1 //===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file performs vector type splitting and scalarization for LegalizeTypes.
11 // Scalarization is the act of changing a computation in an illegal one-element
12 // vector type to be a computation in its scalar element type.  For example,
13 // implementing <1 x f32> arithmetic in a scalar f32 register.  This is needed
14 // as a base case when scalarizing vector arithmetic like <4 x f32>, which
15 // eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16 // types.
17 // Splitting is the act of changing a computation in an invalid vector type to
18 // be a computation in two vectors of half the size.  For example, implementing
19 // <128 x f32> operations in terms of two <64 x f32> operations.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "LegalizeTypes.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "legalize-types"
30 
31 //===----------------------------------------------------------------------===//
32 //  Result Vector Scalarization: <1 x ty> -> ty.
33 //===----------------------------------------------------------------------===//
34 
ScalarizeVectorResult(SDNode * N,unsigned ResNo)35 void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
36   DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
37         N->dump(&DAG);
38         dbgs() << "\n");
39   SDValue R = SDValue();
40 
41   switch (N->getOpcode()) {
42   default:
43 #ifndef NDEBUG
44     dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
45     N->dump(&DAG);
46     dbgs() << "\n";
47 #endif
48     report_fatal_error("Do not know how to scalarize the result of this "
49                        "operator!\n");
50 
51   case ISD::MERGE_VALUES:      R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
52   case ISD::BITCAST:           R = ScalarizeVecRes_BITCAST(N); break;
53   case ISD::BUILD_VECTOR:      R = ScalarizeVecRes_BUILD_VECTOR(N); break;
54   case ISD::CONVERT_RNDSAT:    R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
55   case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
56   case ISD::FP_ROUND:          R = ScalarizeVecRes_FP_ROUND(N); break;
57   case ISD::FP_ROUND_INREG:    R = ScalarizeVecRes_InregOp(N); break;
58   case ISD::FPOWI:             R = ScalarizeVecRes_FPOWI(N); break;
59   case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
60   case ISD::LOAD:           R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
61   case ISD::SCALAR_TO_VECTOR:  R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
62   case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
63   case ISD::VSELECT:           R = ScalarizeVecRes_VSELECT(N); break;
64   case ISD::SELECT:            R = ScalarizeVecRes_SELECT(N); break;
65   case ISD::SELECT_CC:         R = ScalarizeVecRes_SELECT_CC(N); break;
66   case ISD::SETCC:             R = ScalarizeVecRes_SETCC(N); break;
67   case ISD::UNDEF:             R = ScalarizeVecRes_UNDEF(N); break;
68   case ISD::VECTOR_SHUFFLE:    R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
69   case ISD::ANY_EXTEND:
70   case ISD::BSWAP:
71   case ISD::CTLZ:
72   case ISD::CTLZ_ZERO_UNDEF:
73   case ISD::CTPOP:
74   case ISD::CTTZ:
75   case ISD::CTTZ_ZERO_UNDEF:
76   case ISD::FABS:
77   case ISD::FCEIL:
78   case ISD::FCOS:
79   case ISD::FEXP:
80   case ISD::FEXP2:
81   case ISD::FFLOOR:
82   case ISD::FLOG:
83   case ISD::FLOG10:
84   case ISD::FLOG2:
85   case ISD::FNEARBYINT:
86   case ISD::FNEG:
87   case ISD::FP_EXTEND:
88   case ISD::FP_TO_SINT:
89   case ISD::FP_TO_UINT:
90   case ISD::FRINT:
91   case ISD::FROUND:
92   case ISD::FSIN:
93   case ISD::FSQRT:
94   case ISD::FTRUNC:
95   case ISD::SIGN_EXTEND:
96   case ISD::SINT_TO_FP:
97   case ISD::TRUNCATE:
98   case ISD::UINT_TO_FP:
99   case ISD::ZERO_EXTEND:
100     R = ScalarizeVecRes_UnaryOp(N);
101     break;
102 
103   case ISD::ADD:
104   case ISD::AND:
105   case ISD::FADD:
106   case ISD::FCOPYSIGN:
107   case ISD::FDIV:
108   case ISD::FMUL:
109   case ISD::FMINNUM:
110   case ISD::FMAXNUM:
111 
112   case ISD::FPOW:
113   case ISD::FREM:
114   case ISD::FSUB:
115   case ISD::MUL:
116   case ISD::OR:
117   case ISD::SDIV:
118   case ISD::SREM:
119   case ISD::SUB:
120   case ISD::UDIV:
121   case ISD::UREM:
122   case ISD::XOR:
123   case ISD::SHL:
124   case ISD::SRA:
125   case ISD::SRL:
126     R = ScalarizeVecRes_BinOp(N);
127     break;
128   case ISD::FMA:
129     R = ScalarizeVecRes_TernaryOp(N);
130     break;
131   }
132 
133   // If R is null, the sub-method took care of registering the result.
134   if (R.getNode())
135     SetScalarizedVector(SDValue(N, ResNo), R);
136 }
137 
ScalarizeVecRes_BinOp(SDNode * N)138 SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
139   SDValue LHS = GetScalarizedVector(N->getOperand(0));
140   SDValue RHS = GetScalarizedVector(N->getOperand(1));
141   return DAG.getNode(N->getOpcode(), SDLoc(N),
142                      LHS.getValueType(), LHS, RHS);
143 }
144 
ScalarizeVecRes_TernaryOp(SDNode * N)145 SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
146   SDValue Op0 = GetScalarizedVector(N->getOperand(0));
147   SDValue Op1 = GetScalarizedVector(N->getOperand(1));
148   SDValue Op2 = GetScalarizedVector(N->getOperand(2));
149   return DAG.getNode(N->getOpcode(), SDLoc(N),
150                      Op0.getValueType(), Op0, Op1, Op2);
151 }
152 
ScalarizeVecRes_MERGE_VALUES(SDNode * N,unsigned ResNo)153 SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
154                                                        unsigned ResNo) {
155   SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
156   return GetScalarizedVector(Op);
157 }
158 
ScalarizeVecRes_BITCAST(SDNode * N)159 SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
160   EVT NewVT = N->getValueType(0).getVectorElementType();
161   return DAG.getNode(ISD::BITCAST, SDLoc(N),
162                      NewVT, N->getOperand(0));
163 }
164 
ScalarizeVecRes_BUILD_VECTOR(SDNode * N)165 SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
166   EVT EltVT = N->getValueType(0).getVectorElementType();
167   SDValue InOp = N->getOperand(0);
168   // The BUILD_VECTOR operands may be of wider element types and
169   // we may need to truncate them back to the requested return type.
170   if (EltVT.isInteger())
171     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
172   return InOp;
173 }
174 
ScalarizeVecRes_CONVERT_RNDSAT(SDNode * N)175 SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
176   EVT NewVT = N->getValueType(0).getVectorElementType();
177   SDValue Op0 = GetScalarizedVector(N->getOperand(0));
178   return DAG.getConvertRndSat(NewVT, SDLoc(N),
179                               Op0, DAG.getValueType(NewVT),
180                               DAG.getValueType(Op0.getValueType()),
181                               N->getOperand(3),
182                               N->getOperand(4),
183                               cast<CvtRndSatSDNode>(N)->getCvtCode());
184 }
185 
ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode * N)186 SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
187   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
188                      N->getValueType(0).getVectorElementType(),
189                      N->getOperand(0), N->getOperand(1));
190 }
191 
ScalarizeVecRes_FP_ROUND(SDNode * N)192 SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
193   EVT NewVT = N->getValueType(0).getVectorElementType();
194   SDValue Op = GetScalarizedVector(N->getOperand(0));
195   return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
196                      NewVT, Op, N->getOperand(1));
197 }
198 
ScalarizeVecRes_FPOWI(SDNode * N)199 SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
200   SDValue Op = GetScalarizedVector(N->getOperand(0));
201   return DAG.getNode(ISD::FPOWI, SDLoc(N),
202                      Op.getValueType(), Op, N->getOperand(1));
203 }
204 
ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode * N)205 SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
206   // The value to insert may have a wider type than the vector element type,
207   // so be sure to truncate it to the element type if necessary.
208   SDValue Op = N->getOperand(1);
209   EVT EltVT = N->getValueType(0).getVectorElementType();
210   if (Op.getValueType() != EltVT)
211     // FIXME: Can this happen for floating point types?
212     Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
213   return Op;
214 }
215 
ScalarizeVecRes_LOAD(LoadSDNode * N)216 SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
217   assert(N->isUnindexed() && "Indexed vector load?");
218 
219   SDValue Result = DAG.getLoad(ISD::UNINDEXED,
220                                N->getExtensionType(),
221                                N->getValueType(0).getVectorElementType(),
222                                SDLoc(N),
223                                N->getChain(), N->getBasePtr(),
224                                DAG.getUNDEF(N->getBasePtr().getValueType()),
225                                N->getPointerInfo(),
226                                N->getMemoryVT().getVectorElementType(),
227                                N->isVolatile(), N->isNonTemporal(),
228                                N->isInvariant(), N->getOriginalAlignment(),
229                                N->getAAInfo());
230 
231   // Legalized the chain result - switch anything that used the old chain to
232   // use the new one.
233   ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
234   return Result;
235 }
236 
ScalarizeVecRes_UnaryOp(SDNode * N)237 SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
238   // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
239   EVT DestVT = N->getValueType(0).getVectorElementType();
240   SDValue Op = N->getOperand(0);
241   EVT OpVT = Op.getValueType();
242   SDLoc DL(N);
243   // The result needs scalarizing, but it's not a given that the source does.
244   // This is a workaround for targets where it's impossible to scalarize the
245   // result of a conversion, because the source type is legal.
246   // For instance, this happens on AArch64: v1i1 is illegal but v1i{8,16,32}
247   // are widened to v8i8, v4i16, and v2i32, which is legal, because v1i64 is
248   // legal and was not scalarized.
249   // See the similar logic in ScalarizeVecRes_VSETCC
250   if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
251     Op = GetScalarizedVector(Op);
252   } else {
253     EVT VT = OpVT.getVectorElementType();
254     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op,
255                       DAG.getConstant(0, TLI.getVectorIdxTy()));
256   }
257   return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
258 }
259 
ScalarizeVecRes_InregOp(SDNode * N)260 SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
261   EVT EltVT = N->getValueType(0).getVectorElementType();
262   EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
263   SDValue LHS = GetScalarizedVector(N->getOperand(0));
264   return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
265                      LHS, DAG.getValueType(ExtVT));
266 }
267 
ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode * N)268 SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
269   // If the operand is wider than the vector element type then it is implicitly
270   // truncated.  Make that explicit here.
271   EVT EltVT = N->getValueType(0).getVectorElementType();
272   SDValue InOp = N->getOperand(0);
273   if (InOp.getValueType() != EltVT)
274     return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
275   return InOp;
276 }
277 
ScalarizeVecRes_VSELECT(SDNode * N)278 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
279   SDValue Cond = GetScalarizedVector(N->getOperand(0));
280   SDValue LHS = GetScalarizedVector(N->getOperand(1));
281   TargetLowering::BooleanContent ScalarBool =
282       TLI.getBooleanContents(false, false);
283   TargetLowering::BooleanContent VecBool = TLI.getBooleanContents(true, false);
284 
285   // If integer and float booleans have different contents then we can't
286   // reliably optimize in all cases. There is a full explanation for this in
287   // DAGCombiner::visitSELECT() where the same issue affects folding
288   // (select C, 0, 1) to (xor C, 1).
289   if (TLI.getBooleanContents(false, false) !=
290       TLI.getBooleanContents(false, true)) {
291     // At least try the common case where the boolean is generated by a
292     // comparison.
293     if (Cond->getOpcode() == ISD::SETCC) {
294       EVT OpVT = Cond->getOperand(0)->getValueType(0);
295       ScalarBool = TLI.getBooleanContents(OpVT.getScalarType());
296       VecBool = TLI.getBooleanContents(OpVT);
297     } else
298       ScalarBool = TargetLowering::UndefinedBooleanContent;
299   }
300 
301   if (ScalarBool != VecBool) {
302     EVT CondVT = Cond.getValueType();
303     switch (ScalarBool) {
304       case TargetLowering::UndefinedBooleanContent:
305         break;
306       case TargetLowering::ZeroOrOneBooleanContent:
307         assert(VecBool == TargetLowering::UndefinedBooleanContent ||
308                VecBool == TargetLowering::ZeroOrNegativeOneBooleanContent);
309         // Vector read from all ones, scalar expects a single 1 so mask.
