1 //===-- tsan_rtl.cc -------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main file (entry points) for the TSan run-time.
13 //===----------------------------------------------------------------------===//
14 
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_stackdepot.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_symbolizer.h"
21 #include "tsan_defs.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_mman.h"
25 #include "tsan_suppressions.h"
26 #include "tsan_symbolize.h"
27 
28 #ifdef __SSE3__
29 // <emmintrin.h> transitively includes <stdlib.h>,
30 // and it's prohibited to include std headers into tsan runtime.
31 // So we do this dirty trick.
32 #define _MM_MALLOC_H_INCLUDED
33 #define __MM_MALLOC_H
34 #include <emmintrin.h>
35 typedef __m128i m128;
36 #endif
37 
38 volatile int __tsan_resumed = 0;
39 
__tsan_resume()40 extern "C" void __tsan_resume() {
41   __tsan_resumed = 1;
42 }
43 
44 namespace __tsan {
45 
46 #ifndef SANITIZER_GO
47 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
48 #endif
49 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
50 Context *ctx;
51 
52 // Can be overriden by a front-end.
53 #ifdef TSAN_EXTERNAL_HOOKS
54 bool OnFinalize(bool failed);
55 void OnInitialize();
56 #else
57 SANITIZER_INTERFACE_ATTRIBUTE
OnFinalize(bool failed)58 bool WEAK OnFinalize(bool failed) {
59   return failed;
60 }
61 SANITIZER_INTERFACE_ATTRIBUTE
OnInitialize()62 void WEAK OnInitialize() {}
63 #endif
64 
65 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
66 
CreateThreadContext(u32 tid)67 static ThreadContextBase *CreateThreadContext(u32 tid) {
68   // Map thread trace when context is created.
69   MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
70   const uptr hdr = GetThreadTraceHeader(tid);
71   MapThreadTrace(hdr, sizeof(Trace));
72   new((void*)hdr) Trace();
73   // We are going to use only a small part of the trace with the default
74   // value of history_size. However, the constructor writes to the whole trace.
75   // Unmap the unused part.
76   uptr hdr_end = hdr + sizeof(Trace);
77   hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
78   hdr_end = RoundUp(hdr_end, GetPageSizeCached());
79   if (hdr_end < hdr + sizeof(Trace))
80     UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
81   void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
82   return new(mem) ThreadContext(tid);
83 }
84 
85 #ifndef SANITIZER_GO
86 static const u32 kThreadQuarantineSize = 16;
87 #else
88 static const u32 kThreadQuarantineSize = 64;
89 #endif
90 
Context()91 Context::Context()
92   : initialized()
93   , report_mtx(MutexTypeReport, StatMtxReport)
94   , nreported()
95   , nmissed_expected()
96   , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
97       CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
98   , racy_stacks(MBlockRacyStacks)
99   , racy_addresses(MBlockRacyAddresses)
100   , fired_suppressions(8) {
101 }
102 
103 // The objects are allocated in TLS, so one may rely on zero-initialization.
ThreadState(Context * ctx,int tid,int unique_id,u64 epoch,unsigned reuse_count,uptr stk_addr,uptr stk_size,uptr tls_addr,uptr tls_size)104 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
105                          unsigned reuse_count,
106                          uptr stk_addr, uptr stk_size,
107                          uptr tls_addr, uptr tls_size)
108   : fast_state(tid, epoch)
109   // Do not touch these, rely on zero initialization,
110   // they may be accessed before the ctor.
111   // , ignore_reads_and_writes()
112   // , ignore_interceptors()
113   , clock(tid, reuse_count)
114 #ifndef SANITIZER_GO
115   , jmp_bufs(MBlockJmpBuf)
116 #endif
117   , tid(tid)
118   , unique_id(unique_id)
119   , stk_addr(stk_addr)
120   , stk_size(stk_size)
121   , tls_addr(tls_addr)
122   , tls_size(tls_size)
123 #ifndef SANITIZER_GO
124   , last_sleep_clock(tid)
125 #endif
126 {
127 }
128 
129 #ifndef SANITIZER_GO
MemoryProfiler(Context * ctx,fd_t fd,int i)130 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
131   uptr n_threads;
132   uptr n_running_threads;
133   ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
134   InternalScopedBuffer<char> buf(4096);
135   WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
136   WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
137 }
138 
BackgroundThread(void * arg)139 static void BackgroundThread(void *arg) {
140   // This is a non-initialized non-user thread, nothing to see here.
