1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_ATOMIC_H_
18 #define ART_RUNTIME_ATOMIC_H_
19 
20 #include <stdint.h>
21 #include <atomic>
22 #include <limits>
23 #include <vector>
24 
25 #include "base/logging.h"
26 #include "base/macros.h"
27 
28 namespace art {
29 
30 class Mutex;
31 
32 // QuasiAtomic encapsulates two separate facilities that we are
33 // trying to move away from:  "quasiatomic" 64 bit operations
34 // and custom memory fences.  For the time being, they remain
35 // exposed.  Clients should be converted to use either class Atomic
36 // below whenever possible, and should eventually use C++11 atomics.
37 // The two facilities that do not have a good C++11 analog are
38 // ThreadFenceForConstructor and Atomic::*JavaData.
39 //
40 // NOTE: Two "quasiatomic" operations on the exact same memory address
41 // are guaranteed to operate atomically with respect to each other,
42 // but no guarantees are made about quasiatomic operations mixed with
43 // non-quasiatomic operations on the same address, nor about
44 // quasiatomic operations that are performed on partially-overlapping
45 // memory.
46 class QuasiAtomic {
47 #if defined(__mips__) && !defined(__LP64__)
48   static constexpr bool kNeedSwapMutexes = true;
49 #elif defined(__mips__) && defined(__LP64__)
50   // TODO - mips64 still need this for Cas64 ???
51   static constexpr bool kNeedSwapMutexes = true;
52 #else
53   static constexpr bool kNeedSwapMutexes = false;
54 #endif
55 
56  public:
57   static void Startup();
58 
59   static void Shutdown();
60 
61   // Reads the 64-bit value at "addr" without tearing.
Read64(volatile const int64_t * addr)62   static int64_t Read64(volatile const int64_t* addr) {
63     if (!kNeedSwapMutexes) {
64       int64_t value;
65 #if defined(__LP64__)
66       value = *addr;
67 #else
68 #if defined(__arm__)
69 #if defined(__ARM_FEATURE_LPAE)
70       // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
71       __asm__ __volatile__("@ QuasiAtomic::Read64\n"
72         "ldrd     %0, %H0, %1"
73         : "=r" (value)
74         : "m" (*addr));
75 #else
76       // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
77       __asm__ __volatile__("@ QuasiAtomic::Read64\n"
78         "ldrexd     %0, %H0, %1"
79         : "=r" (value)
80         : "Q" (*addr));
81 #endif
82 #elif defined(__i386__)
83   __asm__ __volatile__(
84       "movq     %1, %0\n"
85       : "=x" (value)
86       : "m" (*addr));
87 #else
88       LOG(FATAL) << "Unsupported architecture";
89 #endif
90 #endif  // defined(__LP64__)
91       return value;
92     } else {
93       return SwapMutexRead64(addr);
94     }
95   }
96 
97   // Writes to the 64-bit value at "addr" without tearing.
Write64(volatile int64_t * addr,int64_t value)98   static void Write64(volatile int64_t* addr, int64_t value) {
99     if (!kNeedSwapMutexes) {
100 #if defined(__LP64__)
101       *addr = value;
102 #else
103 #if defined(__arm__)
104 #if defined(__ARM_FEATURE_LPAE)
105     // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
106     __asm__ __volatile__("@ QuasiAtomic::Write64\n"
107       "strd     %1, %H1, %0"
108       : "=m"(*addr)
109       : "r" (value));
110 #else
111     // The write is done as a swap so that the cache-line is in the exclusive state for the store.
112     int64_t prev;
113     int status;
114     do {
115       __asm__ __volatile__("@ QuasiAtomic::Write64\n"
116         "ldrexd     %0, %H0, %2\n"
117         "strexd     %1, %3, %H3, %2"
118         : "=&r" (prev), "=&r" (status), "+Q"(*addr)
119         : "r" (value)
120         : "cc");
121       } while (UNLIKELY(status != 0));
122 #endif
123 #elif defined(__i386__)
124       __asm__ __volatile__(
125         "movq     %1, %0"
126         : "=m" (*addr)
127         : "x" (value));
128 #else
129       LOG(FATAL) << "Unsupported architecture";
130 #endif
131 #endif  // defined(__LP64__)
132     } else {
133       SwapMutexWrite64(addr, value);
134     }
135   }
136 
137   // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
138   // and return true. Otherwise, don't swap, and return false.
139   // This is fully ordered, i.e. it has C++11 memory_order_seq_cst
140   // semantics (assuming all other accesses use a mutex if this one does).
141   // This has "strong" semantics; if it fails then it is guaranteed that
142   // at some point during the execution of Cas64, *addr was not equal to
143   // old_value.
