1 /*
2 * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "delay_estimator.h"
12
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
16
17 // Number of right shifts for scaling is linearly depending on number of bits in
18 // the far-end binary spectrum.
19 static const int kShiftsAtZero = 13; // Right shifts at zero binary spectrum.
20 static const int kShiftsLinearSlope = 3;
21
22 static const int32_t kProbabilityOffset = 1024; // 2 in Q9.
23 static const int32_t kProbabilityLowerLimit = 8704; // 17 in Q9.
24 static const int32_t kProbabilityMinSpread = 2816; // 5.5 in Q9.
25
26 // Counts and returns number of bits of a 32-bit word.
BitCount(uint32_t u32)27 static int BitCount(uint32_t u32) {
28 uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
29 ((u32 >> 2) & 011111111111);
30 tmp = ((tmp + (tmp >> 3)) & 030707070707);
31 tmp = (tmp + (tmp >> 6));
32 tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
33
34 return ((int) tmp);
35 }
36
37 // Compares the |binary_vector| with all rows of the |binary_matrix| and counts
38 // per row the number of times they have the same value.
39 //
40 // Inputs:
41 // - binary_vector : binary "vector" stored in a long
42 // - binary_matrix : binary "matrix" stored as a vector of long
43 // - matrix_size : size of binary "matrix"
44 //
45 // Output:
46 // - bit_counts : "Vector" stored as a long, containing for each
47 // row the number of times the matrix row and the
48 // input vector have the same value
49 //
BitCountComparison(uint32_t binary_vector,const uint32_t * binary_matrix,int matrix_size,int32_t * bit_counts)50 static void BitCountComparison(uint32_t binary_vector,
51 const uint32_t* binary_matrix,
52 int matrix_size,
53 int32_t* bit_counts) {
54 int n = 0;
55
56 // Compare |binary_vector| with all rows of the |binary_matrix|
57 for (; n < matrix_size; n++) {
58 bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]);
59 }
60 }
61
WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator * handle)62 int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* handle) {
63 assert(handle != NULL);
64
65 if (handle->mean_bit_counts != NULL) {
66 free(handle->mean_bit_counts);
67 handle->mean_bit_counts = NULL;
68 }
69 if (handle->bit_counts != NULL) {
70 free(handle->bit_counts);
71 handle->bit_counts = NULL;
72 }
73 if (handle->binary_far_history != NULL) {
74 free(handle->binary_far_history);
75 handle->binary_far_history = NULL;
76 }
77 if (handle->binary_near_history != NULL) {
78 free(handle->binary_near_history);
79 handle->binary_near_history = NULL;
80 }
81 if (handle->far_bit_counts != NULL) {
82 free(handle->far_bit_counts);
83 handle->far_bit_counts = NULL;
84 }
85
86 free(handle);
87
88 return 0;
89 }
90
WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator ** handle,int max_delay,int lookahead)91 int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator** handle,
92 int max_delay,
93 int lookahead) {
94 BinaryDelayEstimator* self = NULL;
95 int history_size = max_delay + lookahead;
96
97 if (handle == NULL) {
98 return -1;
99 }
100 if (max_delay < 0) {
101 return -1;
102 }
103 if (lookahead < 0) {
104 return -1;
105 }
106 if (history_size < 2) {
107 // Must be this large for buffer shifting.
108 return -1;
109 }
110
111 self = malloc(sizeof(BinaryDelayEstimator));
112 *handle = self;
113 if (self == NULL) {
114 return -1;
115 }
116
117 self->mean_bit_counts = NULL;
118 self->bit_counts = NULL;
119 self->binary_far_history = NULL;
120 self->far_bit_counts = NULL;
121
122 self->history_size = history_size;
123 self->near_history_size = lookahead + 1;
124
125 // Allocate memory for spectrum buffers.
