1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
16 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
17 
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/Target/TargetLowering.h"
21 #include "llvm/Target/TargetOptions.h"
22 
23 namespace llvm {
24   class X86Subtarget;
25   class X86TargetMachine;
26 
27   namespace X86ISD {
28     // X86 Specific DAG Nodes
29     enum NodeType {
30       // Start the numbering where the builtin ops leave off.
31       FIRST_NUMBER = ISD::BUILTIN_OP_END,
32 
33       /// Bit scan forward.
34       BSF,
35       /// Bit scan reverse.
36       BSR,
37 
38       /// Double shift instructions. These correspond to
39       /// X86::SHLDxx and X86::SHRDxx instructions.
40       SHLD,
41       SHRD,
42 
43       /// Bitwise logical AND of floating point values. This corresponds
44       /// to X86::ANDPS or X86::ANDPD.
45       FAND,
46 
47       /// Bitwise logical OR of floating point values. This corresponds
48       /// to X86::ORPS or X86::ORPD.
49       FOR,
50 
51       /// Bitwise logical XOR of floating point values. This corresponds
52       /// to X86::XORPS or X86::XORPD.
53       FXOR,
54 
55       ///  Bitwise logical ANDNOT of floating point values. This
56       /// corresponds to X86::ANDNPS or X86::ANDNPD.
57       FANDN,
58 
59       /// Bitwise logical right shift of floating point values. This
60       /// corresponds to X86::PSRLDQ.
61       FSRL,
62 
63       /// These operations represent an abstract X86 call
64       /// instruction, which includes a bunch of information.  In particular the
65       /// operands of these node are:
66       ///
67       ///     #0 - The incoming token chain
68       ///     #1 - The callee
69       ///     #2 - The number of arg bytes the caller pushes on the stack.
70       ///     #3 - The number of arg bytes the callee pops off the stack.
71       ///     #4 - The value to pass in AL/AX/EAX (optional)
72       ///     #5 - The value to pass in DL/DX/EDX (optional)
73       ///
74       /// The result values of these nodes are:
75       ///
76       ///     #0 - The outgoing token chain
77       ///     #1 - The first register result value (optional)
78       ///     #2 - The second register result value (optional)
79       ///
80       CALL,
81 
82       /// This operation implements the lowering for readcyclecounter
83       RDTSC_DAG,
84 
85       /// X86 Read Time-Stamp Counter and Processor ID.
86       RDTSCP_DAG,
87 
88       /// X86 Read Performance Monitoring Counters.
89       RDPMC_DAG,
90 
91       /// X86 compare and logical compare instructions.
92       CMP, COMI, UCOMI,
93 
94       /// X86 bit-test instructions.
95       BT,
96 
97       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
98       /// operand, usually produced by a CMP instruction.
99       SETCC,
100 
101       /// X86 Select
102       SELECT,
103 
104       // Same as SETCC except it's materialized with a sbb and the value is all
105       // one's or all zero's.
106       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
107 
108       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
109       /// Operands are two FP values to compare; result is a mask of
110       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
111       FSETCC,
112 
113       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
114       /// result in an integer GPR.  Needs masking for scalar result.
115       FGETSIGNx86,
116 
117       /// X86 conditional moves. Operand 0 and operand 1 are the two values
118       /// to select from. Operand 2 is the condition code, and operand 3 is the
119       /// flag operand produced by a CMP or TEST instruction. It also writes a
120       /// flag result.
121       CMOV,
122 
123       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
124       /// is the block to branch if condition is true, operand 2 is the
125       /// condition code, and operand 3 is the flag operand produced by a CMP
126       /// or TEST instruction.
127       BRCOND,
128 
129       /// Return with a flag operand. Operand 0 is the chain operand, operand
130       /// 1 is the number of bytes of stack to pop.
131       RET_FLAG,
132 
133       /// Repeat fill, corresponds to X86::REP_STOSx.
134       REP_STOS,
135 
136       /// Repeat move, corresponds to X86::REP_MOVSx.
137       REP_MOVS,
138 
139       /// On Darwin, this node represents the result of the popl
140       /// at function entry, used for PIC code.
141       GlobalBaseReg,
142 
143       /// A wrapper node for TargetConstantPool,
144       /// TargetExternalSymbol, and TargetGlobalAddress.
145       Wrapper,
146 
147       /// Special wrapper used under X86-64 PIC mode for RIP
148       /// relative displacements.