141   // We don't use ScopedIgnoreInterceptors, because we want ignores to be
142   // enabled even when the thread function exits (e.g. during pthread thread
143   // shutdown code).
144   cur_thread()->ignore_interceptors++;
145   const u64 kMs2Ns = 1000 * 1000;
146 
147   fd_t mprof_fd = kInvalidFd;
148   if (flags()->profile_memory && flags()->profile_memory[0]) {
149     if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
150       mprof_fd = 1;
151     } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
152       mprof_fd = 2;
153     } else {
154       InternalScopedString filename(kMaxPathLength);
155       filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
156       fd_t fd = OpenFile(filename.data(), WrOnly);
157       if (fd == kInvalidFd) {
158         Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
159             &filename[0]);
160       } else {
161         mprof_fd = fd;
162       }
163     }
164   }
165 
166   u64 last_flush = NanoTime();
167   uptr last_rss = 0;
168   for (int i = 0;
169       atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
170       i++) {
171     SleepForMillis(100);
172     u64 now = NanoTime();
173 
174     // Flush memory if requested.
175     if (flags()->flush_memory_ms > 0) {
176       if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
177         VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
178         FlushShadowMemory();
179         last_flush = NanoTime();
180       }
181     }
182     // GetRSS can be expensive on huge programs, so don't do it every 100ms.
183     if (flags()->memory_limit_mb > 0) {
184       uptr rss = GetRSS();
185       uptr limit = uptr(flags()->memory_limit_mb) << 20;
186       VPrintf(1, "ThreadSanitizer: memory flush check"
187                  " RSS=%llu LAST=%llu LIMIT=%llu\n",
188               (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
189       if (2 * rss > limit + last_rss) {
190         VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
191         FlushShadowMemory();
192         rss = GetRSS();
193         VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
194       }
195       last_rss = rss;
196     }
197 
198     // Write memory profile if requested.
199     if (mprof_fd != kInvalidFd)
200       MemoryProfiler(ctx, mprof_fd, i);
201 
202     // Flush symbolizer cache if requested.
203     if (flags()->flush_symbolizer_ms > 0) {
204       u64 last = atomic_load(&ctx->last_symbolize_time_ns,
205                              memory_order_relaxed);
206       if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
207         Lock l(&ctx->report_mtx);
208         SpinMutexLock l2(&CommonSanitizerReportMutex);
209         SymbolizeFlush();
210         atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
211       }
212     }
213   }
214 }
215 
StartBackgroundThread()216 static void StartBackgroundThread() {
217   ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
218 }
219 
220 #ifndef __mips__
StopBackgroundThread()221 static void StopBackgroundThread() {
222   atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
223   internal_join_thread(ctx->background_thread);
224   ctx->background_thread = 0;
225 }
226 #endif
227 #endif
228 
DontNeedShadowFor(uptr addr,uptr size)229 void DontNeedShadowFor(uptr addr, uptr size) {
230   uptr shadow_beg = MemToShadow(addr);
231   uptr shadow_end = MemToShadow(addr + size);
232   FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
233 }
234 
MapShadow(uptr addr,uptr size)235 void MapShadow(uptr addr, uptr size) {
236   // Global data is not 64K aligned, but there are no adjacent mappings,
237   // so we can get away with unaligned mapping.
238   // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
239   MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier);
240 
241   // Meta shadow is 2:1, so tread carefully.
242   static bool data_mapped = false;
243   static uptr mapped_meta_end = 0;
244   uptr meta_begin = (uptr)MemToMeta(addr);
245   uptr meta_end = (uptr)MemToMeta(addr + size);
246   meta_begin = RoundDownTo(meta_begin, 64 << 10);
247   meta_end = RoundUpTo(meta_end, 64 << 10);
248   if (!data_mapped) {
249     // First call maps data+bss.
250     data_mapped = true;
251     MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
252   } else {
253     // Mapping continous heap.
254     // Windows wants 64K alignment.
