1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 16 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 17 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenTarget.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include <algorithm> 24 #include <map> 25 #include <set> 26 #include <vector> 27 28 namespace llvm { 29 class Record; 30 class Init; 31 class ListInit; 32 class DagInit; 33 class SDNodeInfo; 34 class TreePattern; 35 class TreePatternNode; 36 class CodeGenDAGPatterns; 37 class ComplexPattern; 38 39 /// EEVT::DAGISelGenValueType - These are some extended forms of 40 /// MVT::SimpleValueType that we use as lattice values during type inference. 41 /// The existing MVT iAny, fAny and vAny types suffice to represent 42 /// arbitrary integer, floating-point, and vector types, so only an unknown 43 /// value is needed. 44 namespace EEVT { 45 /// TypeSet - This is either empty if it's completely unknown, or holds a set 46 /// of types. It is used during type inference because register classes can 47 /// have multiple possible types and we don't know which one they get until 48 /// type inference is complete. 49 /// 50 /// TypeSet can have three states: 51 /// Vector is empty: The type is completely unknown, it can be any valid 52 /// target type. 53 /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one 54 /// of those types only. 55 /// Vector has one concrete type: The type is completely known. 56 /// 57 class TypeSet { 58 SmallVector<MVT::SimpleValueType, 4> TypeVec; 59 public: TypeSet()60 TypeSet() {} 61 TypeSet(MVT::SimpleValueType VT, TreePattern &TP); 62 TypeSet(ArrayRef<MVT::SimpleValueType> VTList); 63 isCompletelyUnknown()64 bool isCompletelyUnknown() const { return TypeVec.empty(); } 65 isConcrete()66 bool isConcrete() const { 67 if (TypeVec.size() != 1) return false; 68 unsigned char T = TypeVec[0]; (void)T; 69 assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny); 70 return true; 71 } 72 getConcrete()73 MVT::SimpleValueType getConcrete() const { 74 assert(isConcrete() && "Type isn't concrete yet"); 75 return (MVT::SimpleValueType)TypeVec[0]; 76 } 77 isDynamicallyResolved()78 bool isDynamicallyResolved() const { 79 return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny; 80 } 81 getTypeList()82 const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const { 83 assert(!TypeVec.empty() && "Not a type list!"); 84 return TypeVec; 85 } 86 isVoid()87 bool isVoid() const { 88 return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid; 89 } 90 91 /// hasIntegerTypes - Return true if this TypeSet contains any integer value 92 /// types. 93 bool hasIntegerTypes() const; 94 95 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 96 /// a floating point value type. 97 bool hasFloatingPointTypes() const; 98 99 /// hasScalarTypes - Return true if this TypeSet contains a scalar value 100 /// type. 101 bool hasScalarTypes() const; 102 103 /// hasVectorTypes - Return true if this TypeSet contains a vector value 104 /// type. 105 bool hasVectorTypes() const; 106 107 /// getName() - Return this TypeSet as a string. 108 std::string getName() const; 109 110 /// MergeInTypeInfo - This merges in type information from the specified 111 /// argument. If 'this' changes, it returns true. If the two types are 112 /// contradictory (e.g. merge f32 into i32) then this flags an error. 113 bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP); 114 MergeInTypeInfo(MVT::SimpleValueType InVT,TreePattern & TP)115 bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) { 116 return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP); 117 } 118 119 /// Force this type list to only contain integer types. 120 bool EnforceInteger(TreePattern &TP); 121 122 /// Force this type list to only contain floating point types. 123 bool EnforceFloatingPoint(TreePattern &TP); 124 125 /// EnforceScalar - Remove all vector types from this type list. 126 bool EnforceScalar(TreePattern &TP); 127 128 /// EnforceVector - Remove all non-vector types from this type list. 129 bool EnforceVector(TreePattern &TP); 130 131 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 132 /// this an other based on this information. 133 bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP); 134 135 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 136 /// whose element is VT. 137 bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 138 139 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 140 /// whose element is VT. 141 bool EnforceVectorEltTypeIs(MVT::SimpleValueType VT, TreePattern &TP); 142 143 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to 144 /// be a vector type VT. 145 bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP); 146 147 /// EnforceVectorSameNumElts - 'this' is now constrainted to 148 /// be a vector with same num elements as VT. 149 bool EnforceVectorSameNumElts(EEVT::TypeSet &VT, TreePattern &TP); 150 151 bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; } 152 bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; } 153 154 private: 155 /// FillWithPossibleTypes - Set to all legal types and return true, only 156 /// valid on completely unknown type sets. If Pred is non-null, only MVTs 157 /// that pass the predicate are added. 