149       WrapperRIP,
150 
151       /// Copies a 64-bit value from the low word of an XMM vector
152       /// to an MMX vector.  If you think this is too close to the previous
153       /// mnemonic, so do I; blame Intel.
154       MOVDQ2Q,
155 
156       /// Copies a 32-bit value from the low word of a MMX
157       /// vector to a GPR.
158       MMX_MOVD2W,
159 
160       /// Copies a GPR into the low 32-bit word of a MMX vector
161       /// and zero out the high word.
162       MMX_MOVW2D,
163 
164       /// Extract an 8-bit value from a vector and zero extend it to
165       /// i32, corresponds to X86::PEXTRB.
166       PEXTRB,
167 
168       /// Extract a 16-bit value from a vector and zero extend it to
169       /// i32, corresponds to X86::PEXTRW.
170       PEXTRW,
171 
172       /// Insert any element of a 4 x float vector into any element
173       /// of a destination 4 x floatvector.
174       INSERTPS,
175 
176       /// Insert the lower 8-bits of a 32-bit value to a vector,
177       /// corresponds to X86::PINSRB.
178       PINSRB,
179 
180       /// Insert the lower 16-bits of a 32-bit value to a vector,
181       /// corresponds to X86::PINSRW.
182       PINSRW, MMX_PINSRW,
183 
184       /// Shuffle 16 8-bit values within a vector.
185       PSHUFB,
186 
187       /// Bitwise Logical AND NOT of Packed FP values.
188       ANDNP,
189 
190       /// Copy integer sign.
191       PSIGN,
192 
193       /// Blend where the selector is an immediate.
194       BLENDI,
195 
196       /// Blend where the condition has been shrunk.
197       /// This is used to emphasize that the condition mask is
198       /// no more valid for generic VSELECT optimizations.
199       SHRUNKBLEND,
200 
201       /// Combined add and sub on an FP vector.
202       ADDSUB,
203       //  FP vector ops with rounding mode.
204       FADD_RND,
205       FSUB_RND,
206       FMUL_RND,
207       FDIV_RND,
208 
209       // Integer sub with unsigned saturation.
210       SUBUS,
211 
212       /// Integer horizontal add.
213       HADD,
214 
215       /// Integer horizontal sub.
216       HSUB,
217 
218       /// Floating point horizontal add.
219       FHADD,
220 
221       /// Floating point horizontal sub.
222       FHSUB,
223 
224       /// Unsigned integer max and min.
225       UMAX, UMIN,
226 
227       /// Signed integer max and min.
228       SMAX, SMIN,
229 
230       /// Floating point max and min.
231       FMAX, FMIN,
232 
233       /// Commutative FMIN and FMAX.
234       FMAXC, FMINC,
235 
236       /// Floating point reciprocal-sqrt and reciprocal approximation.
237       /// Note that these typically require refinement
238       /// in order to obtain suitable precision.
239       FRSQRT, FRCP,
240 
241       // Thread Local Storage.
242       TLSADDR,
243 
244       // Thread Local Storage. A call to get the start address
245       // of the TLS block for the current module.
246       TLSBASEADDR,
247 
248       // Thread Local Storage.  When calling to an OS provided
249       // thunk at the address from an earlier relocation.
250       TLSCALL,
251 
252       // Exception Handling helpers.
253       EH_RETURN,
254 
255       // SjLj exception handling setjmp.
256       EH_SJLJ_SETJMP,
257 
258       // SjLj exception handling longjmp.
259       EH_SJLJ_LONGJMP,
260 
261       /// Tail call return. See X86TargetLowering::LowerCall for
262       /// the list of operands.
263       TC_RETURN,
264 
265       // Vector move to low scalar and zero higher vector elements.
266       VZEXT_MOVL,
267 
268       // Vector integer zero-extend.
269       VZEXT,
270 
271       // Vector integer signed-extend.
272       VSEXT,
273 
274       // Vector integer truncate.
275       VTRUNC,
276 
277       // Vector integer truncate with mask.
278       VTRUNCM,
279 
280       // Vector FP extend.
281       VFPEXT,
282 
283       // Vector FP round.
284       VFPROUND,
285 
286       // 128-bit vector logical left / right shift
287       VSHLDQ, VSRLDQ,
288 
289       // Vector shift elements
290       VSHL, VSRL, VSRA,
291 
292       // Vector shift elements by immediate
293       VSHLI, VSRLI, VSRAI,
294 
295       // Vector packed double/float comparison.
296       CMPP,
297 
298       // Vector integer comparisons.
