1 //===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "lldb/Expression/DWARFExpression.h"
11
12 #include <vector>
13
14 #include "lldb/Core/DataEncoder.h"
15 #include "lldb/Core/dwarf.h"
16 #include "lldb/Core/Log.h"
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Core/StreamString.h"
19 #include "lldb/Core/Scalar.h"
20 #include "lldb/Core/Value.h"
21 #include "lldb/Core/VMRange.h"
22
23 #include "lldb/Expression/ClangExpressionDeclMap.h"
24 #include "lldb/Expression/ClangExpressionVariable.h"
25
26 #include "lldb/Host/Endian.h"
27 #include "lldb/Host/Host.h"
28
29 #include "lldb/lldb-private-log.h"
30
31 #include "lldb/Symbol/ClangASTType.h"
32 #include "lldb/Symbol/ClangASTContext.h"
33 #include "lldb/Symbol/Type.h"
34
35 #include "lldb/Target/ABI.h"
36 #include "lldb/Target/ExecutionContext.h"
37 #include "lldb/Target/Process.h"
38 #include "lldb/Target/RegisterContext.h"
39 #include "lldb/Target/StackFrame.h"
40 #include "lldb/Target/StackID.h"
41
42 using namespace lldb;
43 using namespace lldb_private;
44
45 const char *
DW_OP_value_to_name(uint32_t val)46 DW_OP_value_to_name (uint32_t val)
47 {
48 static char invalid[100];
49 switch (val) {
50 case 0x03: return "DW_OP_addr";
51 case 0x06: return "DW_OP_deref";
52 case 0x08: return "DW_OP_const1u";
53 case 0x09: return "DW_OP_const1s";
54 case 0x0a: return "DW_OP_const2u";
55 case 0x0b: return "DW_OP_const2s";
56 case 0x0c: return "DW_OP_const4u";
57 case 0x0d: return "DW_OP_const4s";
58 case 0x0e: return "DW_OP_const8u";
59 case 0x0f: return "DW_OP_const8s";
60 case 0x10: return "DW_OP_constu";
61 case 0x11: return "DW_OP_consts";
62 case 0x12: return "DW_OP_dup";
63 case 0x13: return "DW_OP_drop";
64 case 0x14: return "DW_OP_over";
65 case 0x15: return "DW_OP_pick";
66 case 0x16: return "DW_OP_swap";
67 case 0x17: return "DW_OP_rot";
68 case 0x18: return "DW_OP_xderef";
69 case 0x19: return "DW_OP_abs";
70 case 0x1a: return "DW_OP_and";
71 case 0x1b: return "DW_OP_div";
72 case 0x1c: return "DW_OP_minus";
73 case 0x1d: return "DW_OP_mod";
74 case 0x1e: return "DW_OP_mul";
75 case 0x1f: return "DW_OP_neg";
76 case 0x20: return "DW_OP_not";
77 case 0x21: return "DW_OP_or";
78 case 0x22: return "DW_OP_plus";
79 case 0x23: return "DW_OP_plus_uconst";
80 case 0x24: return "DW_OP_shl";
81 case 0x25: return "DW_OP_shr";
82 case 0x26: return "DW_OP_shra";
83 case 0x27: return "DW_OP_xor";
84 case 0x2f: return "DW_OP_skip";
85 case 0x28: return "DW_OP_bra";
86 case 0x29: return "DW_OP_eq";
87 case 0x2a: return "DW_OP_ge";
88 case 0x2b: return "DW_OP_gt";
89 case 0x2c: return "DW_OP_le";
90 case 0x2d: return "DW_OP_lt";
91 case 0x2e: return "DW_OP_ne";
92 case 0x30: return "DW_OP_lit0";
93 case 0x31: return "DW_OP_lit1";
94 case 0x32: return "DW_OP_lit2";
95 case 0x33: return "DW_OP_lit3";
96 case 0x34: return "DW_OP_lit4";
97 case 0x35: return "DW_OP_lit5";
98 case 0x36: return "DW_OP_lit6";
99 case 0x37: return "DW_OP_lit7";
100 case 0x38: return "DW_OP_lit8";
101 case 0x39: return "DW_OP_lit9";
102 case 0x3a: return "DW_OP_lit10";
103 case 0x3b: return "DW_OP_lit11";
104 case 0x3c: return "DW_OP_lit12";
105 case 0x3d: return "DW_OP_lit13";
106 case 0x3e: return "DW_OP_lit14";
107 case 0x3f: return "DW_OP_lit15";
108 case 0x40: return "DW_OP_lit16";
109 case 0x41: return "DW_OP_lit17";
110 case 0x42: return "DW_OP_lit18";
111 case 0x43: return "DW_OP_lit19";
112 case 0x44: return "DW_OP_lit20";
113 case 0x45: return "DW_OP_lit21";
114 case 0x46: return "DW_OP_lit22";
115 case 0x47: return "DW_OP_lit23";
116 case 0x48: return "DW_OP_lit24";
117 case 0x49: return "DW_OP_lit25";
118 case 0x4a: return "DW_OP_lit26";
119 case 0x4b: return "DW_OP_lit27";
120 case 0x4c: return "DW_OP_lit28";
121 case 0x4d: return "DW_OP_lit29";
122 case 0x4e: return "DW_OP_lit30";
123 case 0x4f: return "DW_OP_lit31";
124 case 0x50: return "DW_OP_reg0";
125 case 0x51: return "DW_OP_reg1";
126 case 0x52: return "DW_OP_reg2";
127 case 0x53: return "DW_OP_reg3";
128 case 0x54: return "DW_OP_reg4";
129 case 0x55: return "DW_OP_reg5";
130 case 0x56: return "DW_OP_reg6";
131 case 0x57: return "DW_OP_reg7";
132 case 0x58: return "DW_OP_reg8";
133 case 0x59: return "DW_OP_reg9";
134 case 0x5a: return "DW_OP_reg10";
135 case 0x5b: return "DW_OP_reg11";
136 case 0x5c: return "DW_OP_reg12";
137 case 0x5d: return "DW_OP_reg13";
138 case 0x5e: return "DW_OP_reg14";
139 case 0x5f: return "DW_OP_reg15";
140 case 0x60: return "DW_OP_reg16";
141 case 0x61: return "DW_OP_reg17";
142 case 0x62: return "DW_OP_reg18";
143 case 0x63: return "DW_OP_reg19";
144 case 0x64: return "DW_OP_reg20";
145 case 0x65: return "DW_OP_reg21";
146 case 0x66: return "DW_OP_reg22";
147 case 0x67: return "DW_OP_reg23";
148 case 0x68: return "DW_OP_reg24";
149 case 0x69: return "DW_OP_reg25";
150 case 0x6a: return "DW_OP_reg26";
151 case 0x6b: return "DW_OP_reg27";
152 case 0x6c: return "DW_OP_reg28";
153 case 0x6d: return "DW_OP_reg29";
154 case 0x6e: return "DW_OP_reg30";
155 case 0x6f: return "DW_OP_reg31";
156 case 0x70: return "DW_OP_breg0";
157 case 0x71: return "DW_OP_breg1";
158 case 0x72: return "DW_OP_breg2";
159 case 0x73: return "DW_OP_breg3";
160 case 0x74: return "DW_OP_breg4";
161 case 0x75: return "DW_OP_breg5";
162 case 0x76: return "DW_OP_breg6";
163 case 0x77: return "DW_OP_breg7";
164 case 0x78: return "DW_OP_breg8";
165 case 0x79: return "DW_OP_breg9";
166 case 0x7a: return "DW_OP_breg10";
167 case 0x7b: return "DW_OP_breg11";
168 case 0x7c: return "DW_OP_breg12";
169 case 0x7d: return "DW_OP_breg13";
170 case 0x7e: return "DW_OP_breg14";
171 case 0x7f: return "DW_OP_breg15";
172 case 0x80: return "DW_OP_breg16";
173 case 0x81: return "DW_OP_breg17";
174 case 0x82: return "DW_OP_breg18";
175 case 0x83: return "DW_OP_breg19";
176 case 0x84: return "DW_OP_breg20";
177 case 0x85: return "DW_OP_breg21";
178 case 0x86: return "DW_OP_breg22";
179 case 0x87: return "DW_OP_breg23";
180 case 0x88: return "DW_OP_breg24";
181 case 0x89: return "DW_OP_breg25";
182 case 0x8a: return "DW_OP_breg26";
183 case 0x8b: return "DW_OP_breg27";
184 case 0x8c: return "DW_OP_breg28";
185 case 0x8d: return "DW_OP_breg29";
186 case 0x8e: return "DW_OP_breg30";
187 case 0x8f: return "DW_OP_breg31";
188 case 0x90: return "DW_OP_regx";
189 case 0x91: return "DW_OP_fbreg";
190 case 0x92: return "DW_OP_bregx";
191 case 0x93: return "DW_OP_piece";
192 case 0x94: return "DW_OP_deref_size";
193 case 0x95: return "DW_OP_xderef_size";
194 case 0x96: return "DW_OP_nop";
195 case 0x97: return "DW_OP_push_object_address";
196 case 0x98: return "DW_OP_call2";
197 case 0x99: return "DW_OP_call4";
198 case 0x9a: return "DW_OP_call_ref";
199 // case DW_OP_APPLE_array_ref: return "DW_OP_APPLE_array_ref";
200 // case DW_OP_APPLE_extern: return "DW_OP_APPLE_extern";
201 case DW_OP_APPLE_uninit: return "DW_OP_APPLE_uninit";
202 // case DW_OP_APPLE_assign: return "DW_OP_APPLE_assign";
203 // case DW_OP_APPLE_address_of: return "DW_OP_APPLE_address_of";
204 // case DW_OP_APPLE_value_of: return "DW_OP_APPLE_value_of";
205 // case DW_OP_APPLE_deref_type: return "DW_OP_APPLE_deref_type";
206 // case DW_OP_APPLE_expr_local: return "DW_OP_APPLE_expr_local";
207 // case DW_OP_APPLE_constf: return "DW_OP_APPLE_constf";
208 // case DW_OP_APPLE_scalar_cast: return "DW_OP_APPLE_scalar_cast";
209 // case DW_OP_APPLE_clang_cast: return "DW_OP_APPLE_clang_cast";
210 // case DW_OP_APPLE_clear: return "DW_OP_APPLE_clear";
211 // case DW_OP_APPLE_error: return "DW_OP_APPLE_error";
212 default:
213 snprintf (invalid, sizeof(invalid), "Unknown DW_OP constant: 0x%x", val);
214 return invalid;
215 }
216 }
217
218
219 //----------------------------------------------------------------------
220 // DWARFExpression constructor
221 //----------------------------------------------------------------------
DWARFExpression()222 DWARFExpression::DWARFExpression() :
223 m_data(),
224 m_reg_kind (eRegisterKindDWARF),
225 m_loclist_slide (LLDB_INVALID_ADDRESS)
226 {
227 }
228
DWARFExpression(const DWARFExpression & rhs)229 DWARFExpression::DWARFExpression(const DWARFExpression& rhs) :
230 m_data(rhs.m_data),
231 m_reg_kind (rhs.m_reg_kind),
232 m_loclist_slide(rhs.m_loclist_slide)
233 {
234 }
235
236
DWARFExpression(const DataExtractor & data,lldb::offset_t data_offset,lldb::offset_t data_length)237 DWARFExpression::DWARFExpression(const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length) :
238 m_data(data, data_offset, data_length),
239 m_reg_kind (eRegisterKindDWARF),
240 m_loclist_slide(LLDB_INVALID_ADDRESS)
241 {
242 }
243
244 //----------------------------------------------------------------------
245 // Destructor
246 //----------------------------------------------------------------------
~DWARFExpression()247 DWARFExpression::~DWARFExpression()
248 {
249 }
250
251
252 bool
IsValid() const253 DWARFExpression::IsValid() const
254 {
255 return m_data.GetByteSize() > 0;
256 }
257
258 void
SetOpcodeData(const DataExtractor & data)259 DWARFExpression::SetOpcodeData (const DataExtractor& data)
260 {
261 m_data = data;
262 }
263
264 void
CopyOpcodeData(const DataExtractor & data,lldb::offset_t data_offset,lldb::offset_t data_length)265 DWARFExpression::CopyOpcodeData (const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length)
266 {
267 const uint8_t *bytes = data.PeekData(data_offset, data_length);
268 if (bytes)
269 {
270 m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length)));
271 m_data.SetByteOrder(data.GetByteOrder());
272 m_data.SetAddressByteSize(data.GetAddressByteSize());
273 }
274 }
275
276 void
SetOpcodeData(const DataExtractor & data,lldb::offset_t data_offset,lldb::offset_t data_length)277 DWARFExpression::SetOpcodeData (const DataExtractor& data, lldb::offset_t data_offset, lldb::offset_t data_length)
278 {
279 m_data.SetData(data, data_offset, data_length);
280 }
281
282 void
DumpLocation(Stream * s,lldb::offset_t offset,lldb::offset_t length,lldb::DescriptionLevel level,ABI * abi) const283 DWARFExpression::DumpLocation (Stream *s, lldb::offset_t offset, lldb::offset_t length, lldb::DescriptionLevel level, ABI *abi) const
284 {
285 if (!m_data.ValidOffsetForDataOfSize(offset, length))
286 return;
287 const lldb::offset_t start_offset = offset;
288 const lldb::offset_t end_offset = offset + length;
289 while (m_data.ValidOffset(offset) && offset < end_offset)
290 {
291 const lldb::offset_t op_offset = offset;
292 const uint8_t op = m_data.GetU8(&offset);
293
294 switch (level)
295 {
296 default:
297 break;
298
299 case lldb::eDescriptionLevelBrief:
300 if (offset > start_offset)
301 s->PutChar(' ');
302 break;
303
304 case lldb::eDescriptionLevelFull:
305 case lldb::eDescriptionLevelVerbose:
306 if (offset > start_offset)
307 s->EOL();
308 s->Indent();
309 if (level == lldb::eDescriptionLevelFull)
310 break;
311 // Fall through for verbose and print offset and DW_OP prefix..