310         Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
311                            Cond, DAG.getConstant(1, CondVT));
312         break;
313       case TargetLowering::ZeroOrNegativeOneBooleanContent:
314         assert(VecBool == TargetLowering::UndefinedBooleanContent ||
315                VecBool == TargetLowering::ZeroOrOneBooleanContent);
316         // Vector reads from a one, scalar from all ones so sign extend.
317         Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
318                            Cond, DAG.getValueType(MVT::i1));
319         break;
320     }
321   }
322 
323   return DAG.getSelect(SDLoc(N),
324                        LHS.getValueType(), Cond, LHS,
325                        GetScalarizedVector(N->getOperand(2)));
326 }
327 
ScalarizeVecRes_SELECT(SDNode * N)328 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
329   SDValue LHS = GetScalarizedVector(N->getOperand(1));
330   return DAG.getSelect(SDLoc(N),
331                        LHS.getValueType(), N->getOperand(0), LHS,
332                        GetScalarizedVector(N->getOperand(2)));
333 }
334 
ScalarizeVecRes_SELECT_CC(SDNode * N)335 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
336   SDValue LHS = GetScalarizedVector(N->getOperand(2));
337   return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
338                      N->getOperand(0), N->getOperand(1),
339                      LHS, GetScalarizedVector(N->getOperand(3)),
340                      N->getOperand(4));
341 }
342 
ScalarizeVecRes_SETCC(SDNode * N)343 SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
344   assert(N->getValueType(0).isVector() ==
345          N->getOperand(0).getValueType().isVector() &&
346          "Scalar/Vector type mismatch");
347 
348   if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
349 
350   SDValue LHS = GetScalarizedVector(N->getOperand(0));
351   SDValue RHS = GetScalarizedVector(N->getOperand(1));
352   SDLoc DL(N);
353 
354   // Turn it into a scalar SETCC.
355   return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
356 }
357 
ScalarizeVecRes_UNDEF(SDNode * N)358 SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
359   return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
360 }
361 
ScalarizeVecRes_VECTOR_SHUFFLE(SDNode * N)362 SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
363   // Figure out if the scalar is the LHS or RHS and return it.
364   SDValue Arg = N->getOperand(2).getOperand(0);
365   if (Arg.getOpcode() == ISD::UNDEF)
366     return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
367   unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
368   return GetScalarizedVector(N->getOperand(Op));
369 }
370 
ScalarizeVecRes_VSETCC(SDNode * N)371 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
372   assert(N->getValueType(0).isVector() &&
373          N->getOperand(0).getValueType().isVector() &&
374          "Operand types must be vectors");
375   SDValue LHS = N->getOperand(0);
376   SDValue RHS = N->getOperand(1);
377   EVT OpVT = LHS.getValueType();
378   EVT NVT = N->getValueType(0).getVectorElementType();
379   SDLoc DL(N);
380 
381   // The result needs scalarizing, but it's not a given that the source does.
382   if (getTypeAction(OpVT) == TargetLowering::TypeScalarizeVector) {
383     LHS = GetScalarizedVector(LHS);
384     RHS = GetScalarizedVector(RHS);
385   } else {
386     EVT VT = OpVT.getVectorElementType();
387     LHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, LHS,
388                       DAG.getConstant(0, TLI.getVectorIdxTy()));
389     RHS = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, RHS,
390                       DAG.getConstant(0, TLI.getVectorIdxTy()));
391   }
392 
393   // Turn it into a scalar SETCC.
394   SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
395                             N->getOperand(2));
396   // Vectors may have a different boolean contents to scalars.  Promote the
397   // value appropriately.
398   ISD::NodeType ExtendCode =
399       TargetLowering::getExtendForContent(TLI.getBooleanContents(OpVT));
400   return DAG.getNode(ExtendCode, DL, NVT, Res);
401 }
402 
403 
404 //===----------------------------------------------------------------------===//
405 //  Operand Vector Scalarization <1 x ty> -> ty.
406 //===----------------------------------------------------------------------===//
407 
ScalarizeVectorOperand(SDNode * N,unsigned OpNo)408 bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
409   DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
410         N->dump(&DAG);
411         dbgs() << "\n");
412   SDValue Res = SDValue();
413 
414   if (!Res.getNode()) {
415     switch (N->getOpcode()) {
416     default:
417 #ifndef NDEBUG
418       dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
419       N->dump(&DAG);
420       dbgs() << "\n";
421 #endif
422       llvm_unreachable("Do not know how to scalarize this operator's operand!");
423     case ISD::BITCAST:
424       Res = ScalarizeVecOp_BITCAST(N);
425       break;
426     case ISD::ANY_EXTEND:
427     case ISD::ZERO_EXTEND:
428     case ISD::SIGN_EXTEND:
429     case ISD::TRUNCATE:
430     case ISD::FP_TO_SINT:
431     case ISD::FP_TO_UINT:
432     case ISD::SINT_TO_FP:
433     case ISD::UINT_TO_FP:
434       Res = ScalarizeVecOp_UnaryOp(N);
435       break;
436     case ISD::CONCAT_VECTORS:
437       Res = ScalarizeVecOp_CONCAT_VECTORS(N);
438       break;
439     case ISD::EXTRACT_VECTOR_ELT:
440       Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
441       break;
442     case ISD::VSELECT:
443       Res = ScalarizeVecOp_VSELECT(N);
444       break;
445     case ISD::STORE:
446       Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
447       break;
448     case ISD::FP_ROUND:
449       Res = ScalarizeVecOp_FP_ROUND(N, OpNo);
450       break;
451     }
452   }
453 
454   // If the result is null, the sub-method took care of registering results etc.
455   if (!Res.getNode()) return false;
456 
457   // If the result is N, the sub-method updated N in place.  Tell the legalizer
458   // core about this.
459   if (Res.getNode() == N)
460     return true;
461 
462   assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
463          "Invalid operand expansion");
464 
465   ReplaceValueWith(SDValue(N, 0), Res);
466   return false;
467 }
468 
469 /// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
470 /// to be scalarized, it must be <1 x ty>.  Convert the element instead.
ScalarizeVecOp_BITCAST(SDNode * N)471 SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
472   SDValue Elt = GetScalarizedVector(N->getOperand(0));
473   return DAG.getNode(ISD::BITCAST, SDLoc(N),
474                      N->getValueType(0), Elt);
475 }
476 
477 /// ScalarizeVecOp_UnaryOp - If the input is a vector that needs to be
478 /// scalarized, it must be <1 x ty>.  Do the operation on the element instead.
ScalarizeVecOp_UnaryOp(SDNode * N)479 SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
480   assert(N->getValueType(0).getVectorNumElements() == 1 &&
481          "Unexpected vector type!");
482   SDValue Elt = GetScalarizedVector(N->getOperand(0));
483   SDValue Op = DAG.getNode(N->getOpcode(), SDLoc(N),
484                            N->getValueType(0).getScalarType(), Elt);
485   // Revectorize the result so the types line up with what the uses of this
486   // expression expect.
487   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Op);
488 }
489 
490 /// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
491 /// use a BUILD_VECTOR instead.
ScalarizeVecOp_CONCAT_VECTORS(SDNode * N)492 SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
493   SmallVector<SDValue, 8> Ops(N->getNumOperands());
494   for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
495     Ops[i] = GetScalarizedVector(N->getOperand(i));
496   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0), Ops);
497 }
498 
499 /// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
500 /// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
501 /// index.
ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode * N)502 SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
503   SDValue Res = GetScalarizedVector(N->getOperand(0));
504   if (Res.getValueType() != N->getValueType(0))
505     Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
506                       Res);
507   return Res;
508 }
509 
510 
511 /// ScalarizeVecOp_VSELECT - If the input condition is a vector that needs to be
512 /// scalarized, it must be <1 x i1>, so just convert to a normal ISD::SELECT
513 /// (still with vector output type since that was acceptable if we got here).
ScalarizeVecOp_VSELECT(SDNode * N)514 SDValue DAGTypeLegalizer::ScalarizeVecOp_VSELECT(SDNode *N) {
515   SDValue ScalarCond = GetScalarizedVector(N->getOperand(0));
516   EVT VT = N->getValueType(0);
517 
518   return DAG.getNode(ISD::SELECT, SDLoc(N), VT, ScalarCond, N->getOperand(1),
519                      N->getOperand(2));
520 }
521 
522 /// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
523 /// scalarized, it must be <1 x ty>.  Just store the element.
ScalarizeVecOp_STORE(StoreSDNode * N,unsigned OpNo)524 SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
525   assert(N->isUnindexed() && "Indexed store of one-element vector?");
526   assert(OpNo == 1 && "Do not know how to scalarize this operand!");
527   SDLoc dl(N);
528 
529   if (N->isTruncatingStore())
530     return DAG.getTruncStore(N->getChain(), dl,
531                              GetScalarizedVector(N->getOperand(1)),
532                              N->getBasePtr(), N->getPointerInfo(),
533                              N->getMemoryVT().getVectorElementType(),
534                              N->isVolatile(), N->isNonTemporal(),
535                              N->getAlignment(), N->getAAInfo());
536 
537   return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
538                       N->getBasePtr(), N->getPointerInfo(),
539                       N->isVolatile(), N->isNonTemporal(),
540                       N->getOriginalAlignment(), N->getAAInfo());
541 }
542 
543 /// ScalarizeVecOp_FP_ROUND - If the value to round is a vector that needs
544 /// to be scalarized, it must be <1 x ty>.  Convert the element instead.
ScalarizeVecOp_FP_ROUND(SDNode * N,unsigned OpNo)545 SDValue DAGTypeLegalizer::ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo) {
546   SDValue Elt = GetScalarizedVector(N->getOperand(0));
547   SDValue Res = DAG.getNode(ISD::FP_ROUND, SDLoc(N),
548                             N->getValueType(0).getVectorElementType(), Elt,
549                             N->getOperand(1));
550   return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), N->getValueType(0), Res);
551 }
552 
553 //===----------------------------------------------------------------------===//
554 //  Result Vector Splitting
555 //===----------------------------------------------------------------------===//
556 
557 /// SplitVectorResult - This method is called when the specified result of the
558 /// specified node is found to need vector splitting.  At this point, the node
559 /// may also have invalid operands or may have other results that need
560 /// legalization, we just know that (at least) one result needs vector
561 /// splitting.
SplitVectorResult(SDNode * N,unsigned ResNo)562 void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
563   DEBUG(dbgs() << "Split node result: ";
564         N->dump(&DAG);
565         dbgs() << "\n");
566   SDValue Lo, Hi;
567 
568   // See if the target wants to custom expand this node.
