer();
106 }
107 mirror::Array* arr = o->AsArray<kVerifyNone>();
108 size_t header_size = SizeOfZeroLengthByteArray();
109 int32_t length = size - header_size;
110 arr->SetLength(length);
111 EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
112 }
113
SizeOfZeroLengthByteArray()114 static size_t SizeOfZeroLengthByteArray() {
115 return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
116 }
117
118 typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
119 size_t capacity, uint8_t* requested_begin);
120 void InitTestBody(CreateSpaceFn create_space);
121 void ZygoteSpaceTestBody(CreateSpaceFn create_space);
122 void AllocAndFreeTestBody(CreateSpaceFn create_space);
123 void AllocAndFreeListTestBody(CreateSpaceFn create_space);
124
125 void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
126 int round, size_t growth_limit);
127 void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
128 };
129
test_rand(size_t * seed)130 static inline size_t test_rand(size_t* seed) {
131 *seed = *seed * 1103515245 + 12345;
132 return *seed;
133 }
134
InitTestBody(CreateSpaceFn create_space)135 void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
136 // This will lead to error messages in the log.
137 ScopedLogSeverity sls(LogSeverity::FATAL);
138
139 {
140 // Init < max == growth
141 std::unique_ptr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, nullptr));
142 EXPECT_TRUE(space.get() != nullptr);
143 }
144 {
145 // Init == max == growth
146 std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, nullptr));
147 EXPECT_TRUE(space.get() != nullptr);
148 }
149 {
150 // Init > max == growth
151 std::unique_ptr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, nullptr));
152 EXPECT_TRUE(space.get() == nullptr);
153 }
154 {
155 // Growth == init < max
156 std::unique_ptr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, nullptr));
157 EXPECT_TRUE(space.get() != nullptr);
158 }
159 {
160 // Growth < init < max
161 std::unique_ptr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, nullptr));
162 EXPECT_TRUE(space.get() == nullptr);
163 }
164 {
165 // Init < growth < max
166 std::unique_ptr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, nullptr));
167 EXPECT_TRUE(space.get() != nullptr);
168 }
169 {
170 // Init < max < growth
171 std::unique_ptr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, nullptr));
172 EXPECT_TRUE(space.get() == nullptr);
173 }
174 }
175
176 // TODO: This test is not very good, we should improve it.
177 // The test should do more allocations before the creation of the ZygoteSpace, and then do
178 // allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
179 // the GC works with the ZygoteSpace.
ZygoteSpaceTestBody(CreateSpaceFn create_space)180 void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
181 size_t dummy;
182 MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
183 ASSERT_TRUE(space != nullptr);
184
185 // Make space findable to the heap, will also delete space when runtime is cleaned up
186 AddSpace(space);
187 Thread* self = Thread::Current();
188 ScopedObjectAccess soa(self);
189
190 // Succeeds, fits without adjusting the footprint limit.
191 size_t ptr1_bytes_allocated, ptr1_usable_size, ptr1_bytes_tl_bulk_allocated;
192 StackHandleScope<3> hs(soa.Self());
193 MutableHandle<mirror::Object> ptr1(
194 hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size,
195 &ptr1_bytes_tl_bulk_allocated)));
196 EXPECT_TRUE(ptr1.Get() != nullptr);
197 EXPECT_LE(1U * MB, ptr1_bytes_allocated);
198 EXPECT_LE(1U * MB, ptr1_usable_size);
199 EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
200 EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
201
202 // Fails, requires a higher footprint limit.
203 mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
204 EXPECT_TRUE(ptr2 == nullptr);
205
206 // Succeeds, adjusts the footprint.
207 size_t ptr3_bytes_allocated, ptr3_usable_size, ptr3_bytes_tl_bulk_allocated;
208 MutableHandle<mirror::Object> ptr3(
209 hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size,
210 &ptr3_bytes_tl_bulk_allocated)));
211 EXPECT_TRUE(ptr3.Get() != nullptr);
212 EXPECT_LE(8U * MB, ptr3_bytes_allocated);
213 EXPECT_LE(8U * MB, ptr3_usable_size);
214 EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
215 EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
216
217 // Fails, requires a higher footprint limit.
218 mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy, nullptr, &dummy);
219 EXPECT_TRUE(ptr4 == nullptr);
220
221 // Also fails, requires a higher allowed footprint.
222 mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy, nullptr, &dummy);
223 EXPECT_TRUE(ptr5 == nullptr);
224
225 // Release some memory.