126 self->mean_bit_counts = malloc(history_size * sizeof(int32_t));
127 if (self->mean_bit_counts == NULL) {
128 WebRtc_FreeBinaryDelayEstimator(self);
129 self = NULL;
130 return -1;
131 }
132 self->bit_counts = malloc(history_size * sizeof(int32_t));
133 if (self->bit_counts == NULL) {
134 WebRtc_FreeBinaryDelayEstimator(self);
135 self = NULL;
136 return -1;
137 }
138 // Allocate memory for history buffers.
139 self->binary_far_history = malloc(history_size * sizeof(uint32_t));
140 if (self->binary_far_history == NULL) {
141 WebRtc_FreeBinaryDelayEstimator(self);
142 self = NULL;
143 return -1;
144 }
145 self->binary_near_history = malloc(self->near_history_size *
146 sizeof(uint32_t));
147 if (self->binary_near_history == NULL) {
148 WebRtc_FreeBinaryDelayEstimator(self);
149 self = NULL;
150 return -1;
151 }
152 self->far_bit_counts = malloc(history_size * sizeof(int));
153 if (self->far_bit_counts == NULL) {
154 WebRtc_FreeBinaryDelayEstimator(self);
155 self = NULL;
156 return -1;
157 }
158
159 return 0;
160 }
161
WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator * handle)162 int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* handle) {
163 int i = 0;
164 assert(handle != NULL);
165
166 memset(handle->bit_counts, 0, sizeof(int32_t) * handle->history_size);
167 memset(handle->binary_far_history, 0,
168 sizeof(uint32_t) * handle->history_size);
169 memset(handle->binary_near_history, 0,
170 sizeof(uint32_t) * handle->near_history_size);
171 memset(handle->far_bit_counts, 0, sizeof(int) * handle->history_size);
172 for (i = 0; i < handle->history_size; ++i) {
173 handle->mean_bit_counts[i] = (20 << 9); // 20 in Q9.
174 }
175 handle->minimum_probability = (32 << 9); // 32 in Q9.
176 handle->last_delay_probability = (32 << 9); // 32 in Q9.
177
178 // Default return value if we're unable to estimate. -1 is used for errors.
179 handle->last_delay = -2;
180
181 return 0;
182 }
183
WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator * handle,uint32_t binary_far_spectrum,uint32_t binary_near_spectrum)184 int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* handle,
185 uint32_t binary_far_spectrum,
186 uint32_t binary_near_spectrum) {
187 int i = 0;
188 int candidate_delay = -1;
189
190 int32_t value_best_candidate = 16384; // 32 in Q9, (max |mean_bit_counts|).
191 int32_t value_worst_candidate = 0;
192
193 assert(handle != NULL);
194 // Shift binary spectrum history and insert current |binary_far_spectrum|.
195 memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
196 (handle->history_size - 1) * sizeof(uint32_t));
197 handle->binary_far_history[0] = binary_far_spectrum;
198
199 // Shift history of far-end binary spectrum bit counts and insert bit count
200 // of current |binary_far_spectrum|.
201 memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
202 (handle->history_size - 1) * sizeof(int));
203 handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
204
205 if (handle->near_history_size > 1) {
206 // If we apply lookahead, shift near-end binary spectrum history. Insert
207 // current |binary_near_spectrum| and pull out the delayed one.
208 memmove(&(handle->binary_near_history[1]),
209 &(handle->binary_near_history[0]),
210 (handle->near_history_size - 1) * sizeof(uint32_t));
211 handle->binary_near_history[0] = binary_near_spectrum;
212 binary_near_spectrum =
213 handle->binary_near_history[handle->near_history_size - 1];
214 }
215
216 // Compare with delayed spectra and store the |bit_counts| for each delay.
217 BitCountComparison(binary_near_spectrum,
218 handle->binary_far_history,
219 handle->history_size,
220 handle->bit_counts);
221
222 // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|.
223 for (i = 0; i < handle->history_size; i++) {
224 // |bit_counts| is constrained to [0, 32], meaning we can smooth with a
225 // factor up to 2^26. We use Q9.
226 int32_t bit_count = (handle->bit_counts[i] << 9); // Q9.
