1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread_pool.h"
18 
19 #include "base/casts.h"
20 #include "base/stl_util.h"
21 #include "base/time_utils.h"
22 #include "runtime.h"
23 #include "thread-inl.h"
24 
25 namespace art {
26 
27 static constexpr bool kMeasureWaitTime = false;
28 
ThreadPoolWorker(ThreadPool * thread_pool,const std::string & name,size_t stack_size)29 ThreadPoolWorker::ThreadPoolWorker(ThreadPool* thread_pool, const std::string& name,
30                                    size_t stack_size)
31     : thread_pool_(thread_pool),
32       name_(name) {
33   std::string error_msg;
34   stack_.reset(MemMap::MapAnonymous(name.c_str(), nullptr, stack_size, PROT_READ | PROT_WRITE,
35                                     false, false, &error_msg));
36   CHECK(stack_.get() != nullptr) << error_msg;
37   const char* reason = "new thread pool worker thread";
38   pthread_attr_t attr;
39   CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
40   CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_->Begin(), stack_->Size()), reason);
41   CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
42   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
43 }
44 
~ThreadPoolWorker()45 ThreadPoolWorker::~ThreadPoolWorker() {
46   CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown");
47 }
48 
Run()49 void ThreadPoolWorker::Run() {
50   Thread* self = Thread::Current();
51   Task* task = nullptr;
52   thread_pool_->creation_barier_.Wait(self);
53   while ((task = thread_pool_->GetTask(self)) != nullptr) {
54     task->Run(self);
55     task->Finalize();
56   }
57 }
58 
Callback(void * arg)59 void* ThreadPoolWorker::Callback(void* arg) {
60   ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
61   Runtime* runtime = Runtime::Current();
62   CHECK(runtime->AttachCurrentThread(worker->name_.c_str(), true, nullptr, false));
63   // Do work until its time to shut down.
64   worker->Run();
65   runtime->DetachCurrentThread();
66   return nullptr;
67 }
68 
AddTask(Thread * self,Task * task)69 void ThreadPool::AddTask(Thread* self, Task* task) {
70   MutexLock mu(self, task_queue_lock_);
71   tasks_.push_back(task);
72   // If we have any waiters, signal one.
73   if (started_ && waiting_count_ != 0) {
74     task_queue_condition_.Signal(self);
75   }
76 }
77 
ThreadPool(const char * name,size_t num_threads)78 ThreadPool::ThreadPool(const char* name, size_t num_threads)
79   : name_(name),
80     task_queue_lock_("task queue lock"),
81     task_queue_condition_("task queue condition", task_queue_lock_),
82     completion_condition_("task completion condition", task_queue_lock_),
83     started_(false),
84     shutting_down_(false),
85     waiting_count_(0),
86     start_time_(0),
87     total_wait_time_(0),
88     // Add one since the caller of constructor waits on the barrier too.
89     creation_barier_(num_threads + 1),
90     max_active_workers_(num_threads) {
91   Thread* self = Thread::Current();
92   while (GetThreadCount() < num_threads) {
93     const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(),
94                                                  GetThreadCount());
95     threads_.push_back(new ThreadPoolWorker(this, worker_name, ThreadPoolWorker::kDefaultStackSize));
96   }
97   // Wait for all of the threads to attach.
98   creation_barier_.Wait(self);
99 }
100 
SetMaxActiveWorkers(size_t threads)101 void ThreadPool::SetMaxActiveWorkers(size_t threads) {
102   MutexLock mu(Thread::Current(), task_queue_lock_);
103   CHECK_LE(threads, GetThreadCount());
104   max_active_workers_ = threads;
105 }
106 
~ThreadPool()107 ThreadPool::~ThreadPool() {
108   {
109     Thread* self = Thread::Current();
110     MutexLock mu(self, task_queue_lock_);
111     // Tell any remaining workers to shut down.