158 bool FillWithPossibleTypes(TreePattern &TP, 159 bool (*Pred)(MVT::SimpleValueType) = nullptr, 160 const char *PredicateName = nullptr); 161 }; 162 } 163 164 /// Set type used to track multiply used variables in patterns 165 typedef std::set<std::string> MultipleUseVarSet; 166 167 /// SDTypeConstraint - This is a discriminated union of constraints, 168 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 169 struct SDTypeConstraint { 170 SDTypeConstraint(Record *R); 171 172 unsigned OperandNo; // The operand # this constraint applies to. 173 enum { 174 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 175 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 176 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs 177 } ConstraintType; 178 179 union { // The discriminated union. 180 struct { 181 MVT::SimpleValueType VT; 182 } SDTCisVT_Info; 183 struct { 184 unsigned OtherOperandNum; 185 } SDTCisSameAs_Info; 186 struct { 187 unsigned OtherOperandNum; 188 } SDTCisVTSmallerThanOp_Info; 189 struct { 190 unsigned BigOperandNum; 191 } SDTCisOpSmallerThanOp_Info; 192 struct { 193 unsigned OtherOperandNum; 194 } SDTCisEltOfVec_Info; 195 struct { 196 unsigned OtherOperandNum; 197 } SDTCisSubVecOfVec_Info; 198 struct { 199 MVT::SimpleValueType VT; 200 } SDTCVecEltisVT_Info; 201 struct { 202 unsigned OtherOperandNum; 203 } SDTCisSameNumEltsAs_Info; 204 } x; 205 206 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 207 /// constraint to the nodes operands. This returns true if it makes a 208 /// change, false otherwise. If a type contradiction is found, an error 209 /// is flagged. 210 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 211 TreePattern &TP) const; 212 }; 213 214 /// SDNodeInfo - One of these records is created for each SDNode instance in 215 /// the target .td file. This represents the various dag nodes we will be 216 /// processing. 217 class SDNodeInfo { 218 Record *Def; 219 std::string EnumName; 220 std::string SDClassName; 221 unsigned Properties; 222 unsigned NumResults; 223 int NumOperands; 224 std::vector<SDTypeConstraint> TypeConstraints; 225 public: 226 SDNodeInfo(Record *R); // Parse the specified record. 227 getNumResults()228 unsigned getNumResults() const { return NumResults; } 229 230 /// getNumOperands - This is the number of operands required or -1 if 231 /// variadic. getNumOperands()232 int getNumOperands() const { return NumOperands; } getRecord()233 Record *getRecord() const { return Def; } getEnumName()234 const std::string &getEnumName() const { return EnumName; } getSDClassName()235 const std::string &getSDClassName() const { return SDClassName; } 236 getTypeConstraints()237 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 238 return TypeConstraints; 239 } 240 241 /// getKnownType - If the type constraints on this node imply a fixed type 242 /// (e.g. all stores return void, etc), then return it as an 243 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 244 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 245 246 /// hasProperty - Return true if this node has the specified property. 247 /// hasProperty(enum SDNP Prop)248 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 249 250 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 251 /// constraints for this node to the operands of the node. This returns 252 /// true if it makes a change, false otherwise. If a type contradiction is 253 /// found, an error is flagged. ApplyTypeConstraints(TreePatternNode * N,TreePattern & TP)254 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const { 255 bool MadeChange = false; 256 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 257 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 258 return MadeChange; 259 } 260 }; 261 262 /// TreePredicateFn - This is an abstraction that represents the predicates on 263 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 264 /// provide nice accessors. 265 class TreePredicateFn { 266 /// PatFragRec - This is the TreePattern for the PatFrag that we 267 /// originally came from. 268 TreePattern *PatFragRec; 269 public: 270 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 271 TreePredicateFn(TreePattern *N); 272 273 getOrigPatFragRecord()274 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 275 276 /// isAlwaysTrue - Return true if this is a noop predicate. 