1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * The core AEC algorithm, SSE2 version of speed-critical functions.
13  */
14 
15 #include "typedefs.h"
16 
17 #if defined(WEBRTC_USE_SSE2)
18 #include <emmintrin.h>
19 #include <math.h>
20 
21 #include "aec_core.h"
22 #include "aec_rdft.h"
23 
MulRe(float aRe,float aIm,float bRe,float bIm)24 __inline static float MulRe(float aRe, float aIm, float bRe, float bIm)
25 {
26   return aRe * bRe - aIm * bIm;
27 }
28 
MulIm(float aRe,float aIm,float bRe,float bIm)29 __inline static float MulIm(float aRe, float aIm, float bRe, float bIm)
30 {
31   return aRe * bIm + aIm * bRe;
32 }
33 
FilterFarSSE2(aec_t * aec,float yf[2][PART_LEN1])34 static void FilterFarSSE2(aec_t *aec, float yf[2][PART_LEN1])
35 {
36   int i;
37   for (i = 0; i < NR_PART; i++) {
38     int j;
39     int xPos = (i + aec->xfBufBlockPos) * PART_LEN1;
40     int pos = i * PART_LEN1;
41     // Check for wrap
42     if (i + aec->xfBufBlockPos >= NR_PART) {
43       xPos -= NR_PART*(PART_LEN1);
44     }
45 
46     // vectorized code (four at once)
47     for (j = 0; j + 3 < PART_LEN1; j += 4) {
48       const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
49       const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
50       const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
51       const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
52       const __m128 yf_re = _mm_loadu_ps(&yf[0][j]);
53       const __m128 yf_im = _mm_loadu_ps(&yf[1][j]);
54       const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re);
55       const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im);
56       const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im);
57       const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re);
58       const __m128 e = _mm_sub_ps(a, b);
59       const __m128 f = _mm_add_ps(c, d);
60       const __m128 g = _mm_add_ps(yf_re, e);
61       const __m128 h = _mm_add_ps(yf_im, f);
62       _mm_storeu_ps(&yf[0][j], g);
63       _mm_storeu_ps(&yf[1][j], h);
64     }
65     // scalar code for the remaining items.
66     for (; j < PART_LEN1; j++) {
67       yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
68                         aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
69       yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j],
70                         aec->wfBuf[0][ pos + j], aec->wfBuf[1][ pos + j]);
71     }
72   }
73 }
74 
ScaleErrorSignalSSE2(aec_t * aec,float ef[2][PART_LEN1])75 static void ScaleErrorSignalSSE2(aec_t *aec, float ef[2][PART_LEN1])
76 {
77   const __m128 k1e_10f = _mm_set1_ps(1e-10f);
78   const __m128 kThresh = _mm_set1_ps(aec->errThresh);
79   const __m128 kMu = _mm_set1_ps(aec->mu);
80 
81   int i;
82   // vectorized code (four at once)
83   for (i = 0; i + 3 < PART_LEN1; i += 4) {
84     const __m128 xPow = _mm_loadu_ps(&aec->xPow[i]);
85     const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]);
86     const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]);
87 
88     const __m128 xPowPlus = _mm_add_ps(xPow, k1e_10f);
89     __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus);
90     __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus);
91     const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re);
92     const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im);
93     const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2);
94     const __m128 absEf = _mm_sqrt_ps(ef_sum2);
95     const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh);
96     __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f);
97     const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus);
98     __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv);
99     __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv);
100     ef_re_if = _mm_and_ps(bigger, ef_re_if);
101     ef_im_if = _mm_and_ps(bigger, ef_im_if);
102     ef_re = _mm_andnot_ps(bigger, ef_re);
103     ef_im = _mm_andnot_ps(bigger, ef_im);
104     ef_re = _mm_or_ps(ef_re, ef_re_if);
105     ef_im = _mm_or_ps(ef_im, ef_im_if);
106     ef_re = _mm_mul_ps(ef_re, kMu);
107     ef_im = _mm_mul_ps(ef_im, kMu);
108 
109     _mm_storeu_ps(&ef[0][i], ef_re);
110     _mm_storeu_ps(&ef[1][i], ef_im);
111   }
112   // scalar code for the remaining items.