299       PCMPEQ, PCMPGT,
300       // Vector integer comparisons, the result is in a mask vector.
301       PCMPEQM, PCMPGTM,
302 
303       /// Vector comparison generating mask bits for fp and
304       /// integer signed and unsigned data types.
305       CMPM,
306       CMPMU,
307 
308       // Arithmetic operations with FLAGS results.
309       ADD, SUB, ADC, SBB, SMUL,
310       INC, DEC, OR, XOR, AND,
311 
312       BEXTR,  // Bit field extract
313 
314       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
315 
316       // 8-bit SMUL/UMUL - AX, FLAGS = smul8/umul8 AL, RHS
317       SMUL8, UMUL8,
318 
319       // 8-bit divrem that zero-extend the high result (AH).
320       UDIVREM8_ZEXT_HREG,
321       SDIVREM8_SEXT_HREG,
322 
323       // X86-specific multiply by immediate.
324       MUL_IMM,
325 
326       // Vector bitwise comparisons.
327       PTEST,
328 
329       // Vector packed fp sign bitwise comparisons.
330       TESTP,
331 
332       // Vector "test" in AVX-512, the result is in a mask vector.
333       TESTM,
334       TESTNM,
335 
336       // OR/AND test for masks
337       KORTEST,
338 
339       // Several flavors of instructions with vector shuffle behaviors.
340       PACKSS,
341       PACKUS,
342       // Intra-lane alignr
343       PALIGNR,
344       // AVX512 inter-lane alignr
345       VALIGN,
346       PSHUFD,
347       PSHUFHW,
348       PSHUFLW,
349       SHUFP,
350       MOVDDUP,
351       MOVSHDUP,
352       MOVSLDUP,
353       MOVLHPS,
354       MOVLHPD,
355       MOVHLPS,
356       MOVLPS,
357       MOVLPD,
358       MOVSD,
359       MOVSS,
360       UNPCKL,
361       UNPCKH,
362       VPERMILPV,
363       VPERMILPI,
364       VPERMV,
365       VPERMV3,
366       VPERMIV3,
367       VPERMI,
368       VPERM2X128,
369       VBROADCAST,
370       // masked broadcast
371       VBROADCASTM,
372       // Insert/Extract vector element
373       VINSERT,
374       VEXTRACT,
375 
376       // Vector multiply packed unsigned doubleword integers
377       PMULUDQ,
378       // Vector multiply packed signed doubleword integers
379       PMULDQ,
380 
381       // FMA nodes
382       FMADD,
383       FNMADD,
384       FMSUB,
385       FNMSUB,
386       FMADDSUB,
387       FMSUBADD,
388       // FMA with rounding mode
389       FMADD_RND,
390       FNMADD_RND,
391       FMSUB_RND,
392       FNMSUB_RND,
393       FMADDSUB_RND,
394       FMSUBADD_RND,
395       RNDSCALE,
396 
397       // Compress and expand
398       COMPRESS,
399       EXPAND,
400 
401       // Save xmm argument registers to the stack, according to %al. An operator
402       // is needed so that this can be expanded with control flow.
403       VASTART_SAVE_XMM_REGS,
404 
405       // Windows's _chkstk call to do stack probing.
406       WIN_ALLOCA,
407 
408       // For allocating variable amounts of stack space when using
409       // segmented stacks. Check if the current stacklet has enough space, and
410       // falls back to heap allocation if not.
411       SEG_ALLOCA,
412 
413       // Windows's _ftol2 runtime routine to do fptoui.
414       WIN_FTOL,
415 
416       // Memory barrier
417       MEMBARRIER,
418       MFENCE,
419       SFENCE,
420       LFENCE,
421 
422       // Store FP status word into i16 register.
423       FNSTSW16r,
424 
425       // Store contents of %ah into %eflags.
426       SAHF,
427 
428       // Get a random integer and indicate whether it is valid in CF.
429       RDRAND,
430 
431       // Get a NIST SP800-90B & C compliant random integer and
432       // indicate whether it is valid in CF.
433       RDSEED,
434 
435       PCMPISTRI,
436       PCMPESTRI,
437 
438       // Test if in transactional execution.
439       XTEST,
440 
441       // ERI instructions
442       RSQRT28, RCP28, EXP2,
443 
444       // Compare and swap.
445       LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
446       LCMPXCHG8_DAG,
447       LCMPXCHG16_DAG,
448 
449       // Load, scalar_to_vector, and zero extend.
450       VZEXT_LOAD,
451 
452       // Store FP control world into i16 memory.