255     meta_begin = RoundDownTo(meta_begin, 64 << 10);
256     meta_end = RoundUpTo(meta_end, 64 << 10);
257     if (meta_end <= mapped_meta_end)
258       return;
259     if (meta_begin < mapped_meta_end)
260       meta_begin = mapped_meta_end;
261     MmapFixedNoReserve(meta_begin, meta_end - meta_begin);
262     mapped_meta_end = meta_end;
263   }
264   VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
265       addr, addr+size, meta_begin, meta_end);
266 }
267 
MapThreadTrace(uptr addr,uptr size)268 void MapThreadTrace(uptr addr, uptr size) {
269   DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
270   CHECK_GE(addr, kTraceMemBeg);
271   CHECK_LE(addr + size, kTraceMemEnd);
272   CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
273   uptr addr1 = (uptr)MmapFixedNoReserve(addr, size);
274   if (addr1 != addr) {
275     Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
276         addr, size, addr1);
277     Die();
278   }
279 }
280 
CheckShadowMapping()281 static void CheckShadowMapping() {
282   for (uptr i = 0; i < ARRAY_SIZE(UserRegions); i += 2) {
283     const uptr beg = UserRegions[i];
284     const uptr end = UserRegions[i + 1];
285     VPrintf(3, "checking shadow region %p-%p\n", beg, end);
286     for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
287       for (int x = -1; x <= 1; x++) {
288         const uptr p = p0 + x;
289         if (p < beg || p >= end)
290           continue;
291         const uptr s = MemToShadow(p);
292         const uptr m = (uptr)MemToMeta(p);
293         VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
294         CHECK(IsAppMem(p));
295         CHECK(IsShadowMem(s));
296         CHECK_EQ(p & ~(kShadowCell - 1), ShadowToMem(s));
297         CHECK(IsMetaMem(m));
298       }
299     }
300   }
301 }
302 
Initialize(ThreadState * thr)303 void Initialize(ThreadState *thr) {
304   // Thread safe because done before all threads exist.
305   static bool is_initialized = false;
306   if (is_initialized)
307     return;
308   is_initialized = true;
309   // We are not ready to handle interceptors yet.
310   ScopedIgnoreInterceptors ignore;
311   SanitizerToolName = "ThreadSanitizer";
312   // Install tool-specific callbacks in sanitizer_common.
313   SetCheckFailedCallback(TsanCheckFailed);
314 
315   ctx = new(ctx_placeholder) Context;
316   const char *options = GetEnv(kTsanOptionsEnv);
317   InitializeFlags(&ctx->flags, options);
318 #ifndef SANITIZER_GO
319   InitializeAllocator();
320 #endif
321   InitializeInterceptors();
322   CheckShadowMapping();
323   InitializePlatform();
324   InitializeMutex();
325   InitializeDynamicAnnotations();
326 #ifndef SANITIZER_GO
327   InitializeShadowMemory();
328 #endif
329   // Setup correct file descriptor for error reports.
330   __sanitizer_set_report_path(common_flags()->log_path);
331   InitializeSuppressions();
332 #ifndef SANITIZER_GO
333   InitializeLibIgnore();
334   Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
335   // On MIPS, TSan initialization is run before
336   // __pthread_initialize_minimal_internal() is finished, so we can not spawn
337   // new threads.
338 #ifndef __mips__
339   StartBackgroundThread();
340   SetSandboxingCallback(StopBackgroundThread);
341 #endif
342 #endif
343   if (common_flags()->detect_deadlocks)
344     ctx->dd = DDetector::Create(flags());
345 
346   VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
347           (int)internal_getpid());
348 
349   // Initialize thread 0.
350   int tid = ThreadCreate(thr, 0, 0, true);
351   CHECK_EQ(tid, 0);
352   ThreadStart(thr, tid, internal_getpid());
353   ctx->initialized = true;
354 
355   if (flags()->stop_on_start) {
356     Printf("ThreadSanitizer is suspended at startup (pid %d)."
357            " Call __tsan_resume().\n",
358            (int)internal_getpid());
359     while (__tsan_resumed == 0) {}
360   }
361 
362   OnInitialize();
363 }
364 
Finalize(ThreadState * thr)365 int Finalize(ThreadState *thr) {
366   bool failed = false;
367 
368   if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
369     SleepForMillis(flags()->atexit_sleep_ms);
370 
371   // Wait for pending reports.