113   for (; i < (PART_LEN1); i++) {
114     float absEf;
115     ef[0][i] /= (aec->xPow[i] + 1e-10f);
116     ef[1][i] /= (aec->xPow[i] + 1e-10f);
117     absEf = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]);
118 
119     if (absEf > aec->errThresh) {
120       absEf = aec->errThresh / (absEf + 1e-10f);
121       ef[0][i] *= absEf;
122       ef[1][i] *= absEf;
123     }
124 
125     // Stepsize factor
126     ef[0][i] *= aec->mu;
127     ef[1][i] *= aec->mu;
128   }
129 }
130 
FilterAdaptationSSE2(aec_t * aec,float * fft,float ef[2][PART_LEN1])131 static void FilterAdaptationSSE2(aec_t *aec, float *fft, float ef[2][PART_LEN1]) {
132   int i, j;
133   for (i = 0; i < NR_PART; i++) {
134     int xPos = (i + aec->xfBufBlockPos)*(PART_LEN1);
135     int pos = i * PART_LEN1;
136     // Check for wrap
137     if (i + aec->xfBufBlockPos >= NR_PART) {
138       xPos -= NR_PART * PART_LEN1;
139     }
140 
141     // Process the whole array...
142     for (j = 0; j < PART_LEN; j+= 4) {
143       // Load xfBuf and ef.
144       const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]);
145       const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]);
146       const __m128 ef_re = _mm_loadu_ps(&ef[0][j]);
147       const __m128 ef_im = _mm_loadu_ps(&ef[1][j]);
148       // Calculate the product of conjugate(xfBuf) by ef.
149       //   re(conjugate(a) * b) = aRe * bRe + aIm * bIm
150       //   im(conjugate(a) * b)=  aRe * bIm - aIm * bRe
151       const __m128 a = _mm_mul_ps(xfBuf_re, ef_re);
152       const __m128 b = _mm_mul_ps(xfBuf_im, ef_im);
153       const __m128 c = _mm_mul_ps(xfBuf_re, ef_im);
154       const __m128 d = _mm_mul_ps(xfBuf_im, ef_re);
155       const __m128 e = _mm_add_ps(a, b);
156       const __m128 f = _mm_sub_ps(c, d);
157       // Interleave real and imaginary parts.
158       const __m128 g = _mm_unpacklo_ps(e, f);
159       const __m128 h = _mm_unpackhi_ps(e, f);
160       // Store
161       _mm_storeu_ps(&fft[2*j + 0], g);
162       _mm_storeu_ps(&fft[2*j + 4], h);
163     }
164     // ... and fixup the first imaginary entry.
165     fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN],
166                    -aec->xfBuf[1][xPos + PART_LEN],
167                    ef[0][PART_LEN], ef[1][PART_LEN]);
168 
169     aec_rdft_inverse_128(fft);
170     memset(fft + PART_LEN, 0, sizeof(float)*PART_LEN);
171 
172     // fft scaling
173     {
174       float scale = 2.0f / PART_LEN2;
175       const __m128 scale_ps = _mm_load_ps1(&scale);
176       for (j = 0; j < PART_LEN; j+=4) {
177         const __m128 fft_ps = _mm_loadu_ps(&fft[j]);
178         const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps);
179         _mm_storeu_ps(&fft[j], fft_scale);
180       }
181     }
182     aec_rdft_forward_128(fft);
183 
184     {
185       float wt1 = aec->wfBuf[1][pos];
186       aec->wfBuf[0][pos + PART_LEN] += fft[1];
187       for (j = 0; j < PART_LEN; j+= 4) {
188         __m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]);
189         __m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]);
190         const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]);
191         const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]);
192         const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2 ,0));
193         const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3 ,1));
194         wtBuf_re = _mm_add_ps(wtBuf_re, fft_re);
195         wtBuf_im = _mm_add_ps(wtBuf_im, fft_im);
196         _mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re);
197         _mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im);
198       }
199       aec->wfBuf[1][pos] = wt1;
200     }
201   }
202 }
203 
mm_pow_ps(__m128 a,__m128 b)204 static __m128 mm_pow_ps(__m128 a, __m128 b)
205 {
206   // a^b = exp2(b * log2(a))
207   //   exp2(x) and log2(x) are calculated using polynomial approximations.
208   __m128 log2_a, b_log2_a, a_exp_b;
209 
210   // Calculate log2(x), x = a.
211   {
212     // To calculate log2(x), we decompose x like this:
213     //   x = y * 2^n
214     //     n is an integer
215     //     y is in the [1.0, 2.0) range
216     //
217     //   log2(x) = log2(y) + n
218     //     n       can be evaluated by playing with float representation.