112     shutting_down_ = true;
113     // Broadcast to everyone waiting.
114     task_queue_condition_.Broadcast(self);
115     completion_condition_.Broadcast(self);
116   }
117   // Wait for the threads to finish.
118   STLDeleteElements(&threads_);
119 }
120 
StartWorkers(Thread * self)121 void ThreadPool::StartWorkers(Thread* self) {
122   MutexLock mu(self, task_queue_lock_);
123   started_ = true;
124   task_queue_condition_.Broadcast(self);
125   start_time_ = NanoTime();
126   total_wait_time_ = 0;
127 }
128 
StopWorkers(Thread * self)129 void ThreadPool::StopWorkers(Thread* self) {
130   MutexLock mu(self, task_queue_lock_);
131   started_ = false;
132 }
133 
GetTask(Thread * self)134 Task* ThreadPool::GetTask(Thread* self) {
135   MutexLock mu(self, task_queue_lock_);
136   while (!IsShuttingDown()) {
137     const size_t thread_count = GetThreadCount();
138     // Ensure that we don't use more threads than the maximum active workers.
139     const size_t active_threads = thread_count - waiting_count_;
140     // <= since self is considered an active worker.
141     if (active_threads <= max_active_workers_) {
142       Task* task = TryGetTaskLocked();
143       if (task != nullptr) {
144         return task;
145       }
146     }
147 
148     ++waiting_count_;
149     if (waiting_count_ == GetThreadCount() && tasks_.empty()) {
150       // We may be done, lets broadcast to the completion condition.
151       completion_condition_.Broadcast(self);
152     }
153     const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
154     task_queue_condition_.Wait(self);
155     if (kMeasureWaitTime) {
156       const uint64_t wait_end = NanoTime();
157       total_wait_time_ += wait_end - std::max(wait_start, start_time_);
158     }
159     --waiting_count_;
160   }
161 
162   // We are shutting down, return null to tell the worker thread to stop looping.
163   return nullptr;
164 }
165 
TryGetTask(Thread * self)166 Task* ThreadPool::TryGetTask(Thread* self) {
167   MutexLock mu(self, task_queue_lock_);
168   return TryGetTaskLocked();
169 }
170 
TryGetTaskLocked()171 Task* ThreadPool::TryGetTaskLocked() {
172   if (started_ && !tasks_.empty()) {
173     Task* task = tasks_.front();
174     tasks_.pop_front();
175     return task;
176   }
177   return nullptr;
178 }
179 
Wait(Thread * self,bool do_work,bool may_hold_locks)180 void ThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
181   if (do_work) {
182     Task* task = nullptr;
183     while ((task = TryGetTask(self)) != nullptr) {
184       task->Run(self);
185       task->Finalize();
186     }
187   }
188   // Wait until each thread is waiting and the task list is empty.
189   MutexLock mu(self, task_queue_lock_);
190   while (!shutting_down_ && (waiting_count_ != GetThreadCount() || !tasks_.empty())) {
191     if (!may_hold_locks) {
192       completion_condition_.Wait(self);
193     } else {
194       completion_condition_.WaitHoldingLocks(self);
195     }
196   }
197 }
198 
GetTaskCount(Thread * self)199 size_t ThreadPool::GetTaskCount(Thread* self) {
200   MutexLock mu(self, task_queue_lock_);
201   return tasks_.size();
202 }
203 
WorkStealingWorker(ThreadPool * thread_pool,const std::string & name,size_t stack_size)204 WorkStealingWorker::WorkStealingWorker(ThreadPool* thread_pool, const std::string& name,
205                                        size_t stack_size)
206     : ThreadPoolWorker(thread_pool, name, stack_size), task_(nullptr) {}
207 
Run()208 void WorkStealingWorker::Run() {
209   Thread* self = Thread::Current();
210   Task* task = nullptr;
211   WorkStealingThreadPool* thread_pool = down_cast<WorkStealingThreadPool*>(thread_pool_);
212   while ((task = thread_pool_->GetTask(self)) != nullptr) {
213     WorkStealingTask* stealing_task = down_cast<WorkStealingTask*>(task);
214 
215     {
216       CHECK(task_ == nullptr);
217       MutexLock mu(self, thread_pool->work_steal_lock_);
218       // Register that we are running the task
219       ++stealing_task->ref_count_;
220       task_ = stealing_task;
221     }
222     stealing_task->Run(self);
223     // Mark ourselves as not running a task so that nobody tries to steal from us.