569   if (CustomLowerNode(N, N->getValueType(ResNo), true))
570     return;
571 
572   switch (N->getOpcode()) {
573   default:
574 #ifndef NDEBUG
575     dbgs() << "SplitVectorResult #" << ResNo << ": ";
576     N->dump(&DAG);
577     dbgs() << "\n";
578 #endif
579     report_fatal_error("Do not know how to split the result of this "
580                        "operator!\n");
581 
582   case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
583   case ISD::VSELECT:
584   case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
585   case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
586   case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
587   case ISD::BITCAST:           SplitVecRes_BITCAST(N, Lo, Hi); break;
588   case ISD::BUILD_VECTOR:      SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
589   case ISD::CONCAT_VECTORS:    SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
590   case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
591   case ISD::INSERT_SUBVECTOR:  SplitVecRes_INSERT_SUBVECTOR(N, Lo, Hi); break;
592   case ISD::FP_ROUND_INREG:    SplitVecRes_InregOp(N, Lo, Hi); break;
593   case ISD::FPOWI:             SplitVecRes_FPOWI(N, Lo, Hi); break;
594   case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
595   case ISD::SCALAR_TO_VECTOR:  SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
596   case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
597   case ISD::LOAD:
598     SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
599     break;
600   case ISD::MLOAD:
601     SplitVecRes_MLOAD(cast<MaskedLoadSDNode>(N), Lo, Hi);
602     break;
603   case ISD::SETCC:
604     SplitVecRes_SETCC(N, Lo, Hi);
605     break;
606   case ISD::VECTOR_SHUFFLE:
607     SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
608     break;
609 
610   case ISD::BSWAP:
611   case ISD::CONVERT_RNDSAT:
612   case ISD::CTLZ:
613   case ISD::CTTZ:
614   case ISD::CTLZ_ZERO_UNDEF:
615   case ISD::CTTZ_ZERO_UNDEF:
616   case ISD::CTPOP:
617   case ISD::FABS:
618   case ISD::FCEIL:
619   case ISD::FCOS:
620   case ISD::FEXP:
621   case ISD::FEXP2:
622   case ISD::FFLOOR:
623   case ISD::FLOG:
624   case ISD::FLOG10:
625   case ISD::FLOG2:
626   case ISD::FNEARBYINT:
627   case ISD::FNEG:
628   case ISD::FP_EXTEND:
629   case ISD::FP_ROUND:
630   case ISD::FP_TO_SINT:
631   case ISD::FP_TO_UINT:
632   case ISD::FRINT:
633   case ISD::FROUND:
634   case ISD::FSIN:
635   case ISD::FSQRT:
636   case ISD::FTRUNC:
637   case ISD::SINT_TO_FP:
638   case ISD::TRUNCATE:
639   case ISD::UINT_TO_FP:
640     SplitVecRes_UnaryOp(N, Lo, Hi);
641     break;
642 
643   case ISD::ANY_EXTEND:
644   case ISD::SIGN_EXTEND:
645   case ISD::ZERO_EXTEND:
646     SplitVecRes_ExtendOp(N, Lo, Hi);
647     break;
648 
649   case ISD::ADD:
650   case ISD::SUB:
651   case ISD::MUL:
652   case ISD::FADD:
653   case ISD::FCOPYSIGN:
654   case ISD::FSUB:
655   case ISD::FMUL:
656   case ISD::FMINNUM:
657   case ISD::FMAXNUM:
658   case ISD::SDIV:
659   case ISD::UDIV:
660   case ISD::FDIV:
661   case ISD::FPOW:
662   case ISD::AND:
663   case ISD::OR:
664   case ISD::XOR:
665   case ISD::SHL:
666   case ISD::SRA:
667   case ISD::SRL:
668   case ISD::UREM:
669   case ISD::SREM:
670   case ISD::FREM:
671     SplitVecRes_BinOp(N, Lo, Hi);
672     break;
673   case ISD::FMA:
674     SplitVecRes_TernaryOp(N, Lo, Hi);
675     break;
676   }
677 
678   // If Lo/Hi is null, the sub-method took care of registering results etc.
679   if (Lo.getNode())
680     SetSplitVector(SDValue(N, ResNo), Lo, Hi);
681 }
682 
SplitVecRes_BinOp(SDNode * N,SDValue & Lo,SDValue & Hi)683 void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
684                                          SDValue &Hi) {
685   SDValue LHSLo, LHSHi;
686   GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
687   SDValue RHSLo, RHSHi;
688   GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
689   SDLoc dl(N);
690 
691   Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
692   Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
693 }
694 
SplitVecRes_TernaryOp(SDNode * N,SDValue & Lo,SDValue & Hi)695 void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
696                                              SDValue &Hi) {
697   SDValue Op0Lo, Op0Hi;
698   GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
699   SDValue Op1Lo, Op1Hi;
700   GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
701   SDValue Op2Lo, Op2Hi;
702   GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
703   SDLoc dl(N);
704 
705   Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
706                    Op0Lo, Op1Lo, Op2Lo);
707   Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
708                    Op0Hi, Op1Hi, Op2Hi);
709 }
710 
SplitVecRes_BITCAST(SDNode * N,SDValue & Lo,SDValue & Hi)711 void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
712                                            SDValue &Hi) {
713   // We know the result is a vector.  The input may be either a vector or a
714   // scalar value.
715   EVT LoVT, HiVT;
716   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
717   SDLoc dl(N);
718 
719   SDValue InOp = N->getOperand(0);
720   EVT InVT = InOp.getValueType();
721 
722   // Handle some special cases efficiently.
723   switch (getTypeAction(InVT)) {
724   case TargetLowering::TypeLegal:
725   case TargetLowering::TypePromoteInteger:
726   case TargetLowering::TypePromoteFloat:
727   case TargetLowering::TypeSoftenFloat:
728   case TargetLowering::TypeScalarizeVector:
729   case TargetLowering::TypeWidenVector:
730     break;
731   case TargetLowering::TypeExpandInteger:
732   case TargetLowering::TypeExpandFloat:
733     // A scalar to vector conversion, where the scalar needs expansion.
734     // If the vector is being split in two then we can just convert the
735     // expanded pieces.
736     if (LoVT == HiVT) {
737       GetExpandedOp(InOp, Lo, Hi);
738       if (TLI.isBigEndian())
739         std::swap(Lo, Hi);
740       Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
741       Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
742       return;
743     }
744     break;
745   case TargetLowering::TypeSplitVector:
746     // If the input is a vector that needs to be split, convert each split
747     // piece of the input now.
748     GetSplitVector(InOp, Lo, Hi);
749     Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
750     Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
751     return;
752   }
753 
754   // In the general case, convert the input to an integer and split it by hand.
755   EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
756   EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
757   if (TLI.isBigEndian())
758     std::swap(LoIntVT, HiIntVT);
759 
760   SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
761 
762   if (TLI.isBigEndian())
763     std::swap(Lo, Hi);
764   Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
765   Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
766 }
767 
SplitVecRes_BUILD_VECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)768 void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
769                                                 SDValue &Hi) {
770   EVT LoVT, HiVT;
771   SDLoc dl(N);
772   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
773   unsigned LoNumElts = LoVT.getVectorNumElements();
774   SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
775   Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, LoOps);
776 
777   SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
778   Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, HiOps);
779 }
780 
SplitVecRes_CONCAT_VECTORS(SDNode * N,SDValue & Lo,SDValue & Hi)781 void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
782                                                   SDValue &Hi) {
783   assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
784   SDLoc dl(N);
785   unsigned NumSubvectors = N->getNumOperands() / 2;
786   if (NumSubvectors == 1) {
787     Lo = N->getOperand(0);
788     Hi = N->getOperand(1);
789     return;
790   }
791 
792   EVT LoVT, HiVT;
793   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
794 
795   SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
796   Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, LoOps);
797 
798   SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
799   Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, HiOps);
800 }
801 
SplitVecRes_EXTRACT_SUBVECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)802 void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
803                                                      SDValue &Hi) {
804   SDValue Vec = N->getOperand(0);
805   SDValue Idx = N->getOperand(1);
806   SDLoc dl(N);
807 
808   EVT LoVT, HiVT;
809   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
810 
811   Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
812   uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
813   Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
814                    DAG.getConstant(IdxVal + LoVT.getVectorNumElements(),
815                                    TLI.getVectorIdxTy()));
816 }
817 
SplitVecRes_INSERT_SUBVECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)818 void DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo,
819                                                     SDValue &Hi) {
820   SDValue Vec = N->getOperand(0);
821   SDValue SubVec = N->getOperand(1);
822   SDValue Idx = N->getOperand(2);
823   SDLoc dl(N);
824   GetSplitVector(Vec, Lo, Hi);
825 
826   // Spill the vector to the stack.
827   EVT VecVT = Vec.getValueType();
828   EVT SubVecVT = VecVT.getVectorElementType();
829   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
830   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
831                                MachinePointerInfo(), false, false, 0);
832 
833   // Store the new subvector into the specified index.
834   SDValue SubVecPtr = GetVectorElementPointer(StackPtr, SubVecVT, Idx);
835   Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
836   unsigned Alignment = TLI.getDataLayout()->getPrefTypeAlignment(VecType);
837   Store = DAG.getStore(Store, dl, SubVec, SubVecPtr, MachinePointerInfo(),
838                        false, false, 0);
839 
840   // Load the Lo part from the stack slot.
841   Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
842                    false, false, false, 0);
843 
844   // Increment the pointer to the other part.
845   unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
846   StackPtr =
847       DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
848                   DAG.getConstant(IncrementSize, StackPtr.getValueType()));
849 
850   // Load the Hi part from the stack slot.
851   Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
852                    false, false, false, MinAlign(Alignment, IncrementSize));
853 }
854 
SplitVecRes_FPOWI(SDNode * N,SDValue & Lo,SDValue & Hi)855 void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
856                                          SDValue &Hi) {
857   SDLoc dl(N);
858   GetSplitVector(N->getOperand(0), Lo, Hi);
859   Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
860   Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
861 }
862 
SplitVecRes_InregOp(SDNode * N,SDValue & Lo,SDValue & Hi)863 void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
864                                            SDValue &Hi) {
865   SDValue LHSLo, LHSHi;
866   GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
867   SDLoc dl(N);
868 
869   EVT LoVT, HiVT;
870   std::tie(LoVT, HiVT) =
871     DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
872 
873   Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
874                    DAG.getValueType(LoVT));
875   Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
876                    DAG.getValueType(HiVT));
877 }
878 
SplitVecRes_INSERT_VECTOR_ELT(SDNode * N,SDValue & Lo,SDValue & Hi)879 void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
880                                                      SDValue &Hi) {
881   SDValue Vec = N->getOperand(0);
882   SDValue Elt = N->getOperand(1);
883   SDValue Idx = N->getOperand(2);
884   SDLoc dl(N);
885   GetSplitVector(Vec, Lo, Hi);
886 
887   if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
888     unsigned IdxVal = CIdx->getZExtValue();
889     unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
890     if (IdxVal < LoNumElts)
891       Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
892                        Lo.getValueType(), Lo, Elt, Idx);
893     else
894       Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
895                        DAG.getConstant(IdxVal - LoNumElts,
896                                        TLI.getVectorIdxTy()));
897     return;
898   }
899 
900   // See if the target wants to custom expand this node.
901   if (CustomLowerNode(N, N->getValueType(0), true))
902     return;
903 
904   // Spill the vector to the stack.
905   EVT VecVT = Vec.getValueType();
906   EVT EltVT = VecVT.getVectorElementType();
907   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
908   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
909                                MachinePointerInfo(), false, false, 0);
910 
911   // Store the new element.  This may be larger than the vector element type,
912   // so use a truncating store.
913   SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
914   Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
915   unsigned Alignment =
916     TLI.getDataLayout()->getPrefTypeAlignment(VecType);
917   Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
918                             false, false, 0);
919 
920   // Load the Lo part from the stack slot.
921   Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
922                    false, false, false, 0);
923 
924   // Increment the pointer to the other part.
925   unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
926   StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
927                        DAG.getConstant(IncrementSize, StackPtr.getValueType()));
928 
929   // Load the Hi part from the stack slot.
930   Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
931                    false, false, false, MinAlign(Alignment, IncrementSize));
932 }
933 
SplitVecRes_SCALAR_TO_VECTOR(SDNode * N,SDValue & Lo,SDValue & Hi)934 void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
935                                                     SDValue &Hi) {
936   EVT LoVT, HiVT;
937   SDLoc dl(N);
938   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
939   Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
940   Hi = DAG.getUNDEF(HiVT);
941 }
942 
SplitVecRes_LOAD(LoadSDNode * LD,SDValue & Lo,SDValue & Hi)943 void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
944                                         SDValue &Hi) {
945   assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
946   EVT LoVT, HiVT;
947   SDLoc dl(LD);
948   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
949 
950   ISD::LoadExtType ExtType = LD->getExtensionType();
951   SDValue Ch = LD->getChain();
952   SDValue Ptr = LD->getBasePtr();
953   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
954   EVT MemoryVT = LD->getMemoryVT();
955   unsigned Alignment = LD->getOriginalAlignment();
956   bool isVolatile = LD->isVolatile();
957   bool isNonTemporal = LD->isNonTemporal();
958   bool isInvariant = LD->isInvariant();
959   AAMDNodes AAInfo = LD->getAAInfo();
960 
961   EVT LoMemVT, HiMemVT;
962   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
963 
964   Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
965                    LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
966                    isInvariant, Alignment, AAInfo);
967 
968   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
969   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
970                     DAG.getConstant(IncrementSize, Ptr.getValueType()));
971   Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
972                    LD->getPointerInfo().getWithOffset(IncrementSize),
973                    HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
974                    AAInfo);
975 
976   // Build a factor node to remember that this load is independent of the
977   // other one.
978   Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
979                    Hi.getValue(1));
980 
981   // Legalized the chain result - switch anything that used the old chain to
982   // use the new one.