372   ctx->report_mtx.Lock();
373   CommonSanitizerReportMutex.Lock();
374   CommonSanitizerReportMutex.Unlock();
375   ctx->report_mtx.Unlock();
376 
377 #ifndef SANITIZER_GO
378   if (Verbosity()) AllocatorPrintStats();
379 #endif
380 
381   ThreadFinalize(thr);
382 
383   if (ctx->nreported) {
384     failed = true;
385 #ifndef SANITIZER_GO
386     Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
387 #else
388     Printf("Found %d data race(s)\n", ctx->nreported);
389 #endif
390   }
391 
392   if (ctx->nmissed_expected) {
393     failed = true;
394     Printf("ThreadSanitizer: missed %d expected races\n",
395         ctx->nmissed_expected);
396   }
397 
398   if (common_flags()->print_suppressions)
399     PrintMatchedSuppressions();
400 #ifndef SANITIZER_GO
401   if (flags()->print_benign)
402     PrintMatchedBenignRaces();
403 #endif
404 
405   failed = OnFinalize(failed);
406 
407 #if TSAN_COLLECT_STATS
408   StatAggregate(ctx->stat, thr->stat);
409   StatOutput(ctx->stat);
410 #endif
411 
412   return failed ? flags()->exitcode : 0;
413 }
414 
415 #ifndef SANITIZER_GO
ForkBefore(ThreadState * thr,uptr pc)416 void ForkBefore(ThreadState *thr, uptr pc) {
417   ctx->thread_registry->Lock();
418   ctx->report_mtx.Lock();
419 }
420 
ForkParentAfter(ThreadState * thr,uptr pc)421 void ForkParentAfter(ThreadState *thr, uptr pc) {
422   ctx->report_mtx.Unlock();
423   ctx->thread_registry->Unlock();
424 }
425 
ForkChildAfter(ThreadState * thr,uptr pc)426 void ForkChildAfter(ThreadState *thr, uptr pc) {
427   ctx->report_mtx.Unlock();
428   ctx->thread_registry->Unlock();
429 
430   uptr nthread = 0;
431   ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
432   VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
433       " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
434   if (nthread == 1) {
435     StartBackgroundThread();
436   } else {
437     // We've just forked a multi-threaded process. We cannot reasonably function
438     // after that (some mutexes may be locked before fork). So just enable
439     // ignores for everything in the hope that we will exec soon.
440     ctx->after_multithreaded_fork = true;
441     thr->ignore_interceptors++;
442     ThreadIgnoreBegin(thr, pc);
443     ThreadIgnoreSyncBegin(thr, pc);
444   }
445 }
446 #endif
447 
448 #ifdef SANITIZER_GO
449 NOINLINE
GrowShadowStack(ThreadState * thr)450 void GrowShadowStack(ThreadState *thr) {
451   const int sz = thr->shadow_stack_end - thr->shadow_stack;
452   const int newsz = 2 * sz;
453   uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
454       newsz * sizeof(uptr));
455   internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
456   internal_free(thr->shadow_stack);
457   thr->shadow_stack = newstack;
458   thr->shadow_stack_pos = newstack + sz;
459   thr->shadow_stack_end = newstack + newsz;
460 }
461 #endif
462 
CurrentStackId(ThreadState * thr,uptr pc)463 u32 CurrentStackId(ThreadState *thr, uptr pc) {
464   if (!thr->is_inited)  // May happen during bootstrap.
465     return 0;
466   if (pc != 0) {
467 #ifndef SANITIZER_GO
468     DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
469 #else
470     if (thr->shadow_stack_pos == thr->shadow_stack_end)
471       GrowShadowStack(thr);
472 #endif
473     thr->shadow_stack_pos[0] = pc;
474     thr->shadow_stack_pos++;
475   }
476   u32 id = StackDepotPut(
477       StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
478   if (pc != 0)
479     thr->shadow_stack_pos--;
480   return id;
481 }
482 
TraceSwitch(ThreadState * thr)483 void TraceSwitch(ThreadState *thr) {
484   thr->nomalloc++;
485   Trace *thr_trace = ThreadTrace(thr->tid);
486   Lock l(&thr_trace->mtx);
487   unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
488   TraceHeader *hdr = &thr_trace->headers[trace];
489   hdr->epoch0 = thr->fast_state.epoch();
490   ObtainCurrentStack(thr, 0, &hdr->stack0);
491   hdr->mset0 = thr->mset;
492   thr->nomalloc--;
493 }
494 
ThreadTrace(int tid)495 Trace *ThreadTrace(int tid) {
496   return (Trace*)GetThreadTraceHeader(tid);
497 }
498 
TraceTopPC(ThreadState * thr)499 uptr TraceTopPC(ThreadState *thr) {
500   Event *events = (Event*)GetThreadTrace(thr->tid);
501   uptr pc = events[thr->fast_state.GetTracePos()];
502   return pc;
503 }
504 
TraceSize()505 uptr TraceSize() {
506   return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
507 }
508 
TraceParts()509 uptr TraceParts() {
510   return TraceSize() / kTracePartSize;
511 }
512 
513 #ifndef SANITIZER_GO
__tsan_trace_switch()514 extern "C" void __tsan_trace_switch() {
515   TraceSwitch(cur_thread());
516 }
517 
__tsan_report_race()518 extern "C" void __tsan_report_race() {
519   ReportRace(cur_thread());
520 }
521 #endif
522 
523 ALWAYS_INLINE
LoadShadow(u64 * p)524 Shadow LoadShadow(u64 *p) {
525   u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
526   return Shadow(raw);
527 }
528 
529 ALWAYS_INLINE