312 s->Printf("0x%8.8" PRIx64 ": %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_");
313 break;
314 }
315
316 switch (op)
317 {
318 case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address
319 case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06
320 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant
321 case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant
322 case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant
323 case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant
324 case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant
325 case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant
326 case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant
327 case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant
328 case DW_OP_constu: s->Printf("DW_OP_constu(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant
329 case DW_OP_consts: s->Printf("DW_OP_consts(0x%" PRId64 ") ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant
330 case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12
331 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13
332 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14
333 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index
334 case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16
335 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17
336 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18
337 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19
338 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a
339 case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b
340 case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c
341 case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d
342 case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e
343 case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f
344 case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20
345 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21
346 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22
347 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
348 s->Printf("DW_OP_plus_uconst(0x%" PRIx64 ") ", m_data.GetULEB128(&offset));
349 break;
350
351 case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24
352 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25
353 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26
354 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27
355 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant
356 case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant
357 case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29
358 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a
359 case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b
360 case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c
361 case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d
362 case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e
363
364 case DW_OP_lit0: // 0x30
365 case DW_OP_lit1: // 0x31
366 case DW_OP_lit2: // 0x32
367 case DW_OP_lit3: // 0x33
368 case DW_OP_lit4: // 0x34
369 case DW_OP_lit5: // 0x35
370 case DW_OP_lit6: // 0x36
371 case DW_OP_lit7: // 0x37
372 case DW_OP_lit8: // 0x38
373 case DW_OP_lit9: // 0x39
374 case DW_OP_lit10: // 0x3A
375 case DW_OP_lit11: // 0x3B
376 case DW_OP_lit12: // 0x3C
377 case DW_OP_lit13: // 0x3D
378 case DW_OP_lit14: // 0x3E
379 case DW_OP_lit15: // 0x3F
380 case DW_OP_lit16: // 0x40
381 case DW_OP_lit17: // 0x41
382 case DW_OP_lit18: // 0x42
383 case DW_OP_lit19: // 0x43
384 case DW_OP_lit20: // 0x44
385 case DW_OP_lit21: // 0x45
386 case DW_OP_lit22: // 0x46
387 case DW_OP_lit23: // 0x47
388 case DW_OP_lit24: // 0x48
389 case DW_OP_lit25: // 0x49
390 case DW_OP_lit26: // 0x4A
391 case DW_OP_lit27: // 0x4B
392 case DW_OP_lit28: // 0x4C
393 case DW_OP_lit29: // 0x4D
394 case DW_OP_lit30: // 0x4E
395 case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f
396
397 case DW_OP_reg0: // 0x50
398 case DW_OP_reg1: // 0x51
399 case DW_OP_reg2: // 0x52
400 case DW_OP_reg3: // 0x53
401 case DW_OP_reg4: // 0x54
402 case DW_OP_reg5: // 0x55
403 case DW_OP_reg6: // 0x56
404 case DW_OP_reg7: // 0x57
405 case DW_OP_reg8: // 0x58
406 case DW_OP_reg9: // 0x59
407 case DW_OP_reg10: // 0x5A
408 case DW_OP_reg11: // 0x5B
409 case DW_OP_reg12: // 0x5C
410 case DW_OP_reg13: // 0x5D
411 case DW_OP_reg14: // 0x5E
412 case DW_OP_reg15: // 0x5F
413 case DW_OP_reg16: // 0x60
414 case DW_OP_reg17: // 0x61
415 case DW_OP_reg18: // 0x62
416 case DW_OP_reg19: // 0x63
417 case DW_OP_reg20: // 0x64
418 case DW_OP_reg21: // 0x65
419 case DW_OP_reg22: // 0x66
420 case DW_OP_reg23: // 0x67
421 case DW_OP_reg24: // 0x68
422 case DW_OP_reg25: // 0x69
423 case DW_OP_reg26: // 0x6A
424 case DW_OP_reg27: // 0x6B
425 case DW_OP_reg28: // 0x6C
426 case DW_OP_reg29: // 0x6D
427 case DW_OP_reg30: // 0x6E
428 case DW_OP_reg31: // 0x6F
429 {
430 uint32_t reg_num = op - DW_OP_reg0;
431 if (abi)
432 {
433 RegisterInfo reg_info;
434 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
435 {
436 if (reg_info.name)
437 {
438 s->PutCString (reg_info.name);
439 break;
440 }
441 else if (reg_info.alt_name)
442 {
443 s->PutCString (reg_info.alt_name);
444 break;
445 }
446 }
447 }
448 s->Printf("DW_OP_reg%u", reg_num); break;
449 }
450 break;
451
452 case DW_OP_breg0:
453 case DW_OP_breg1:
454 case DW_OP_breg2:
455 case DW_OP_breg3:
456 case DW_OP_breg4:
457 case DW_OP_breg5:
458 case DW_OP_breg6:
459 case DW_OP_breg7:
460 case DW_OP_breg8:
461 case DW_OP_breg9:
462 case DW_OP_breg10:
463 case DW_OP_breg11:
464 case DW_OP_breg12:
465 case DW_OP_breg13:
466 case DW_OP_breg14:
467 case DW_OP_breg15:
468 case DW_OP_breg16:
469 case DW_OP_breg17:
470 case DW_OP_breg18:
471 case DW_OP_breg19:
472 case DW_OP_breg20:
473 case DW_OP_breg21:
474 case DW_OP_breg22:
475 case DW_OP_breg23:
476 case DW_OP_breg24:
477 case DW_OP_breg25:
478 case DW_OP_breg26:
479 case DW_OP_breg27:
480 case DW_OP_breg28:
481 case DW_OP_breg29:
482 case DW_OP_breg30:
483 case DW_OP_breg31:
484 {
485 uint32_t reg_num = op - DW_OP_breg0;
486 int64_t reg_offset = m_data.GetSLEB128(&offset);
487 if (abi)
488 {
489 RegisterInfo reg_info;
490 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
491 {
492 if (reg_info.name)
493 {
494 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset);
495 break;
496 }
497 else if (reg_info.alt_name)
498 {
499 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset);
500 break;
501 }
502 }
503 }
504 s->Printf("DW_OP_breg%i(0x%" PRIx64 ")", reg_num, reg_offset);
505 }
506 break;
507
508 case DW_OP_regx: // 0x90 1 ULEB128 register
509 {
510 uint32_t reg_num = m_data.GetULEB128(&offset);
511 if (abi)
512 {
513 RegisterInfo reg_info;
514 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
515 {
516 if (reg_info.name)
517 {
518 s->PutCString (reg_info.name);
519 break;
520 }
521 else if (reg_info.alt_name)
522 {
523 s->PutCString (reg_info.alt_name);
524 break;
525 }
526 }
527 }
528 s->Printf("DW_OP_regx(%" PRIu32 ")", reg_num); break;
529 }
530 break;
531 case DW_OP_fbreg: // 0x91 1 SLEB128 offset
532 s->Printf("DW_OP_fbreg(%" PRIi64 ")",m_data.GetSLEB128(&offset));
533 break;
534 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
535 {
536 uint32_t reg_num = m_data.GetULEB128(&offset);
537 int64_t reg_offset = m_data.GetSLEB128(&offset);
538 if (abi)
539 {
540 RegisterInfo reg_info;
541 if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info))
542 {
543 if (reg_info.name)
544 {
545 s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset);
546 break;
547 }
548 else if (reg_info.alt_name)
549 {
550 s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset);
551 break;
552 }
553 }
554 }
555 s->Printf("DW_OP_bregx(reg=%" PRIu32 ",offset=%" PRIi64 ")", reg_num, reg_offset);
556 }
557 break;
558 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
559 s->Printf("DW_OP_piece(0x%" PRIx64 ")", m_data.GetULEB128(&offset));
560 break;
561 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
562 s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset));
563 break;
564 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
565 s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset));
566 break;
567 case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96
568 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3
569 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE
570 s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset));
571 break;
572 case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE
573 s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset));
574 break;
575 case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE
576 s->Printf("DW_OP_call_ref(0x%8.8" PRIx64 ")", m_data.GetAddress(&offset));
577 break;
578 // case DW_OP_form_tls_address: s << "form_tls_address"; break; // 0x9b DWARF3
579 // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // 0x9c DWARF3
580 // case DW_OP_bit_piece: // 0x9d DWARF3 2
581 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", m_data.GetULEB128(&offset), m_data.GetULEB128(&offset));
582 // break;
583 // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // 0xe0
584 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // 0xff
585 // case DW_OP_APPLE_extern:
586 // s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")", m_data.GetULEB128(&offset));
587 // break;
588 // case DW_OP_APPLE_array_ref:
589 // s->PutCString("DW_OP_APPLE_array_ref");
590 // break;
591 case DW_OP_APPLE_uninit:
592 s->PutCString("DW_OP_APPLE_uninit"); // 0xF0
593 break;
594 // case DW_OP_APPLE_assign: // 0xF1 - pops value off and assigns it to second item on stack (2nd item must have assignable context)
595 // s->PutCString("DW_OP_APPLE_assign");
596 // break;
597 // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of the top stack item (top item must be a variable, or have value_type that is an address already)
598 // s->PutCString("DW_OP_APPLE_address_of");
599 // break;
600 // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the stack and pushes the value of that object (top item must be a variable, or expression local)
601 // s->PutCString("DW_OP_APPLE_value_of");
602 // break;
603 // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of the top stack item (top item must be a variable, or a clang type)