453       FNSTCW16m,
454 
455       /// This instruction implements FP_TO_SINT with the
456       /// integer destination in memory and a FP reg source.  This corresponds
457       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
458       /// has two inputs (token chain and address) and two outputs (int value
459       /// and token chain).
460       FP_TO_INT16_IN_MEM,
461       FP_TO_INT32_IN_MEM,
462       FP_TO_INT64_IN_MEM,
463 
464       /// This instruction implements SINT_TO_FP with the
465       /// integer source in memory and FP reg result.  This corresponds to the
466       /// X86::FILD*m instructions. It has three inputs (token chain, address,
467       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
468       /// also produces a flag).
469       FILD,
470       FILD_FLAG,
471 
472       /// This instruction implements an extending load to FP stack slots.
473       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
474       /// operand, ptr to load from, and a ValueType node indicating the type
475       /// to load to.
476       FLD,
477 
478       /// This instruction implements a truncating store to FP stack
479       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
480       /// chain operand, value to store, address, and a ValueType to store it
481       /// as.
482       FST,
483 
484       /// This instruction grabs the address of the next argument
485       /// from a va_list. (reads and modifies the va_list in memory)
486       VAARG_64
487 
488       // WARNING: Do not add anything in the end unless you want the node to
489       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
490       // thought as target memory ops!
491     };
492   }
493 
494   /// Define some predicates that are used for node matching.
495   namespace X86 {
496     /// Return true if the specified
497     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
498     /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
499     bool isVEXTRACT128Index(SDNode *N);
500 
501     /// Return true if the specified
502     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
503     /// suitable for input to VINSERTF128, VINSERTI128 instructions.
504     bool isVINSERT128Index(SDNode *N);
505 
506     /// Return true if the specified
507     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
508     /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
509     bool isVEXTRACT256Index(SDNode *N);
510 
511     /// Return true if the specified
512     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
513     /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
514     bool isVINSERT256Index(SDNode *N);
515 
516     /// Return the appropriate
517     /// immediate to extract the specified EXTRACT_SUBVECTOR index
518     /// with VEXTRACTF128, VEXTRACTI128 instructions.
519     unsigned getExtractVEXTRACT128Immediate(SDNode *N);
520 
521     /// Return the appropriate
522     /// immediate to insert at the specified INSERT_SUBVECTOR index
523     /// with VINSERTF128, VINSERT128 instructions.
524     unsigned getInsertVINSERT128Immediate(SDNode *N);
525 
526     /// Return the appropriate
527     /// immediate to extract the specified EXTRACT_SUBVECTOR index
528     /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
529     unsigned getExtractVEXTRACT256Immediate(SDNode *N);
530 
531     /// Return the appropriate
532     /// immediate to insert at the specified INSERT_SUBVECTOR index
533     /// with VINSERTF64x4, VINSERTI64x4 instructions.
534     unsigned getInsertVINSERT256Immediate(SDNode *N);
535 
536     /// Returns true if Elt is a constant zero or floating point constant +0.0.
537     bool isZeroNode(SDValue Elt);
538 
539     /// Returns true of the given offset can be
540     /// fit into displacement field of the instruction.
541     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
542                                       bool hasSymbolicDisplacement = true);
543 
544 
545     /// Determines whether the callee is required to pop its
546     /// own arguments. Callee pop is necessary to support tail calls.
547     bool isCalleePop(CallingConv::ID CallingConv,
548                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
549 
550     /// AVX512 static rounding constants.  These need to match the values in
551     /// avx512fintrin.h.
552     enum STATIC_ROUNDING {
553       TO_NEAREST_INT = 0,
554       TO_NEG_INF = 1,
555       TO_POS_INF = 2,
556       TO_ZERO = 3,
557       CUR_DIRECTION = 4
558     };
559   }
560 
561   //===--------------------------------------------------------------------===//
562   //  X86 Implementation of the TargetLowering interface
563   class X86TargetLowering final : public TargetLowering {
564   public:
565     explicit X86TargetLowering(const X86TargetMachine &TM,
566                                const X86Subtarget &STI);
567 
568     unsigned getJumpTableEncoding() const override;
569 
getScalarShiftAmountTy(EVT LHSTy)570     MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
571 
572     const MCExpr *
573     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
574                               const MachineBasicBlock *MBB, unsigned uid,
575                               MCContext &Ctx) const override;
576 
577     /// Returns relocation base for the given PIC jumptable.