983   ReplaceValueWith(SDValue(LD, 1), Ch);
984 }
985 
SplitVecRes_MLOAD(MaskedLoadSDNode * MLD,SDValue & Lo,SDValue & Hi)986 void DAGTypeLegalizer::SplitVecRes_MLOAD(MaskedLoadSDNode *MLD,
987                                          SDValue &Lo, SDValue &Hi) {
988   EVT LoVT, HiVT;
989   SDLoc dl(MLD);
990   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
991 
992   SDValue Ch = MLD->getChain();
993   SDValue Ptr = MLD->getBasePtr();
994   SDValue Mask = MLD->getMask();
995   unsigned Alignment = MLD->getOriginalAlignment();
996   ISD::LoadExtType ExtType = MLD->getExtensionType();
997 
998   // if Alignment is equal to the vector size,
999   // take the half of it for the second part
1000   unsigned SecondHalfAlignment =
1001     (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
1002      Alignment/2 : Alignment;
1003 
1004   SDValue MaskLo, MaskHi;
1005   std::tie(MaskLo, MaskHi) = DAG.SplitVector(Mask, dl);
1006 
1007   EVT MemoryVT = MLD->getMemoryVT();
1008   EVT LoMemVT, HiMemVT;
1009   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1010 
1011   SDValue Src0 = MLD->getSrc0();
1012   SDValue Src0Lo, Src0Hi;
1013   std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, dl);
1014 
1015   MachineMemOperand *MMO = DAG.getMachineFunction().
1016     getMachineMemOperand(MLD->getPointerInfo(),
1017                          MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
1018                          Alignment, MLD->getAAInfo(), MLD->getRanges());
1019 
1020   Lo = DAG.getMaskedLoad(LoVT, dl, Ch, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
1021                          ExtType);
1022 
1023   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1024   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1025                     DAG.getConstant(IncrementSize, Ptr.getValueType()));
1026 
1027   MMO = DAG.getMachineFunction().
1028     getMachineMemOperand(MLD->getPointerInfo(),
1029                          MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
1030                          SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
1031 
1032   Hi = DAG.getMaskedLoad(HiVT, dl, Ch, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
1033                          ExtType);
1034 
1035 
1036   // Build a factor node to remember that this load is independent of the
1037   // other one.
1038   Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1039                    Hi.getValue(1));
1040 
1041   // Legalized the chain result - switch anything that used the old chain to
1042   // use the new one.
1043   ReplaceValueWith(SDValue(MLD, 1), Ch);
1044 
1045 }
1046 
SplitVecRes_SETCC(SDNode * N,SDValue & Lo,SDValue & Hi)1047 void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
1048   assert(N->getValueType(0).isVector() &&
1049          N->getOperand(0).getValueType().isVector() &&
1050          "Operand types must be vectors");
1051 
1052   EVT LoVT, HiVT;
1053   SDLoc DL(N);
1054   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1055 
1056   // Split the input.
1057   SDValue LL, LH, RL, RH;
1058   std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
1059   std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
1060 
1061   Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
1062   Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
1063 }
1064 
SplitVecRes_UnaryOp(SDNode * N,SDValue & Lo,SDValue & Hi)1065 void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
1066                                            SDValue &Hi) {
1067   // Get the dest types - they may not match the input types, e.g. int_to_fp.
1068   EVT LoVT, HiVT;
1069   SDLoc dl(N);
1070   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
1071 
1072   // If the input also splits, handle it directly for a compile time speedup.
1073   // Otherwise split it by hand.
1074   EVT InVT = N->getOperand(0).getValueType();
1075   if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
1076     GetSplitVector(N->getOperand(0), Lo, Hi);
1077   else
1078     std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
1079 
1080   if (N->getOpcode() == ISD::FP_ROUND) {
1081     Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
1082     Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
1083   } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
1084     SDValue DTyOpLo = DAG.getValueType(LoVT);
1085     SDValue DTyOpHi = DAG.getValueType(HiVT);
1086     SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
1087     SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
1088     SDValue RndOp = N->getOperand(3);
1089     SDValue SatOp = N->getOperand(4);
1090     ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
1091     Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
1092                               CvtCode);
1093     Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
1094                               CvtCode);
1095   } else {
1096     Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
1097     Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
1098   }
1099 }
1100 
SplitVecRes_ExtendOp(SDNode * N,SDValue & Lo,SDValue & Hi)1101 void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
1102                                             SDValue &Hi) {
1103   SDLoc dl(N);
1104   EVT SrcVT = N->getOperand(0).getValueType();
1105   EVT DestVT = N->getValueType(0);
1106   EVT LoVT, HiVT;
1107   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
1108 
1109   // We can do better than a generic split operation if the extend is doing
1110   // more than just doubling the width of the elements and the following are
1111   // true:
1112   //   - The number of vector elements is even,
1113   //   - the source type is legal,
1114   //   - the type of a split source is illegal,
1115   //   - the type of an extended (by doubling element size) source is legal, and
1116   //   - the type of that extended source when split is legal.
1117   //
1118   // This won't necessarily completely legalize the operation, but it will
1119   // more effectively move in the right direction and prevent falling down
1120   // to scalarization in many cases due to the input vector being split too
1121   // far.
1122   unsigned NumElements = SrcVT.getVectorNumElements();
1123   if ((NumElements & 1) == 0 &&
1124       SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
1125     LLVMContext &Ctx = *DAG.getContext();
1126     EVT NewSrcVT = EVT::getVectorVT(
1127         Ctx, EVT::getIntegerVT(
1128                  Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
1129         NumElements);
1130     EVT SplitSrcVT =
1131         EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
1132     EVT SplitLoVT, SplitHiVT;
1133     std::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
1134     if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
1135         TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
1136       DEBUG(dbgs() << "Split vector extend via incremental extend:";
1137             N->dump(&DAG); dbgs() << "\n");
1138       // Extend the source vector by one step.
1139       SDValue NewSrc =
1140           DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
1141       // Get the low and high halves of the new, extended one step, vector.
1142       std::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
1143       // Extend those vector halves the rest of the way.
1144       Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
1145       Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
1146       return;
1147     }
1148   }
1149   // Fall back to the generic unary operator splitting otherwise.
1150   SplitVecRes_UnaryOp(N, Lo, Hi);
1151 }
1152 
SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode * N,SDValue & Lo,SDValue & Hi)1153 void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
1154                                                   SDValue &Lo, SDValue &Hi) {
1155   // The low and high parts of the original input give four input vectors.
1156   SDValue Inputs[4];
1157   SDLoc dl(N);
1158   GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
1159   GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
1160   EVT NewVT = Inputs[0].getValueType();
1161   unsigned NewElts = NewVT.getVectorNumElements();
1162 
1163   // If Lo or Hi uses elements from at most two of the four input vectors, then
1164   // express it as a vector shuffle of those two inputs.  Otherwise extract the
1165   // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
1166   SmallVector<int, 16> Ops;
1167   for (unsigned High = 0; High < 2; ++High) {
1168     SDValue &Output = High ? Hi : Lo;
1169 
1170     // Build a shuffle mask for the output, discovering on the fly which
1171     // input vectors to use as shuffle operands (recorded in InputUsed).
1172     // If building a suitable shuffle vector proves too hard, then bail
1173     // out with useBuildVector set.
1174     unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
1175     unsigned FirstMaskIdx = High * NewElts;
1176     bool useBuildVector = false;
1177     for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
1178       // The mask element.  This indexes into the input.
1179       int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
1180 
1181       // The input vector this mask element indexes into.
1182       unsigned Input = (unsigned)Idx / NewElts;
1183 
1184       if (Input >= array_lengthof(Inputs)) {
1185         // The mask element does not index into any input vector.
1186         Ops.push_back(-1);
1187         continue;
1188       }
1189 
1190       // Turn the index into an offset from the start of the input vector.
1191       Idx -= Input * NewElts;
1192 
1193       // Find or create a shuffle vector operand to hold this input.
1194       unsigned OpNo;
1195       for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
1196         if (InputUsed[OpNo] == Input) {
1197           // This input vector is already an operand.
1198           break;
1199         } else if (InputUsed[OpNo] == -1U) {
1200           // Create a new operand for this input vector.
1201           InputUsed[OpNo] = Input;
1202           break;
1203         }
1204       }
1205 
1206       if (OpNo >= array_lengthof(InputUsed)) {
1207         // More than two input vectors used!  Give up on trying to create a
1208         // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
1209         useBuildVector = true;
1210         break;
1211       }
1212 
1213       // Add the mask index for the new shuffle vector.
1214       Ops.push_back(Idx + OpNo * NewElts);
1215     }
1216 
1217     if (useBuildVector) {
1218       EVT EltVT = NewVT.getVectorElementType();
1219       SmallVector<SDValue, 16> SVOps;
1220 
1221       // Extract the input elements by hand.
1222       for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
1223         // The mask element.  This indexes into the input.
1224         int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
1225 
1226         // The input vector this mask element indexes into.
1227         unsigned Input = (unsigned)Idx / NewElts;
1228 
1229         if (Input >= array_lengthof(Inputs)) {
1230           // The mask element is "undef" or indexes off the end of the input.
1231           SVOps.push_back(DAG.getUNDEF(EltVT));
1232           continue;
1233         }
1234 
1235         // Turn the index into an offset from the start of the input vector.
1236         Idx -= Input * NewElts;
1237 
1238         // Extract the vector element by hand.
1239         SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
1240                                     Inputs[Input], DAG.getConstant(Idx,
1241                                                    TLI.getVectorIdxTy())));
1242       }
1243 
1244       // Construct the Lo/Hi output using a BUILD_VECTOR.
1245       Output = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, SVOps);
1246     } else if (InputUsed[0] == -1U) {
1247       // No input vectors were used!  The result is undefined.
1248       Output = DAG.getUNDEF(NewVT);
1249     } else {
1250       SDValue Op0 = Inputs[InputUsed[0]];
1251       // If only one input was used, use an undefined vector for the other.
1252       SDValue Op1 = InputUsed[1] == -1U ?
1253         DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
1254       // At least one input vector was used.  Create a new shuffle vector.
1255       Output =  DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
1256     }
1257 
1258     Ops.clear();
1259   }
1260 }
1261 
1262 
1263 //===----------------------------------------------------------------------===//
1264 //  Operand Vector Splitting
1265 //===----------------------------------------------------------------------===//
1266 
1267 /// SplitVectorOperand - This method is called when the specified operand of the
1268 /// specified node is found to need vector splitting.  At this point, all of the
1269 /// result types of the node are known to be legal, but other operands of the
1270 /// node may need legalization as well as the specified one.
SplitVectorOperand(SDNode * N,unsigned OpNo)1271 bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
1272   DEBUG(dbgs() << "Split node operand: ";
1273         N->dump(&DAG);
1274         dbgs() << "\n");
1275   SDValue Res = SDValue();
1276 
1277   // See if the target wants to custom split this node.
1278   if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
1279     return false;
1280 
1281   if (!Res.getNode()) {
1282     switch (N->getOpcode()) {
1283     default:
1284 #ifndef NDEBUG
1285       dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
1286       N->dump(&DAG);
1287       dbgs() << "\n";
1288 #endif
1289       report_fatal_error("Do not know how to split this operator's "
1290                          "operand!\n");
1291 
1292     case ISD::SETCC:             Res = SplitVecOp_VSETCC(N); break;
1293     case ISD::BITCAST:           Res = SplitVecOp_BITCAST(N); break;
1294     case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
1295     case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
1296     case ISD::CONCAT_VECTORS:    Res = SplitVecOp_CONCAT_VECTORS(N); break;
1297     case ISD::TRUNCATE:
1298       Res = SplitVecOp_TruncateHelper(N);
1299       break;
1300     case ISD::FP_ROUND:          Res = SplitVecOp_FP_ROUND(N); break;
1301     case ISD::STORE:
1302       Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
1303       break;
1304     case ISD::MSTORE:
1305       Res = SplitVecOp_MSTORE(cast<MaskedStoreSDNode>(N), OpNo);
1306       break;
1307     case ISD::VSELECT:
1308       Res = SplitVecOp_VSELECT(N, OpNo);
1309       break;
1310     case ISD::FP_TO_SINT:
1311     case ISD::FP_TO_UINT:
1312       if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
1313         Res = SplitVecOp_TruncateHelper(N);
1314       else
1315         Res = SplitVecOp_UnaryOp(N);
1316       break;
1317     case ISD::SINT_TO_FP:
1318     case ISD::UINT_TO_FP:
1319       if (N->getValueType(0).bitsLT(N->getOperand(0)->getValueType(0)))
1320         Res = SplitVecOp_TruncateHelper(N);
1321       else
1322         Res = SplitVecOp_UnaryOp(N);
1323       break;
1324     case ISD::CTTZ:
1325     case ISD::CTLZ:
1326     case ISD::CTPOP:
1327     case ISD::FP_EXTEND:
1328     case ISD::SIGN_EXTEND:
1329     case ISD::ZERO_EXTEND:
1330     case ISD::ANY_EXTEND:
1331     case ISD::FTRUNC:
1332       Res = SplitVecOp_UnaryOp(N);
1333       break;
1334     }
1335   }
1336 
1337   // If the result is null, the sub-method took care of registering results etc.