604 // s->PutCString("DW_OP_APPLE_deref_type");
605 // break;
606 // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression local index
607 // s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")", m_data.GetULEB128(&offset));
608 // break;
609 // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, followed by constant float data
610 // {
611 // uint8_t float_length = m_data.GetU8(&offset);
612 // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length);
613 // m_data.Dump(s, offset, eFormatHex, float_length, 1, UINT32_MAX, DW_INVALID_ADDRESS, 0, 0);
614 // s->PutChar(')');
615 // // Consume the float data
616 // m_data.GetData(&offset, float_length);
617 // }
618 // break;
619 // case DW_OP_APPLE_scalar_cast:
620 // s->Printf("DW_OP_APPLE_scalar_cast(%s)", Scalar::GetValueTypeAsCString ((Scalar::Type)m_data.GetU8(&offset)));
621 // break;
622 // case DW_OP_APPLE_clang_cast:
623 // {
624 // clang::Type *clang_type = (clang::Type *)m_data.GetMaxU64(&offset, sizeof(void*));
625 // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type);
626 // }
627 // break;
628 // case DW_OP_APPLE_clear:
629 // s->PutCString("DW_OP_APPLE_clear");
630 // break;
631 // case DW_OP_APPLE_error: // 0xFF - Stops expression evaluation and returns an error (no args)
632 // s->PutCString("DW_OP_APPLE_error");
633 // break;
634 }
635 }
636 }
637
638 void
SetLocationListSlide(addr_t slide)639 DWARFExpression::SetLocationListSlide (addr_t slide)
640 {
641 m_loclist_slide = slide;
642 }
643
644 int
GetRegisterKind()645 DWARFExpression::GetRegisterKind ()
646 {
647 return m_reg_kind;
648 }
649
650 void
SetRegisterKind(RegisterKind reg_kind)651 DWARFExpression::SetRegisterKind (RegisterKind reg_kind)
652 {
653 m_reg_kind = reg_kind;
654 }
655
656 bool
IsLocationList() const657 DWARFExpression::IsLocationList() const
658 {
659 return m_loclist_slide != LLDB_INVALID_ADDRESS;
660 }
661
662 void
GetDescription(Stream * s,lldb::DescriptionLevel level,addr_t location_list_base_addr,ABI * abi) const663 DWARFExpression::GetDescription (Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const
664 {
665 if (IsLocationList())
666 {
667 // We have a location list
668 lldb::offset_t offset = 0;
669 uint32_t count = 0;
670 addr_t curr_base_addr = location_list_base_addr;
671 while (m_data.ValidOffset(offset))
672 {
673 lldb::addr_t begin_addr_offset = m_data.GetAddress(&offset);
674 lldb::addr_t end_addr_offset = m_data.GetAddress(&offset);
675 if (begin_addr_offset < end_addr_offset)
676 {
677 if (count > 0)
678 s->PutCString(", ");
679 VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset);
680 addr_range.Dump(s, 0, 8);
681 s->PutChar('{');
682 lldb::offset_t location_length = m_data.GetU16(&offset);
683 DumpLocation (s, offset, location_length, level, abi);
684 s->PutChar('}');
685 offset += location_length;
686 }
687 else if (begin_addr_offset == 0 && end_addr_offset == 0)
688 {
689 // The end of the location list is marked by both the start and end offset being zero
690 break;
691 }
692 else
693 {
694 if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) ||
695 (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX)))
696 {
697 curr_base_addr = end_addr_offset + location_list_base_addr;
698 // We have a new base address
699 if (count > 0)
700 s->PutCString(", ");
701 *s << "base_addr = " << end_addr_offset;
702 }
703 }
704
705 count++;
706 }
707 }
708 else
709 {
710 // We have a normal location that contains DW_OP location opcodes
711 DumpLocation (s, 0, m_data.GetByteSize(), level, abi);
712 }
713 }
714
715 static bool
ReadRegisterValueAsScalar(RegisterContext * reg_ctx,uint32_t reg_kind,uint32_t reg_num,Error * error_ptr,Value & value)716 ReadRegisterValueAsScalar
717 (
718 RegisterContext *reg_ctx,
719 uint32_t reg_kind,
720 uint32_t reg_num,
721 Error *error_ptr,
722 Value &value
723 )
724 {
725 if (reg_ctx == NULL)
726 {
727 if (error_ptr)
728 error_ptr->SetErrorStringWithFormat("No register context in frame.\n");
729 }
730 else
731 {
732 uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
733 if (native_reg == LLDB_INVALID_REGNUM)
734 {
735 if (error_ptr)
736 error_ptr->SetErrorStringWithFormat("Unable to convert register kind=%u reg_num=%u to a native register number.\n", reg_kind, reg_num);
737 }
738 else
739 {
740 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg);
741 RegisterValue reg_value;
742 if (reg_ctx->ReadRegister (reg_info, reg_value))
743 {
744 if (reg_value.GetScalarValue(value.GetScalar()))
745 {
746 value.SetValueType (Value::eValueTypeScalar);
747 value.SetContext (Value::eContextTypeRegisterInfo,
748 const_cast<RegisterInfo *>(reg_info));
749 if (error_ptr)
750 error_ptr->Clear();
751 return true;
752 }
753 else
754 {
755 // If we get this error, then we need to implement a value
756 // buffer in the dwarf expression evaluation function...
757 if (error_ptr)
758 error_ptr->SetErrorStringWithFormat ("register %s can't be converted to a scalar value",
759 reg_info->name);
760 }
761 }
762 else
763 {
764 if (error_ptr)
765 error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name);
766 }
767 }
768 }
769 return false;
770 }
771
772 //bool
773 //DWARFExpression::LocationListContainsLoadAddress (Process* process, const Address &addr) const
774 //{
775 // return LocationListContainsLoadAddress(process, addr.GetLoadAddress(process));
776 //}
777 //
778 //bool
779 //DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t load_addr) const
780 //{
781 // if (load_addr == LLDB_INVALID_ADDRESS)
782 // return false;
783 //
784 // if (IsLocationList())
785 // {
786 // lldb::offset_t offset = 0;
787 //
788 // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process);
789 //
790 // if (loc_list_base_addr == LLDB_INVALID_ADDRESS)
791 // return false;
792 //
793 // while (m_data.ValidOffset(offset))
794 // {
795 // // We need to figure out what the value is for the location.
796 // addr_t lo_pc = m_data.GetAddress(&offset);
797 // addr_t hi_pc = m_data.GetAddress(&offset);
798 // if (lo_pc == 0 && hi_pc == 0)
799 // break;
800 // else
801 // {
802 // lo_pc += loc_list_base_addr;
803 // hi_pc += loc_list_base_addr;
804 //
805 // if (lo_pc <= load_addr && load_addr < hi_pc)
806 // return true;
807 //
808 // offset += m_data.GetU16(&offset);
809 // }
810 // }
811 // }
812 // return false;
813 //}
814
815 static offset_t
GetOpcodeDataSize(const DataExtractor & data,const lldb::offset_t data_offset,const uint8_t op)816 GetOpcodeDataSize (const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op)
817 {
818 lldb::offset_t offset = data_offset;
819 switch (op)
820 {
821 case DW_OP_addr:
822 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
823 return data.GetAddressByteSize();
824
825 // Opcodes with no arguments
826 case DW_OP_deref: // 0x06
827 case DW_OP_dup: // 0x12
828 case DW_OP_drop: // 0x13
829 case DW_OP_over: // 0x14
830 case DW_OP_swap: // 0x16
831 case DW_OP_rot: // 0x17
832 case DW_OP_xderef: // 0x18
833 case DW_OP_abs: // 0x19
834 case DW_OP_and: // 0x1a
835 case DW_OP_div: // 0x1b
836 case DW_OP_minus: // 0x1c
837 case DW_OP_mod: // 0x1d
838 case DW_OP_mul: // 0x1e
839 case DW_OP_neg: // 0x1f
840 case DW_OP_not: // 0x20
841 case DW_OP_or: // 0x21
842 case DW_OP_plus: // 0x22
843 case DW_OP_shl: // 0x24
844 case DW_OP_shr: // 0x25
845 case DW_OP_shra: // 0x26
846 case DW_OP_xor: // 0x27
847 case DW_OP_eq: // 0x29
848 case DW_OP_ge: // 0x2a
849 case DW_OP_gt: // 0x2b
850 case DW_OP_le: // 0x2c
851 case DW_OP_lt: // 0x2d
852 case DW_OP_ne: // 0x2e
853 case DW_OP_lit0: // 0x30
854 case DW_OP_lit1: // 0x31
855 case DW_OP_lit2: // 0x32
856 case DW_OP_lit3: // 0x33
857 case DW_OP_lit4: // 0x34
858 case DW_OP_lit5: // 0x35
859 case DW_OP_lit6: // 0x36
860 case DW_OP_lit7: // 0x37
861 case DW_OP_lit8: // 0x38
862 case DW_OP_lit9: // 0x39
863 case DW_OP_lit10: // 0x3A
864 case DW_OP_lit11: // 0x3B
865 case DW_OP_lit12: // 0x3C
866 case DW_OP_lit13: // 0x3D
867 case DW_OP_lit14: // 0x3E
868 case DW_OP_lit15: // 0x3F
869 case DW_OP_lit16: // 0x40
870 case DW_OP_lit17: // 0x41
871 case DW_OP_lit18: // 0x42
872 case DW_OP_lit19: // 0x43
873 case DW_OP_lit20: // 0x44
874 case DW_OP_lit21: // 0x45
875 case DW_OP_lit22: // 0x46
876 case DW_OP_lit23: // 0x47
877 case DW_OP_lit24: // 0x48
878 case DW_OP_lit25: // 0x49
879 case DW_OP_lit26: // 0x4A
880 case DW_OP_lit27: // 0x4B
881 case DW_OP_lit28: // 0x4C
882 case DW_OP_lit29: // 0x4D
883 case DW_OP_lit30: // 0x4E
884 case DW_OP_lit31: // 0x4f
885 case DW_OP_reg0: // 0x50
886 case DW_OP_reg1: // 0x51
887 case DW_OP_reg2: // 0x52
888 case DW_OP_reg3: // 0x53
889 case DW_OP_reg4: // 0x54
890 case DW_OP_reg5: // 0x55
891 case DW_OP_reg6: // 0x56
892 case DW_OP_reg7: // 0x57
893 case DW_OP_reg8: // 0x58
894 case DW_OP_reg9: // 0x59
895 case DW_OP_reg10: // 0x5A
896 case DW_OP_reg11: // 0x5B
897 case DW_OP_reg12: // 0x5C
898 case DW_OP_reg13: // 0x5D
899 case DW_OP_reg14: // 0x5E
900 case DW_OP_reg15: // 0x5F
901 case DW_OP_reg16: // 0x60
902 case DW_OP_reg17: // 0x61
903 case DW_OP_reg18: // 0x62
904 case DW_OP_reg19: // 0x63
905 case DW_OP_reg20: // 0x64
906 case DW_OP_reg21: // 0x65
907 case DW_OP_reg22: // 0x66
908 case DW_OP_reg23: // 0x67
909 case DW_OP_reg24: // 0x68
910 case DW_OP_reg25: // 0x69
911 case DW_OP_reg26: // 0x6A
912 case DW_OP_reg27: // 0x6B
913 case DW_OP_reg28: // 0x6C
914 case DW_OP_reg29: // 0x6D
915 case DW_OP_reg30: // 0x6E
916 case DW_OP_reg31: // 0x6F
917 case DW_OP_nop: // 0x96
918 case DW_OP_push_object_address: // 0x97 DWARF3
919 case DW_OP_form_tls_address: // 0x9b DWARF3
920 case DW_OP_call_frame_cfa: // 0x9c DWARF3
921 case DW_OP_stack_value: // 0x9f DWARF4
922 return 0;
923
924 // Opcodes with a single 1 byte arguments
925 case DW_OP_const1u: // 0x08 1 1-byte constant
926 case DW_OP_const1s: // 0x09 1 1-byte constant
927 case DW_OP_pick: // 0x15 1 1-byte stack index
928 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
929 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
930 return 1;
931
932 // Opcodes with a single 2 byte arguments
933 case DW_OP_const2u: // 0x0a 1 2-byte constant
934 case DW_OP_const2s: // 0x0b 1 2-byte constant
935 case DW_OP_skip: // 0x2f 1 signed 2-byte constant
936 case DW_OP_bra: // 0x28 1 signed 2-byte constant
937 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3)
