1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "delay_estimator.h"
12 
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
16 
17 // Number of right shifts for scaling is linearly depending on number of bits in
18 // the far-end binary spectrum.
19 static const int kShiftsAtZero = 13;  // Right shifts at zero binary spectrum.
20 static const int kShiftsLinearSlope = 3;
21 
22 static const int32_t kProbabilityOffset = 1024;  // 2 in Q9.
23 static const int32_t kProbabilityLowerLimit = 8704;  // 17 in Q9.
24 static const int32_t kProbabilityMinSpread = 2816;  // 5.5 in Q9.
25 
26 // Counts and returns number of bits of a 32-bit word.
BitCount(uint32_t u32)27 static int BitCount(uint32_t u32) {
28   uint32_t tmp = u32 - ((u32 >> 1) & 033333333333) -
29       ((u32 >> 2) & 011111111111);
30   tmp = ((tmp + (tmp >> 3)) & 030707070707);
31   tmp = (tmp + (tmp >> 6));
32   tmp = (tmp + (tmp >> 12) + (tmp >> 24)) & 077;
33 
34   return ((int) tmp);
35 }
36 
37 // Compares the |binary_vector| with all rows of the |binary_matrix| and counts
38 // per row the number of times they have the same value.
39 //
40 // Inputs:
41 //      - binary_vector     : binary "vector" stored in a long
42 //      - binary_matrix     : binary "matrix" stored as a vector of long
43 //      - matrix_size       : size of binary "matrix"
44 //
45 // Output:
46 //      - bit_counts        : "Vector" stored as a long, containing for each
47 //                            row the number of times the matrix row and the
48 //                            input vector have the same value
49 //
BitCountComparison(uint32_t binary_vector,const uint32_t * binary_matrix,int matrix_size,int32_t * bit_counts)50 static void BitCountComparison(uint32_t binary_vector,
51                                const uint32_t* binary_matrix,
52                                int matrix_size,
53                                int32_t* bit_counts) {
54   int n = 0;
55 
56   // Compare |binary_vector| with all rows of the |binary_matrix|
57   for (; n < matrix_size; n++) {
58     bit_counts[n] = (int32_t) BitCount(binary_vector ^ binary_matrix[n]);
59   }
60 }
61 
WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator * handle)62 int WebRtc_FreeBinaryDelayEstimator(BinaryDelayEstimator* handle) {
63   assert(handle != NULL);
64 
65   if (handle->mean_bit_counts != NULL) {
66     free(handle->mean_bit_counts);
67     handle->mean_bit_counts = NULL;
68   }
69   if (handle->bit_counts != NULL) {
70     free(handle->bit_counts);
71     handle->bit_counts = NULL;
72   }
73   if (handle->binary_far_history != NULL) {
74     free(handle->binary_far_history);
75     handle->binary_far_history = NULL;
76   }
77   if (handle->binary_near_history != NULL) {
78     free(handle->binary_near_history);
79     handle->binary_near_history = NULL;
80   }
81   if (handle->far_bit_counts != NULL) {
82     free(handle->far_bit_counts);
83     handle->far_bit_counts = NULL;
84   }
85 
86   free(handle);
87 
88   return 0;
89 }
90 
WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator ** handle,int max_delay,int lookahead)91 int WebRtc_CreateBinaryDelayEstimator(BinaryDelayEstimator** handle,
92                                       int max_delay,
93                                       int lookahead) {
94   BinaryDelayEstimator* self = NULL;
95   int history_size = max_delay + lookahead;
96 
97   if (handle == NULL) {
98     return -1;
99   }
100   if (max_delay < 0) {
101     return -1;
102   }
103   if (lookahead < 0) {
104     return -1;
105   }
106   if (history_size < 2) {
107     // Must be this large for buffer shifting.
108     return -1;
109   }
110 
111   self = malloc(sizeof(BinaryDelayEstimator));
112   *handle = self;
113   if (self == NULL) {
114     return -1;
115   }
116 
117   self->mean_bit_counts = NULL;
118   self->bit_counts = NULL;
119   self->binary_far_history = NULL;
120   self->far_bit_counts = NULL;
121 
122   self->history_size = history_size;
123   self->near_history_size = lookahead + 1;
124 
125   // Allocate memory for spectrum buffers.