1338   if (!Res.getNode()) return false;
1339 
1340   // If the result is N, the sub-method updated N in place.  Tell the legalizer
1341   // core about this.
1342   if (Res.getNode() == N)
1343     return true;
1344 
1345   assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1346          "Invalid operand expansion");
1347 
1348   ReplaceValueWith(SDValue(N, 0), Res);
1349   return false;
1350 }
1351 
SplitVecOp_VSELECT(SDNode * N,unsigned OpNo)1352 SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
1353   // The only possibility for an illegal operand is the mask, since result type
1354   // legalization would have handled this node already otherwise.
1355   assert(OpNo == 0 && "Illegal operand must be mask");
1356 
1357   SDValue Mask = N->getOperand(0);
1358   SDValue Src0 = N->getOperand(1);
1359   SDValue Src1 = N->getOperand(2);
1360   EVT Src0VT = Src0.getValueType();
1361   SDLoc DL(N);
1362   assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
1363 
1364   SDValue Lo, Hi;
1365   GetSplitVector(N->getOperand(0), Lo, Hi);
1366   assert(Lo.getValueType() == Hi.getValueType() &&
1367          "Lo and Hi have differing types");
1368 
1369   EVT LoOpVT, HiOpVT;
1370   std::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
1371   assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
1372 
1373   SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
1374   std::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
1375   std::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
1376   std::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
1377 
1378   SDValue LoSelect =
1379     DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
1380   SDValue HiSelect =
1381     DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
1382 
1383   return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
1384 }
1385 
SplitVecOp_UnaryOp(SDNode * N)1386 SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
1387   // The result has a legal vector type, but the input needs splitting.
1388   EVT ResVT = N->getValueType(0);
1389   SDValue Lo, Hi;
1390   SDLoc dl(N);
1391   GetSplitVector(N->getOperand(0), Lo, Hi);
1392   EVT InVT = Lo.getValueType();
1393 
1394   EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1395                                InVT.getVectorNumElements());
1396 
1397   Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
1398   Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
1399 
1400   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
1401 }
1402 
SplitVecOp_BITCAST(SDNode * N)1403 SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
1404   // For example, i64 = BITCAST v4i16 on alpha.  Typically the vector will
1405   // end up being split all the way down to individual components.  Convert the
1406   // split pieces into integers and reassemble.
1407   SDValue Lo, Hi;
1408   GetSplitVector(N->getOperand(0), Lo, Hi);
1409   Lo = BitConvertToInteger(Lo);
1410   Hi = BitConvertToInteger(Hi);
1411 
1412   if (TLI.isBigEndian())
1413     std::swap(Lo, Hi);
1414 
1415   return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
1416                      JoinIntegers(Lo, Hi));
1417 }
1418 
SplitVecOp_EXTRACT_SUBVECTOR(SDNode * N)1419 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1420   // We know that the extracted result type is legal.
1421   EVT SubVT = N->getValueType(0);
1422   SDValue Idx = N->getOperand(1);
1423   SDLoc dl(N);
1424   SDValue Lo, Hi;
1425   GetSplitVector(N->getOperand(0), Lo, Hi);
1426 
1427   uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1428   uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1429 
1430   if (IdxVal < LoElts) {
1431     assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1432            "Extracted subvector crosses vector split!");
1433     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1434   } else {
1435     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1436                        DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
1437   }
1438 }
1439 
SplitVecOp_EXTRACT_VECTOR_ELT(SDNode * N)1440 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1441   SDValue Vec = N->getOperand(0);
1442   SDValue Idx = N->getOperand(1);
1443   EVT VecVT = Vec.getValueType();
1444 
1445   if (isa<ConstantSDNode>(Idx)) {
1446     uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1447     assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1448 
1449     SDValue Lo, Hi;
1450     GetSplitVector(Vec, Lo, Hi);
1451 
1452     uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1453 
1454     if (IdxVal < LoElts)
1455       return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
1456     return SDValue(DAG.UpdateNodeOperands(N, Hi,
1457                                   DAG.getConstant(IdxVal - LoElts,
1458                                                   Idx.getValueType())), 0);
1459   }
1460 
1461   // See if the target wants to custom expand this node.
1462   if (CustomLowerNode(N, N->getValueType(0), true))
1463     return SDValue();
1464 
1465   // Store the vector to the stack.
1466   EVT EltVT = VecVT.getVectorElementType();
1467   SDLoc dl(N);
1468   SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1469   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1470                                MachinePointerInfo(), false, false, 0);
1471 
1472   // Load back the required element.
1473   StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1474   return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
1475                         MachinePointerInfo(), EltVT, false, false, false, 0);
1476 }
1477 
SplitVecOp_MSTORE(MaskedStoreSDNode * N,unsigned OpNo)1478 SDValue DAGTypeLegalizer::SplitVecOp_MSTORE(MaskedStoreSDNode *N,
1479                                             unsigned OpNo) {
1480   SDValue Ch  = N->getChain();
1481   SDValue Ptr = N->getBasePtr();
1482   SDValue Mask = N->getMask();
1483   SDValue Data = N->getValue();
1484   EVT MemoryVT = N->getMemoryVT();
1485   unsigned Alignment = N->getOriginalAlignment();
1486   SDLoc DL(N);
1487 
1488   EVT LoMemVT, HiMemVT;
1489   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1490 
1491   SDValue DataLo, DataHi;
1492   GetSplitVector(Data, DataLo, DataHi);
1493   SDValue MaskLo, MaskHi;
1494   GetSplitVector(Mask, MaskLo, MaskHi);
1495 
1496   // if Alignment is equal to the vector size,
1497   // take the half of it for the second part
1498   unsigned SecondHalfAlignment =
1499     (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
1500        Alignment/2 : Alignment;
1501 
1502   SDValue Lo, Hi;
1503   MachineMemOperand *MMO = DAG.getMachineFunction().
1504     getMachineMemOperand(N->getPointerInfo(),
1505                          MachineMemOperand::MOStore, LoMemVT.getStoreSize(),
1506                          Alignment, N->getAAInfo(), N->getRanges());
1507 
1508   Lo = DAG.getMaskedStore(Ch, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
1509                           N->isTruncatingStore());
1510 
1511   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1512   Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1513                     DAG.getConstant(IncrementSize, Ptr.getValueType()));
1514 
1515   MMO = DAG.getMachineFunction().
1516     getMachineMemOperand(N->getPointerInfo(),
1517                          MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
1518                          SecondHalfAlignment, N->getAAInfo(), N->getRanges());
1519 
1520   Hi = DAG.getMaskedStore(Ch, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
1521                           N->isTruncatingStore());
1522 
1523 
1524   // Build a factor node to remember that this store is independent of the
1525   // other one.
1526   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1527 
1528 }
1529 
SplitVecOp_STORE(StoreSDNode * N,unsigned OpNo)1530 SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1531   assert(N->isUnindexed() && "Indexed store of vector?");
1532   assert(OpNo == 1 && "Can only split the stored value");
1533   SDLoc DL(N);
1534 
1535   bool isTruncating = N->isTruncatingStore();
1536   SDValue Ch  = N->getChain();
1537   SDValue Ptr = N->getBasePtr();
1538   EVT MemoryVT = N->getMemoryVT();
1539   unsigned Alignment = N->getOriginalAlignment();
1540   bool isVol = N->isVolatile();
1541   bool isNT = N->isNonTemporal();
1542   AAMDNodes AAInfo = N->getAAInfo();
1543   SDValue Lo, Hi;
1544   GetSplitVector(N->getOperand(1), Lo, Hi);
1545 
1546   EVT LoMemVT, HiMemVT;
1547   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1548 
1549   unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1550 
1551   if (isTruncating)
1552     Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1553                            LoMemVT, isVol, isNT, Alignment, AAInfo);
1554   else
1555     Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1556                       isVol, isNT, Alignment, AAInfo);
1557 
1558   // Increment the pointer to the other half.
1559   Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1560                     DAG.getConstant(IncrementSize, Ptr.getValueType()));
1561 
1562   if (isTruncating)
1563     Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
1564                            N->getPointerInfo().getWithOffset(IncrementSize),
1565                            HiMemVT, isVol, isNT, Alignment, AAInfo);
1566   else
1567     Hi = DAG.getStore(Ch, DL, Hi, Ptr,
1568                       N->getPointerInfo().getWithOffset(IncrementSize),
1569                       isVol, isNT, Alignment, AAInfo);
1570 
1571   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1572 }
1573 
SplitVecOp_CONCAT_VECTORS(SDNode * N)1574 SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
1575   SDLoc DL(N);
1576 
1577   // The input operands all must have the same type, and we know the result
1578   // type is valid.  Convert this to a buildvector which extracts all the
1579   // input elements.
1580   // TODO: If the input elements are power-two vectors, we could convert this to
1581   // a new CONCAT_VECTORS node with elements that are half-wide.
1582   SmallVector<SDValue, 32> Elts;
1583   EVT EltVT = N->getValueType(0).getVectorElementType();
1584   for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1585     SDValue Op = N->getOperand(op);
1586     for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
1587          i != e; ++i) {
1588       Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
1589                                  Op, DAG.getConstant(i, TLI.getVectorIdxTy())));
1590 
1591     }
1592   }
1593 
1594   return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0), Elts);
1595 }
1596 
SplitVecOp_TruncateHelper(SDNode * N)1597 SDValue DAGTypeLegalizer::SplitVecOp_TruncateHelper(SDNode *N) {
1598   // The result type is legal, but the input type is illegal.  If splitting
1599   // ends up with the result type of each half still being legal, just
1600   // do that.  If, however, that would result in an illegal result type,
1601   // we can try to get more clever with power-two vectors. Specifically,
1602   // split the input type, but also widen the result element size, then
1603   // concatenate the halves and truncate again.  For example, consider a target
1604   // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
1605   // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
1606   //   %inlo = v4i32 extract_subvector %in, 0
1607   //   %inhi = v4i32 extract_subvector %in, 4
1608   //   %lo16 = v4i16 trunc v4i32 %inlo
1609   //   %hi16 = v4i16 trunc v4i32 %inhi
1610   //   %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
1611   //   %res = v8i8 trunc v8i16 %in16
1612   //
1613   // Without this transform, the original truncate would end up being
1614   // scalarized, which is pretty much always a last resort.
1615   SDValue InVec = N->getOperand(0);
1616   EVT InVT = InVec->getValueType(0);
1617   EVT OutVT = N->getValueType(0);
1618   unsigned NumElements = OutVT.getVectorNumElements();
1619   bool IsFloat = OutVT.isFloatingPoint();
1620 
1621   // Widening should have already made sure this is a power-two vector
1622   // if we're trying to split it at all. assert() that's true, just in case.
1623   assert(!(NumElements & 1) && "Splitting vector, but not in half!");
1624 
1625   unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
1626   unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
1627 
1628   // If the input elements are only 1/2 the width of the result elements,
1629   // just use the normal splitting. Our trick only work if there's room
1630   // to split more than once.
1631   if (InElementSize <= OutElementSize * 2)
1632     return SplitVecOp_UnaryOp(N);
1633   SDLoc DL(N);
1634 
1635   // Extract the halves of the input via extract_subvector.
1636   SDValue InLoVec, InHiVec;
1637   std::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
1638   // Truncate them to 1/2 the element size.
1639   EVT HalfElementVT = IsFloat ?
1640     EVT::getFloatingPointVT(InElementSize/2) :
1641     EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
1642   EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
1643                                 NumElements/2);
1644   SDValue HalfLo = DAG.getNode(N->getOpcode(), DL, HalfVT, InLoVec);
1645   SDValue HalfHi = DAG.getNode(N->getOpcode(), DL, HalfVT, InHiVec);
1646   // Concatenate them to get the full intermediate truncation result.