277 bool isAlwaysTrue() const; 278 isImmediatePattern()279 bool isImmediatePattern() const { return !getImmCode().empty(); } 280 281 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 282 /// this is an immediate predicate. It is an error to call this on a 283 /// non-immediate pattern. getImmediatePredicateCode()284 std::string getImmediatePredicateCode() const { 285 std::string Result = getImmCode(); 286 assert(!Result.empty() && "Isn't an immediate pattern!"); 287 return Result; 288 } 289 290 291 bool operator==(const TreePredicateFn &RHS) const { 292 return PatFragRec == RHS.PatFragRec; 293 } 294 295 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 296 297 /// Return the name to use in the generated code to reference this, this is 298 /// "Predicate_foo" if from a pattern fragment "foo". 299 std::string getFnName() const; 300 301 /// getCodeToRunOnSDNode - Return the code for the function body that 302 /// evaluates this predicate. The argument is expected to be in "Node", 303 /// not N. This handles casting and conversion to a concrete node type as 304 /// appropriate. 305 std::string getCodeToRunOnSDNode() const; 306 307 private: 308 std::string getPredCode() const; 309 std::string getImmCode() const; 310 }; 311 312 313 /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped 314 /// patterns), and as such should be ref counted. We currently just leak all 315 /// TreePatternNode objects! 316 class TreePatternNode { 317 /// The type of each node result. Before and during type inference, each 318 /// result may be a set of possible types. After (successful) type inference, 319 /// each is a single concrete type. 320 SmallVector<EEVT::TypeSet, 1> Types; 321 322 /// Operator - The Record for the operator if this is an interior node (not 323 /// a leaf). 324 Record *Operator; 325 326 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 327 /// 328 Init *Val; 329 330 /// Name - The name given to this node with the :$foo notation. 331 /// 332 std::string Name; 333 334 /// PredicateFns - The predicate functions to execute on this node to check 335 /// for a match. If this list is empty, no predicate is involved. 336 std::vector<TreePredicateFn> PredicateFns; 337 338 /// TransformFn - The transformation function to execute on this node before 339 /// it can be substituted into the resulting instruction on a pattern match. 340 Record *TransformFn; 341 342 std::vector<TreePatternNode*> Children; 343 public: TreePatternNode(Record * Op,const std::vector<TreePatternNode * > & Ch,unsigned NumResults)344 TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, 345 unsigned NumResults) 346 : Operator(Op), Val(nullptr), TransformFn(nullptr), Children(Ch) { 347 Types.resize(NumResults); 348 } TreePatternNode(Init * val,unsigned NumResults)349 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 350 : Operator(nullptr), Val(val), TransformFn(nullptr) { 351 Types.resize(NumResults); 352 } 353 ~TreePatternNode(); 354 hasName()355 bool hasName() const { return !Name.empty(); } getName()356 const std::string &getName() const { return Name; } setName(StringRef N)357 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 358 isLeaf()359 bool isLeaf() const { return Val != nullptr; } 360 361 // Type accessors. getNumTypes()362 unsigned getNumTypes() const { return Types.size(); } getType(unsigned ResNo)363 MVT::SimpleValueType getType(unsigned ResNo) const { 364 return Types[ResNo].getConcrete(); 365 } getExtTypes()366 const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; } getExtType(unsigned ResNo)367 const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; } getExtType(unsigned ResNo)368 EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; } setType(unsigned ResNo,const EEVT::TypeSet & T)369 void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; } 370 hasTypeSet(unsigned ResNo)371 bool hasTypeSet(unsigned ResNo) const { 372 return Types[ResNo].isConcrete(); 373 } isTypeCompletelyUnknown(unsigned ResNo)374 bool isTypeCompletelyUnknown(unsigned ResNo) const { 375 return Types[ResNo].isCompletelyUnknown(); 376 } isTypeDynamicallyResolved(unsigned ResNo)377 bool isTypeDynamicallyResolved(unsigned ResNo) const { 378 return Types[ResNo].isDynamicallyResolved(); 379 } 380 getLeafValue()381 Init *getLeafValue() const { assert(isLeaf()); return Val; } getOperator()382 Record *getOperator() const { assert(!isLeaf()); return Operator; } 383 getNumChildren()384 unsigned getNumChildren() const { return Children.size(); } getChild(unsigned N)385 TreePatternNode *getChild(unsigned N) const { return Children[N]; } setChild(unsigned i,TreePatternNode * N)386 void setChild(unsigned i, TreePatternNode *N) { 387 Children[i] = N; 388 } 389 390 /// hasChild - Return true if N is any of our children. hasChild(const TreePatternNode * N)391 bool