938 return 2;
939
940 // Opcodes with a single 4 byte arguments
941 case DW_OP_const4u: // 0x0c 1 4-byte constant
942 case DW_OP_const4s: // 0x0d 1 4-byte constant
943 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3)
944 return 4;
945
946 // Opcodes with a single 8 byte arguments
947 case DW_OP_const8u: // 0x0e 1 8-byte constant
948 case DW_OP_const8s: // 0x0f 1 8-byte constant
949 return 8;
950
951 // All opcodes that have a single ULEB (signed or unsigned) argument
952 case DW_OP_constu: // 0x10 1 ULEB128 constant
953 case DW_OP_consts: // 0x11 1 SLEB128 constant
954 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
955 case DW_OP_breg0: // 0x70 1 ULEB128 register
956 case DW_OP_breg1: // 0x71 1 ULEB128 register
957 case DW_OP_breg2: // 0x72 1 ULEB128 register
958 case DW_OP_breg3: // 0x73 1 ULEB128 register
959 case DW_OP_breg4: // 0x74 1 ULEB128 register
960 case DW_OP_breg5: // 0x75 1 ULEB128 register
961 case DW_OP_breg6: // 0x76 1 ULEB128 register
962 case DW_OP_breg7: // 0x77 1 ULEB128 register
963 case DW_OP_breg8: // 0x78 1 ULEB128 register
964 case DW_OP_breg9: // 0x79 1 ULEB128 register
965 case DW_OP_breg10: // 0x7a 1 ULEB128 register
966 case DW_OP_breg11: // 0x7b 1 ULEB128 register
967 case DW_OP_breg12: // 0x7c 1 ULEB128 register
968 case DW_OP_breg13: // 0x7d 1 ULEB128 register
969 case DW_OP_breg14: // 0x7e 1 ULEB128 register
970 case DW_OP_breg15: // 0x7f 1 ULEB128 register
971 case DW_OP_breg16: // 0x80 1 ULEB128 register
972 case DW_OP_breg17: // 0x81 1 ULEB128 register
973 case DW_OP_breg18: // 0x82 1 ULEB128 register
974 case DW_OP_breg19: // 0x83 1 ULEB128 register
975 case DW_OP_breg20: // 0x84 1 ULEB128 register
976 case DW_OP_breg21: // 0x85 1 ULEB128 register
977 case DW_OP_breg22: // 0x86 1 ULEB128 register
978 case DW_OP_breg23: // 0x87 1 ULEB128 register
979 case DW_OP_breg24: // 0x88 1 ULEB128 register
980 case DW_OP_breg25: // 0x89 1 ULEB128 register
981 case DW_OP_breg26: // 0x8a 1 ULEB128 register
982 case DW_OP_breg27: // 0x8b 1 ULEB128 register
983 case DW_OP_breg28: // 0x8c 1 ULEB128 register
984 case DW_OP_breg29: // 0x8d 1 ULEB128 register
985 case DW_OP_breg30: // 0x8e 1 ULEB128 register
986 case DW_OP_breg31: // 0x8f 1 ULEB128 register
987 case DW_OP_regx: // 0x90 1 ULEB128 register
988 case DW_OP_fbreg: // 0x91 1 SLEB128 offset
989 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
990 data.Skip_LEB128(&offset);
991 return offset - data_offset;
992
993 // All opcodes that have a 2 ULEB (signed or unsigned) arguments
994 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
995 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
996 data.Skip_LEB128(&offset);
997 data.Skip_LEB128(&offset);
998 return offset - data_offset;
999
1000 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size (DWARF4)
1001 {
1002 uint64_t block_len = data.Skip_LEB128(&offset);
1003 offset += block_len;
1004 return offset - data_offset;
1005 }
1006
1007 default:
1008 break;
1009 }
1010 return LLDB_INVALID_OFFSET;
1011 }
1012
1013 lldb::addr_t
GetLocation_DW_OP_addr(uint32_t op_addr_idx,bool & error) const1014 DWARFExpression::GetLocation_DW_OP_addr (uint32_t op_addr_idx, bool &error) const
1015 {
1016 error = false;
1017 if (IsLocationList())
1018 return LLDB_INVALID_ADDRESS;
1019 lldb::offset_t offset = 0;
1020 uint32_t curr_op_addr_idx = 0;
1021 while (m_data.ValidOffset(offset))
1022 {
1023 const uint8_t op = m_data.GetU8(&offset);
1024
1025 if (op == DW_OP_addr)
1026 {
1027 const lldb::addr_t op_file_addr = m_data.GetAddress(&offset);
1028 if (curr_op_addr_idx == op_addr_idx)
1029 return op_file_addr;
1030 else
1031 ++curr_op_addr_idx;
1032 }
1033 else
1034 {
1035 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op);
1036 if (op_arg_size == LLDB_INVALID_OFFSET)
1037 {
1038 error = true;
1039 break;
1040 }
1041 offset += op_arg_size;
1042 }
1043 }
1044 return LLDB_INVALID_ADDRESS;
1045 }
1046
1047 bool
Update_DW_OP_addr(lldb::addr_t file_addr)1048 DWARFExpression::Update_DW_OP_addr (lldb::addr_t file_addr)
1049 {
1050 if (IsLocationList())
1051 return false;
1052 lldb::offset_t offset = 0;
1053 while (m_data.ValidOffset(offset))
1054 {
1055 const uint8_t op = m_data.GetU8(&offset);
1056
1057 if (op == DW_OP_addr)
1058 {
1059 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
1060 // We have to make a copy of the data as we don't know if this
1061 // data is from a read only memory mapped buffer, so we duplicate
1062 // all of the data first, then modify it, and if all goes well,
1063 // we then replace the data for this expression
1064
1065 // So first we copy the data into a heap buffer
1066 std::unique_ptr<DataBufferHeap> head_data_ap (new DataBufferHeap (m_data.GetDataStart(),
1067 m_data.GetByteSize()));
1068
1069 // Make en encoder so we can write the address into the buffer using
1070 // the correct byte order (endianness)
1071 DataEncoder encoder (head_data_ap->GetBytes(),
1072 head_data_ap->GetByteSize(),
1073 m_data.GetByteOrder(),
1074 addr_byte_size);
1075
1076 // Replace the address in the new buffer
1077 if (encoder.PutMaxU64 (offset, addr_byte_size, file_addr) == UINT32_MAX)
1078 return false;
1079
1080 // All went well, so now we can reset the data using a shared
1081 // pointer to the heap data so "m_data" will now correctly
1082 // manage the heap data.
1083 m_data.SetData (DataBufferSP (head_data_ap.release()));
1084 return true;
1085 }
1086 else
1087 {
1088 const offset_t op_arg_size = GetOpcodeDataSize (m_data, offset, op);
1089 if (op_arg_size == LLDB_INVALID_OFFSET)
1090 break;
1091 offset += op_arg_size;
1092 }
1093 }
1094 return false;
1095 }
1096
1097 bool
LocationListContainsAddress(lldb::addr_t loclist_base_addr,lldb::addr_t addr) const1098 DWARFExpression::LocationListContainsAddress (lldb::addr_t loclist_base_addr, lldb::addr_t addr) const
1099 {
1100 if (addr == LLDB_INVALID_ADDRESS)
1101 return false;
1102
1103 if (IsLocationList())
1104 {
1105 lldb::offset_t offset = 0;
1106
1107 if (loclist_base_addr == LLDB_INVALID_ADDRESS)
1108 return false;
1109
1110 while (m_data.ValidOffset(offset))
1111 {
1112 // We need to figure out what the value is for the location.
1113 addr_t lo_pc = m_data.GetAddress(&offset);
1114 addr_t hi_pc = m_data.GetAddress(&offset);
1115 if (lo_pc == 0 && hi_pc == 0)
1116 break;
1117 else
1118 {
1119 lo_pc += loclist_base_addr - m_loclist_slide;
1120 hi_pc += loclist_base_addr - m_loclist_slide;
1121
1122 if (lo_pc <= addr && addr < hi_pc)
1123 return true;
1124
1125 offset += m_data.GetU16(&offset);
1126 }
1127 }
1128 }
1129 return false;
1130 }
1131
1132 bool
GetLocation(addr_t base_addr,addr_t pc,lldb::offset_t & offset,lldb::offset_t & length)1133 DWARFExpression::GetLocation (addr_t base_addr, addr_t pc, lldb::offset_t &offset, lldb::offset_t &length)
1134 {
1135 offset = 0;
1136 if (!IsLocationList())
1137 {
1138 length = m_data.GetByteSize();
1139 return true;
1140 }
1141
1142 if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS)
1143 {
1144 addr_t curr_base_addr = base_addr;
1145
1146 while (m_data.ValidOffset(offset))
1147 {
1148 // We need to figure out what the value is for the location.
1149 addr_t lo_pc = m_data.GetAddress(&offset);
1150 addr_t hi_pc = m_data.GetAddress(&offset);
1151 if (lo_pc == 0 && hi_pc == 0)
1152 {
1153 break;
1154 }
1155 else
1156 {
1157 lo_pc += curr_base_addr - m_loclist_slide;
1158 hi_pc += curr_base_addr - m_loclist_slide;
1159
1160 length = m_data.GetU16(&offset);
1161
1162 if (length > 0 && lo_pc <= pc && pc < hi_pc)
1163 return true;
1164
1165 offset += length;
1166 }
1167 }
1168 }
1169 offset = LLDB_INVALID_OFFSET;
1170 length = 0;
1171 return false;
1172 }
1173
1174 bool
DumpLocationForAddress(Stream * s,lldb::DescriptionLevel level,addr_t base_addr,addr_t address,ABI * abi)1175 DWARFExpression::DumpLocationForAddress (Stream *s,
1176 lldb::DescriptionLevel level,
1177 addr_t base_addr,
1178 addr_t address,
1179 ABI *abi)
1180 {
1181 lldb::offset_t offset = 0;
1182 lldb::offset_t length = 0;
1183
1184 if (GetLocation (base_addr, address, offset, length))
1185 {
1186 if (length > 0)
1187 {
1188 DumpLocation(s, offset, length, level, abi);
1189 return true;
1190 }
1191 }
1192 return false;
1193 }
1194
1195 bool
Evaluate(ExecutionContextScope * exe_scope,ClangExpressionVariableList * expr_locals,ClangExpressionDeclMap * decl_map,lldb::addr_t loclist_base_load_addr,const Value * initial_value_ptr,Value & result,Error * error_ptr) const1196 DWARFExpression::Evaluate
1197 (
1198 ExecutionContextScope *exe_scope,
1199 ClangExpressionVariableList *expr_locals,
1200 ClangExpressionDeclMap *decl_map,
1201 lldb::addr_t loclist_base_load_addr,
1202 const Value* initial_value_ptr,
1203 Value& result,
1204 Error *error_ptr
1205 ) const
1206 {
1207 ExecutionContext exe_ctx (exe_scope);
1208 return Evaluate(&exe_ctx, expr_locals, decl_map, NULL, loclist_base_load_addr, initial_value_ptr, result, error_ptr);
1209 }
1210
1211 bool
Evaluate(ExecutionContext * exe_ctx,ClangExpressionVariableList * expr_locals,ClangExpressionDeclMap * decl_map,RegisterContext * reg_ctx,lldb::addr_t loclist_base_load_addr,const Value * initial_value_ptr,Value & result,Error * error_ptr) const1212 DWARFExpression::Evaluate
1213 (
1214 ExecutionContext *exe_ctx,
1215 ClangExpressionVariableList *expr_locals,
1216 ClangExpressionDeclMap *decl_map,
1217 RegisterContext *reg_ctx,
1218 lldb::addr_t loclist_base_load_addr,
1219 const Value* initial_value_ptr,
1220 Value& result,
1221 Error *error_ptr
1222 ) const
1223 {
1224 if (IsLocationList())
1225 {
1226 lldb::offset_t offset = 0;
1227 addr_t pc;
1228 StackFrame *frame = NULL;
1229 if (reg_ctx)
1230 pc = reg_ctx->GetPC();
1231 else
1232 {
1233 frame = exe_ctx->GetFramePtr();
1234 if (!frame)
1235 return false;
1236 RegisterContextSP reg_ctx_sp = frame->GetRegisterContext();
1237 if (!reg_ctx_sp)
1238 return false;
1239 pc = reg_ctx_sp->GetPC();
1240 }
1241
1242 if (loclist_base_load_addr != LLDB_INVALID_ADDRESS)
1243 {
1244 if (pc == LLDB_INVALID_ADDRESS)
1245 {
1246 if (error_ptr)
1247 error_ptr->SetErrorString("Invalid PC in frame.");
1248 return false;
1249 }
1250
1251 addr_t curr_loclist_base_load_addr = loclist_base_load_addr;
1252
1253 while (m_data.ValidOffset(offset))
1254 {
1255 // We need to figure out what the value is for the location.
