1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a wrapper around MCSchedModel that allows the interface
11 // to benefit from information currently only available in TargetInstrInfo.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/raw_ostream.h"
18 #include "llvm/Target/TargetInstrInfo.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetSubtargetInfo.h"
21
22 using namespace llvm;
23
24 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
25 cl::desc("Use TargetSchedModel for latency lookup"));
26
27 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
28 cl::desc("Use InstrItineraryData for latency lookup"));
29
hasInstrSchedModel() const30 bool TargetSchedModel::hasInstrSchedModel() const {
31 return EnableSchedModel && SchedModel.hasInstrSchedModel();
32 }
33
hasInstrItineraries() const34 bool TargetSchedModel::hasInstrItineraries() const {
35 return EnableSchedItins && !InstrItins.isEmpty();
36 }
37
gcd(unsigned Dividend,unsigned Divisor)38 static unsigned gcd(unsigned Dividend, unsigned Divisor) {
39 // Dividend and Divisor will be naturally swapped as needed.
40 while(Divisor) {
41 unsigned Rem = Dividend % Divisor;
42 Dividend = Divisor;
43 Divisor = Rem;
44 };
45 return Dividend;
46 }
lcm(unsigned A,unsigned B)47 static unsigned lcm(unsigned A, unsigned B) {
48 unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
49 assert((LCM >= A && LCM >= B) && "LCM overflow");
50 return LCM;
51 }
52
init(const MCSchedModel & sm,const TargetSubtargetInfo * sti,const TargetInstrInfo * tii)53 void TargetSchedModel::init(const MCSchedModel &sm,
54 const TargetSubtargetInfo *sti,
55 const TargetInstrInfo *tii) {
56 SchedModel = sm;
57 STI = sti;
58 TII = tii;
59 STI->initInstrItins(InstrItins);
60
61 unsigned NumRes = SchedModel.getNumProcResourceKinds();
62 ResourceFactors.resize(NumRes);
63 ResourceLCM = SchedModel.IssueWidth;
64 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
65 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
66 if (NumUnits > 0)
67 ResourceLCM = lcm(ResourceLCM, NumUnits);
68 }
69 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
70 for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
71 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
72 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
73 }
74 }
75
getNumMicroOps(const MachineInstr * MI,const MCSchedClassDesc * SC) const76 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
77 const MCSchedClassDesc *SC) const {
78 if (hasInstrItineraries()) {
79 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
80 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI);
81 }
82 if (hasInstrSchedModel()) {
83 if (!SC)
84 SC = resolveSchedClass(MI);
85 if (SC->isValid())
86 return SC->NumMicroOps;
87 }
88 return MI->isTransient() ? 0 : 1;
89 }
90
91 // The machine model may explicitly specify an invalid latency, which
92 // effectively means infinite latency. Since users of the TargetSchedule API
93 // don't know how to handle this, we convert it to a very large latency that is
94 // easy to distinguish when debugging the DAG but won't induce overflow.
capLatency(int Cycles)95 static unsigned capLatency(int Cycles) {
96 return Cycles >= 0 ? Cycles : 1000;
97 }
98
99 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
100 /// evaluation of predicates that depend on instruction operands or flags.
101 const MCSchedClassDesc *TargetSchedModel::
resolveSchedClass(const MachineInstr * MI) const102 resolveSchedClass(const MachineInstr *MI) const {
103
104 // Get the definition's scheduling class descriptor from this machine model.
105 unsigned SchedClass = MI->getDesc().getSchedClass();
106 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
107 if (!SCDesc->isValid())
108 return SCDesc;
109
110 #ifndef NDEBUG
111 unsigned NIter = 0;
112 #endif
113 while (SCDesc->isVariant()) {
114 assert(++NIter < 6 && "Variants are nested deeper than the magic number");
115
116 SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
117 SCDesc = SchedModel.getSchedClassDesc(SchedClass);
118 }
119 return SCDesc;
120 }
121
122 /// Find the def index of this operand. This index maps to the machine model and
123 /// is independent of use operands. Def operands may be reordered with uses or
124 /// merged with uses without affecting the def index (e.g. before/after
125 /// regalloc). However, an instruction's def operands must never be reordered
126 /// with respect to each other.
findDefIdx(const MachineInstr * MI,unsigned DefOperIdx)127 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
128 unsigned DefIdx = 0;
129 for (unsigned i = 0; i != DefOperIdx; ++i) {
130 const MachineOperand &MO = MI->getOperand(i);
131 if (MO.isReg() && MO.isDef())
132 ++DefIdx;
133 }
134 return DefIdx;
135 }
136
137 /// Find the use index of this operand. This is independent of the instruction's
138 /// def operands.
139 ///
140 /// Note that uses are not determined by the operand's isUse property, which
141 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
142 /// a "use". The machine model allows an operand to be both a Def and Use.
findUseIdx(const MachineInstr * MI,unsigned UseOperIdx)143 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
144 unsigned UseIdx = 0;
145 for (unsigned i = 0; i != UseOperIdx; ++i) {
146 const MachineOperand &MO = MI->getOperand(i);
147 if (MO.isReg() && MO.readsReg())
148 ++UseIdx;
149 }
150 return UseIdx;
151 }
152
153 // Top-level API for clients that know the operand indices.
computeOperandLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * UseMI,unsigned UseOperIdx) const154 unsigned TargetSchedModel::computeOperandLatency(
155 const MachineInstr *DefMI, unsigned DefOperIdx,
156 const MachineInstr *UseMI, unsigned UseOperIdx) const {
157
158 if (!hasInstrSchedModel() && !hasInstrItineraries())
159 return TII->defaultDefLatency(SchedModel, DefMI);
160
161 if (hasInstrItineraries()) {
162 int OperLatency = 0;
163 if (UseMI) {
164 OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx,
165 UseMI, UseOperIdx);
166 }
167 else {
168 unsigned DefClass = DefMI->getDesc().getSchedClass();
169 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
170 }
171 if (OperLatency >= 0)
172 return OperLatency;
173
174 // No operand latency was found.