1647   EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
1648   SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
1649                                  HalfHi);
1650   // Now finish up by truncating all the way down to the original result
1651   // type. This should normally be something that ends up being legal directly,
1652   // but in theory if a target has very wide vectors and an annoyingly
1653   // restricted set of legal types, this split can chain to build things up.
1654   return IsFloat ?
1655     DAG.getNode(ISD::FP_ROUND, DL, OutVT, InterVec,
1656                 DAG.getTargetConstant(0, TLI.getPointerTy())) :
1657     DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
1658 }
1659 
SplitVecOp_VSETCC(SDNode * N)1660 SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
1661   assert(N->getValueType(0).isVector() &&
1662          N->getOperand(0).getValueType().isVector() &&
1663          "Operand types must be vectors");
1664   // The result has a legal vector type, but the input needs splitting.
1665   SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
1666   SDLoc DL(N);
1667   GetSplitVector(N->getOperand(0), Lo0, Hi0);
1668   GetSplitVector(N->getOperand(1), Lo1, Hi1);
1669   unsigned PartElements = Lo0.getValueType().getVectorNumElements();
1670   EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
1671   EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
1672 
1673   LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
1674   HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
1675   SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
1676   return PromoteTargetBoolean(Con, N->getValueType(0));
1677 }
1678 
1679 
SplitVecOp_FP_ROUND(SDNode * N)1680 SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
1681   // The result has a legal vector type, but the input needs splitting.
1682   EVT ResVT = N->getValueType(0);
1683   SDValue Lo, Hi;
1684   SDLoc DL(N);
1685   GetSplitVector(N->getOperand(0), Lo, Hi);
1686   EVT InVT = Lo.getValueType();
1687 
1688   EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1689                                InVT.getVectorNumElements());
1690 
1691   Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
1692   Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
1693 
1694   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
1695 }
1696 
1697 
1698 
1699 //===----------------------------------------------------------------------===//
1700 //  Result Vector Widening
1701 //===----------------------------------------------------------------------===//
1702 
WidenVectorResult(SDNode * N,unsigned ResNo)1703 void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1704   DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
1705         N->dump(&DAG);
1706         dbgs() << "\n");
1707 
1708   // See if the target wants to custom widen this node.
1709   if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
1710     return;
1711 
1712   SDValue Res = SDValue();
1713   switch (N->getOpcode()) {
1714   default:
1715 #ifndef NDEBUG
1716     dbgs() << "WidenVectorResult #" << ResNo << ": ";
1717     N->dump(&DAG);
1718     dbgs() << "\n";
1719 #endif
1720     llvm_unreachable("Do not know how to widen the result of this operator!");
1721 
1722   case ISD::MERGE_VALUES:      Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
1723   case ISD::BITCAST:           Res = WidenVecRes_BITCAST(N); break;
1724   case ISD::BUILD_VECTOR:      Res = WidenVecRes_BUILD_VECTOR(N); break;
1725   case ISD::CONCAT_VECTORS:    Res = WidenVecRes_CONCAT_VECTORS(N); break;
1726   case ISD::CONVERT_RNDSAT:    Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1727   case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1728   case ISD::FP_ROUND_INREG:    Res = WidenVecRes_InregOp(N); break;
1729   case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1730   case ISD::LOAD:              Res = WidenVecRes_LOAD(N); break;
1731   case ISD::SCALAR_TO_VECTOR:  Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1732   case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
1733   case ISD::VSELECT:
1734   case ISD::SELECT:            Res = WidenVecRes_SELECT(N); break;
1735   case ISD::SELECT_CC:         Res = WidenVecRes_SELECT_CC(N); break;
1736   case ISD::SETCC:             Res = WidenVecRes_SETCC(N); break;
1737   case ISD::UNDEF:             Res = WidenVecRes_UNDEF(N); break;
1738   case ISD::VECTOR_SHUFFLE:
1739     Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
1740     break;
1741   case ISD::MLOAD:
1742     Res = WidenVecRes_MLOAD(cast<MaskedLoadSDNode>(N));
1743     break;
1744 
1745   case ISD::ADD:
1746   case ISD::AND:
1747   case ISD::MUL:
1748   case ISD::MULHS:
1749   case ISD::MULHU:
1750   case ISD::OR:
1751   case ISD::SUB:
1752   case ISD::XOR:
1753   case ISD::FMINNUM:
1754   case ISD::FMAXNUM:
1755     Res = WidenVecRes_Binary(N);
1756     break;
1757 
1758   case ISD::FADD:
1759   case ISD::FCOPYSIGN:
1760   case ISD::FMUL:
1761   case ISD::FPOW:
1762   case ISD::FSUB:
1763   case ISD::FDIV:
1764   case ISD::FREM:
1765   case ISD::SDIV:
1766   case ISD::UDIV:
1767   case ISD::SREM:
1768   case ISD::UREM:
1769     Res = WidenVecRes_BinaryCanTrap(N);
1770     break;
1771 
1772   case ISD::FPOWI:
1773     Res = WidenVecRes_POWI(N);
1774     break;
1775 
1776   case ISD::SHL:
1777   case ISD::SRA:
1778   case ISD::SRL:
1779     Res = WidenVecRes_Shift(N);
1780     break;
1781 
1782   case ISD::ANY_EXTEND:
1783   case ISD::FP_EXTEND:
1784   case ISD::FP_ROUND:
1785   case ISD::FP_TO_SINT:
1786   case ISD::FP_TO_UINT:
1787   case ISD::SIGN_EXTEND:
1788   case ISD::SINT_TO_FP:
1789   case ISD::TRUNCATE:
1790   case ISD::UINT_TO_FP:
1791   case ISD::ZERO_EXTEND:
1792     Res = WidenVecRes_Convert(N);
1793     break;
1794 
1795   case ISD::BSWAP:
1796   case ISD::CTLZ:
1797   case ISD::CTPOP:
1798   case ISD::CTTZ:
1799   case ISD::FABS:
1800   case ISD::FCEIL:
1801   case ISD::FCOS:
1802   case ISD::FEXP:
1803   case ISD::FEXP2:
1804   case ISD::FFLOOR:
1805   case ISD::FLOG:
1806   case ISD::FLOG10:
1807   case ISD::FLOG2:
1808   case ISD::FNEARBYINT:
1809   case ISD::FNEG:
1810   case ISD::FRINT:
1811   case ISD::FROUND:
1812   case ISD::FSIN:
1813   case ISD::FSQRT:
1814   case ISD::FTRUNC:
1815     Res = WidenVecRes_Unary(N);
1816     break;
1817   case ISD::FMA:
1818     Res = WidenVecRes_Ternary(N);
1819     break;
1820   }
1821 
1822   // If Res is null, the sub-method took care of registering the result.
1823   if (Res.getNode())
1824     SetWidenedVector(SDValue(N, ResNo), Res);
1825 }
1826 
WidenVecRes_Ternary(SDNode * N)1827 SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
1828   // Ternary op widening.
1829   SDLoc dl(N);
1830   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1831   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1832   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1833   SDValue InOp3 = GetWidenedVector(N->getOperand(2));
1834   return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
1835 }
1836 
WidenVecRes_Binary(SDNode * N)1837 SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1838   // Binary op widening.
1839   SDLoc dl(N);
1840   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1841   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1842   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1843   return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
1844 }
1845 
WidenVecRes_BinaryCanTrap(SDNode * N)1846 SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
1847   // Binary op widening for operations that can trap.
1848   unsigned Opcode = N->getOpcode();
1849   SDLoc dl(N);
1850   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1851   EVT WidenEltVT = WidenVT.getVectorElementType();
1852   EVT VT = WidenVT;
1853   unsigned NumElts =  VT.getVectorNumElements();
1854   while (!TLI.isTypeLegal(VT) && NumElts != 1) {
1855     NumElts = NumElts / 2;
1856     VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1857   }
1858 
1859   if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
1860     // Operation doesn't trap so just widen as normal.
1861     SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1862     SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1863     return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
1864   }
1865 
1866   // No legal vector version so unroll the vector operation and then widen.
1867   if (NumElts == 1)
1868     return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
1869 
1870   // Since the operation can trap, apply operation on the original vector.
1871   EVT MaxVT = VT;
1872   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1873   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1874   unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
1875 
1876   SmallVector<SDValue, 16> ConcatOps(CurNumElts);
1877   unsigned ConcatEnd = 0;  // Current ConcatOps index.
1878   int Idx = 0;        // Current Idx into input vectors.
1879 
1880   // NumElts := greatest legal vector size (at most WidenVT)
1881   // while (orig. vector has unhandled elements) {
1882   //   take munches of size NumElts from the beginning and add to ConcatOps
1883   //   NumElts := next smaller supported vector size or 1
1884   // }
1885   while (CurNumElts != 0) {
1886     while (CurNumElts >= NumElts) {
1887       SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
1888                                  DAG.getConstant(Idx, TLI.getVectorIdxTy()));
1889       SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
1890                                  DAG.getConstant(Idx, TLI.getVectorIdxTy()));
1891       ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2);
1892       Idx += NumElts;
1893       CurNumElts -= NumElts;
1894     }
1895     do {
1896       NumElts = NumElts / 2;
1897       VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1898     } while (!TLI.isTypeLegal(VT) && NumElts != 1);
1899 
1900     if (NumElts == 1) {
1901       for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
1902         SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1903                                    InOp1, DAG.getConstant(Idx,
1904                                                          TLI.getVectorIdxTy()));
1905         SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1906                                    InOp2, DAG.getConstant(Idx,
1907                                                          TLI.getVectorIdxTy()));
1908         ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
1909                                              EOp1, EOp2);
1910       }
1911       CurNumElts = 0;
1912     }
1913   }
1914 
1915   // Check to see if we have a single operation with the widen type.
1916   if (ConcatEnd == 1) {
1917     VT = ConcatOps[0].getValueType();
1918     if (VT == WidenVT)
1919       return ConcatOps[0];
1920   }
1921 
1922   // while (Some element of ConcatOps is not of type MaxVT) {
1923   //   From the end of ConcatOps, collect elements of the same type and put
1924   //   them into an op of the next larger supported type
1925   // }
1926   while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
1927     Idx = ConcatEnd - 1;
1928     VT = ConcatOps[Idx--].getValueType();
1929     while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
1930       Idx--;
1931 
1932     int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
1933     EVT NextVT;
1934     do {
1935       NextSize *= 2;
1936       NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
1937     } while (!TLI.isTypeLegal(NextVT));
1938 
1939     if (!VT.isVector()) {
1940       // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
1941       SDValue VecOp = DAG.getUNDEF(NextVT);
1942       unsigned NumToInsert = ConcatEnd - Idx - 1;
1943       for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
1944         VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
1945                             ConcatOps[OpIdx], DAG.getConstant(i,
1946                                                          TLI.getVectorIdxTy()));
1947       }
1948       ConcatOps[Idx+1] = VecOp;
1949       ConcatEnd = Idx + 2;
1950     } else {
1951       // Vector type, create a CONCAT_VECTORS of type NextVT
1952       SDValue undefVec = DAG.getUNDEF(VT);
1953       unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
1954       SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
1955       unsigned RealVals = ConcatEnd - Idx - 1;
1956       unsigned SubConcatEnd = 0;
1957       unsigned SubConcatIdx = Idx + 1;
1958       while (SubConcatEnd < RealVals)
1959         SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
1960       while (SubConcatEnd < OpsToConcat)
1961         SubConcatOps[SubConcatEnd++] = undefVec;
1962       ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1963                                             NextVT, SubConcatOps);
1964       ConcatEnd = SubConcatIdx + 1;
1965     }
1966   }
1967 
1968   // Check to see if we have a single operation with the widen type.