1256 addr_t lo_pc = m_data.GetAddress(&offset);
1257 addr_t hi_pc = m_data.GetAddress(&offset);
1258 if (lo_pc == 0 && hi_pc == 0)
1259 {
1260 break;
1261 }
1262 else
1263 {
1264 lo_pc += curr_loclist_base_load_addr - m_loclist_slide;
1265 hi_pc += curr_loclist_base_load_addr - m_loclist_slide;
1266
1267 uint16_t length = m_data.GetU16(&offset);
1268
1269 if (length > 0 && lo_pc <= pc && pc < hi_pc)
1270 {
1271 return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, m_data, offset, length, m_reg_kind, initial_value_ptr, result, error_ptr);
1272 }
1273 offset += length;
1274 }
1275 }
1276 }
1277 if (error_ptr)
1278 error_ptr->SetErrorString ("variable not available");
1279 return false;
1280 }
1281
1282 // Not a location list, just a single expression.
1283 return DWARFExpression::Evaluate (exe_ctx, expr_locals, decl_map, reg_ctx, m_data, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, result, error_ptr);
1284 }
1285
1286
1287
1288 bool
Evaluate(ExecutionContext * exe_ctx,ClangExpressionVariableList * expr_locals,ClangExpressionDeclMap * decl_map,RegisterContext * reg_ctx,const DataExtractor & opcodes,const lldb::offset_t opcodes_offset,const lldb::offset_t opcodes_length,const uint32_t reg_kind,const Value * initial_value_ptr,Value & result,Error * error_ptr)1289 DWARFExpression::Evaluate
1290 (
1291 ExecutionContext *exe_ctx,
1292 ClangExpressionVariableList *expr_locals,
1293 ClangExpressionDeclMap *decl_map,
1294 RegisterContext *reg_ctx,
1295 const DataExtractor& opcodes,
1296 const lldb::offset_t opcodes_offset,
1297 const lldb::offset_t opcodes_length,
1298 const uint32_t reg_kind,
1299 const Value* initial_value_ptr,
1300 Value& result,
1301 Error *error_ptr
1302 )
1303 {
1304
1305 if (opcodes_length == 0)
1306 {
1307 if (error_ptr)
1308 error_ptr->SetErrorString ("no location, value may have been optimized out");
1309 return false;
1310 }
1311 std::vector<Value> stack;
1312
1313 Process *process = NULL;
1314 StackFrame *frame = NULL;
1315
1316 if (exe_ctx)
1317 {
1318 process = exe_ctx->GetProcessPtr();
1319 frame = exe_ctx->GetFramePtr();
1320 }
1321 if (reg_ctx == NULL && frame)
1322 reg_ctx = frame->GetRegisterContext().get();
1323
1324 if (initial_value_ptr)
1325 stack.push_back(*initial_value_ptr);
1326
1327 lldb::offset_t offset = opcodes_offset;
1328 const lldb::offset_t end_offset = opcodes_offset + opcodes_length;
1329 Value tmp;
1330 uint32_t reg_num;
1331
1332 // Make sure all of the data is available in opcodes.
1333 if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length))
1334 {
1335 if (error_ptr)
1336 error_ptr->SetErrorString ("invalid offset and/or length for opcodes buffer.");
1337 return false;
1338 }
1339 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1340
1341
1342 while (opcodes.ValidOffset(offset) && offset < end_offset)
1343 {
1344 const lldb::offset_t op_offset = offset;
1345 const uint8_t op = opcodes.GetU8(&offset);
1346
1347 if (log && log->GetVerbose())
1348 {
1349 size_t count = stack.size();
1350 log->Printf("Stack before operation has %lu values:", count);
1351 for (size_t i=0; i<count; ++i)
1352 {
1353 StreamString new_value;
1354 new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
1355 stack[i].Dump(&new_value);
1356 log->Printf(" %s", new_value.GetData());
1357 }
1358 log->Printf("0x%8.8" PRIx64 ": %s", op_offset, DW_OP_value_to_name(op));
1359 }
1360 switch (op)
1361 {
1362 //----------------------------------------------------------------------
1363 // The DW_OP_addr operation has a single operand that encodes a machine
1364 // address and whose size is the size of an address on the target machine.
1365 //----------------------------------------------------------------------
1366 case DW_OP_addr:
1367 stack.push_back(Scalar(opcodes.GetAddress(&offset)));
1368 stack.back().SetValueType (Value::eValueTypeFileAddress);
1369 break;
1370
1371 //----------------------------------------------------------------------
1372 // The DW_OP_addr_sect_offset4 is used for any location expressions in
1373 // shared libraries that have a location like:
1374 // DW_OP_addr(0x1000)
1375 // If this address resides in a shared library, then this virtual
1376 // address won't make sense when it is evaluated in the context of a
1377 // running process where shared libraries have been slid. To account for
1378 // this, this new address type where we can store the section pointer
1379 // and a 4 byte offset.
1380 //----------------------------------------------------------------------
1381 // case DW_OP_addr_sect_offset4:
1382 // {
1383 // result_type = eResultTypeFileAddress;
1384 // lldb::Section *sect = (lldb::Section *)opcodes.GetMaxU64(&offset, sizeof(void *));
1385 // lldb::addr_t sect_offset = opcodes.GetU32(&offset);
1386 //
1387 // Address so_addr (sect, sect_offset);
1388 // lldb::addr_t load_addr = so_addr.GetLoadAddress();
1389 // if (load_addr != LLDB_INVALID_ADDRESS)
1390 // {
1391 // // We successfully resolve a file address to a load
1392 // // address.
1393 // stack.push_back(load_addr);
1394 // break;
1395 // }
1396 // else
1397 // {
1398 // // We were able
1399 // if (error_ptr)
1400 // error_ptr->SetErrorStringWithFormat ("Section %s in %s is not currently loaded.\n", sect->GetName().AsCString(), sect->GetModule()->GetFileSpec().GetFilename().AsCString());
1401 // return false;
1402 // }
1403 // }
1404 // break;
1405
1406 //----------------------------------------------------------------------
1407 // OPCODE: DW_OP_deref
1408 // OPERANDS: none
1409 // DESCRIPTION: Pops the top stack entry and treats it as an address.
1410 // The value retrieved from that address is pushed. The size of the
1411 // data retrieved from the dereferenced address is the size of an
1412 // address on the target machine.
1413 //----------------------------------------------------------------------
1414 case DW_OP_deref:
1415 {
1416 Value::ValueType value_type = stack.back().GetValueType();
1417 switch (value_type)
1418 {
1419 case Value::eValueTypeHostAddress:
1420 {
1421 void *src = (void *)stack.back().GetScalar().ULongLong();
1422 intptr_t ptr;
1423 ::memcpy (&ptr, src, sizeof(void *));
1424 stack.back().GetScalar() = ptr;
1425 stack.back().ClearContext();
1426 }
1427 break;
1428 case Value::eValueTypeLoadAddress:
1429 if (exe_ctx)
1430 {
1431 if (process)
1432 {
1433 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1434 uint8_t addr_bytes[sizeof(lldb::addr_t)];
1435 uint32_t addr_size = process->GetAddressByteSize();
1436 Error error;
1437 if (process->ReadMemory(pointer_addr, &addr_bytes, addr_size, error) == addr_size)
1438 {
1439 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), addr_size);
1440 lldb::offset_t addr_data_offset = 0;
1441 stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset);
1442 stack.back().ClearContext();
1443 }
1444 else
1445 {
1446 if (error_ptr)
1447 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n",
1448 pointer_addr,
1449 error.AsCString());
1450 return false;
1451 }
1452 }
1453 else
1454 {
1455 if (error_ptr)
1456 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n");
1457 return false;
1458 }
1459 }
1460 else
1461 {
1462 if (error_ptr)
1463 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n");
1464 return false;
1465 }
1466 break;
1467
1468 default:
1469 break;
1470 }
1471
1472 }
1473 break;
1474
1475 //----------------------------------------------------------------------
1476 // OPCODE: DW_OP_deref_size
1477 // OPERANDS: 1
1478 // 1 - uint8_t that specifies the size of the data to dereference.
1479 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1480 // stack entry and treats it as an address. The value retrieved from that
1481 // address is pushed. In the DW_OP_deref_size operation, however, the
1482 // size in bytes of the data retrieved from the dereferenced address is
1483 // specified by the single operand. This operand is a 1-byte unsigned
1484 // integral constant whose value may not be larger than the size of an
1485 // address on the target machine. The data retrieved is zero extended
1486 // to the size of an address on the target machine before being pushed
1487 // on the expression stack.
1488 //----------------------------------------------------------------------
1489 case DW_OP_deref_size:
1490 {
1491 uint8_t size = opcodes.GetU8(&offset);
1492 Value::ValueType value_type = stack.back().GetValueType();
1493 switch (value_type)
1494 {
1495 case Value::eValueTypeHostAddress:
1496 {
1497 void *src = (void *)stack.back().GetScalar().ULongLong();
1498 intptr_t ptr;
1499 ::memcpy (&ptr, src, sizeof(void *));
1500 // I can't decide whether the size operand should apply to the bytes in their
1501 // lldb-host endianness or the target endianness.. I doubt this'll ever come up
1502 // but I'll opt for assuming big endian regardless.
1503 switch (size)
1504 {
1505 case 1: ptr = ptr & 0xff; break;
1506 case 2: ptr = ptr & 0xffff; break;
1507 case 3: ptr = ptr & 0xffffff; break;
1508 case 4: ptr = ptr & 0xffffffff; break;
1509 // the casts are added to work around the case where intptr_t is a 32 bit quantity;
1510 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this program.
1511 case 5: ptr = (intptr_t) ptr & 0xffffffffffULL; break;
1512 case 6: ptr = (intptr_t) ptr & 0xffffffffffffULL; break;
1513 case 7: ptr = (intptr_t) ptr & 0xffffffffffffffULL; break;
1514 default: break;
1515 }
1516 stack.back().GetScalar() = ptr;
1517 stack.back().ClearContext();
1518 }
1519 break;
1520 case Value::eValueTypeLoadAddress:
1521 if (exe_ctx)
1522 {
1523 if (process)
1524 {
1525 lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1526 uint8_t addr_bytes[sizeof(lldb::addr_t)];
1527 Error error;
1528 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size)
1529 {
1530 DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size);
1531 lldb::offset_t addr_data_offset = 0;
1532 switch (size)
1533 {
1534 case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break;
1535 case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break;
1536 case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break;
1537 case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break;
1538 default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset);
1539 }
1540 stack.back().ClearContext();
1541 }
1542 else
1543 {
1544 if (error_ptr)
1545 error_ptr->SetErrorStringWithFormat ("Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n",
1546 pointer_addr,
1547 error.AsCString());
1548 return false;
1549 }
1550 }
1551 else
1552 {
1553 if (error_ptr)
1554 error_ptr->SetErrorStringWithFormat ("NULL process for DW_OP_deref.\n");
1555 return false;
1556 }
1557 }
1558 else
1559 {
1560 if (error_ptr)
1561 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_deref.\n");
1562 return false;
1563 }
1564 break;
1565
1566 default:
1567 break;
1568 }
1569
1570 }
1571 break;
1572
1573 //----------------------------------------------------------------------
1574 // OPCODE: DW_OP_xderef_size
1575 // OPERANDS: 1
1576 // 1 - uint8_t that specifies the size of the data to dereference.
1577 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1578 // the top of the stack is treated as an address. The second stack
1579 // entry is treated as an "address space identifier" for those
1580 // architectures that support multiple address spaces. The top two
1581 // stack elements are popped, a data item is retrieved through an
1582 // implementation-defined address calculation and pushed as the new
1583 // stack top. In the DW_OP_xderef_size operation, however, the size in
1584 // bytes of the data retrieved from the dereferenced address is
1585 // specified by the single operand. This operand is a 1-byte unsigned
1586 // integral constant whose value may not be larger than the size of an
1587 // address on the target machine. The data retrieved is zero extended
1588 // to the size of an address on the target machine before being pushed
1589 // on the expression stack.
1590 //----------------------------------------------------------------------
1591 case DW_OP_xderef_size:
1592 if (error_ptr)
1593 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1594 return false;
1595 //----------------------------------------------------------------------
1596 // OPCODE: DW_OP_xderef
1597 // OPERANDS: none
1598 // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1599 // the top of the stack is treated as an address. The second stack entry
1600 // is treated as an "address space identifier" for those architectures
1601 // that support multiple address spaces. The top two stack elements are
1602 // popped, a data item is retrieved through an implementation-defined
1603 // address calculation and pushed as the new stack top. The size of the
1604 // data retrieved from the dereferenced address is the size of an address
1605 // on the target machine.