StoreShadow(u64 * sp,u64 s)530 void StoreShadow(u64 *sp, u64 s) {
531   atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
532 }
533 
534 ALWAYS_INLINE
StoreIfNotYetStored(u64 * sp,u64 * s)535 void StoreIfNotYetStored(u64 *sp, u64 *s) {
536   StoreShadow(sp, *s);
537   *s = 0;
538 }
539 
540 ALWAYS_INLINE
HandleRace(ThreadState * thr,u64 * shadow_mem,Shadow cur,Shadow old)541 void HandleRace(ThreadState *thr, u64 *shadow_mem,
542                               Shadow cur, Shadow old) {
543   thr->racy_state[0] = cur.raw();
544   thr->racy_state[1] = old.raw();
545   thr->racy_shadow_addr = shadow_mem;
546 #ifndef SANITIZER_GO
547   HACKY_CALL(__tsan_report_race);
548 #else
549   ReportRace(thr);
550 #endif
551 }
552 
HappensBefore(Shadow old,ThreadState * thr)553 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
554   return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
555 }
556 
557 ALWAYS_INLINE
MemoryAccessImpl1(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)558 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
559     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
560     u64 *shadow_mem, Shadow cur) {
561   StatInc(thr, StatMop);
562   StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
563   StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
564 
565   // This potentially can live in an MMX/SSE scratch register.
566   // The required intrinsics are:
567   // __m128i _mm_move_epi64(__m128i*);
568   // _mm_storel_epi64(u64*, __m128i);
569   u64 store_word = cur.raw();
570 
571   // scan all the shadow values and dispatch to 4 categories:
572   // same, replace, candidate and race (see comments below).
573   // we consider only 3 cases regarding access sizes:
574   // equal, intersect and not intersect. initially I considered
575   // larger and smaller as well, it allowed to replace some
576   // 'candidates' with 'same' or 'replace', but I think
577   // it's just not worth it (performance- and complexity-wise).
578 
579   Shadow old(0);
580 
581   // It release mode we manually unroll the loop,
582   // because empirically gcc generates better code this way.
583   // However, we can't afford unrolling in debug mode, because the function
584   // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
585   // threads, which is not enough for the unrolled loop.
586 #if SANITIZER_DEBUG
587   for (int idx = 0; idx < 4; idx++) {
588 #include "tsan_update_shadow_word_inl.h"
589   }
590 #else
591   int idx = 0;
592 #include "tsan_update_shadow_word_inl.h"
593   idx = 1;
594 #include "tsan_update_shadow_word_inl.h"
595   idx = 2;
596 #include "tsan_update_shadow_word_inl.h"
597   idx = 3;
598 #include "tsan_update_shadow_word_inl.h"
599 #endif
600 
601   // we did not find any races and had already stored
602   // the current access info, so we are done
603   if (LIKELY(store_word == 0))
604     return;
605   // choose a random candidate slot and replace it
606   StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
607   StatInc(thr, StatShadowReplace);
608   return;
609  RACE:
610   HandleRace(thr, shadow_mem, cur, old);
611   return;
612 }
613 
UnalignedMemoryAccess(ThreadState * thr,uptr pc,uptr addr,int size,bool kAccessIsWrite,bool kIsAtomic)614 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
615     int size, bool kAccessIsWrite, bool kIsAtomic) {
616   while (size) {
617     int size1 = 1;
618     int kAccessSizeLog = kSizeLog1;
619     if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
620       size1 = 8;
621       kAccessSizeLog = kSizeLog8;
622     } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
623       size1 = 4;
624       kAccessSizeLog = kSizeLog4;
625     } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
626       size1 = 2;
627       kAccessSizeLog = kSizeLog2;
628     }
629     MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
630     addr += size1;
631     size -= size1;
632   }
633 }
634 
635 ALWAYS_INLINE
ContainsSameAccessSlow(u64 * s,u64 a,u64 sync_epoch,bool is_write)636 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
637   Shadow cur(a);
638   for (uptr i = 0; i < kShadowCnt; i++) {
639     Shadow old(LoadShadow(&s[i]));
640     if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
641         old.TidWithIgnore() == cur.TidWithIgnore() &&
642         old.epoch() > sync_epoch &&
643         old.IsAtomic() == cur.IsAtomic() &&
644         old.IsRead() <= cur.IsRead())
645       return true;
646   }
647   return false;
648 }
649 
650 #if defined(__SSE3__)
651 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
652     _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
653     (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
654 ALWAYS_INLINE
ContainsSameAccessFast(u64 * s,u64 a,u64 sync_epoch,bool is_write)655 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
656   // This is an optimized version of ContainsSameAccessSlow.