126   self->mean_bit_counts = malloc(history_size * sizeof(int32_t));
127   if (self->mean_bit_counts == NULL) {
128     WebRtc_FreeBinaryDelayEstimator(self);
129     self = NULL;
130     return -1;
131   }
132   self->bit_counts = malloc(history_size * sizeof(int32_t));
133   if (self->bit_counts == NULL) {
134     WebRtc_FreeBinaryDelayEstimator(self);
135     self = NULL;
136     return -1;
137   }
138   // Allocate memory for history buffers.
139   self->binary_far_history = malloc(history_size * sizeof(uint32_t));
140   if (self->binary_far_history == NULL) {
141     WebRtc_FreeBinaryDelayEstimator(self);
142     self = NULL;
143     return -1;
144   }
145   self->binary_near_history = malloc(self->near_history_size *
146       sizeof(uint32_t));
147   if (self->binary_near_history == NULL) {
148     WebRtc_FreeBinaryDelayEstimator(self);
149     self = NULL;
150     return -1;
151   }
152   self->far_bit_counts = malloc(history_size * sizeof(int));
153   if (self->far_bit_counts == NULL) {
154     WebRtc_FreeBinaryDelayEstimator(self);
155     self = NULL;
156     return -1;
157   }
158 
159   return 0;
160 }
161 
WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator * handle)162 int WebRtc_InitBinaryDelayEstimator(BinaryDelayEstimator* handle) {
163   int i = 0;
164   assert(handle != NULL);
165 
166   memset(handle->bit_counts, 0, sizeof(int32_t) * handle->history_size);
167   memset(handle->binary_far_history, 0,
168          sizeof(uint32_t) * handle->history_size);
169   memset(handle->binary_near_history, 0,
170          sizeof(uint32_t) * handle->near_history_size);
171   memset(handle->far_bit_counts, 0, sizeof(int) * handle->history_size);
172   for (i = 0; i < handle->history_size; ++i) {
173     handle->mean_bit_counts[i] = (20 << 9);  // 20 in Q9.
174   }
175   handle->minimum_probability = (32 << 9);  // 32 in Q9.
176   handle->last_delay_probability = (32 << 9);  // 32 in Q9.
177 
178   // Default return value if we're unable to estimate. -1 is used for errors.
179   handle->last_delay = -2;
180 
181   return 0;
182 }
183 
WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator * handle,uint32_t binary_far_spectrum,uint32_t binary_near_spectrum)184 int WebRtc_ProcessBinarySpectrum(BinaryDelayEstimator* handle,
185                                  uint32_t binary_far_spectrum,
186                                  uint32_t binary_near_spectrum) {
187   int i = 0;
188   int candidate_delay = -1;
189 
190   int32_t value_best_candidate = 16384;  // 32 in Q9, (max |mean_bit_counts|).
191   int32_t value_worst_candidate = 0;
192 
193   assert(handle != NULL);
194   // Shift binary spectrum history and insert current |binary_far_spectrum|.
195   memmove(&(handle->binary_far_history[1]), &(handle->binary_far_history[0]),
196           (handle->history_size - 1) * sizeof(uint32_t));
197   handle->binary_far_history[0] = binary_far_spectrum;
198 
199   // Shift history of far-end binary spectrum bit counts and insert bit count
200   // of current |binary_far_spectrum|.
201   memmove(&(handle->far_bit_counts[1]), &(handle->far_bit_counts[0]),
202           (handle->history_size - 1) * sizeof(int));
203   handle->far_bit_counts[0] = BitCount(binary_far_spectrum);
204 
205   if (handle->near_history_size > 1) {
206     // If we apply lookahead, shift near-end binary spectrum history. Insert
207     // current |binary_near_spectrum| and pull out the delayed one.
208     memmove(&(handle->binary_near_history[1]),
209             &(handle->binary_near_history[0]),
210             (handle->near_history_size - 1) * sizeof(uint32_t));
211     handle->binary_near_history[0] = binary_near_spectrum;
212     binary_near_spectrum =
213         handle->binary_near_history[handle->near_history_size - 1];
214   }
215 
216   // Compare with delayed spectra and store the |bit_counts| for each delay.
217   BitCountComparison(binary_near_spectrum,
218                      handle->binary_far_history,
219                      handle->history_size,
220                      handle->bit_counts);
221 
222   // Update |mean_bit_counts|, which is the smoothed version of |bit_counts|.
223   for (i = 0; i < handle->history_size; i++) {
224     // |bit_counts| is constrained to [0, 32], meaning we can smooth with a
225     // factor up to 2^26. We use Q9.