578     SDValue getPICJumpTableRelocBase(SDValue Table,
579                                      SelectionDAG &DAG) const override;
580     const MCExpr *
581     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
582                                  unsigned JTI, MCContext &Ctx) const override;
583 
584     /// Return the desired alignment for ByVal aggregate
585     /// function arguments in the caller parameter area. For X86, aggregates
586     /// that contains are placed at 16-byte boundaries while the rest are at
587     /// 4-byte boundaries.
588     unsigned getByValTypeAlignment(Type *Ty) const override;
589 
590     /// Returns the target specific optimal type for load
591     /// and store operations as a result of memset, memcpy, and memmove
592     /// lowering. If DstAlign is zero that means it's safe to destination
593     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
594     /// means there isn't a need to check it against alignment requirement,
595     /// probably because the source does not need to be loaded. If 'IsMemset' is
596     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
597     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
598     /// source is constant so it does not need to be loaded.
599     /// It returns EVT::Other if the type should be determined using generic
600     /// target-independent logic.
601     EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
602                             bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
603                             MachineFunction &MF) const override;
604 
605     /// Returns true if it's safe to use load / store of the
606     /// specified type to expand memcpy / memset inline. This is mostly true
607     /// for all types except for some special cases. For example, on X86
608     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
609     /// also does type conversion. Note the specified type doesn't have to be
610     /// legal as the hook is used before type legalization.
611     bool isSafeMemOpType(MVT VT) const override;
612 
613     /// Returns true if the target allows
614     /// unaligned memory accesses. of the specified type. Returns whether it
615     /// is "fast" by reference in the second argument.
616     bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
617                                        bool *Fast) const override;
618 
619     /// Provide custom lowering hooks for some operations.
620     ///
621     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
622 
623     /// Replace the results of node with an illegal result
624     /// type with new values built out of custom code.
625     ///
626     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
627                             SelectionDAG &DAG) const override;
628 
629 
630     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
631 
632     /// Return true if the target has native support for
633     /// the specified value type and it is 'desirable' to use the type for the
634     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
635     /// instruction encodings are longer and some i16 instructions are slow.
636     bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
637 
638     /// Return true if the target has native support for the
639     /// specified value type and it is 'desirable' to use the type. e.g. On x86
640     /// i16 is legal, but undesirable since i16 instruction encodings are longer
641     /// and some i16 instructions are slow.
642     bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
643 
644     MachineBasicBlock *
645       EmitInstrWithCustomInserter(MachineInstr *MI,
646                                   MachineBasicBlock *MBB) const override;
647 
648 
649     /// This method returns the name of a target specific DAG node.
650     const char *getTargetNodeName(unsigned Opcode) const override;
651 
652     bool isCheapToSpeculateCttz() const override;
653 
654     bool isCheapToSpeculateCtlz() const override;
655 
656     /// Return the value type to use for ISD::SETCC.
657     EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
658 
659     /// Determine which of the bits specified in Mask are known to be either
660     /// zero or one and return them in the KnownZero/KnownOne bitsets.
661     void computeKnownBitsForTargetNode(const SDValue Op,
662                                        APInt &KnownZero,
663                                        APInt &KnownOne,
664                                        const SelectionDAG &DAG,
665                                        unsigned Depth = 0) const override;
666 
667     /// Determine the number of bits in the operation that are sign bits.
668     unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
669                                              const SelectionDAG &DAG,
670                                              unsigned Depth) const override;
671 
672     bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
673                         int64_t &Offset) const override;
674 
675     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
676 
677     bool ExpandInlineAsm(CallInst *CI) const override;
678 
679     ConstraintType
680       getConstraintType(const std::string &Constraint) const override;
681 
682     /// Examine constraint string and operand type and determine a weight value.
683     /// The operand object must already have been set up with the operand type.
684     ConstraintWeight
685       getSingleConstraintMatchWeight(AsmOperandInfo &info,
686                                      const char *constraint) const override;
687 
688     const char *LowerXConstraint(EVT ConstraintVT) const override;
689 
690     /// Lower the specified operand into the Ops vector. If it is invalid, don't
691     /// add anything to Ops. If hasMemory is true it means one of the asm
692     /// constraint of the inline asm instruction being processed is 'm'.
693     void LowerAsmOperandForConstraint(SDValue Op,
694                                       std::string &Constraint,
695                                       std::vector<SDValue> &Ops,
696                                       SelectionDAG &DAG) const override;
697 
getInlineAsmMemConstraint(const std::string & ConstraintCode)698     unsigned getInlineAsmMemConstraint(
699         const std::string &ConstraintCode) const override {
700       // FIXME: Map different constraints differently.