1606 //----------------------------------------------------------------------
1607 case DW_OP_xderef:
1608 if (error_ptr)
1609 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1610 return false;
1611
1612 //----------------------------------------------------------------------
1613 // All DW_OP_constXXX opcodes have a single operand as noted below:
1614 //
1615 // Opcode Operand 1
1616 // --------------- ----------------------------------------------------
1617 // DW_OP_const1u 1-byte unsigned integer constant
1618 // DW_OP_const1s 1-byte signed integer constant
1619 // DW_OP_const2u 2-byte unsigned integer constant
1620 // DW_OP_const2s 2-byte signed integer constant
1621 // DW_OP_const4u 4-byte unsigned integer constant
1622 // DW_OP_const4s 4-byte signed integer constant
1623 // DW_OP_const8u 8-byte unsigned integer constant
1624 // DW_OP_const8s 8-byte signed integer constant
1625 // DW_OP_constu unsigned LEB128 integer constant
1626 // DW_OP_consts signed LEB128 integer constant
1627 //----------------------------------------------------------------------
1628 case DW_OP_const1u : stack.push_back(Scalar(( uint8_t)opcodes.GetU8 (&offset))); break;
1629 case DW_OP_const1s : stack.push_back(Scalar(( int8_t)opcodes.GetU8 (&offset))); break;
1630 case DW_OP_const2u : stack.push_back(Scalar((uint16_t)opcodes.GetU16 (&offset))); break;
1631 case DW_OP_const2s : stack.push_back(Scalar(( int16_t)opcodes.GetU16 (&offset))); break;
1632 case DW_OP_const4u : stack.push_back(Scalar((uint32_t)opcodes.GetU32 (&offset))); break;
1633 case DW_OP_const4s : stack.push_back(Scalar(( int32_t)opcodes.GetU32 (&offset))); break;
1634 case DW_OP_const8u : stack.push_back(Scalar((uint64_t)opcodes.GetU64 (&offset))); break;
1635 case DW_OP_const8s : stack.push_back(Scalar(( int64_t)opcodes.GetU64 (&offset))); break;
1636 case DW_OP_constu : stack.push_back(Scalar(opcodes.GetULEB128 (&offset))); break;
1637 case DW_OP_consts : stack.push_back(Scalar(opcodes.GetSLEB128 (&offset))); break;
1638
1639 //----------------------------------------------------------------------
1640 // OPCODE: DW_OP_dup
1641 // OPERANDS: none
1642 // DESCRIPTION: duplicates the value at the top of the stack
1643 //----------------------------------------------------------------------
1644 case DW_OP_dup:
1645 if (stack.empty())
1646 {
1647 if (error_ptr)
1648 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1649 return false;
1650 }
1651 else
1652 stack.push_back(stack.back());
1653 break;
1654
1655 //----------------------------------------------------------------------
1656 // OPCODE: DW_OP_drop
1657 // OPERANDS: none
1658 // DESCRIPTION: pops the value at the top of the stack
1659 //----------------------------------------------------------------------
1660 case DW_OP_drop:
1661 if (stack.empty())
1662 {
1663 if (error_ptr)
1664 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1665 return false;
1666 }
1667 else
1668 stack.pop_back();
1669 break;
1670
1671 //----------------------------------------------------------------------
1672 // OPCODE: DW_OP_over
1673 // OPERANDS: none
1674 // DESCRIPTION: Duplicates the entry currently second in the stack at
1675 // the top of the stack.
1676 //----------------------------------------------------------------------
1677 case DW_OP_over:
1678 if (stack.size() < 2)
1679 {
1680 if (error_ptr)
1681 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_over.");
1682 return false;
1683 }
1684 else
1685 stack.push_back(stack[stack.size() - 2]);
1686 break;
1687
1688
1689 //----------------------------------------------------------------------
1690 // OPCODE: DW_OP_pick
1691 // OPERANDS: uint8_t index into the current stack
1692 // DESCRIPTION: The stack entry with the specified index (0 through 255,
1693 // inclusive) is pushed on the stack
1694 //----------------------------------------------------------------------
1695 case DW_OP_pick:
1696 {
1697 uint8_t pick_idx = opcodes.GetU8(&offset);
1698 if (pick_idx < stack.size())
1699 stack.push_back(stack[pick_idx]);
1700 else
1701 {
1702 if (error_ptr)
1703 error_ptr->SetErrorStringWithFormat("Index %u out of range for DW_OP_pick.\n", pick_idx);
1704 return false;
1705 }
1706 }
1707 break;
1708
1709 //----------------------------------------------------------------------
1710 // OPCODE: DW_OP_swap
1711 // OPERANDS: none
1712 // DESCRIPTION: swaps the top two stack entries. The entry at the top
1713 // of the stack becomes the second stack entry, and the second entry
1714 // becomes the top of the stack
1715 //----------------------------------------------------------------------
1716 case DW_OP_swap:
1717 if (stack.size() < 2)
1718 {
1719 if (error_ptr)
1720 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_swap.");
1721 return false;
1722 }
1723 else
1724 {
1725 tmp = stack.back();
1726 stack.back() = stack[stack.size() - 2];
1727 stack[stack.size() - 2] = tmp;
1728 }
1729 break;
1730
1731 //----------------------------------------------------------------------
1732 // OPCODE: DW_OP_rot
1733 // OPERANDS: none
1734 // DESCRIPTION: Rotates the first three stack entries. The entry at
1735 // the top of the stack becomes the third stack entry, the second
1736 // entry becomes the top of the stack, and the third entry becomes
1737 // the second entry.
1738 //----------------------------------------------------------------------
1739 case DW_OP_rot:
1740 if (stack.size() < 3)
1741 {
1742 if (error_ptr)
1743 error_ptr->SetErrorString("Expression stack needs at least 3 items for DW_OP_rot.");
1744 return false;
1745 }
1746 else
1747 {
1748 size_t last_idx = stack.size() - 1;
1749 Value old_top = stack[last_idx];
1750 stack[last_idx] = stack[last_idx - 1];
1751 stack[last_idx - 1] = stack[last_idx - 2];
1752 stack[last_idx - 2] = old_top;
1753 }
1754 break;
1755
1756 //----------------------------------------------------------------------
1757 // OPCODE: DW_OP_abs
1758 // OPERANDS: none
1759 // DESCRIPTION: pops the top stack entry, interprets it as a signed
1760 // value and pushes its absolute value. If the absolute value can not be
1761 // represented, the result is undefined.
1762 //----------------------------------------------------------------------
1763 case DW_OP_abs:
1764 if (stack.empty())
1765 {
1766 if (error_ptr)
1767 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_abs.");
1768 return false;
1769 }
1770 else if (stack.back().ResolveValue(exe_ctx).AbsoluteValue() == false)
1771 {
1772 if (error_ptr)
1773 error_ptr->SetErrorString("Failed to take the absolute value of the first stack item.");
1774 return false;
1775 }
1776 break;
1777
1778 //----------------------------------------------------------------------
1779 // OPCODE: DW_OP_and
1780 // OPERANDS: none
1781 // DESCRIPTION: pops the top two stack values, performs a bitwise and
1782 // operation on the two, and pushes the result.
1783 //----------------------------------------------------------------------
1784 case DW_OP_and:
1785 if (stack.size() < 2)
1786 {
1787 if (error_ptr)
1788 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_and.");
1789 return false;
1790 }
1791 else
1792 {
1793 tmp = stack.back();
1794 stack.pop_back();
1795 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1796 }
1797 break;
1798
1799 //----------------------------------------------------------------------
1800 // OPCODE: DW_OP_div
1801 // OPERANDS: none
1802 // DESCRIPTION: pops the top two stack values, divides the former second
1803 // entry by the former top of the stack using signed division, and
1804 // pushes the result.
1805 //----------------------------------------------------------------------
1806 case DW_OP_div:
1807 if (stack.size() < 2)
1808 {
1809 if (error_ptr)
1810 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_div.");
1811 return false;
1812 }
1813 else
1814 {
1815 tmp = stack.back();
1816 if (tmp.ResolveValue(exe_ctx).IsZero())
1817 {
1818 if (error_ptr)
1819 error_ptr->SetErrorString("Divide by zero.");
1820 return false;
1821 }
1822 else
1823 {
1824 stack.pop_back();
1825 stack.back() = stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx);
1826 if (!stack.back().ResolveValue(exe_ctx).IsValid())
1827 {
1828 if (error_ptr)
1829 error_ptr->SetErrorString("Divide failed.");
1830 return false;
1831 }
1832 }
1833 }
1834 break;
1835
1836 //----------------------------------------------------------------------
1837 // OPCODE: DW_OP_minus
1838 // OPERANDS: none
1839 // DESCRIPTION: pops the top two stack values, subtracts the former top
1840 // of the stack from the former second entry, and pushes the result.
1841 //----------------------------------------------------------------------
1842 case DW_OP_minus:
1843 if (stack.size() < 2)
1844 {
1845 if (error_ptr)
1846 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_minus.");
1847 return false;
1848 }
1849 else
1850 {
1851 tmp = stack.back();
1852 stack.pop_back();
1853 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1854 }
1855 break;
1856
1857 //----------------------------------------------------------------------
1858 // OPCODE: DW_OP_mod
1859 // OPERANDS: none
1860 // DESCRIPTION: pops the top two stack values and pushes the result of
1861 // the calculation: former second stack entry modulo the former top of
1862 // the stack.
1863 //----------------------------------------------------------------------
1864 case DW_OP_mod:
1865 if (stack.size() < 2)
1866 {
1867 if (error_ptr)
1868 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mod.");
1869 return false;
1870 }
1871 else
1872 {
1873 tmp = stack.back();
1874 stack.pop_back();
1875 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1876 }
1877 break;
1878
1879
1880 //----------------------------------------------------------------------
1881 // OPCODE: DW_OP_mul
1882 // OPERANDS: none
1883 // DESCRIPTION: pops the top two stack entries, multiplies them
1884 // together, and pushes the result.
1885 //----------------------------------------------------------------------
1886 case DW_OP_mul:
1887 if (stack.size() < 2)
1888 {
1889 if (error_ptr)
1890 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_mul.");
1891 return false;
1892 }
1893 else
1894 {
1895 tmp = stack.back();
1896 stack.pop_back();
1897 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1898 }
1899 break;
1900
1901 //----------------------------------------------------------------------
1902 // OPCODE: DW_OP_neg
1903 // OPERANDS: none
1904 // DESCRIPTION: pops the top stack entry, and pushes its negation.
1905 //----------------------------------------------------------------------
1906 case DW_OP_neg:
1907 if (stack.empty())
1908 {
1909 if (error_ptr)
1910 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_neg.");
1911 return false;
1912 }
1913 else
1914 {
1915 if (stack.back().ResolveValue(exe_ctx).UnaryNegate() == false)
1916 {
1917 if (error_ptr)
1918 error_ptr->SetErrorString("Unary negate failed.");
1919 return false;
1920 }
1921 }
1922 break;
1923
1924 //----------------------------------------------------------------------
1925 // OPCODE: DW_OP_not
1926 // OPERANDS: none
1927 // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1928 // complement
1929 //----------------------------------------------------------------------
1930 case DW_OP_not:
1931 if (stack.empty())
1932 {
1933 if (error_ptr)
1934 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_not.");
1935 return false;
1936 }
1937 else
1938 {
1939 if (stack.back().ResolveValue(exe_ctx).OnesComplement() == false)
1940 {
1941 if (error_ptr)
1942 error_ptr->SetErrorString("Logical NOT failed.");
1943 return false;
1944 }
1945 }
1946 break;
1947
1948 //----------------------------------------------------------------------
1949 // OPCODE: DW_OP_or
1950 // OPERANDS: none
1951 // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1952 // operation on the two, and pushes the result.
1953 //----------------------------------------------------------------------
1954 case DW_OP_or:
1955 if (stack.size() < 2)
1956 {
1957 if (error_ptr)
1958 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_or.");
1959 return false;
1960 }
1961 else
1962 {
1963 tmp = stack.back();
1964 stack.pop_back();
1965 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1966 }
1967 break;
1968
1969 //----------------------------------------------------------------------
1970 // OPCODE: DW_OP_plus
1971 // OPERANDS: none
1972 // DESCRIPTION: pops the top two stack entries, adds them together, and
1973 // pushes the result.