hasChild(const TreePatternNode *N) const { 392 for (unsigned i = 0, e = Children.size(); i != e; ++i) 393 if (Children[i] == N) return true; 394 return false; 395 } 396 hasAnyPredicate()397 bool hasAnyPredicate() const { return !PredicateFns.empty(); } 398 getPredicateFns()399 const std::vector<TreePredicateFn> &getPredicateFns() const { 400 return PredicateFns; 401 } clearPredicateFns()402 void clearPredicateFns() { PredicateFns.clear(); } setPredicateFns(const std::vector<TreePredicateFn> & Fns)403 void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { 404 assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); 405 PredicateFns = Fns; 406 } addPredicateFn(const TreePredicateFn & Fn)407 void addPredicateFn(const TreePredicateFn &Fn) { 408 assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); 409 if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) == 410 PredicateFns.end()) 411 PredicateFns.push_back(Fn); 412 } 413 getTransformFn()414 Record *getTransformFn() const { return TransformFn; } setTransformFn(Record * Fn)415 void setTransformFn(Record *Fn) { TransformFn = Fn; } 416 417 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 418 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 419 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 420 421 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 422 /// return the ComplexPattern information, otherwise return null. 423 const ComplexPattern * 424 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 425 426 /// Returns the number of MachineInstr operands that would be produced by this 427 /// node if it mapped directly to an output Instruction's 428 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 429 /// for Operands; otherwise 1. 430 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 431 432 /// NodeHasProperty - Return true if this node has the specified property. 433 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 434 435 /// TreeHasProperty - Return true if any node in this tree has the specified 436 /// property. 437 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 438 439 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 440 /// marked isCommutative. 441 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 442 443 void print(raw_ostream &OS) const; 444 void dump() const; 445 446 public: // Higher level manipulation routines. 447 448 /// clone - Return a new copy of this tree. 449 /// 450 TreePatternNode *clone() const; 451 452 /// RemoveAllTypes - Recursively strip all the types of this tree. 453 void RemoveAllTypes(); 454 455 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 456 /// the specified node. For this comparison, all of the state of the node 457 /// is considered, except for the assigned name. Nodes with differing names 458 /// that are otherwise identical are considered isomorphic. 459 bool isIsomorphicTo(const TreePatternNode *N, 460 const MultipleUseVarSet &DepVars) const; 461 462 /// SubstituteFormalArguments - Replace the formal arguments in this tree 463 /// with actual values specified by ArgMap. 464 void SubstituteFormalArguments(std::map<std::string, 465 TreePatternNode*> &ArgMap); 466 467 /// InlinePatternFragments - If this pattern refers to any pattern 468 /// fragments, inline them into place, giving us a pattern without any 469 /// PatFrag references. 470 TreePatternNode *InlinePatternFragments(TreePattern &TP); 471 472 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 473 /// this node and its children in the tree. This returns true if it makes a 474 /// change, false otherwise. If a type contradiction is found, flag an error. 475 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 476 477 /// UpdateNodeType - Set the node type of N to VT if VT contains 478 /// information. If N already contains a conflicting type, then flag an 479 /// error. This returns true if any information was updated. 480 /// UpdateNodeType(unsigned ResNo,const EEVT::TypeSet & InTy,TreePattern & TP)481 bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy, 482 TreePattern &TP) { 483 return Types[ResNo].MergeInTypeInfo(InTy, TP); 484 } 485 UpdateNodeType(unsigned ResNo,MVT::SimpleValueType InTy,TreePattern & TP)486 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 487 TreePattern &TP) { 488 return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP); 489 } 490 491 // Update node type with types inferred from an instruction operand or result 492 // def from the ins/outs lists. 493 // Return true if the type changed. 