701       return InlineAsm::Constraint_m;
702     }
703 
704     /// Given a physical register constraint
705     /// (e.g. {edx}), return the register number and the register class for the
706     /// register.  This should only be used for C_Register constraints.  On
707     /// error, this returns a register number of 0.
708     std::pair<unsigned, const TargetRegisterClass *>
709     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
710                                  const std::string &Constraint,
711                                  MVT VT) const override;
712 
713     /// Return true if the addressing mode represented
714     /// by AM is legal for this target, for a load/store of the specified type.
715     bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
716 
717     /// Return true if the specified immediate is legal
718     /// icmp immediate, that is the target has icmp instructions which can
719     /// compare a register against the immediate without having to materialize
720     /// the immediate into a register.
721     bool isLegalICmpImmediate(int64_t Imm) const override;
722 
723     /// Return true if the specified immediate is legal
724     /// add immediate, that is the target has add instructions which can
725     /// add a register and the immediate without having to materialize
726     /// the immediate into a register.
727     bool isLegalAddImmediate(int64_t Imm) const override;
728 
729     /// \brief Return the cost of the scaling factor used in the addressing
730     /// mode represented by AM for this target, for a load/store
731     /// of the specified type.
732     /// If the AM is supported, the return value must be >= 0.
733     /// If the AM is not supported, it returns a negative value.
734     int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
735 
736     bool isVectorShiftByScalarCheap(Type *Ty) const override;
737 
738     /// Return true if it's free to truncate a value of
739     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
740     /// register EAX to i16 by referencing its sub-register AX.
741     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
742     bool isTruncateFree(EVT VT1, EVT VT2) const override;
743 
744     bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
745 
746     /// Return true if any actual instruction that defines a
747     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
748     /// register. This does not necessarily include registers defined in
749     /// unknown ways, such as incoming arguments, or copies from unknown
750     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
751     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
752     /// all instructions that define 32-bit values implicit zero-extend the
753     /// result out to 64 bits.
754     bool isZExtFree(Type *Ty1, Type *Ty2) const override;
755     bool isZExtFree(EVT VT1, EVT VT2) const override;
756     bool isZExtFree(SDValue Val, EVT VT2) const override;
757 
758     /// Return true if folding a vector load into ExtVal (a sign, zero, or any
759     /// extend node) is profitable.
760     bool isVectorLoadExtDesirable(SDValue) const override;
761 
762     /// Return true if an FMA operation is faster than a pair of fmul and fadd
763     /// instructions. fmuladd intrinsics will be expanded to FMAs when this
764     /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
765     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
766 
767     /// Return true if it's profitable to narrow
768     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
769     /// from i32 to i8 but not from i32 to i16.
770     bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
771 
772     /// Returns true if the target can instruction select the
773     /// specified FP immediate natively. If false, the legalizer will
774     /// materialize the FP immediate as a load from a constant pool.
775     bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
776 
777     /// Targets can use this to indicate that they only support *some*
778     /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
779     /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
780     /// be legal.
781     bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
782                             EVT VT) const override;
783 
784     /// Similar to isShuffleMaskLegal. This is used by Targets can use this to
785     /// indicate if there is a suitable VECTOR_SHUFFLE that can be used to
786     /// replace a VAND with a constant pool entry.
787     bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
788                                 EVT VT) const override;
789 
790     /// If true, then instruction selection should
791     /// seek to shrink the FP constant of the specified type to a smaller type
792     /// in order to save space and / or reduce runtime.
ShouldShrinkFPConstant(EVT VT)793     bool ShouldShrinkFPConstant(EVT VT) const override {
794       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
795       // expensive than a straight movsd. On the other hand, it's important to
796       // shrink long double fp constant since fldt is very slow.
797       return !X86ScalarSSEf64 || VT == MVT::f80;
798     }
799 
800     /// Return true if we believe it is correct and profitable to reduce the
801     /// load node to a smaller type.
802     bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
803                                EVT NewVT) const override;
804 
805     /// Return true if the specified scalar FP type is computed in an SSE
806     /// register, not on the X87 floating point stack.
isScalarFPTypeInSSEReg(EVT VT)807     bool isScalarFPTypeInSSEReg(EVT VT) const {
808       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
809       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
810     }
811 
812     /// Return true if the target uses the MSVC _ftol2 routine for fptoui.