657   // load current access into access[0:63]
658   const m128 access     = _mm_cvtsi64_si128(a);
659   // duplicate high part of access in addr0:
660   // addr0[0:31]        = access[32:63]
661   // addr0[32:63]       = access[32:63]
662   // addr0[64:95]       = access[32:63]
663   // addr0[96:127]      = access[32:63]
664   const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
665   // load 4 shadow slots
666   const m128 shadow0    = _mm_load_si128((__m128i*)s);
667   const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
668   // load high parts of 4 shadow slots into addr_vect:
669   // addr_vect[0:31]    = shadow0[32:63]
670   // addr_vect[32:63]   = shadow0[96:127]
671   // addr_vect[64:95]   = shadow1[32:63]
672   // addr_vect[96:127]  = shadow1[96:127]
673   m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
674   if (!is_write) {
675     // set IsRead bit in addr_vect
676     const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
677     const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
678     addr_vect           = _mm_or_si128(addr_vect, rw_mask);
679   }
680   // addr0 == addr_vect?
681   const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
682   // epoch1[0:63]       = sync_epoch
683   const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
684   // epoch[0:31]        = sync_epoch[0:31]
685   // epoch[32:63]       = sync_epoch[0:31]
686   // epoch[64:95]       = sync_epoch[0:31]
687   // epoch[96:127]      = sync_epoch[0:31]
688   const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
689   // load low parts of shadow cell epochs into epoch_vect:
690   // epoch_vect[0:31]   = shadow0[0:31]
691   // epoch_vect[32:63]  = shadow0[64:95]
692   // epoch_vect[64:95]  = shadow1[0:31]
693   // epoch_vect[96:127] = shadow1[64:95]
694   const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
695   // epoch_vect >= sync_epoch?
696   const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
697   // addr_res & epoch_res
698   const m128 res        = _mm_and_si128(addr_res, epoch_res);
699   // mask[0] = res[7]
700   // mask[1] = res[15]
701   // ...
702   // mask[15] = res[127]
703   const int mask        = _mm_movemask_epi8(res);
704   return mask != 0;
705 }
706 #endif
707 
708 ALWAYS_INLINE
ContainsSameAccess(u64 * s,u64 a,u64 sync_epoch,bool is_write)709 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
710 #if defined(__SSE3__)
711   bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
712   // NOTE: this check can fail if the shadow is concurrently mutated
713   // by other threads. But it still can be useful if you modify
714   // ContainsSameAccessFast and want to ensure that it's not completely broken.
715   // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
716   return res;
717 #else
718   return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
719 #endif
720 }
721 
722 ALWAYS_INLINE USED
MemoryAccess(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic)723 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
724     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
725   u64 *shadow_mem = (u64*)MemToShadow(addr);
726   DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
727       " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
728       (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
729       (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
730       (uptr)shadow_mem[0], (uptr)shadow_mem[1],
731       (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
732 #if SANITIZER_DEBUG
733   if (!IsAppMem(addr)) {
734     Printf("Access to non app mem %zx\n", addr);
735     DCHECK(IsAppMem(addr));
736   }
737   if (!IsShadowMem((uptr)shadow_mem)) {
738     Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
739     DCHECK(IsShadowMem((uptr)shadow_mem));
740   }
741 #endif
742 
743   if (kCppMode && *shadow_mem == kShadowRodata) {
744     // Access to .rodata section, no races here.
745     // Measurements show that it can be 10-20% of all memory accesses.