219     //     log2(y) in a small range can be approximated, this code uses an order
220     //             five polynomial approximation. The coefficients have been
221     //             estimated with the Remez algorithm and the resulting
222     //             polynomial has a maximum relative error of 0.00086%.
223 
224     // Compute n.
225     //    This is done by masking the exponent, shifting it into the top bit of
226     //    the mantissa, putting eight into the biased exponent (to shift/
227     //    compensate the fact that the exponent has been shifted in the top/
228     //    fractional part and finally getting rid of the implicit leading one
229     //    from the mantissa by substracting it out.
230     static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END =
231         {0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000};
232     static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END =
233         {0x43800000, 0x43800000, 0x43800000, 0x43800000};
234     static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END =
235         {0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000};
236     static const int shift_exponent_into_top_mantissa = 8;
237     const __m128 two_n = _mm_and_ps(a, *((__m128 *)float_exponent_mask));
238     const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32(_mm_castps_si128(two_n),
239         shift_exponent_into_top_mantissa));
240     const __m128 n_0 = _mm_or_ps(n_1, *((__m128 *)eight_biased_exponent));
241     const __m128 n   = _mm_sub_ps(n_0,  *((__m128 *)implicit_leading_one));
242 
243     // Compute y.
244     static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END =
245         {0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF};
246     static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END =
247         {0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000};
248     const __m128 mantissa = _mm_and_ps(a, *((__m128 *)mantissa_mask));
249     const __m128 y        = _mm_or_ps(
250         mantissa,  *((__m128 *)zero_biased_exponent_is_one));
251 
252     // Approximate log2(y) ~= (y - 1) * pol5(y).
253     //    pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0
254     static const ALIGN16_BEG float ALIGN16_END C5[4] =
255         {-3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f};
256     static const ALIGN16_BEG float ALIGN16_END C4[4] =
257         {3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f};
258     static const ALIGN16_BEG float ALIGN16_END C3[4] =
259         {-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f};
260     static const ALIGN16_BEG float ALIGN16_END C2[4] =
261         {2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f};
262     static const ALIGN16_BEG float ALIGN16_END C1[4] =
263         {-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f};
264     static const ALIGN16_BEG float ALIGN16_END C0[4] =
265         {3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f};
266     const __m128 pol5_y_0 = _mm_mul_ps(y,        *((__m128 *)C5));
267     const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128 *)C4));
268     const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y);
269     const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128 *)C3));
270     const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y);
271     const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128 *)C2));
272     const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y);
273     const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128 *)C1));
274     const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y);
275     const __m128 pol5_y   = _mm_add_ps(pol5_y_8, *((__m128 *)C0));
276     const __m128 y_minus_one = _mm_sub_ps(
277         y, *((__m128 *)zero_biased_exponent_is_one));
278     const __m128 log2_y = _mm_mul_ps(y_minus_one ,  pol5_y);
279 
280     // Combine parts.
281     log2_a = _mm_add_ps(n, log2_y);
282   }
283 
284   // b * log2(a)
285   b_log2_a = _mm_mul_ps(b, log2_a);
286 
287   // Calculate exp2(x), x = b * log2(a).
288   {
289     // To calculate 2^x, we decompose x like this:
290     //   x = n + y
291     //     n is an integer, the value of x - 0.5 rounded down, therefore
292     //     y is in the [0.5, 1.5) range
293     //
294     //   2^x = 2^n * 2^y
295     //     2^n can be evaluated by playing with float representation.
296     //     2^y in a small range can be approximated, this code uses an order two
297     //         polynomial approximation. The coefficients have been estimated
298     //         with the Remez algorithm and the resulting polynomial has a
299     //         maximum relative error of 0.17%.
300 
301     // To avoid over/underflow, we reduce the range of input to ]-127, 129].
302     static const ALIGN16_BEG float max_input[4] ALIGN16_END =
303         {129.f, 129.f, 129.f, 129.f};
304     static const ALIGN16_BEG float min_input[4] ALIGN16_END =
305         {-126.99999f, -126.99999f, -126.99999f, -126.99999f};
306     const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128 *)max_input));
307     const __m128 x_max = _mm_max_ps(x_min,    *((__m128 *)min_input));
308     // Compute n.
309     static const ALIGN16_BEG float half[4] ALIGN16_END =
310         {0.5f, 0.5f, 0.5f, 0.5f};
311     const __m128  x_minus_half = _mm_sub_ps(x_max, *((__m128 *)half));
312     const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half);
313     // Compute 2^n.