1969   if (ConcatEnd == 1) {
1970     VT = ConcatOps[0].getValueType();
1971     if (VT == WidenVT)
1972       return ConcatOps[0];
1973   }
1974 
1975   // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
1976   unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
1977   if (NumOps != ConcatEnd ) {
1978     SDValue UndefVal = DAG.getUNDEF(MaxVT);
1979     for (unsigned j = ConcatEnd; j < NumOps; ++j)
1980       ConcatOps[j] = UndefVal;
1981   }
1982   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
1983                      makeArrayRef(ConcatOps.data(), NumOps));
1984 }
1985 
WidenVecRes_Convert(SDNode * N)1986 SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1987   SDValue InOp = N->getOperand(0);
1988   SDLoc DL(N);
1989 
1990   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1991   unsigned WidenNumElts = WidenVT.getVectorNumElements();
1992 
1993   EVT InVT = InOp.getValueType();
1994   EVT InEltVT = InVT.getVectorElementType();
1995   EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1996 
1997   unsigned Opcode = N->getOpcode();
1998   unsigned InVTNumElts = InVT.getVectorNumElements();
1999 
2000   if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2001     InOp = GetWidenedVector(N->getOperand(0));
2002     InVT = InOp.getValueType();
2003     InVTNumElts = InVT.getVectorNumElements();
2004     if (InVTNumElts == WidenNumElts) {
2005       if (N->getNumOperands() == 1)
2006         return DAG.getNode(Opcode, DL, WidenVT, InOp);
2007       return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1));
2008     }
2009   }
2010 
2011   if (TLI.isTypeLegal(InWidenVT)) {
2012     // Because the result and the input are different vector types, widening
2013     // the result could create a legal type but widening the input might make
2014     // it an illegal type that might lead to repeatedly splitting the input
2015     // and then widening it. To avoid this, we widen the input only if
2016     // it results in a legal type.
2017     if (WidenNumElts % InVTNumElts == 0) {
2018       // Widen the input and call convert on the widened input vector.
2019       unsigned NumConcat = WidenNumElts/InVTNumElts;
2020       SmallVector<SDValue, 16> Ops(NumConcat);
2021       Ops[0] = InOp;
2022       SDValue UndefVal = DAG.getUNDEF(InVT);
2023       for (unsigned i = 1; i != NumConcat; ++i)
2024         Ops[i] = UndefVal;
2025       SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT, Ops);
2026       if (N->getNumOperands() == 1)
2027         return DAG.getNode(Opcode, DL, WidenVT, InVec);
2028       return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1));
2029     }
2030 
2031     if (InVTNumElts % WidenNumElts == 0) {
2032       SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT,
2033                                   InOp, DAG.getConstant(0,
2034                                                         TLI.getVectorIdxTy()));
2035       // Extract the input and convert the shorten input vector.
2036       if (N->getNumOperands() == 1)
2037         return DAG.getNode(Opcode, DL, WidenVT, InVal);
2038       return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1));
2039     }
2040   }
2041 
2042   // Otherwise unroll into some nasty scalar code and rebuild the vector.
2043   SmallVector<SDValue, 16> Ops(WidenNumElts);
2044   EVT EltVT = WidenVT.getVectorElementType();
2045   unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2046   unsigned i;
2047   for (i=0; i < MinElts; ++i) {
2048     SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
2049                               DAG.getConstant(i, TLI.getVectorIdxTy()));
2050     if (N->getNumOperands() == 1)
2051       Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
2052     else
2053       Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1));
2054   }
2055 
2056   SDValue UndefVal = DAG.getUNDEF(EltVT);
2057   for (; i < WidenNumElts; ++i)
2058     Ops[i] = UndefVal;
2059 
2060   return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, Ops);
2061 }
2062 
WidenVecRes_POWI(SDNode * N)2063 SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
2064   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2065   SDValue InOp = GetWidenedVector(N->getOperand(0));
2066   SDValue ShOp = N->getOperand(1);
2067   return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
2068 }
2069 
WidenVecRes_Shift(SDNode * N)2070 SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
2071   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2072   SDValue InOp = GetWidenedVector(N->getOperand(0));
2073   SDValue ShOp = N->getOperand(1);
2074 
2075   EVT ShVT = ShOp.getValueType();
2076   if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
2077     ShOp = GetWidenedVector(ShOp);
2078     ShVT = ShOp.getValueType();
2079   }
2080   EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
2081                                    ShVT.getVectorElementType(),
2082                                    WidenVT.getVectorNumElements());
2083   if (ShVT != ShWidenVT)
2084     ShOp = ModifyToType(ShOp, ShWidenVT);
2085 
2086   return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
2087 }
2088 
WidenVecRes_Unary(SDNode * N)2089 SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
2090   // Unary op widening.
2091   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2092   SDValue InOp = GetWidenedVector(N->getOperand(0));
2093   return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
2094 }
2095 
WidenVecRes_InregOp(SDNode * N)2096 SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
2097   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2098   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
2099                                cast<VTSDNode>(N->getOperand(1))->getVT()
2100                                  .getVectorElementType(),
2101                                WidenVT.getVectorNumElements());
2102   SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
2103   return DAG.getNode(N->getOpcode(), SDLoc(N),
2104                      WidenVT, WidenLHS, DAG.getValueType(ExtVT));
2105 }
2106 
WidenVecRes_MERGE_VALUES(SDNode * N,unsigned ResNo)2107 SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
2108   SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
2109   return GetWidenedVector(WidenVec);
2110 }
2111 
WidenVecRes_BITCAST(SDNode * N)2112 SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
2113   SDValue InOp = N->getOperand(0);
2114   EVT InVT = InOp.getValueType();
2115   EVT VT = N->getValueType(0);
2116   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2117   SDLoc dl(N);
2118 
2119   switch (getTypeAction(InVT)) {
2120   case TargetLowering::TypeLegal:
2121     break;
2122   case TargetLowering::TypePromoteInteger:
2123     // If the incoming type is a vector that is being promoted, then
2124     // we know that the elements are arranged differently and that we
2125     // must perform the conversion using a stack slot.
2126     if (InVT.isVector())
2127       break;
2128 
2129     // If the InOp is promoted to the same size, convert it.  Otherwise,
2130     // fall out of the switch and widen the promoted input.
2131     InOp = GetPromotedInteger(InOp);
2132     InVT = InOp.getValueType();
2133     if (WidenVT.bitsEq(InVT))
2134       return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
2135     break;
2136   case TargetLowering::TypeSoftenFloat:
2137   case TargetLowering::TypePromoteFloat:
2138   case TargetLowering::TypeExpandInteger:
2139   case TargetLowering::TypeExpandFloat:
2140   case TargetLowering::TypeScalarizeVector:
2141   case TargetLowering::TypeSplitVector:
2142     break;
2143   case TargetLowering::TypeWidenVector:
2144     // If the InOp is widened to the same size, convert it.  Otherwise, fall
2145     // out of the switch and widen the widened input.
2146     InOp = GetWidenedVector(InOp);
2147     InVT = InOp.getValueType();
2148     if (WidenVT.bitsEq(InVT))
2149       // The input widens to the same size. Convert to the widen value.
2150       return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
2151     break;
2152   }
2153 
2154   unsigned WidenSize = WidenVT.getSizeInBits();
2155   unsigned InSize = InVT.getSizeInBits();
2156   // x86mmx is not an acceptable vector element type, so don't try.
2157   if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
2158     // Determine new input vector type.  The new input vector type will use
2159     // the same element type (if its a vector) or use the input type as a
2160     // vector.  It is the same size as the type to widen to.
2161     EVT NewInVT;
2162     unsigned NewNumElts = WidenSize / InSize;
2163     if (InVT.isVector()) {
2164       EVT InEltVT = InVT.getVectorElementType();
2165       NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
2166                                  WidenSize / InEltVT.getSizeInBits());
2167     } else {
2168       NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
2169     }
2170 
2171     if (TLI.isTypeLegal(NewInVT)) {
2172       // Because the result and the input are different vector types, widening
2173       // the result could create a legal type but widening the input might make
2174       // it an illegal type that might lead to repeatedly splitting the input
2175       // and then widening it. To avoid this, we widen the input only if
2176       // it results in a legal type.
2177       SmallVector<SDValue, 16> Ops(NewNumElts);
2178       SDValue UndefVal = DAG.getUNDEF(InVT);
2179       Ops[0] = InOp;
2180       for (unsigned i = 1; i < NewNumElts; ++i)
2181         Ops[i] = UndefVal;
2182 
2183       SDValue NewVec;
2184       if (InVT.isVector())
2185         NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewInVT, Ops);
2186       else
2187         NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl, NewInVT, Ops);
2188       return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
2189     }
2190   }
2191 
2192   return CreateStackStoreLoad(InOp, WidenVT);
2193 }
2194 
WidenVecRes_BUILD_VECTOR(SDNode * N)2195 SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
2196   SDLoc dl(N);
2197   // Build a vector with undefined for the new nodes.
2198   EVT VT = N->getValueType(0);
2199 
2200   // Integer BUILD_VECTOR operands may be larger than the node's vector element
2201   // type. The UNDEFs need to have the same type as the existing operands.
2202   EVT EltVT = N->getOperand(0).getValueType();
2203   unsigned NumElts = VT.getVectorNumElements();
2204 
2205   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2206   unsigned WidenNumElts = WidenVT.getVectorNumElements();
2207 
2208   SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
2209   assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
2210   NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
2211 
2212   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, NewOps);
2213 }
2214 
WidenVecRes_CONCAT_VECTORS(SDNode * N)2215 SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
2216   EVT InVT = N->getOperand(0).getValueType();
2217   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2218   SDLoc dl(N);
2219   unsigned WidenNumElts = WidenVT.getVectorNumElements();
2220   unsigned NumInElts = InVT.getVectorNumElements();
2221   unsigned NumOperands = N->getNumOperands();
2222 
2223   bool InputWidened = false; // Indicates we need to widen the input.
2224   if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
2225     if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
2226       // Add undef vectors to widen to correct length.
2227       unsigned NumConcat = WidenVT.getVectorNumElements() /
2228                            InVT.getVectorNumElements();
2229       SDValue UndefVal = DAG.getUNDEF(InVT);
2230       SmallVector<SDValue, 16> Ops(NumConcat);
2231       for (unsigned i=0; i < NumOperands; ++i)
2232         Ops[i] = N->getOperand(i);
2233       for (unsigned i = NumOperands; i != NumConcat; ++i)
2234         Ops[i] = UndefVal;
2235       return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, Ops);
2236     }
2237   } else {
2238     InputWidened = true;
2239     if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
2240       // The inputs and the result are widen to the same value.
2241       unsigned i;
2242       for (i=1; i < NumOperands; ++i)
2243         if (N->getOperand(i).getOpcode() != ISD::UNDEF)
2244           break;
2245 
2246       if (i == NumOperands)
2247         // Everything but the first operand is an UNDEF so just return the
2248         // widened first operand.
2249         return GetWidenedVector(N->getOperand(0));
2250 
2251       if (NumOperands == 2) {
2252         // Replace concat of two operands with a shuffle.
2253         SmallVector<int, 16> MaskOps(WidenNumElts, -1);
2254         for (unsigned i = 0; i < NumInElts; ++i) {
2255           MaskOps[i] = i;
2256           MaskOps[i + NumInElts] = i + WidenNumElts;
2257         }
2258         return DAG.getVectorShuffle(WidenVT, dl,
2259                                     GetWidenedVector(N->getOperand(0)),
2260                                     GetWidenedVector(N->getOperand(1)),
2261                                     &MaskOps[0]);
2262       }
2263     }
2264   }
2265 
2266   // Fall back to use extracts and build vector.
2267   EVT EltVT = WidenVT.getVectorElementType();
2268   SmallVector<SDValue, 16> Ops(WidenNumElts);
2269   unsigned Idx = 0;
2270   for (unsigned i=0; i < NumOperands; ++i) {
2271     SDValue InOp = N->getOperand(i);
2272     if (InputWidened)
2273       InOp = GetWidenedVector(InOp);
2274     for (unsigned j=0; j < NumInElts; ++j)
2275       Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2276                                DAG.getConstant(j, TLI.getVectorIdxTy()));
2277   }
2278   SDValue UndefVal = DAG.getUNDEF(EltVT);
2279   for (; Idx < WidenNumElts; ++Idx)
2280     Ops[Idx] = UndefVal;
2281   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2282 }
2283 
WidenVecRes_CONVERT_RNDSAT(SDNode * N)2284 SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
2285   SDLoc dl(N);
2286   SDValue InOp  = N->getOperand(0);
2287   SDValue RndOp = N->getOperand(3);
2288   SDValue SatOp = N->getOperand(4);
2289 
2290   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2291   unsigned WidenNumElts = WidenVT.getVectorNumElements();
2292 
2293   EVT InVT = InOp.getValueType();
2294   EVT InEltVT = InVT.getVectorElementType();
2295   EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
2296 
2297   SDValue DTyOp = DAG.getValueType(WidenVT);
2298   SDValue STyOp = DAG.getValueType(InWidenVT);
2299   ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
2300 
2301   unsigned InVTNumElts = InVT.getVectorNumElements();
2302   if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2303     InOp = GetWidenedVector(InOp);
2304     InVT = InOp.getValueType();
2305     InVTNumElts = InVT.getVectorNumElements();
2306     if (InVTNumElts == WidenNumElts)
2307       return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2308                                   SatOp, CvtCode);
2309   }
2310 
2311   if (TLI.isTypeLegal(InWidenVT)) {
2312     // Because the result and the input are different vector types, widening
2313     // the result could create a legal type but widening the input might make
2314     // it an illegal type that might lead to repeatedly splitting the input
2315     // and then widening it. To avoid this, we widen the input only if
2316     // it results in a legal type.