746     StatInc(thr, StatMop);
747     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
748     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
749     StatInc(thr, StatMopRodata);
750     return;
751   }
752 
753   FastState fast_state = thr->fast_state;
754   if (fast_state.GetIgnoreBit()) {
755     StatInc(thr, StatMop);
756     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
757     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
758     StatInc(thr, StatMopIgnored);
759     return;
760   }
761 
762   Shadow cur(fast_state);
763   cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
764   cur.SetWrite(kAccessIsWrite);
765   cur.SetAtomic(kIsAtomic);
766 
767   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
768       thr->fast_synch_epoch, kAccessIsWrite))) {
769     StatInc(thr, StatMop);
770     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
771     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
772     StatInc(thr, StatMopSame);
773     return;
774   }
775 
776   if (kCollectHistory) {
777     fast_state.IncrementEpoch();
778     thr->fast_state = fast_state;
779     TraceAddEvent(thr, fast_state, EventTypeMop, pc);
780     cur.IncrementEpoch();
781   }
782 
783   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
784       shadow_mem, cur);
785 }
786 
787 // Called by MemoryAccessRange in tsan_rtl_thread.cc
788 ALWAYS_INLINE USED
MemoryAccessImpl(ThreadState * thr,uptr addr,int kAccessSizeLog,bool kAccessIsWrite,bool kIsAtomic,u64 * shadow_mem,Shadow cur)789 void MemoryAccessImpl(ThreadState *thr, uptr addr,
790     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
791     u64 *shadow_mem, Shadow cur) {
792   if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
793       thr->fast_synch_epoch, kAccessIsWrite))) {
794     StatInc(thr, StatMop);
795     StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
796     StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
797     StatInc(thr, StatMopSame);
798     return;
799   }
800 
801   MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
802       shadow_mem, cur);
803 }
804 
MemoryRangeSet(ThreadState * thr,uptr pc,uptr addr,uptr size,u64 val)805 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
806                            u64 val) {
807   (void)thr;
808   (void)pc;
809   if (size == 0)
810     return;
811   // FIXME: fix me.
812   uptr offset = addr % kShadowCell;
813   if (offset) {
814     offset = kShadowCell - offset;
815     if (size <= offset)
816       return;
817     addr += offset;
818     size -= offset;
819   }
820   DCHECK_EQ(addr % 8, 0);
821   // If a user passes some insane arguments (memset(0)),
822   // let it just crash as usual.
823   if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
824     return;
825   // Don't want to touch lots of shadow memory.
826   // If a program maps 10MB stack, there is no need reset the whole range.
827   size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
828   // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
829   // so we do it only for C/C++.
830   if (kGoMode || size < common_flags()->clear_shadow_mmap_threshold) {
831     u64 *p = (u64*)MemToShadow(addr);
832     CHECK(IsShadowMem((uptr)p));
833     CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
834     // FIXME: may overwrite a part outside the region
835     for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
836       p[i++] = val;
837       for (uptr j = 1; j < kShadowCnt; j++)
838         p[i++] = 0;
839     }
840   } else {
841     // The region is big, reset only beginning and end.
842     const uptr kPageSize = GetPageSizeCached();
843     u64 *begin = (u64*)MemToShadow(addr);
844     u64 *end = begin + size / kShadowCell * kShadowCnt;
845     u64 *p = begin;
846     // Set at least first kPageSize/2 to page boundary.
847     while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
848       *p++ = val;
849       for (uptr j = 1; j < kShadowCnt; j++)
850         *p++ = 0;
851     }
852     // Reset middle part.
853     u64 *p1 = p;
854     p = RoundDown(end, kPageSize);
855     UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
856     MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1);
857     // Set the ending.
858     while (p < end) {
859       *p++ = val;
860       for (uptr j = 1; j < kShadowCnt; j++)
861         *p++ = 0;
862     }
863   }
864 }
865 
MemoryResetRange(ThreadState * thr,uptr pc,uptr addr,uptr size)866 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
867   MemoryRangeSet(thr, pc, addr, size, 0);
868 }
869 
MemoryRangeFreed(ThreadState * thr,uptr pc,uptr addr,uptr size)870 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
871   // Processing more than 1k (4k of shadow) is expensive,
872   // can cause excessive memory consumption (user does not necessary touch
873   // the whole range) and most likely unnecessary.