226 size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
227 EXPECT_EQ(free3, ptr3_bytes_allocated);
228 EXPECT_EQ(free3, space->Free(self, ptr3.Assign(nullptr)));
229 EXPECT_LE(8U * MB, free3);
230
231 // Succeeds, now that memory has been freed.
232 size_t ptr6_bytes_allocated, ptr6_usable_size, ptr6_bytes_tl_bulk_allocated;
233 Handle<mirror::Object> ptr6(
234 hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size,
235 &ptr6_bytes_tl_bulk_allocated)));
236 EXPECT_TRUE(ptr6.Get() != nullptr);
237 EXPECT_LE(9U * MB, ptr6_bytes_allocated);
238 EXPECT_LE(9U * MB, ptr6_usable_size);
239 EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
240 EXPECT_EQ(ptr6_bytes_tl_bulk_allocated, ptr6_bytes_allocated);
241
242 // Final clean up.
243 size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
244 space->Free(self, ptr1.Assign(nullptr));
245 EXPECT_LE(1U * MB, free1);
246
247 // Make sure that the zygote space isn't directly at the start of the space.
248 EXPECT_TRUE(space->Alloc(self, 1U * MB, &dummy, nullptr, &dummy) != nullptr);
249
250 gc::Heap* heap = Runtime::Current()->GetHeap();
251 space::Space* old_space = space;
252 heap->RemoveSpace(old_space);
253 heap->RevokeAllThreadLocalBuffers();
254 space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
255 heap->IsLowMemoryMode(),
256 &space);
257 delete old_space;
258 // Add the zygote space.
259 AddSpace(zygote_space, false);
260
261 // Make space findable to the heap, will also delete space when runtime is cleaned up
262 AddSpace(space, false);
263
264 // Succeeds, fits without adjusting the footprint limit.
265 ptr1.Assign(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size,
266 &ptr1_bytes_tl_bulk_allocated));
267 EXPECT_TRUE(ptr1.Get() != nullptr);
268 EXPECT_LE(1U * MB, ptr1_bytes_allocated);
269 EXPECT_LE(1U * MB, ptr1_usable_size);
270 EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
271 EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
272
273 // Fails, requires a higher footprint limit.
274 ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
275 EXPECT_TRUE(ptr2 == nullptr);
276
277 // Succeeds, adjusts the footprint.
278 ptr3.Assign(AllocWithGrowth(space, self, 2 * MB, &ptr3_bytes_allocated, &ptr3_usable_size,
279 &ptr3_bytes_tl_bulk_allocated));
280 EXPECT_TRUE(ptr3.Get() != nullptr);
281 EXPECT_LE(2U * MB, ptr3_bytes_allocated);
282 EXPECT_LE(2U * MB, ptr3_usable_size);
283 EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
284 EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
285 space->Free(self, ptr3.Assign(nullptr));
286
287 // Final clean up.
288 free1 = space->AllocationSize(ptr1.Get(), nullptr);
289 space->Free(self, ptr1.Assign(nullptr));
290 EXPECT_LE(1U * MB, free1);
291 }
292
AllocAndFreeTestBody(CreateSpaceFn create_space)293 void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
294 size_t dummy = 0;
295 MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
296 ASSERT_TRUE(space != nullptr);
297 Thread* self = Thread::Current();
298 ScopedObjectAccess soa(self);
299
300 // Make space findable to the heap, will also delete space when runtime is cleaned up
301 AddSpace(space);
302
303 // Succeeds, fits without adjusting the footprint limit.
304 size_t ptr1_bytes_allocated, ptr1_usable_size, ptr1_bytes_tl_bulk_allocated;
305 StackHandleScope<3> hs(soa.Self());
306 MutableHandle<mirror::Object> ptr1(
307 hs.NewHandle(Alloc(space, self, 1 * MB, &ptr1_bytes_allocated, &ptr1_usable_size,
308 &ptr1_bytes_tl_bulk_allocated)));
309 EXPECT_TRUE(ptr1.Get() != nullptr);
310 EXPECT_LE(1U * MB, ptr1_bytes_allocated);
311 EXPECT_LE(1U * MB, ptr1_usable_size);
312 EXPECT_LE(ptr1_usable_size, ptr1_bytes_allocated);
313 EXPECT_EQ(ptr1_bytes_tl_bulk_allocated, ptr1_bytes_allocated);
314
315 // Fails, requires a higher footprint limit.