175 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI);
176
177 // Expected latency is the max of the stage latency and itinerary props.
178 // Rather than directly querying InstrItins stage latency, we call a TII
179 // hook to allow subtargets to specialize latency. This hook is only
180 // applicable to the InstrItins model. InstrSchedModel should model all
181 // special cases without TII hooks.
182 InstrLatency = std::max(InstrLatency,
183 TII->defaultDefLatency(SchedModel, DefMI));
184 return InstrLatency;
185 }
186 // hasInstrSchedModel()
187 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
188 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
189 if (DefIdx < SCDesc->NumWriteLatencyEntries) {
190 // Lookup the definition's write latency in SubtargetInfo.
191 const MCWriteLatencyEntry *WLEntry =
192 STI->getWriteLatencyEntry(SCDesc, DefIdx);
193 unsigned WriteID = WLEntry->WriteResourceID;
194 unsigned Latency = capLatency(WLEntry->Cycles);
195 if (!UseMI)
196 return Latency;
197
198 // Lookup the use's latency adjustment in SubtargetInfo.
199 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
200 if (UseDesc->NumReadAdvanceEntries == 0)
201 return Latency;
202 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
203 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
204 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
205 return 0;
206 return Latency - Advance;
207 }
208 // If DefIdx does not exist in the model (e.g. implicit defs), then return
209 // unit latency (defaultDefLatency may be too conservative).
210 #ifndef NDEBUG
211 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
212 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
213 && SchedModel.isComplete()) {
214 std::string Err;
215 raw_string_ostream ss(Err);
216 ss << "DefIdx " << DefIdx << " exceeds machine model writes for "
217 << *DefMI;
218 report_fatal_error(ss.str());
219 }
220 #endif
221 // FIXME: Automatically giving all implicit defs defaultDefLatency is
222 // undesirable. We should only do it for defs that are known to the MC
223 // desc like flags. Truly implicit defs should get 1 cycle latency.
224 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, DefMI);
225 }
226
computeInstrLatency(unsigned Opcode) const227 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
228 assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
229
230 unsigned SCIdx = TII->get(Opcode).getSchedClass();
231 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx);
232 unsigned Latency = 0;
233
234 if (SCDesc->isValid() && !SCDesc->isVariant()) {
235 for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
236 DefIdx != DefEnd; ++DefIdx) {
237 // Lookup the definition's write latency in SubtargetInfo.
238 const MCWriteLatencyEntry *WLEntry =
239 STI->getWriteLatencyEntry(SCDesc, DefIdx);
240 Latency = std::max(Latency, capLatency(WLEntry->Cycles));
241 }
242 return Latency;
243 }
244
245 assert(Latency && "No MI sched latency");
246 return 0;
247 }
248
249 unsigned
computeInstrLatency(const MachineInstr * MI,bool UseDefaultDefLatency) const250 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
251 bool UseDefaultDefLatency) const {
252 // For the itinerary model, fall back to the old subtarget hook.
253 // Allow subtargets to compute Bundle latencies outside the machine model.
254 if (hasInstrItineraries() || MI->isBundle() ||
255 (!hasInstrSchedModel() && !UseDefaultDefLatency))
256 return TII->getInstrLatency(&InstrItins, MI);
257
258 if (hasInstrSchedModel()) {
259 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
260 if (SCDesc->isValid()) {
261 unsigned Latency = 0;
262 for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries;
263 DefIdx != DefEnd; ++DefIdx) {
264 // Lookup the definition's write latency in SubtargetInfo.
265 const MCWriteLatencyEntry *WLEntry =
266 STI->getWriteLatencyEntry(SCDesc, DefIdx);
267 Latency = std::max(Latency, capLatency(WLEntry->Cycles));
268 }
269 return Latency;
270 }
271 }
272 return TII->defaultDefLatency(SchedModel, MI);
273 }
274
275 unsigned TargetSchedModel::
computeOutputLatency(const MachineInstr * DefMI,unsigned DefOperIdx,const MachineInstr * DepMI) const276 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
277 const MachineInstr *DepMI) const {
278 if (SchedModel.MicroOpBufferSize <= 1)
279 return 1;
280
281 // MicroOpBufferSize > 1 indicates an out-of-order processor that can dispatch
282 // WAW dependencies in the same cycle.
283
284 // Treat predication as a data dependency for out-of-order cpus. In-order
285 // cpus do not need to treat predicated writes specially.
286 //
287 // TODO: The following hack exists because predication passes do not
288 // correctly append imp-use operands, and readsReg() strangely returns false
289 // for predicated defs.
290 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg();
291 const MachineFunction &MF = *DefMI->getParent()->getParent();
292 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
293 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI))
294 return computeInstrLatency(DefMI);
295
296 // If we have a per operand scheduling model, check if this def is writing
297 // an unbuffered resource. If so, it treated like an in-order cpu.
298 if (hasInstrSchedModel()) {
299 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
300 if (SCDesc->isValid()) {
301 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
302 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
303 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
304 return 1;
305 }
306 }
307 }
308 return 0;
309 }
310