1974 //----------------------------------------------------------------------
1975 case DW_OP_plus:
1976 if (stack.size() < 2)
1977 {
1978 if (error_ptr)
1979 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_plus.");
1980 return false;
1981 }
1982 else
1983 {
1984 tmp = stack.back();
1985 stack.pop_back();
1986 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) + tmp.ResolveValue(exe_ctx);
1987 }
1988 break;
1989
1990 //----------------------------------------------------------------------
1991 // OPCODE: DW_OP_plus_uconst
1992 // OPERANDS: none
1993 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1994 // constant operand and pushes the result.
1995 //----------------------------------------------------------------------
1996 case DW_OP_plus_uconst:
1997 if (stack.empty())
1998 {
1999 if (error_ptr)
2000 error_ptr->SetErrorString("Expression stack needs at least 1 item for DW_OP_plus_uconst.");
2001 return false;
2002 }
2003 else
2004 {
2005 const uint64_t uconst_value = opcodes.GetULEB128(&offset);
2006 // Implicit conversion from a UINT to a Scalar...
2007 stack.back().ResolveValue(exe_ctx) += uconst_value;
2008 if (!stack.back().ResolveValue(exe_ctx).IsValid())
2009 {
2010 if (error_ptr)
2011 error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
2012 return false;
2013 }
2014 }
2015 break;
2016
2017 //----------------------------------------------------------------------
2018 // OPCODE: DW_OP_shl
2019 // OPERANDS: none
2020 // DESCRIPTION: pops the top two stack entries, shifts the former
2021 // second entry left by the number of bits specified by the former top
2022 // of the stack, and pushes the result.
2023 //----------------------------------------------------------------------
2024 case DW_OP_shl:
2025 if (stack.size() < 2)
2026 {
2027 if (error_ptr)
2028 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shl.");
2029 return false;
2030 }
2031 else
2032 {
2033 tmp = stack.back();
2034 stack.pop_back();
2035 stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
2036 }
2037 break;
2038
2039 //----------------------------------------------------------------------
2040 // OPCODE: DW_OP_shr
2041 // OPERANDS: none
2042 // DESCRIPTION: pops the top two stack entries, shifts the former second
2043 // entry right logically (filling with zero bits) by the number of bits
2044 // specified by the former top of the stack, and pushes the result.
2045 //----------------------------------------------------------------------
2046 case DW_OP_shr:
2047 if (stack.size() < 2)
2048 {
2049 if (error_ptr)
2050 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shr.");
2051 return false;
2052 }
2053 else
2054 {
2055 tmp = stack.back();
2056 stack.pop_back();
2057 if (stack.back().ResolveValue(exe_ctx).ShiftRightLogical(tmp.ResolveValue(exe_ctx)) == false)
2058 {
2059 if (error_ptr)
2060 error_ptr->SetErrorString("DW_OP_shr failed.");
2061 return false;
2062 }
2063 }
2064 break;
2065
2066 //----------------------------------------------------------------------
2067 // OPCODE: DW_OP_shra
2068 // OPERANDS: none
2069 // DESCRIPTION: pops the top two stack entries, shifts the former second
2070 // entry right arithmetically (divide the magnitude by 2, keep the same
2071 // sign for the result) by the number of bits specified by the former
2072 // top of the stack, and pushes the result.
2073 //----------------------------------------------------------------------
2074 case DW_OP_shra:
2075 if (stack.size() < 2)
2076 {
2077 if (error_ptr)
2078 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_shra.");
2079 return false;
2080 }
2081 else
2082 {
2083 tmp = stack.back();
2084 stack.pop_back();
2085 stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
2086 }
2087 break;
2088
2089 //----------------------------------------------------------------------
2090 // OPCODE: DW_OP_xor
2091 // OPERANDS: none
2092 // DESCRIPTION: pops the top two stack entries, performs the bitwise
2093 // exclusive-or operation on the two, and pushes the result.
2094 //----------------------------------------------------------------------
2095 case DW_OP_xor:
2096 if (stack.size() < 2)
2097 {
2098 if (error_ptr)
2099 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_xor.");
2100 return false;
2101 }
2102 else
2103 {
2104 tmp = stack.back();
2105 stack.pop_back();
2106 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
2107 }
2108 break;
2109
2110
2111 //----------------------------------------------------------------------
2112 // OPCODE: DW_OP_skip
2113 // OPERANDS: int16_t
2114 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
2115 // signed integer constant. The 2-byte constant is the number of bytes
2116 // of the DWARF expression to skip forward or backward from the current
2117 // operation, beginning after the 2-byte constant.
2118 //----------------------------------------------------------------------
2119 case DW_OP_skip:
2120 {
2121 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
2122 lldb::offset_t new_offset = offset + skip_offset;
2123 if (new_offset >= opcodes_offset && new_offset < end_offset)
2124 offset = new_offset;
2125 else
2126 {
2127 if (error_ptr)
2128 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip.");
2129 return false;
2130 }
2131 }
2132 break;
2133
2134 //----------------------------------------------------------------------
2135 // OPCODE: DW_OP_bra
2136 // OPERANDS: int16_t
2137 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
2138 // signed integer constant. This operation pops the top of stack. If
2139 // the value popped is not the constant 0, the 2-byte constant operand
2140 // is the number of bytes of the DWARF expression to skip forward or
2141 // backward from the current operation, beginning after the 2-byte
2142 // constant.
2143 //----------------------------------------------------------------------
2144 case DW_OP_bra:
2145 {
2146 tmp = stack.back();
2147 stack.pop_back();
2148 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
2149 Scalar zero(0);
2150 if (tmp.ResolveValue(exe_ctx) != zero)
2151 {
2152 lldb::offset_t new_offset = offset + bra_offset;
2153 if (new_offset >= opcodes_offset && new_offset < end_offset)
2154 offset = new_offset;
2155 else
2156 {
2157 if (error_ptr)
2158 error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra.");
2159 return false;
2160 }
2161 }
2162 }
2163 break;
2164
2165 //----------------------------------------------------------------------
2166 // OPCODE: DW_OP_eq
2167 // OPERANDS: none
2168 // DESCRIPTION: pops the top two stack values, compares using the
2169 // equals (==) operator.
2170 // STACK RESULT: push the constant value 1 onto the stack if the result
2171 // of the operation is true or the constant value 0 if the result of the
2172 // operation is false.
2173 //----------------------------------------------------------------------
2174 case DW_OP_eq:
2175 if (stack.size() < 2)
2176 {
2177 if (error_ptr)
2178 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_eq.");
2179 return false;
2180 }
2181 else
2182 {
2183 tmp = stack.back();
2184 stack.pop_back();
2185 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
2186 }
2187 break;
2188
2189 //----------------------------------------------------------------------
2190 // OPCODE: DW_OP_ge
2191 // OPERANDS: none
2192 // DESCRIPTION: pops the top two stack values, compares using the
2193 // greater than or equal to (>=) operator.
2194 // STACK RESULT: push the constant value 1 onto the stack if the result
2195 // of the operation is true or the constant value 0 if the result of the
2196 // operation is false.
2197 //----------------------------------------------------------------------
2198 case DW_OP_ge:
2199 if (stack.size() < 2)
2200 {
2201 if (error_ptr)
2202 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ge.");
2203 return false;
2204 }
2205 else
2206 {
2207 tmp = stack.back();
2208 stack.pop_back();
2209 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
2210 }
2211 break;
2212
2213 //----------------------------------------------------------------------
2214 // OPCODE: DW_OP_gt
2215 // OPERANDS: none
2216 // DESCRIPTION: pops the top two stack values, compares using the
2217 // greater than (>) operator.
2218 // STACK RESULT: push the constant value 1 onto the stack if the result
2219 // of the operation is true or the constant value 0 if the result of the
2220 // operation is false.
2221 //----------------------------------------------------------------------
2222 case DW_OP_gt:
2223 if (stack.size() < 2)
2224 {
2225 if (error_ptr)
2226 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_gt.");
2227 return false;
2228 }
2229 else
2230 {
2231 tmp = stack.back();
2232 stack.pop_back();
2233 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
2234 }
2235 break;
2236
2237 //----------------------------------------------------------------------
2238 // OPCODE: DW_OP_le
2239 // OPERANDS: none
2240 // DESCRIPTION: pops the top two stack values, compares using the
2241 // less than or equal to (<=) operator.
2242 // STACK RESULT: push the constant value 1 onto the stack if the result
2243 // of the operation is true or the constant value 0 if the result of the
2244 // operation is false.
2245 //----------------------------------------------------------------------
2246 case DW_OP_le:
2247 if (stack.size() < 2)
2248 {
2249 if (error_ptr)
2250 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_le.");
2251 return false;
2252 }
2253 else
2254 {
2255 tmp = stack.back();
2256 stack.pop_back();
2257 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
2258 }
2259 break;
2260
2261 //----------------------------------------------------------------------
2262 // OPCODE: DW_OP_lt
2263 // OPERANDS: none
2264 // DESCRIPTION: pops the top two stack values, compares using the
2265 // less than (<) operator.
2266 // STACK RESULT: push the constant value 1 onto the stack if the result
2267 // of the operation is true or the constant value 0 if the result of the
2268 // operation is false.
2269 //----------------------------------------------------------------------
2270 case DW_OP_lt:
2271 if (stack.size() < 2)
2272 {
2273 if (error_ptr)
2274 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_lt.");
2275 return false;
2276 }
2277 else
2278 {
2279 tmp = stack.back();
2280 stack.pop_back();
2281 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
2282 }
2283 break;
2284
2285 //----------------------------------------------------------------------
2286 // OPCODE: DW_OP_ne
2287 // OPERANDS: none
2288 // DESCRIPTION: pops the top two stack values, compares using the
2289 // not equal (!=) operator.
2290 // STACK RESULT: push the constant value 1 onto the stack if the result
2291 // of the operation is true or the constant value 0 if the result of the
2292 // operation is false.
2293 //----------------------------------------------------------------------
2294 case DW_OP_ne:
2295 if (stack.size() < 2)
2296 {
2297 if (error_ptr)
2298 error_ptr->SetErrorString("Expression stack needs at least 2 items for DW_OP_ne.");
2299 return false;
2300 }
2301 else
2302 {
2303 tmp = stack.back();
2304 stack.pop_back();
2305 stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
2306 }
2307 break;
2308
2309 //----------------------------------------------------------------------
2310 // OPCODE: DW_OP_litn
2311 // OPERANDS: none
2312 // DESCRIPTION: encode the unsigned literal values from 0 through 31.
2313 // STACK RESULT: push the unsigned literal constant value onto the top
2314 // of the stack.
2315 //----------------------------------------------------------------------
2316 case DW_OP_lit0:
2317 case DW_OP_lit1:
2318 case DW_OP_lit2:
2319 case DW_OP_lit3:
2320 case DW_OP_lit4:
2321 case DW_OP_lit5:
2322 case DW_OP_lit6:
2323 case DW_OP_lit7:
2324 case DW_OP_lit8:
2325 case DW_OP_lit9:
2326 case DW_OP_lit10:
2327 case DW_OP_lit11:
2328 case DW_OP_lit12:
2329 case DW_OP_lit13:
2330 case DW_OP_lit14:
2331 case DW_OP_lit15:
2332 case DW_OP_lit16:
2333 case DW_OP_lit17:
2334 case DW_OP_lit18:
2335 case DW_OP_lit19:
2336 case DW_OP_lit20:
2337 case DW_OP_lit21:
2338 case DW_OP_lit22:
2339 case DW_OP_lit23:
2340 case DW_OP_lit24:
2341 case DW_OP_lit25:
2342 case DW_OP_lit26:
2343 case DW_OP_lit27:
2344 case DW_OP_lit28:
2345 case DW_OP_lit29:
2346 case DW_OP_lit30:
2347 case DW_OP_lit31:
2348 stack.push_back(Scalar(op - DW_OP_lit0));
2349 break;
2350
2351 //----------------------------------------------------------------------
2352 // OPCODE: DW_OP_regN
2353 // OPERANDS: none
2354 // DESCRIPTION: Push the value in register n on the top of the stack.