494 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 495 496 /// ContainsUnresolvedType - Return true if this tree contains any 497 /// unresolved types. ContainsUnresolvedType()498 bool ContainsUnresolvedType() const { 499 for (unsigned i = 0, e = Types.size(); i != e; ++i) 500 if (!Types[i].isConcrete()) return true; 501 502 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 503 if (getChild(i)->ContainsUnresolvedType()) return true; 504 return false; 505 } 506 507 /// canPatternMatch - If it is impossible for this pattern to match on this 508 /// target, fill in Reason and return false. Otherwise, return true. 509 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 510 }; 511 512 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 513 TPN.print(OS); 514 return OS; 515 } 516 517 518 /// TreePattern - Represent a pattern, used for instructions, pattern 519 /// fragments, etc. 520 /// 521 class TreePattern { 522 /// Trees - The list of pattern trees which corresponds to this pattern. 523 /// Note that PatFrag's only have a single tree. 524 /// 525 std::vector<TreePatternNode*> Trees; 526 527 /// NamedNodes - This is all of the nodes that have names in the trees in this 528 /// pattern. 529 StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; 530 531 /// TheRecord - The actual TableGen record corresponding to this pattern. 532 /// 533 Record *TheRecord; 534 535 /// Args - This is a list of all of the arguments to this pattern (for 536 /// PatFrag patterns), which are the 'node' markers in this pattern. 537 std::vector<std::string> Args; 538 539 /// CDP - the top-level object coordinating this madness. 540 /// 541 CodeGenDAGPatterns &CDP; 542 543 /// isInputPattern - True if this is an input pattern, something to match. 544 /// False if this is an output pattern, something to emit. 545 bool isInputPattern; 546 547 /// hasError - True if the currently processed nodes have unresolvable types 548 /// or other non-fatal errors 549 bool HasError; 550 551 /// It's important that the usage of operands in ComplexPatterns is 552 /// consistent: each named operand can be defined by at most one 553 /// ComplexPattern. This records the ComplexPattern instance and the operand 554 /// number for each operand encountered in a ComplexPattern to aid in that 555 /// check. 556 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 557 public: 558 559 /// TreePattern constructor - Parse the specified DagInits into the 560 /// current record. 561 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 562 CodeGenDAGPatterns &ise); 563 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 564 CodeGenDAGPatterns &ise); 565 TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 566 CodeGenDAGPatterns &ise); 567 568 /// getTrees - Return the tree patterns which corresponds to this pattern. 569 /// getTrees()570 const std::vector<TreePatternNode*> &getTrees() const { return Trees; } getNumTrees()571 unsigned getNumTrees() const { return Trees.size(); } getTree(unsigned i)572 TreePatternNode *getTree(unsigned i) const { return Trees[i]; } getOnlyTree()573 TreePatternNode *getOnlyTree() const { 574 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 575 return Trees[0]; 576 } 577 getNamedNodesMap()578 const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { 579 if (NamedNodes.empty()) 580 ComputeNamedNodes(); 581 return NamedNodes; 582 } 583 584 /// getRecord - Return the actual TableGen record corresponding to this 585 /// pattern. 586 /// getRecord()587 Record *getRecord() const { return TheRecord; } 588 getNumArgs()589 unsigned getNumArgs() const { return Args.size(); } getArgName(unsigned i)590 const std::string &getArgName(unsigned i) const { 591 assert(i < Args.size() && "Argument reference out of range!"); 592 return Args[i]; 593 } getArgList()594 std::vector<std::string> &getArgList() { return Args; } 595 getDAGPatterns()596 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 597 598 /// InlinePatternFragments - If this pattern refers to any pattern 599 /// fragments, inline them into place, giving us a pattern without any 600 /// PatFrag references. InlinePatternFragments()601 void InlinePatternFragments() { 602 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 603 Trees[i] = Trees[i]->InlinePatternFragments(*this); 604 } 605 606 /// InferAllTypes - Infer/propagate as many types throughout the expression 607 /// patterns as possible. Return true if all types are inferred, false 608 /// otherwise. Bail out if a type contradiction is found. 609 bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > 610 *NamedTypes=nullptr); 611 612 /// error - If this is the first error in the current resolution step, 613 /// print it and set the error flag. Otherwise, continue silently. 614 void error(const Twine &Msg); hasError()615 bool hasError() const { 616 return HasError; 617 } resetError()618 void resetError() { 619 HasError = false; 620 } 621 622 void print(raw_ostream &OS) const; 623 void dump() const; 624 625 private: 626 TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); 627 void ComputeNamedNodes(); 628 void ComputeNamedNodes(TreePatternNode *N); 629 }; 630 631 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 632 /// that has a set ExecuteAlways / DefaultOps field. 