227
228 // Update |mean_bit_counts| only when far-end signal has something to
229 // contribute. If |far_bit_counts| is zero the far-end signal is weak and
230 // we likely have a poor echo condition, hence don't update.
231 if (handle->far_bit_counts[i] > 0) {
232 // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|.
233 int shifts = kShiftsAtZero;
234 shifts -= (kShiftsLinearSlope * handle->far_bit_counts[i]) >> 4;
235 WebRtc_MeanEstimatorFix(bit_count, shifts, &(handle->mean_bit_counts[i]));
236 }
237 }
238
239 // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate|
240 // of |mean_bit_counts|.
241 for (i = 0; i < handle->history_size; i++) {
242 if (handle->mean_bit_counts[i] < value_best_candidate) {
243 value_best_candidate = handle->mean_bit_counts[i];
244 candidate_delay = i;
245 }
246 if (handle->mean_bit_counts[i] > value_worst_candidate) {
247 value_worst_candidate = handle->mean_bit_counts[i];
248 }
249 }
250
251 // The |value_best_candidate| is a good indicator on the probability of
252 // |candidate_delay| being an accurate delay (a small |value_best_candidate|
253 // means a good binary match). In the following sections we make a decision
254 // whether to update |last_delay| or not.
255 // 1) If the difference bit counts between the best and the worst delay
256 // candidates is too small we consider the situation to be unreliable and
257 // don't update |last_delay|.
258 // 2) If the situation is reliable we update |last_delay| if the value of the
259 // best candidate delay has a value less than
260 // i) an adaptive threshold |minimum_probability|, or
261 // ii) this corresponding value |last_delay_probability|, but updated at
262 // this time instant.
263
264 // Update |minimum_probability|.
265 if ((handle->minimum_probability > kProbabilityLowerLimit) &&
266 (value_worst_candidate - value_best_candidate > kProbabilityMinSpread)) {
267 // The "hard" threshold can't be lower than 17 (in Q9).
268 // The valley in the curve also has to be distinct, i.e., the
269 // difference between |value_worst_candidate| and |value_best_candidate| has
270 // to be large enough.
271 int32_t threshold = value_best_candidate + kProbabilityOffset;
272 if (threshold < kProbabilityLowerLimit) {
273 threshold = kProbabilityLowerLimit;
274 }
275 if (handle->minimum_probability > threshold) {
276 handle->minimum_probability = threshold;
277 }
278 }
279 // Update |last_delay_probability|.
280 // We use a Markov type model, i.e., a slowly increasing level over time.
281 handle->last_delay_probability++;
282 if (value_worst_candidate > value_best_candidate + kProbabilityOffset) {
283 // Reliable delay value for usage.
284 if (value_best_candidate < handle->minimum_probability) {
285 handle->last_delay = candidate_delay;
286 }
287 if (value_best_candidate < handle->last_delay_probability) {
288 handle->last_delay = candidate_delay;
289 // Reset |last_delay_probability|.
290 handle->last_delay_probability = value_best_candidate;
291 }
292 }
293
294 return handle->last_delay;
295 }
296
WebRtc_binary_last_delay(BinaryDelayEstimator * handle)297 int WebRtc_binary_last_delay(BinaryDelayEstimator* handle) {
298 assert(handle != NULL);
299 return handle->last_delay;
300 }
301
WebRtc_history_size(BinaryDelayEstimator * handle)302 int WebRtc_history_size(BinaryDelayEstimator* handle) {
303 assert(handle != NULL);
304 return handle->history_size;
305 }
306
WebRtc_MeanEstimatorFix(int32_t new_value,int factor,int32_t * mean_value)307 void WebRtc_MeanEstimatorFix(int32_t new_value,
308 int factor,
309 int32_t* mean_value) {
310 int32_t diff = new_value - *mean_value;
311
312 // mean_new = mean_value + ((new_value - mean_value) >> factor);
313 if (diff < 0) {
314 diff = -((-diff) >> factor);
315 } else {
316 diff = (diff >> factor);
317 }
318 *mean_value += diff;
319 }
320