2355 //----------------------------------------------------------------------
2356 case DW_OP_reg0:
2357 case DW_OP_reg1:
2358 case DW_OP_reg2:
2359 case DW_OP_reg3:
2360 case DW_OP_reg4:
2361 case DW_OP_reg5:
2362 case DW_OP_reg6:
2363 case DW_OP_reg7:
2364 case DW_OP_reg8:
2365 case DW_OP_reg9:
2366 case DW_OP_reg10:
2367 case DW_OP_reg11:
2368 case DW_OP_reg12:
2369 case DW_OP_reg13:
2370 case DW_OP_reg14:
2371 case DW_OP_reg15:
2372 case DW_OP_reg16:
2373 case DW_OP_reg17:
2374 case DW_OP_reg18:
2375 case DW_OP_reg19:
2376 case DW_OP_reg20:
2377 case DW_OP_reg21:
2378 case DW_OP_reg22:
2379 case DW_OP_reg23:
2380 case DW_OP_reg24:
2381 case DW_OP_reg25:
2382 case DW_OP_reg26:
2383 case DW_OP_reg27:
2384 case DW_OP_reg28:
2385 case DW_OP_reg29:
2386 case DW_OP_reg30:
2387 case DW_OP_reg31:
2388 {
2389 reg_num = op - DW_OP_reg0;
2390
2391 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2392 stack.push_back(tmp);
2393 else
2394 return false;
2395 }
2396 break;
2397 //----------------------------------------------------------------------
2398 // OPCODE: DW_OP_regx
2399 // OPERANDS:
2400 // ULEB128 literal operand that encodes the register.
2401 // DESCRIPTION: Push the value in register on the top of the stack.
2402 //----------------------------------------------------------------------
2403 case DW_OP_regx:
2404 {
2405 reg_num = opcodes.GetULEB128(&offset);
2406 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2407 stack.push_back(tmp);
2408 else
2409 return false;
2410 }
2411 break;
2412
2413 //----------------------------------------------------------------------
2414 // OPCODE: DW_OP_bregN
2415 // OPERANDS:
2416 // SLEB128 offset from register N
2417 // DESCRIPTION: Value is in memory at the address specified by register
2418 // N plus an offset.
2419 //----------------------------------------------------------------------
2420 case DW_OP_breg0:
2421 case DW_OP_breg1:
2422 case DW_OP_breg2:
2423 case DW_OP_breg3:
2424 case DW_OP_breg4:
2425 case DW_OP_breg5:
2426 case DW_OP_breg6:
2427 case DW_OP_breg7:
2428 case DW_OP_breg8:
2429 case DW_OP_breg9:
2430 case DW_OP_breg10:
2431 case DW_OP_breg11:
2432 case DW_OP_breg12:
2433 case DW_OP_breg13:
2434 case DW_OP_breg14:
2435 case DW_OP_breg15:
2436 case DW_OP_breg16:
2437 case DW_OP_breg17:
2438 case DW_OP_breg18:
2439 case DW_OP_breg19:
2440 case DW_OP_breg20:
2441 case DW_OP_breg21:
2442 case DW_OP_breg22:
2443 case DW_OP_breg23:
2444 case DW_OP_breg24:
2445 case DW_OP_breg25:
2446 case DW_OP_breg26:
2447 case DW_OP_breg27:
2448 case DW_OP_breg28:
2449 case DW_OP_breg29:
2450 case DW_OP_breg30:
2451 case DW_OP_breg31:
2452 {
2453 reg_num = op - DW_OP_breg0;
2454
2455 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2456 {
2457 int64_t breg_offset = opcodes.GetSLEB128(&offset);
2458 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2459 tmp.ClearContext();
2460 stack.push_back(tmp);
2461 stack.back().SetValueType (Value::eValueTypeLoadAddress);
2462 }
2463 else
2464 return false;
2465 }
2466 break;
2467 //----------------------------------------------------------------------
2468 // OPCODE: DW_OP_bregx
2469 // OPERANDS: 2
2470 // ULEB128 literal operand that encodes the register.
2471 // SLEB128 offset from register N
2472 // DESCRIPTION: Value is in memory at the address specified by register
2473 // N plus an offset.
2474 //----------------------------------------------------------------------
2475 case DW_OP_bregx:
2476 {
2477 reg_num = opcodes.GetULEB128(&offset);
2478
2479 if (ReadRegisterValueAsScalar (reg_ctx, reg_kind, reg_num, error_ptr, tmp))
2480 {
2481 int64_t breg_offset = opcodes.GetSLEB128(&offset);
2482 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2483 tmp.ClearContext();
2484 stack.push_back(tmp);
2485 stack.back().SetValueType (Value::eValueTypeLoadAddress);
2486 }
2487 else
2488 return false;
2489 }
2490 break;
2491
2492 case DW_OP_fbreg:
2493 if (exe_ctx)
2494 {
2495 if (frame)
2496 {
2497 Scalar value;
2498 if (frame->GetFrameBaseValue(value, error_ptr))
2499 {
2500 int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2501 value += fbreg_offset;
2502 stack.push_back(value);
2503 stack.back().SetValueType (Value::eValueTypeLoadAddress);
2504 }
2505 else
2506 return false;
2507 }
2508 else
2509 {
2510 if (error_ptr)
2511 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_fbreg opcode.");
2512 return false;
2513 }
2514 }
2515 else
2516 {
2517 if (error_ptr)
2518 error_ptr->SetErrorStringWithFormat ("NULL execution context for DW_OP_fbreg.\n");
2519 return false;
2520 }
2521
2522 break;
2523
2524 //----------------------------------------------------------------------
2525 // OPCODE: DW_OP_nop
2526 // OPERANDS: none
2527 // DESCRIPTION: A place holder. It has no effect on the location stack
2528 // or any of its values.
2529 //----------------------------------------------------------------------
2530 case DW_OP_nop:
2531 break;
2532
2533 //----------------------------------------------------------------------
2534 // OPCODE: DW_OP_piece
2535 // OPERANDS: 1
2536 // ULEB128: byte size of the piece
2537 // DESCRIPTION: The operand describes the size in bytes of the piece of
2538 // the object referenced by the DWARF expression whose result is at the
2539 // top of the stack. If the piece is located in a register, but does not
2540 // occupy the entire register, the placement of the piece within that
2541 // register is defined by the ABI.
2542 //
2543 // Many compilers store a single variable in sets of registers, or store
2544 // a variable partially in memory and partially in registers.
2545 // DW_OP_piece provides a way of describing how large a part of a
2546 // variable a particular DWARF expression refers to.
2547 //----------------------------------------------------------------------
2548 case DW_OP_piece:
2549 if (error_ptr)
2550 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_piece.");
2551 return false;
2552
2553 //----------------------------------------------------------------------
2554 // OPCODE: DW_OP_push_object_address
2555 // OPERANDS: none
2556 // DESCRIPTION: Pushes the address of the object currently being
2557 // evaluated as part of evaluation of a user presented expression.
2558 // This object may correspond to an independent variable described by
2559 // its own DIE or it may be a component of an array, structure, or class
2560 // whose address has been dynamically determined by an earlier step
2561 // during user expression evaluation.
2562 //----------------------------------------------------------------------
2563 case DW_OP_push_object_address:
2564 if (error_ptr)
2565 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_push_object_address.");
2566 return false;
2567
2568 //----------------------------------------------------------------------
2569 // OPCODE: DW_OP_call2
2570 // OPERANDS:
2571 // uint16_t compile unit relative offset of a DIE
2572 // DESCRIPTION: Performs subroutine calls during evaluation
2573 // of a DWARF expression. The operand is the 2-byte unsigned offset
2574 // of a debugging information entry in the current compilation unit.
2575 //
2576 // Operand interpretation is exactly like that for DW_FORM_ref2.
2577 //
2578 // This operation transfers control of DWARF expression evaluation
2579 // to the DW_AT_location attribute of the referenced DIE. If there is
2580 // no such attribute, then there is no effect. Execution of the DWARF
2581 // expression of a DW_AT_location attribute may add to and/or remove from
2582 // values on the stack. Execution returns to the point following the call
2583 // when the end of the attribute is reached. Values on the stack at the
2584 // time of the call may be used as parameters by the called expression
2585 // and values left on the stack by the called expression may be used as
2586 // return values by prior agreement between the calling and called
2587 // expressions.
2588 //----------------------------------------------------------------------
2589 case DW_OP_call2:
2590 if (error_ptr)
2591 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call2.");
2592 return false;
2593 //----------------------------------------------------------------------
2594 // OPCODE: DW_OP_call4
2595 // OPERANDS: 1
2596 // uint32_t compile unit relative offset of a DIE
2597 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2598 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset
2599 // of a debugging information entry in the current compilation unit.
2600 //
2601 // Operand interpretation DW_OP_call4 is exactly like that for
2602 // DW_FORM_ref4.
2603 //
2604 // This operation transfers control of DWARF expression evaluation
2605 // to the DW_AT_location attribute of the referenced DIE. If there is
2606 // no such attribute, then there is no effect. Execution of the DWARF
2607 // expression of a DW_AT_location attribute may add to and/or remove from
2608 // values on the stack. Execution returns to the point following the call
2609 // when the end of the attribute is reached. Values on the stack at the
2610 // time of the call may be used as parameters by the called expression
2611 // and values left on the stack by the called expression may be used as
2612 // return values by prior agreement between the calling and called
2613 // expressions.
2614 //----------------------------------------------------------------------
2615 case DW_OP_call4:
2616 if (error_ptr)
2617 error_ptr->SetErrorString ("Unimplemented opcode DW_OP_call4.");
2618 return false;
2619
2620 //----------------------------------------------------------------------
2621 // OPCODE: DW_OP_stack_value
2622 // OPERANDS: None
2623 // DESCRIPTION: Specifies that the object does not exist in memory but
2624 // rather is a constant value. The value from the top of the stack is
2625 // the value to be used. This is the actual object value and not the
2626 // location.
2627 //----------------------------------------------------------------------
2628 case DW_OP_stack_value:
2629 stack.back().SetValueType(Value::eValueTypeScalar);
2630 break;
2631
2632 //----------------------------------------------------------------------
2633 // OPCODE: DW_OP_call_frame_cfa
2634 // OPERANDS: None
2635 // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2636 // the canonical frame address consistent with the call frame information
2637 // located in .debug_frame (or in the FDEs of the eh_frame section).
2638 //----------------------------------------------------------------------
2639 case DW_OP_call_frame_cfa:
2640 if (frame)
2641 {
2642 // Note that we don't have to parse FDEs because this DWARF expression
2643 // is commonly evaluated with a valid stack frame.
2644 StackID id = frame->GetStackID();
2645 addr_t cfa = id.GetCallFrameAddress();
2646 if (cfa != LLDB_INVALID_ADDRESS)
2647 {
2648 stack.push_back(Scalar(cfa));
2649 stack.back().SetValueType (Value::eValueTypeHostAddress);
2650 }
2651 else
2652 if (error_ptr)
2653 error_ptr->SetErrorString ("Stack frame does not include a canonical frame address for DW_OP_call_frame_cfa opcode.");
2654 }
2655 else
2656 {
2657 if (error_ptr)
2658 error_ptr->SetErrorString ("Invalid stack frame in context for DW_OP_call_frame_cfa opcode.");
2659 return false;
2660 }
2661 break;
2662 default:
2663 if (log)
2664 log->Printf("Unhandled opcode %s in DWARFExpression.", DW_OP_value_to_name(op));
2665 break;
2666 }
2667 }
2668
2669 if (stack.empty())
2670 {
2671 if (error_ptr)
2672 error_ptr->SetErrorString ("Stack empty after evaluation.");
2673 return false;
2674 }
2675 else if (log && log->GetVerbose())
2676 {
2677 size_t count = stack.size();
2678 log->Printf("Stack after operation has %lu values:", count);
2679 for (size_t i=0; i<count; ++i)
2680 {
2681 StreamString new_value;
2682 new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2683 stack[i].Dump(&new_value);
2684 log->Printf(" %s", new_value.GetData());
2685 }
2686 }
2687
2688 result = stack.back();
2689 return true; // Return true on success
2690 }
2691
2692