Cas64(int64_t old_value,int64_t new_value,volatile int64_t * addr)144   static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
145     if (!kNeedSwapMutexes) {
146       return __sync_bool_compare_and_swap(addr, old_value, new_value);
147     } else {
148       return SwapMutexCas64(old_value, new_value, addr);
149     }
150   }
151 
152   // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
LongAtomicsUseMutexes()153   static bool LongAtomicsUseMutexes() {
154     return kNeedSwapMutexes;
155   }
156 
ThreadFenceAcquire()157   static void ThreadFenceAcquire() {
158     std::atomic_thread_fence(std::memory_order_acquire);
159   }
160 
ThreadFenceRelease()161   static void ThreadFenceRelease() {
162     std::atomic_thread_fence(std::memory_order_release);
163   }
164 
ThreadFenceForConstructor()165   static void ThreadFenceForConstructor() {
166     #if defined(__aarch64__)
167       __asm__ __volatile__("dmb ishst" : : : "memory");
168     #else
169       std::atomic_thread_fence(std::memory_order_release);
170     #endif
171   }
172 
ThreadFenceSequentiallyConsistent()173   static void ThreadFenceSequentiallyConsistent() {
174     std::atomic_thread_fence(std::memory_order_seq_cst);
175   }
176 
177  private:
178   static Mutex* GetSwapMutex(const volatile int64_t* addr);
179   static int64_t SwapMutexRead64(volatile const int64_t* addr);
180   static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
181   static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);
182 
183   // We stripe across a bunch of different mutexes to reduce contention.
184   static constexpr size_t kSwapMutexCount = 32;
185   static std::vector<Mutex*>* gSwapMutexes;
186 
187   DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
188 };
189 
190 template<typename T>
PACKED(sizeof (T))191 class PACKED(sizeof(T)) Atomic : public std::atomic<T> {
192  public:
193   Atomic<T>() : std::atomic<T>(0) { }
194 
195   explicit Atomic<T>(T value) : std::atomic<T>(value) { }
196 
197   // Load from memory without ordering or synchronization constraints.
198   T LoadRelaxed() const {
199     return this->load(std::memory_order_relaxed);
200   }
201 
202   // Word tearing allowed, but may race.
203   // TODO: Optimize?
204   // There has been some discussion of eventually disallowing word
205   // tearing for Java data loads.
206   T LoadJavaData() const {
207     return this->load(std::memory_order_relaxed);
208   }
209 
210   // Load from memory with a total ordering.
211   // Corresponds exactly to a Java volatile load.
212   T LoadSequentiallyConsistent() const {
213     return this->load(std::memory_order_seq_cst);
214   }
215 
216   // Store to memory without ordering or synchronization constraints.
217   void StoreRelaxed(T desired) {
218     this->store(desired, std::memory_order_relaxed);
219   }
220 
221   // Word tearing allowed, but may race.
222   void StoreJavaData(T desired) {
223     this->store(desired, std::memory_order_relaxed);
224   }
225 
226   // Store to memory with release ordering.
227   void StoreRelease(T desired) {
228     this->store(desired, std::memory_order_release);
229   }
230 
231   // Store to memory with a total ordering.
232   void StoreSequentiallyConsistent(T desired) {
233     this->store(desired, std::memory_order_seq_cst);
234   }
235 
236   // Atomically replace the value with desired value if it matches the expected value.
237   // Participates in total ordering of atomic operations.
238   bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
239     return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
240   }
241 
242   // The same, except it may fail spuriously.
243   bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
244     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
245   }
246 
247   // Atomically replace the value with desired value if it matches the expected value. Doesn't
248   // imply ordering or synchronization constraints.
249   bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
250     return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
251   }
252 
253   // The same, except it may fail spuriously.
254   bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
255     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
256   }
257 
258   // Atomically replace the value with desired value if it matches the expected value. Prior writes
259   // made to other memory locations by the thread that did the release become visible in this
260   // thread.
261   bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
262     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
263   }
264 
265   // Atomically replace the value with desired value if it matches the expected value. prior writes
266   // to other memory locations become visible to the threads that do a consume or an acquire on the
267   // same location.
268   bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
269     return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
270   }
271 
272   T FetchAndAddSequentiallyConsistent(const T value) {
273     return this->fetch_add(value, std::memory_order_seq_cst);  // Return old_value.
274   }
275 
276   T FetchAndSubSequentiallyConsistent(const T value) {
277     return this->fetch_sub(value, std::memory_order_seq_cst);  // Return old value.
278   }
279 
280   T FetchAndOrSequentiallyConsistent(const T value) {
281     return this->fetch_or(value, std::memory_order_seq_cst);  // Return old_value.
282   }
283 
284   T FetchAndAndSequentiallyConsistent(const T value) {
285     return this->fetch_and(value, std::memory_order_seq_cst);  // Return old_value.
286   }
287 
288   volatile T* Address() {
289     return reinterpret_cast<T*>(this);
290   }
291 
292   static T MaxValue() {
293     return std::numeric_limits<T>::max();
294   }
295 };
296 
297 typedef Atomic<int32_t> AtomicInteger;
298 
299 static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size");
300 static_assert(alignof(AtomicInteger) == alignof(int32_t),
301               "AtomicInteger alignment differs from that of underlyingtype");
302 static_assert(sizeof(Atomic<int64_t>) == sizeof(int64_t), "Weird Atomic<int64> size");
303 
304 // Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit
305 // architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte
306 // aligned.
307 #if defined(__LP64__)
308   static_assert(alignof(Atomic<int64_t>) == alignof(int64_t),
309                 "Atomic<int64> alignment differs from that of underlying type");
310 #endif
311 
312 }  // namespace art
313 
314 #endif  // ART_RUNTIME_ATOMIC_H_
315