874   if (size > 1024)
875     size = 1024;
876   CHECK_EQ(thr->is_freeing, false);
877   thr->is_freeing = true;
878   MemoryAccessRange(thr, pc, addr, size, true);
879   thr->is_freeing = false;
880   if (kCollectHistory) {
881     thr->fast_state.IncrementEpoch();
882     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
883   }
884   Shadow s(thr->fast_state);
885   s.ClearIgnoreBit();
886   s.MarkAsFreed();
887   s.SetWrite(true);
888   s.SetAddr0AndSizeLog(0, 3);
889   MemoryRangeSet(thr, pc, addr, size, s.raw());
890 }
891 
MemoryRangeImitateWrite(ThreadState * thr,uptr pc,uptr addr,uptr size)892 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
893   if (kCollectHistory) {
894     thr->fast_state.IncrementEpoch();
895     TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
896   }
897   Shadow s(thr->fast_state);
898   s.ClearIgnoreBit();
899   s.SetWrite(true);
900   s.SetAddr0AndSizeLog(0, 3);
901   MemoryRangeSet(thr, pc, addr, size, s.raw());
902 }
903 
904 ALWAYS_INLINE USED
FuncEntry(ThreadState * thr,uptr pc)905 void FuncEntry(ThreadState *thr, uptr pc) {
906   StatInc(thr, StatFuncEnter);
907   DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
908   if (kCollectHistory) {
909     thr->fast_state.IncrementEpoch();
910     TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
911   }
912 
913   // Shadow stack maintenance can be replaced with
914   // stack unwinding during trace switch (which presumably must be faster).
915   DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
916 #ifndef SANITIZER_GO
917   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
918 #else
919   if (thr->shadow_stack_pos == thr->shadow_stack_end)
920     GrowShadowStack(thr);
921 #endif
922   thr->shadow_stack_pos[0] = pc;
923   thr->shadow_stack_pos++;
924 }
925 
926 ALWAYS_INLINE USED
FuncExit(ThreadState * thr)927 void FuncExit(ThreadState *thr) {
928   StatInc(thr, StatFuncExit);
929   DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
930   if (kCollectHistory) {
931     thr->fast_state.IncrementEpoch();
932     TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
933   }
934 
935   DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
936 #ifndef SANITIZER_GO
937   DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
938 #endif
939   thr->shadow_stack_pos--;
940 }
941 
ThreadIgnoreBegin(ThreadState * thr,uptr pc)942 void ThreadIgnoreBegin(ThreadState *thr, uptr pc) {
943   DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
944   thr->ignore_reads_and_writes++;
945   CHECK_GT(thr->ignore_reads_and_writes, 0);
946   thr->fast_state.SetIgnoreBit();
947 #ifndef SANITIZER_GO
948   if (!ctx->after_multithreaded_fork)
949     thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
950 #endif
951 }
952 
ThreadIgnoreEnd(ThreadState * thr,uptr pc)953 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
954   DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
955   thr->ignore_reads_and_writes--;
956   CHECK_GE(thr->ignore_reads_and_writes, 0);
957   if (thr->ignore_reads_and_writes == 0) {
958     thr->fast_state.ClearIgnoreBit();
959 #ifndef SANITIZER_GO
960     thr->mop_ignore_set.Reset();
961 #endif
962   }
963 }
964 
ThreadIgnoreSyncBegin(ThreadState * thr,uptr pc)965 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
966   DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
967   thr->ignore_sync++;
968   CHECK_GT(thr->ignore_sync, 0);
969 #ifndef SANITIZER_GO
970   if (!ctx->after_multithreaded_fork)
971     thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
972 #endif
973 }
974 
ThreadIgnoreSyncEnd(ThreadState * thr,uptr pc)975 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
976   DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
977   thr->ignore_sync--;
978   CHECK_GE(thr->ignore_sync, 0);
979 #ifndef SANITIZER_GO
980   if (thr->ignore_sync == 0)
981     thr->sync_ignore_set.Reset();
982 #endif
983 }
984 
operator ==(const MD5Hash & other) const985 bool MD5Hash::operator==(const MD5Hash &other) const {
986   return hash[0] == other.hash[0] && hash[1] == other.hash[1];
987 }
988 
989 #if SANITIZER_DEBUG
build_consistency_debug()990 void build_consistency_debug() {}
991 #else
build_consistency_release()992 void build_consistency_release() {}
993 #endif
994 
995 #if TSAN_COLLECT_STATS
build_consistency_stats()996 void build_consistency_stats() {}
997 #else
build_consistency_nostats()998 void build_consistency_nostats() {}
999 #endif
1000 
1001 }  // namespace __tsan
1002 
1003 #ifndef SANITIZER_GO
1004 // Must be included in this file to make sure everything is inlined.
1005 #include "tsan_interface_inl.h"
1006 #endif
1007