226     int32_t bit_count = (handle->bit_counts[i] << 9);  // Q9.
227 
228     // Update |mean_bit_counts| only when far-end signal has something to
229     // contribute. If |far_bit_counts| is zero the far-end signal is weak and
230     // we likely have a poor echo condition, hence don't update.
231     if (handle->far_bit_counts[i] > 0) {
232       // Make number of right shifts piecewise linear w.r.t. |far_bit_counts|.
233       int shifts = kShiftsAtZero;
234       shifts -= (kShiftsLinearSlope * handle->far_bit_counts[i]) >> 4;
235       WebRtc_MeanEstimatorFix(bit_count, shifts, &(handle->mean_bit_counts[i]));
236     }
237   }
238 
239   // Find |candidate_delay|, |value_best_candidate| and |value_worst_candidate|
240   // of |mean_bit_counts|.
241   for (i = 0; i < handle->history_size; i++) {
242     if (handle->mean_bit_counts[i] < value_best_candidate) {
243       value_best_candidate = handle->mean_bit_counts[i];
244       candidate_delay = i;
245     }
246     if (handle->mean_bit_counts[i] > value_worst_candidate) {
247       value_worst_candidate = handle->mean_bit_counts[i];
248     }
249   }
250 
251   // The |value_best_candidate| is a good indicator on the probability of
252   // |candidate_delay| being an accurate delay (a small |value_best_candidate|
253   // means a good binary match). In the following sections we make a decision
254   // whether to update |last_delay| or not.
255   // 1) If the difference bit counts between the best and the worst delay
256   //    candidates is too small we consider the situation to be unreliable and
257   //    don't update |last_delay|.
258   // 2) If the situation is reliable we update |last_delay| if the value of the
259   //    best candidate delay has a value less than
260   //     i) an adaptive threshold |minimum_probability|, or
261   //    ii) this corresponding value |last_delay_probability|, but updated at
262   //        this time instant.
263 
264   // Update |minimum_probability|.
265   if ((handle->minimum_probability > kProbabilityLowerLimit) &&
266       (value_worst_candidate - value_best_candidate > kProbabilityMinSpread)) {
267     // The "hard" threshold can't be lower than 17 (in Q9).
268     // The valley in the curve also has to be distinct, i.e., the
269     // difference between |value_worst_candidate| and |value_best_candidate| has
270     // to be large enough.
271     int32_t threshold = value_best_candidate + kProbabilityOffset;
272     if (threshold < kProbabilityLowerLimit) {
273       threshold = kProbabilityLowerLimit;
274     }
275     if (handle->minimum_probability > threshold) {
276       handle->minimum_probability = threshold;
277     }
278   }
279   // Update |last_delay_probability|.
280   // We use a Markov type model, i.e., a slowly increasing level over time.
281   handle->last_delay_probability++;
282   if (value_worst_candidate > value_best_candidate + kProbabilityOffset) {
283     // Reliable delay value for usage.
284     if (value_best_candidate < handle->minimum_probability) {
285       handle->last_delay = candidate_delay;
286     }
287     if (value_best_candidate < handle->last_delay_probability) {
288       handle->last_delay = candidate_delay;
289       // Reset |last_delay_probability|.
290       handle->last_delay_probability = value_best_candidate;
291     }
292   }
293 
294   return handle->last_delay;
295 }
296 
WebRtc_binary_last_delay(BinaryDelayEstimator * handle)297 int WebRtc_binary_last_delay(BinaryDelayEstimator* handle) {
298   assert(handle != NULL);
299   return handle->last_delay;
300 }
301 
WebRtc_history_size(BinaryDelayEstimator * handle)302 int WebRtc_history_size(BinaryDelayEstimator* handle) {
303   assert(handle != NULL);
304   return handle->history_size;
305 }
306 
WebRtc_MeanEstimatorFix(int32_t new_value,int factor,int32_t * mean_value)307 void WebRtc_MeanEstimatorFix(int32_t new_value,
308                              int factor,
309                              int32_t* mean_value) {
310   int32_t diff = new_value - *mean_value;
311 
312   // mean_new = mean_value + ((new_value - mean_value) >> factor);
313   if (diff < 0) {
314     diff = -((-diff) >> factor);
315   } else {
316     diff = (diff >> factor);
317   }
318   *mean_value += diff;
319 }
320