316 mirror::Object* ptr2 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
317 EXPECT_TRUE(ptr2 == nullptr);
318
319 // Succeeds, adjusts the footprint.
320 size_t ptr3_bytes_allocated, ptr3_usable_size, ptr3_bytes_tl_bulk_allocated;
321 MutableHandle<mirror::Object> ptr3(
322 hs.NewHandle(AllocWithGrowth(space, self, 8 * MB, &ptr3_bytes_allocated, &ptr3_usable_size,
323 &ptr3_bytes_tl_bulk_allocated)));
324 EXPECT_TRUE(ptr3.Get() != nullptr);
325 EXPECT_LE(8U * MB, ptr3_bytes_allocated);
326 EXPECT_LE(8U * MB, ptr3_usable_size);
327 EXPECT_LE(ptr3_usable_size, ptr3_bytes_allocated);
328 EXPECT_EQ(ptr3_bytes_tl_bulk_allocated, ptr3_bytes_allocated);
329
330 // Fails, requires a higher footprint limit.
331 mirror::Object* ptr4 = Alloc(space, self, 8 * MB, &dummy, nullptr, &dummy);
332 EXPECT_TRUE(ptr4 == nullptr);
333
334 // Also fails, requires a higher allowed footprint.
335 mirror::Object* ptr5 = AllocWithGrowth(space, self, 8 * MB, &dummy, nullptr, &dummy);
336 EXPECT_TRUE(ptr5 == nullptr);
337
338 // Release some memory.
339 size_t free3 = space->AllocationSize(ptr3.Get(), nullptr);
340 EXPECT_EQ(free3, ptr3_bytes_allocated);
341 space->Free(self, ptr3.Assign(nullptr));
342 EXPECT_LE(8U * MB, free3);
343
344 // Succeeds, now that memory has been freed.
345 size_t ptr6_bytes_allocated, ptr6_usable_size, ptr6_bytes_tl_bulk_allocated;
346 Handle<mirror::Object> ptr6(
347 hs.NewHandle(AllocWithGrowth(space, self, 9 * MB, &ptr6_bytes_allocated, &ptr6_usable_size,
348 &ptr6_bytes_tl_bulk_allocated)));
349 EXPECT_TRUE(ptr6.Get() != nullptr);
350 EXPECT_LE(9U * MB, ptr6_bytes_allocated);
351 EXPECT_LE(9U * MB, ptr6_usable_size);
352 EXPECT_LE(ptr6_usable_size, ptr6_bytes_allocated);
353 EXPECT_EQ(ptr6_bytes_tl_bulk_allocated, ptr6_bytes_allocated);
354
355 // Final clean up.
356 size_t free1 = space->AllocationSize(ptr1.Get(), nullptr);
357 space->Free(self, ptr1.Assign(nullptr));
358 EXPECT_LE(1U * MB, free1);
359 }
360
AllocAndFreeListTestBody(CreateSpaceFn create_space)361 void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
362 MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, nullptr));
363 ASSERT_TRUE(space != nullptr);
364
365 // Make space findable to the heap, will also delete space when runtime is cleaned up
366 AddSpace(space);
367 Thread* self = Thread::Current();
368 ScopedObjectAccess soa(self);
369
370 // Succeeds, fits without adjusting the max allowed footprint.
371 mirror::Object* lots_of_objects[1024];
372 for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
373 size_t allocation_size, usable_size, bytes_tl_bulk_allocated;
374 size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
375 lots_of_objects[i] = Alloc(space, self, size_of_zero_length_byte_array, &allocation_size,
376 &usable_size, &bytes_tl_bulk_allocated);
377 EXPECT_TRUE(lots_of_objects[i] != nullptr);
378 size_t computed_usable_size;
379 EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
380 EXPECT_EQ(usable_size, computed_usable_size);
381 EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
382 bytes_tl_bulk_allocated >= allocation_size);
383 }
384
385 // Release memory.
386 space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
387
388 // Succeeds, fits by adjusting the max allowed footprint.
389 for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
390 size_t allocation_size, usable_size, bytes_tl_bulk_allocated;
391 lots_of_objects[i] = AllocWithGrowth(space, self, 1024, &allocation_size, &usable_size,
392 &bytes_tl_bulk_allocated);
393 EXPECT_TRUE(lots_of_objects[i] != nullptr);
394 size_t computed_usable_size;
395 EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i], &computed_usable_size));
396 EXPECT_EQ(usable_size, computed_usable_size);
397 EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
398 bytes_tl_bulk_allocated >= allocation_size);
399 }
400
401 // Release memory.