633 struct DAGDefaultOperand { 634 std::vector<TreePatternNode*> DefaultOps; 635 }; 636 637 class DAGInstruction { 638 TreePattern *Pattern; 639 std::vector<Record*> Results; 640 std::vector<Record*> Operands; 641 std::vector<Record*> ImpResults; 642 TreePatternNode *ResultPattern; 643 public: DAGInstruction(TreePattern * TP,const std::vector<Record * > & results,const std::vector<Record * > & operands,const std::vector<Record * > & impresults)644 DAGInstruction(TreePattern *TP, 645 const std::vector<Record*> &results, 646 const std::vector<Record*> &operands, 647 const std::vector<Record*> &impresults) 648 : Pattern(TP), Results(results), Operands(operands), 649 ImpResults(impresults), ResultPattern(nullptr) {} 650 getPattern()651 TreePattern *getPattern() const { return Pattern; } getNumResults()652 unsigned getNumResults() const { return Results.size(); } getNumOperands()653 unsigned getNumOperands() const { return Operands.size(); } getNumImpResults()654 unsigned getNumImpResults() const { return ImpResults.size(); } getImpResults()655 const std::vector<Record*>& getImpResults() const { return ImpResults; } 656 setResultPattern(TreePatternNode * R)657 void setResultPattern(TreePatternNode *R) { ResultPattern = R; } 658 getResult(unsigned RN)659 Record *getResult(unsigned RN) const { 660 assert(RN < Results.size()); 661 return Results[RN]; 662 } 663 getOperand(unsigned ON)664 Record *getOperand(unsigned ON) const { 665 assert(ON < Operands.size()); 666 return Operands[ON]; 667 } 668 getImpResult(unsigned RN)669 Record *getImpResult(unsigned RN) const { 670 assert(RN < ImpResults.size()); 671 return ImpResults[RN]; 672 } 673 getResultPattern()674 TreePatternNode *getResultPattern() const { return ResultPattern; } 675 }; 676 677 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 678 /// processed to produce isel. 679 class PatternToMatch { 680 public: PatternToMatch(Record * srcrecord,ListInit * preds,TreePatternNode * src,TreePatternNode * dst,const std::vector<Record * > & dstregs,int complexity,unsigned uid)681 PatternToMatch(Record *srcrecord, ListInit *preds, 682 TreePatternNode *src, TreePatternNode *dst, 683 const std::vector<Record*> &dstregs, 684 int complexity, unsigned uid) 685 : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst), 686 Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {} 687 688 Record *SrcRecord; // Originating Record for the pattern. 689 ListInit *Predicates; // Top level predicate conditions to match. 690 TreePatternNode *SrcPattern; // Source pattern to match. 691 TreePatternNode *DstPattern; // Resulting pattern. 692 std::vector<Record*> Dstregs; // Physical register defs being matched. 693 int AddedComplexity; // Add to matching pattern complexity. 694 unsigned ID; // Unique ID for the record. 695 getSrcRecord()696 Record *getSrcRecord() const { return SrcRecord; } getPredicates()697 ListInit *getPredicates() const { return Predicates; } getSrcPattern()698 TreePatternNode *getSrcPattern() const { return SrcPattern; } getDstPattern()699 TreePatternNode *getDstPattern() const { return DstPattern; } getDstRegs()700 const std::vector<Record*> &getDstRegs() const { return Dstregs; } getAddedComplexity()701 int getAddedComplexity() const { return AddedComplexity; } 702 703 std::string getPredicateCheck() const; 704 705 /// Compute the complexity metric for the input pattern. This roughly 706 /// corresponds to the number of nodes that are covered. 707 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 708 }; 709 710 class CodeGenDAGPatterns { 711 RecordKeeper &Records; 712 CodeGenTarget Target; 713 std::vector<CodeGenIntrinsic> Intrinsics; 714 std::vector<CodeGenIntrinsic> TgtIntrinsics; 715 716 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 717 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms; 718 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 719 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> 720 PatternFragments; 721 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 722 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 723 724 // Specific SDNode definitions: 725 Record *intrinsic_void_sdnode; 726 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 727 728 /// PatternsToMatch - All of the things we are matching on the DAG. The first 729 /// value is the pattern to match, the second pattern is the result to 730 /// emit. 731 std::vector<PatternToMatch> PatternsToMatch; 732 public: 733 CodeGenDAGPatterns(RecordKeeper &R); 734 getTargetInfo()735 CodeGenTarget &getTargetInfo() { return Target; } getTargetInfo()736 const CodeGenTarget &getTargetInfo() const { return Target; } 737 738 Record *getSDNodeNamed(const std::string &Name) const; 739 getSDNodeInfo(Record * R)740 const SDNodeInfo &getSDNodeInfo(Record *R) const { 741 assert(SDNodes.count(R) && "Unknown node!"); 742 return SDNodes.find(R)->second; 743 } 744 745 // Node transformation lookups. 