813     bool isTargetFTOL() const;
814 
815     /// Return true if the MSVC _ftol2 routine should be used for fptoui to the
816     /// given type.
isIntegerTypeFTOL(EVT VT)817     bool isIntegerTypeFTOL(EVT VT) const {
818       return isTargetFTOL() && VT == MVT::i64;
819     }
820 
821     /// \brief Returns true if it is beneficial to convert a load of a constant
822     /// to just the constant itself.
823     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
824                                            Type *Ty) const override;
825 
826     /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
827     /// with this index.
828     bool isExtractSubvectorCheap(EVT ResVT, unsigned Index) const override;
829 
830     /// Intel processors have a unified instruction and data cache
getClearCacheBuiltinName()831     const char * getClearCacheBuiltinName() const override {
832       return nullptr; // nothing to do, move along.
833     }
834 
835     unsigned getRegisterByName(const char* RegName, EVT VT) const override;
836 
837     /// This method returns a target specific FastISel object,
838     /// or null if the target does not support "fast" ISel.
839     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
840                              const TargetLibraryInfo *libInfo) const override;
841 
842     /// Return true if the target stores stack protector cookies at a fixed
843     /// offset in some non-standard address space, and populates the address
844     /// space and offset as appropriate.
845     bool getStackCookieLocation(unsigned &AddressSpace,
846                                 unsigned &Offset) const override;
847 
848     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
849                       SelectionDAG &DAG) const;
850 
851     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
852 
853     bool useLoadStackGuardNode() const override;
854     /// \brief Customize the preferred legalization strategy for certain types.
855     LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
856 
857   protected:
858     std::pair<const TargetRegisterClass *, uint8_t>
859     findRepresentativeClass(const TargetRegisterInfo *TRI,
860                             MVT VT) const override;
861 
862   private:
863     /// Keep a pointer to the X86Subtarget around so that we can
864     /// make the right decision when generating code for different targets.
865     const X86Subtarget *Subtarget;
866     const DataLayout *TD;
867 
868     /// Select between SSE or x87 floating point ops.
869     /// When SSE is available, use it for f32 operations.
870     /// When SSE2 is available, use it for f64 operations.
871     bool X86ScalarSSEf32;
872     bool X86ScalarSSEf64;
873 
874     /// A list of legal FP immediates.
875     std::vector<APFloat> LegalFPImmediates;
876 
877     /// Indicate that this x86 target can instruction
878     /// select the specified FP immediate natively.
addLegalFPImmediate(const APFloat & Imm)879     void addLegalFPImmediate(const APFloat& Imm) {
880       LegalFPImmediates.push_back(Imm);
881     }
882 
883     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
884                             CallingConv::ID CallConv, bool isVarArg,
885                             const SmallVectorImpl<ISD::InputArg> &Ins,
886                             SDLoc dl, SelectionDAG &DAG,
887                             SmallVectorImpl<SDValue> &InVals) const;
888     SDValue LowerMemArgument(SDValue Chain,
889                              CallingConv::ID CallConv,
890                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
891                              SDLoc dl, SelectionDAG &DAG,
892                              const CCValAssign &VA,  MachineFrameInfo *MFI,
893                               unsigned i) const;
894     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
895                              SDLoc dl, SelectionDAG &DAG,
896                              const CCValAssign &VA,
897                              ISD::ArgFlagsTy Flags) const;
898 
899     // Call lowering helpers.
900 
901     /// Check whether the call is eligible for tail call optimization. Targets
902     /// that want to do tail call optimization should implement this function.