402 space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
403 }
404
SizeFootPrintGrowthLimitAndTrimBody(MallocSpace * space,intptr_t object_size,int round,size_t growth_limit)405 void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
406 int round, size_t growth_limit) {
407 if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
408 ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
409 // No allocation can succeed
410 return;
411 }
412
413 // The space's footprint equals amount of resources requested from system
414 size_t footprint = space->GetFootprint();
415
416 // The space must at least have its book keeping allocated
417 EXPECT_GT(footprint, 0u);
418
419 // But it shouldn't exceed the initial size
420 EXPECT_LE(footprint, growth_limit);
421
422 // space's size shouldn't exceed the initial size
423 EXPECT_LE(space->Size(), growth_limit);
424
425 // this invariant should always hold or else the space has grown to be larger than what the
426 // space believes its size is (which will break invariants)
427 EXPECT_GE(space->Size(), footprint);
428
429 // Fill the space with lots of small objects up to the growth limit
430 size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
431 std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
432 size_t last_object = 0; // last object for which allocation succeeded
433 size_t amount_allocated = 0; // amount of space allocated
434 Thread* self = Thread::Current();
435 ScopedObjectAccess soa(self);
436 size_t rand_seed = 123456789;
437 for (size_t i = 0; i < max_objects; i++) {
438 size_t alloc_fails = 0; // number of failed allocations
439 size_t max_fails = 30; // number of times we fail allocation before giving up
440 for (; alloc_fails < max_fails; alloc_fails++) {
441 size_t alloc_size;
442 if (object_size > 0) {
443 alloc_size = object_size;
444 } else {
445 alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
446 // Note the minimum size, which is the size of a zero-length byte array.
447 size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
448 if (alloc_size < size_of_zero_length_byte_array) {
449 alloc_size = size_of_zero_length_byte_array;
450 }
451 }
452 StackHandleScope<1> hs(soa.Self());
453 auto object(hs.NewHandle<mirror::Object>(nullptr));
454 size_t bytes_allocated = 0;
455 size_t bytes_tl_bulk_allocated;
456 if (round <= 1) {
457 object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
458 &bytes_tl_bulk_allocated));
459 } else {
460 object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
461 &bytes_tl_bulk_allocated));
462 }
463 footprint = space->GetFootprint();
464 EXPECT_GE(space->Size(), footprint); // invariant
465 if (object.Get() != nullptr) { // allocation succeeded
466 lots_of_objects[i] = object.Get();
467 size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
468 EXPECT_EQ(bytes_allocated, allocation_size);
469 if (object_size > 0) {
470 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
471 } else {
472 EXPECT_GE(allocation_size, 8u);
473 }
474 EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
475 bytes_tl_bulk_allocated >= allocation_size);
476 amount_allocated += allocation_size;
477 break;
478 }
479 }
480 if (alloc_fails == max_fails) {
481 last_object = i;
482 break;
483 }
484 }
485 CHECK_NE(last_object, 0u); // we should have filled the space
486 EXPECT_GT(amount_allocated, 0u);
487
488 // We shouldn't have gone past the growth_limit
489 EXPECT_LE(amount_allocated, growth_limit);
490 EXPECT_LE(footprint, growth_limit);
491 EXPECT_LE(space->Size(), growth_limit);
492
493 // footprint and size should agree with amount allocated
494 EXPECT_GE(footprint, amount_allocated);
495 EXPECT_GE(space->Size(), amount_allocated);
496
497 // Release storage in a semi-adhoc manner
498 size_t free_increment = 96;
499 while (true) {
500 {
501 ScopedThreadStateChange tsc(self, kNative);
502 // Give the space a haircut.