224     // There is a race condition that someone starts stealing from us at this point. This is okay
225     // due to the reference counting.
226     task_ = nullptr;
227 
228     bool finalize;
229 
230     // Steal work from tasks until there is none left to steal. Note: There is a race, but
231     // all that happens when the race occurs is that we steal some work instead of processing a
232     // task from the queue.
233     while (thread_pool->GetTaskCount(self) == 0) {
234       WorkStealingTask* steal_from_task  = nullptr;
235 
236       {
237         MutexLock mu(self, thread_pool->work_steal_lock_);
238         // Try finding a task to steal from.
239         steal_from_task = thread_pool->FindTaskToStealFrom();
240         if (steal_from_task != nullptr) {
241           CHECK_NE(stealing_task, steal_from_task)
242               << "Attempting to steal from completed self task";
243           steal_from_task->ref_count_++;
244         } else {
245           break;
246         }
247       }
248 
249       if (steal_from_task != nullptr) {
250         // Task which completed earlier is going to steal some work.
251         stealing_task->StealFrom(self, steal_from_task);
252 
253         {
254           // We are done stealing from the task, lets decrement its reference count.
255           MutexLock mu(self, thread_pool->work_steal_lock_);
256           finalize = !--steal_from_task->ref_count_;
257         }
258 
259         if (finalize) {
260           steal_from_task->Finalize();
261         }
262       }
263     }
264 
265     {
266       MutexLock mu(self, thread_pool->work_steal_lock_);
267       // If nobody is still referencing task_ we can finalize it.
268       finalize = !--stealing_task->ref_count_;
269     }
270 
271     if (finalize) {
272       stealing_task->Finalize();
273     }
274   }
275 }
276 
~WorkStealingWorker()277 WorkStealingWorker::~WorkStealingWorker() {}
278 
WorkStealingThreadPool(const char * name,size_t num_threads)279 WorkStealingThreadPool::WorkStealingThreadPool(const char* name, size_t num_threads)
280     : ThreadPool(name, 0),
281       work_steal_lock_("work stealing lock"),
282       steal_index_(0) {
283   while (GetThreadCount() < num_threads) {
284     const std::string worker_name = StringPrintf("Work stealing worker %zu", GetThreadCount());
285     threads_.push_back(new WorkStealingWorker(this, worker_name,
286                                               ThreadPoolWorker::kDefaultStackSize));
287   }
288 }
289 
FindTaskToStealFrom()290 WorkStealingTask* WorkStealingThreadPool::FindTaskToStealFrom() {
291   const size_t thread_count = GetThreadCount();
292   for (size_t i = 0; i < thread_count; ++i) {
293     // TODO: Use CAS instead of lock.
294     ++steal_index_;
295     if (steal_index_ >= thread_count) {
296       steal_index_-= thread_count;
297     }
298 
299     WorkStealingWorker* worker = down_cast<WorkStealingWorker*>(threads_[steal_index_]);
300     WorkStealingTask* task = worker->task_;
301     if (task) {
302       // Not null, we can probably steal from this worker.
303       return task;
304     }
305   }
306   // Couldn't find something to steal.
307   return nullptr;
308 }
309 
~WorkStealingThreadPool()310 WorkStealingThreadPool::~WorkStealingThreadPool() {}
311 
312 }  // namespace art
313