903     bool IsEligibleForTailCallOptimization(SDValue Callee,
904                                            CallingConv::ID CalleeCC,
905                                            bool isVarArg,
906                                            bool isCalleeStructRet,
907                                            bool isCallerStructRet,
908                                            Type *RetTy,
909                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
910                                     const SmallVectorImpl<SDValue> &OutVals,
911                                     const SmallVectorImpl<ISD::InputArg> &Ins,
912                                            SelectionDAG& DAG) const;
913     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
914     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
915                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
916                                 int FPDiff, SDLoc dl) const;
917 
918     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
919                                          SelectionDAG &DAG) const;
920 
921     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
922                                                bool isSigned,
923                                                bool isReplace) const;
924 
925     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
926     SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
927     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
928     SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
929     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
930     SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
931     SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
932 
933     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
934     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
935     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
936     SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
937                                int64_t Offset, SelectionDAG &DAG) const;
938     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
939     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
940     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
941     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
942     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
943     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
944     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
945     SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
946     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
947     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
948     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
949     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
950                       SDLoc dl, SelectionDAG &DAG) const;
951     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
952     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
953     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
954     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
955     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
956     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
957     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
958     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
959     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
960     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
961     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
962     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
963     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
964     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
965     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
966     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
967     SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
968 
969     SDValue
970       LowerFormalArguments(SDValue Chain,
971                            CallingConv::ID CallConv, bool isVarArg,
972                            const SmallVectorImpl<ISD::InputArg> &Ins,
973                            SDLoc dl, SelectionDAG &DAG,
974                            SmallVectorImpl<SDValue> &InVals) const override;
975     SDValue LowerCall(CallLoweringInfo &CLI,
976                       SmallVectorImpl<SDValue> &InVals) const override;
977 
978     SDValue LowerReturn(SDValue Chain,
979                         CallingConv::ID CallConv, bool isVarArg,
980                         const SmallVectorImpl<ISD::OutputArg> &Outs,
981                         const SmallVectorImpl<SDValue> &OutVals,
982                         SDLoc dl, SelectionDAG &DAG) const override;
983 
984     bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
985 
986     bool mayBeEmittedAsTailCall(CallInst *CI) const override;
987 
988     EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
989                                  ISD::NodeType ExtendKind) const override;
990 
991     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
992                         bool isVarArg,
993                         const SmallVectorImpl<ISD::OutputArg> &Outs,
994                         LLVMContext &Context) const override;
995 
996     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
997 
998     bool shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
999     bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
1000     TargetLoweringBase::AtomicRMWExpansionKind
1001     shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
1002 
1003     LoadInst *
1004     lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
1005 
1006     bool needsCmpXchgNb(const Type *MemType) const;
1007 
1008     /// Utility function to emit atomic-load-arith operations (and, or, xor,
1009     /// nand, max, min, umax, umin). It takes the corresponding instruction to
1010     /// expand, the associated machine basic block, and the associated X86
1011     /// opcodes for reg/reg.
1012     MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
1013                                            MachineBasicBlock *MBB) const;
1014 
1015     /// Utility function to emit atomic-load-arith operations (and, or, xor,
1016     /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
1017     MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
1018                                                MachineBasicBlock *MBB) const;
1019 
1020     // Utility function to emit the low-level va_arg code for X86-64.
1021     MachineBasicBlock *EmitVAARG64WithCustomInserter(
1022                        MachineInstr *MI,
1023                        MachineBasicBlock *MBB) const;
1024 
1025     /// Utility function to emit the xmm reg save portion of va_start.
1026     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
1027                                                    MachineInstr *BInstr,
1028                                                    MachineBasicBlock *BB) const;
1029 
1030     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
1031                                          MachineBasicBlock *BB) const;
1032 
1033     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
1034                                               MachineBasicBlock *BB) const;
1035 
1036     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
1037                                             MachineBasicBlock *BB) const;
1038 
1039     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
1040                                           MachineBasicBlock *BB) const;
1041 
1042     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
1043                                           MachineBasicBlock *BB) const;
1044 
1045     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
1046                                         MachineBasicBlock *MBB) const;
1047 
1048     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
1049                                          MachineBasicBlock *MBB) const;
1050 
1051     MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
1052                                      MachineBasicBlock *MBB) const;
1053 
1054     /// Emit nodes that will be selected as "test Op0,Op0", or something
1055     /// equivalent, for use with the given x86 condition code.
1056     SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
1057                      SelectionDAG &DAG) const;
1058 
1059     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
1060     /// equivalent, for use with the given x86 condition code.
1061     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
1062                     SelectionDAG &DAG) const;
1063 
1064     /// Convert a comparison if required by the subtarget.
1065     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
1066 
1067     /// Use rsqrt* to speed up sqrt calculations.
1068     SDValue getRsqrtEstimate(SDValue Operand, DAGCombinerInfo &DCI,
1069                              unsigned &RefinementSteps,
1070                              bool &UseOneConstNR) const override;
1071 
1072     /// Use rcp* to speed up fdiv calculations.
1073     SDValue getRecipEstimate(SDValue Operand, DAGCombinerInfo &DCI,
1074                              unsigned &RefinementSteps) const override;
1075 
1076     /// Reassociate floating point divisions into multiply by reciprocal.
1077     bool combineRepeatedFPDivisors(unsigned NumUsers) const override;
1078   };
1079 
1080   namespace X86 {
1081     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1082                              const TargetLibraryInfo *libInfo);
1083   }
1084 }
1085 
1086 #endif    // X86ISELLOWERING_H
1087