503 space->Trim();
504 }
505
506 // Bounds sanity
507 footprint = space->GetFootprint();
508 EXPECT_LE(amount_allocated, growth_limit);
509 EXPECT_GE(footprint, amount_allocated);
510 EXPECT_LE(footprint, growth_limit);
511 EXPECT_GE(space->Size(), amount_allocated);
512 EXPECT_LE(space->Size(), growth_limit);
513
514 if (free_increment == 0) {
515 break;
516 }
517
518 // Free some objects
519 for (size_t i = 0; i < last_object; i += free_increment) {
520 mirror::Object* object = lots_of_objects.get()[i];
521 if (object == nullptr) {
522 continue;
523 }
524 size_t allocation_size = space->AllocationSize(object, nullptr);
525 if (object_size > 0) {
526 EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
527 } else {
528 EXPECT_GE(allocation_size, 8u);
529 }
530 space->Free(self, object);
531 lots_of_objects.get()[i] = nullptr;
532 amount_allocated -= allocation_size;
533 footprint = space->GetFootprint();
534 EXPECT_GE(space->Size(), footprint); // invariant
535 }
536
537 free_increment >>= 1;
538 }
539
540 // The space has become empty here before allocating a large object
541 // below. For RosAlloc, revoke thread-local runs, which are kept
542 // even when empty for a performance reason, so that they won't
543 // cause the following large object allocation to fail due to
544 // potential fragmentation. Note they are normally revoked at each
545 // GC (but no GC here.)
546 space->RevokeAllThreadLocalBuffers();
547
548 // All memory was released, try a large allocation to check freed memory is being coalesced
549 StackHandleScope<1> hs(soa.Self());
550 auto large_object(hs.NewHandle<mirror::Object>(nullptr));
551 size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
552 size_t bytes_allocated = 0;
553 size_t bytes_tl_bulk_allocated;
554 if (round <= 1) {
555 large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
556 &bytes_tl_bulk_allocated));
557 } else {
558 large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
559 nullptr, &bytes_tl_bulk_allocated));
560 }
561 EXPECT_TRUE(large_object.Get() != nullptr);
562
563 // Sanity check footprint
564 footprint = space->GetFootprint();
565 EXPECT_LE(footprint, growth_limit);
566 EXPECT_GE(space->Size(), footprint);
567 EXPECT_LE(space->Size(), growth_limit);
568
569 // Clean up
570 space->Free(self, large_object.Assign(nullptr));
571
572 // Sanity check footprint
573 footprint = space->GetFootprint();
574 EXPECT_LE(footprint, growth_limit);
575 EXPECT_GE(space->Size(), footprint);
576 EXPECT_LE(space->Size(), growth_limit);
577 }
578
SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,CreateSpaceFn create_space)579 void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
580 if (object_size < SizeOfZeroLengthByteArray()) {
581 // Too small for the object layout/model.
582 return;
583 }
584 size_t initial_size = 4 * MB;
585 size_t growth_limit = 8 * MB;
586 size_t capacity = 16 * MB;
587 MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
588 ASSERT_TRUE(space != nullptr);
589
590 // Basic sanity
591 EXPECT_EQ(space->Capacity(), growth_limit);
592 EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
593
594 // Make space findable to the heap, will also delete space when runtime is cleaned up
595 AddSpace(space);
596
597 // In this round we don't allocate with growth and therefore can't grow past the initial size.
598 // This effectively makes the growth_limit the initial_size, so assert this.
599 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
600 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
601 // Remove growth limit
602 space->ClearGrowthLimit();
603 EXPECT_EQ(space->Capacity(), capacity);
604 SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
605 }
606
607 #define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
608 TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
609 SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
610 }
611
612 #define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
613 TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
614 SizeFootPrintGrowthLimitAndTrimDriver(-size, spaceFn); \
615 }
616
617 #define TEST_SPACE_CREATE_FN_BASE(spaceName, spaceFn) \
618 class spaceName##BaseTest : public SpaceTest { \
619 }; \
620 \
621 TEST_F(spaceName##BaseTest, Init) { \
622 InitTestBody(spaceFn); \
623 } \
624 TEST_F(spaceName##BaseTest, ZygoteSpace) { \
625 ZygoteSpaceTestBody(spaceFn); \
626 } \
627 TEST_F(spaceName##BaseTest, AllocAndFree) { \
628 AllocAndFreeTestBody(spaceFn); \
629 } \
630 TEST_F(spaceName##BaseTest, AllocAndFreeList) { \
631 AllocAndFreeListTestBody(spaceFn); \
632 }
633
634 #define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
635 class spaceName##StaticTest : public SpaceTest { \
636 }; \
637 \
638 TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
639 TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
640 TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
641 TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
642 TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
643 TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
644 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
645 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
646 TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
647 TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
648 TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
649
650 #define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
651 class spaceName##RandomTest : public SpaceTest { \
652 }; \
653 \
654 TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
655 TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
656 TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
657 TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
658 TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
659 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
660 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
661 TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
662 TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
663 TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
664
665 } // namespace space
666 } // namespace gc
667 } // namespace art
668
669 #endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
670