314     static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END =
315         {127, 127, 127, 127};
316     static const int float_exponent_shift = 23;
317     const __m128i two_n_exponent = _mm_add_epi32(
318         x_minus_half_floor, *((__m128i *)float_exponent_bias));
319     const __m128  two_n = _mm_castsi128_ps(_mm_slli_epi32(
320         two_n_exponent, float_exponent_shift));
321     // Compute y.
322     const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor));
323     // Approximate 2^y ~= C2 * y^2 + C1 * y + C0.
324     static const ALIGN16_BEG float C2[4] ALIGN16_END =
325         {3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f};
326     static const ALIGN16_BEG float C1[4] ALIGN16_END =
327         {6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f};
328     static const ALIGN16_BEG float C0[4] ALIGN16_END =
329         {1.0017247f, 1.0017247f, 1.0017247f, 1.0017247f};
330     const __m128 exp2_y_0 = _mm_mul_ps(y,        *((__m128 *)C2));
331     const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128 *)C1));
332     const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y);
333     const __m128 exp2_y   = _mm_add_ps(exp2_y_2, *((__m128 *)C0));
334 
335     // Combine parts.
336     a_exp_b = _mm_mul_ps(exp2_y, two_n);
337   }
338   return a_exp_b;
339 }
340 
341 extern const float WebRtcAec_weightCurve[65];
342 extern const float WebRtcAec_overDriveCurve[65];
343 
OverdriveAndSuppressSSE2(aec_t * aec,float hNl[PART_LEN1],const float hNlFb,float efw[2][PART_LEN1])344 static void OverdriveAndSuppressSSE2(aec_t *aec, float hNl[PART_LEN1],
345                                      const float hNlFb,
346                                      float efw[2][PART_LEN1]) {
347   int i;
348   const __m128 vec_hNlFb = _mm_set1_ps(hNlFb);
349   const __m128 vec_one = _mm_set1_ps(1.0f);
350   const __m128 vec_minus_one = _mm_set1_ps(-1.0f);
351   const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm);
352   // vectorized code (four at once)
353   for (i = 0; i + 3 < PART_LEN1; i+=4) {
354     // Weight subbands
355     __m128 vec_hNl = _mm_loadu_ps(&hNl[i]);
356     const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]);
357     const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb);
358     const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(
359         vec_weightCurve, vec_hNlFb);
360     const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve);
361     const __m128 vec_one_weightCurve_hNl = _mm_mul_ps(
362         vec_one_weightCurve, vec_hNl);
363     const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl);
364     const __m128 vec_if1 = _mm_and_ps(
365         bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl));
366     vec_hNl = _mm_or_ps(vec_if0, vec_if1);
367 
368     {
369       const __m128 vec_overDriveCurve = _mm_loadu_ps(
370           &WebRtcAec_overDriveCurve[i]);
371       const __m128 vec_overDriveSm_overDriveCurve = _mm_mul_ps(
372           vec_overDriveSm, vec_overDriveCurve);
373       vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve);
374       _mm_storeu_ps(&hNl[i], vec_hNl);
375     }
376 
377     // Suppress error signal
378     {
379       __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]);
380       __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]);
381       vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl);
382       vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl);
383 
384       // Ooura fft returns incorrect sign on imaginary component. It matters
385       // here because we are making an additive change with comfort noise.
386       vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one);
387       _mm_storeu_ps(&efw[0][i], vec_efw_re);
388       _mm_storeu_ps(&efw[1][i], vec_efw_im);
389     }
390   }
391   // scalar code for the remaining items.
392   for (; i < PART_LEN1; i++) {
393     // Weight subbands
394     if (hNl[i] > hNlFb) {
395       hNl[i] = WebRtcAec_weightCurve[i] * hNlFb +
396           (1 - WebRtcAec_weightCurve[i]) * hNl[i];
397     }
398     hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]);
399 
400     // Suppress error signal
401     efw[0][i] *= hNl[i];
402     efw[1][i] *= hNl[i];
403 
404     // Ooura fft returns incorrect sign on imaginary component. It matters
405     // here because we are making an additive change with comfort noise.
406     efw[1][i] *= -1;
407   }
408 }
409 
WebRtcAec_InitAec_SSE2(void)410 void WebRtcAec_InitAec_SSE2(void) {
411   WebRtcAec_FilterFar = FilterFarSSE2;
412   WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2;
413   WebRtcAec_FilterAdaptation = FilterAdaptationSSE2;
414   WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2;
415 }
416 
417 #endif   // WEBRTC_USE_SSE2
418