746 typedef std::pair<Record*, std::string> NodeXForm; getSDNodeTransform(Record * R)747 const NodeXForm &getSDNodeTransform(Record *R) const { 748 assert(SDNodeXForms.count(R) && "Invalid transform!"); 749 return SDNodeXForms.find(R)->second; 750 } 751 752 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator 753 nx_iterator; nx_begin()754 nx_iterator nx_begin() const { return SDNodeXForms.begin(); } nx_end()755 nx_iterator nx_end() const { return SDNodeXForms.end(); } 756 757 getComplexPattern(Record * R)758 const ComplexPattern &getComplexPattern(Record *R) const { 759 assert(ComplexPatterns.count(R) && "Unknown addressing mode!"); 760 return ComplexPatterns.find(R)->second; 761 } 762 getIntrinsic(Record * R)763 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 764 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 765 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 766 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 767 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; 768 llvm_unreachable("Unknown intrinsic!"); 769 } 770 getIntrinsicInfo(unsigned IID)771 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 772 if (IID-1 < Intrinsics.size()) 773 return Intrinsics[IID-1]; 774 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) 775 return TgtIntrinsics[IID-Intrinsics.size()-1]; 776 llvm_unreachable("Bad intrinsic ID!"); 777 } 778 getIntrinsicID(Record * R)779 unsigned getIntrinsicID(Record *R) const { 780 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 781 if (Intrinsics[i].TheDef == R) return i; 782 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 783 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); 784 llvm_unreachable("Unknown intrinsic!"); 785 } 786 getDefaultOperand(Record * R)787 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 788 assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!"); 789 return DefaultOperands.find(R)->second; 790 } 791 792 // Pattern Fragment information. getPatternFragment(Record * R)793 TreePattern *getPatternFragment(Record *R) const { 794 assert(PatternFragments.count(R) && "Invalid pattern fragment request!"); 795 return PatternFragments.find(R)->second.get(); 796 } getPatternFragmentIfRead(Record * R)797 TreePattern *getPatternFragmentIfRead(Record *R) const { 798 if (!PatternFragments.count(R)) 799 return nullptr; 800 return PatternFragments.find(R)->second.get(); 801 } 802 803 typedef std::map<Record *, std::unique_ptr<TreePattern>, 804 LessRecordByID>::const_iterator pf_iterator; pf_begin()805 pf_iterator pf_begin() const { return PatternFragments.begin(); } pf_end()806 pf_iterator pf_end() const { return PatternFragments.end(); } 807 808 // Patterns to match information. 809 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; ptm_begin()810 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } ptm_end()811 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 812 813 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 814 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; 815 const DAGInstruction &parseInstructionPattern( 816 CodeGenInstruction &CGI, ListInit *Pattern, 817 DAGInstMap &DAGInsts); 818 getInstruction(Record * R)819 const DAGInstruction &getInstruction(Record *R) const { 820 assert(Instructions.count(R) && "Unknown instruction!"); 821 return Instructions.find(R)->second; 822 } 823 get_intrinsic_void_sdnode()824 Record *get_intrinsic_void_sdnode() const { 825 return intrinsic_void_sdnode; 826 } get_intrinsic_w_chain_sdnode()827 Record *get_intrinsic_w_chain_sdnode() const { 828 return intrinsic_w_chain_sdnode; 829 } get_intrinsic_wo_chain_sdnode()830 Record *get_intrinsic_wo_chain_sdnode() const { 831 return intrinsic_wo_chain_sdnode; 832 } 833 hasTargetIntrinsics()834 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } 835 836 private: 837 void ParseNodeInfo(); 838 void ParseNodeTransforms(); 839 void ParseComplexPatterns(); 840 void ParsePatternFragments(bool OutFrags = false); 841 void ParseDefaultOperands(); 842 void ParseInstructions(); 843 void ParsePatterns(); 844 void InferInstructionFlags(); 845 void GenerateVariants(); 846 void VerifyInstructionFlags(); 847 848 void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM); 849 void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 850 std::map<std::string, 851 TreePatternNode*> &InstInputs, 852 std::map<std::string, 853 TreePatternNode*> &InstResults, 854 std::vector<Record*> &InstImpResults); 855 }; 856 } // end namespace llvm 857 858 #endif 859