2317     if (WidenNumElts % InVTNumElts == 0) {
2318       // Widen the input and call convert on the widened input vector.
2319       unsigned NumConcat = WidenNumElts/InVTNumElts;
2320       SmallVector<SDValue, 16> Ops(NumConcat);
2321       Ops[0] = InOp;
2322       SDValue UndefVal = DAG.getUNDEF(InVT);
2323       for (unsigned i = 1; i != NumConcat; ++i)
2324         Ops[i] = UndefVal;
2325 
2326       InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, Ops);
2327       return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2328                                   SatOp, CvtCode);
2329     }
2330 
2331     if (InVTNumElts % WidenNumElts == 0) {
2332       // Extract the input and convert the shorten input vector.
2333       InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
2334                          DAG.getConstant(0, TLI.getVectorIdxTy()));
2335       return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2336                                   SatOp, CvtCode);
2337     }
2338   }
2339 
2340   // Otherwise unroll into some nasty scalar code and rebuild the vector.
2341   SmallVector<SDValue, 16> Ops(WidenNumElts);
2342   EVT EltVT = WidenVT.getVectorElementType();
2343   DTyOp = DAG.getValueType(EltVT);
2344   STyOp = DAG.getValueType(InEltVT);
2345 
2346   unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2347   unsigned i;
2348   for (i=0; i < MinElts; ++i) {
2349     SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2350                                  DAG.getConstant(i, TLI.getVectorIdxTy()));
2351     Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
2352                                   SatOp, CvtCode);
2353   }
2354 
2355   SDValue UndefVal = DAG.getUNDEF(EltVT);
2356   for (; i < WidenNumElts; ++i)
2357     Ops[i] = UndefVal;
2358 
2359   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2360 }
2361 
WidenVecRes_EXTRACT_SUBVECTOR(SDNode * N)2362 SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
2363   EVT      VT = N->getValueType(0);
2364   EVT      WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2365   unsigned WidenNumElts = WidenVT.getVectorNumElements();
2366   SDValue  InOp = N->getOperand(0);
2367   SDValue  Idx  = N->getOperand(1);
2368   SDLoc dl(N);
2369 
2370   if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2371     InOp = GetWidenedVector(InOp);
2372 
2373   EVT InVT = InOp.getValueType();
2374 
2375   // Check if we can just return the input vector after widening.
2376   uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
2377   if (IdxVal == 0 && InVT == WidenVT)
2378     return InOp;
2379 
2380   // Check if we can extract from the vector.
2381   unsigned InNumElts = InVT.getVectorNumElements();
2382   if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
2383     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
2384 
2385   // We could try widening the input to the right length but for now, extract
2386   // the original elements, fill the rest with undefs and build a vector.
2387   SmallVector<SDValue, 16> Ops(WidenNumElts);
2388   EVT EltVT = VT.getVectorElementType();
2389   unsigned NumElts = VT.getVectorNumElements();
2390   unsigned i;
2391   for (i=0; i < NumElts; ++i)
2392     Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2393                          DAG.getConstant(IdxVal+i, TLI.getVectorIdxTy()));
2394 
2395   SDValue UndefVal = DAG.getUNDEF(EltVT);
2396   for (; i < WidenNumElts; ++i)
2397     Ops[i] = UndefVal;
2398   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
2399 }
2400 
WidenVecRes_INSERT_VECTOR_ELT(SDNode * N)2401 SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
2402   SDValue InOp = GetWidenedVector(N->getOperand(0));
2403   return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
2404                      InOp.getValueType(), InOp,
2405                      N->getOperand(1), N->getOperand(2));
2406 }
2407 
WidenVecRes_LOAD(SDNode * N)2408 SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
2409   LoadSDNode *LD = cast<LoadSDNode>(N);
2410   ISD::LoadExtType ExtType = LD->getExtensionType();
2411 
2412   SDValue Result;
2413   SmallVector<SDValue, 16> LdChain;  // Chain for the series of load
2414   if (ExtType != ISD::NON_EXTLOAD)
2415     Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
2416   else
2417     Result = GenWidenVectorLoads(LdChain, LD);
2418 
2419   // If we generate a single load, we can use that for the chain.  Otherwise,
2420   // build a factor node to remember the multiple loads are independent and
2421   // chain to that.
2422   SDValue NewChain;
2423   if (LdChain.size() == 1)
2424     NewChain = LdChain[0];
2425   else
2426     NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, LdChain);
2427 
2428   // Modified the chain - switch anything that used the old chain to use
2429   // the new one.
2430   ReplaceValueWith(SDValue(N, 1), NewChain);
2431 
2432   return Result;
2433 }
2434 
WidenVecRes_MLOAD(MaskedLoadSDNode * N)2435 SDValue DAGTypeLegalizer::WidenVecRes_MLOAD(MaskedLoadSDNode *N) {
2436 
2437   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),N->getValueType(0));
2438   SDValue Mask = N->getMask();
2439   EVT MaskVT = Mask.getValueType();
2440   SDValue Src0 = GetWidenedVector(N->getSrc0());
2441   ISD::LoadExtType ExtType = N->getExtensionType();
2442   SDLoc dl(N);
2443 
2444   if (getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
2445     Mask = GetWidenedVector(Mask);
2446   else {
2447     EVT BoolVT = getSetCCResultType(WidenVT);
2448 
2449     // We can't use ModifyToType() because we should fill the mask with
2450     // zeroes
2451     unsigned WidenNumElts = BoolVT.getVectorNumElements();
2452     unsigned MaskNumElts = MaskVT.getVectorNumElements();
2453 
2454     unsigned NumConcat = WidenNumElts / MaskNumElts;
2455     SmallVector<SDValue, 16> Ops(NumConcat);
2456     SDValue ZeroVal = DAG.getConstant(0, MaskVT);
2457     Ops[0] = Mask;
2458     for (unsigned i = 1; i != NumConcat; ++i)
2459       Ops[i] = ZeroVal;
2460 
2461     Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
2462   }
2463 
2464   SDValue Res = DAG.getMaskedLoad(WidenVT, dl, N->getChain(), N->getBasePtr(),
2465                                   Mask, Src0, N->getMemoryVT(),
2466                                   N->getMemOperand(), ExtType);
2467   // Legalized the chain result - switch anything that used the old chain to
2468   // use the new one.
2469   ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
2470   return Res;
2471 }
2472 
WidenVecRes_SCALAR_TO_VECTOR(SDNode * N)2473 SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
2474   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2475   return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
2476                      WidenVT, N->getOperand(0));
2477 }
2478 
WidenVecRes_SELECT(SDNode * N)2479 SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
2480   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2481   unsigned WidenNumElts = WidenVT.getVectorNumElements();
2482 
2483   SDValue Cond1 = N->getOperand(0);
2484   EVT CondVT = Cond1.getValueType();
2485   if (CondVT.isVector()) {
2486     EVT CondEltVT = CondVT.getVectorElementType();
2487     EVT CondWidenVT =  EVT::getVectorVT(*DAG.getContext(),
2488                                         CondEltVT, WidenNumElts);
2489     if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
2490       Cond1 = GetWidenedVector(Cond1);
2491 
2492     // If we have to split the condition there is no point in widening the
2493     // select. This would result in an cycle of widening the select ->
2494     // widening the condition operand -> splitting the condition operand ->
2495     // splitting the select -> widening the select. Instead split this select
2496     // further and widen the resulting type.
2497     if (getTypeAction(CondVT) == TargetLowering::TypeSplitVector) {
2498       SDValue SplitSelect = SplitVecOp_VSELECT(N, 0);
2499       SDValue Res = ModifyToType(SplitSelect, WidenVT);
2500       return Res;
2501     }
2502 
2503     if (Cond1.getValueType() != CondWidenVT)
2504       Cond1 = ModifyToType(Cond1, CondWidenVT);
2505   }
2506 
2507   SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2508   SDValue InOp2 = GetWidenedVector(N->getOperand(2));
2509   assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
2510   return DAG.getNode(N->getOpcode(), SDLoc(N),
2511                      WidenVT, Cond1, InOp1, InOp2);
2512 }
2513 
WidenVecRes_SELECT_CC(SDNode * N)2514 SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
2515   SDValue InOp1 = GetWidenedVector(N->getOperand(2));
2516   SDValue InOp2 = GetWidenedVector(N->getOperand(3));
2517   return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
2518                      InOp1.getValueType(), N->getOperand(0),
2519                      N->getOperand(1), InOp1, InOp2, N->getOperand(4));
2520 }
2521 
WidenVecRes_SETCC(SDNode * N)2522 SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
2523   assert(N->getValueType(0).isVector() ==
2524          N->getOperand(0).getValueType().isVector() &&
2525          "Scalar/Vector type mismatch");
2526   if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
2527 
2528   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2529   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2530   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2531   return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
2532                      InOp1, InOp2, N->getOperand(2));
2533 }
2534 
WidenVecRes_UNDEF(SDNode * N)2535 SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
2536  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2537  return DAG.getUNDEF(WidenVT);
2538 }
2539 
WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode * N)2540 SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
2541   EVT VT = N->getValueType(0);
2542   SDLoc dl(N);
2543 
2544   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2545   unsigned NumElts = VT.getVectorNumElements();
2546   unsigned WidenNumElts = WidenVT.getVectorNumElements();
2547 
2548   SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2549   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2550 
2551   // Adjust mask based on new input vector length.
2552   SmallVector<int, 16> NewMask;
2553   for (unsigned i = 0; i != NumElts; ++i) {
2554     int Idx = N->getMaskElt(i);
2555     if (Idx < (int)NumElts)
2556       NewMask.push_back(Idx);
2557     else
2558       NewMask.push_back(Idx - NumElts + WidenNumElts);
2559   }
2560   for (unsigned i = NumElts; i != WidenNumElts; ++i)
2561     NewMask.push_back(-1);
2562   return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
2563 }
2564 
WidenVecRes_VSETCC(SDNode * N)2565 SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
2566   assert(N->getValueType(0).isVector() &&
2567          N->getOperand(0).getValueType().isVector() &&
2568          "Operands must be vectors");
2569   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2570   unsigned WidenNumElts = WidenVT.getVectorNumElements();
2571 
2572   SDValue InOp1 = N->getOperand(0);
2573   EVT InVT = InOp1.getValueType();
2574   assert(InVT.isVector() && "can not widen non-vector type");
2575   EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
2576                                    InVT.getVectorElementType(), WidenNumElts);
2577 
2578   // The input and output types often differ here, and it could be that while
2579   // we'd prefer to widen the result type, the input operands have been split.
2580   // In this case, we also need to split the result of this node as well.
2581   if (getTypeAction(InVT) == TargetLowering::TypeSplitVector) {
2582     SDValue SplitVSetCC = SplitVecOp_VSETCC(N);
2583     SDValue Res = ModifyToType(SplitVSetCC, WidenVT);
2584     return Res;
2585   }
2586 
2587   InOp1 = GetWidenedVector(InOp1);
2588   SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2589 
2590   // Assume that the input and output will be widen appropriately.  If not,
2591   // we will have to unroll it at some point.
2592   assert(InOp1.getValueType() == WidenInVT &&
2593          InOp2.getValueType() == WidenInVT &&
2594          "Input not widened to expected type!");
2595   (void)WidenInVT;
2596   return DAG.getNode(ISD::SETCC, SDLoc(N),
2597                      WidenVT, InOp1, InOp2, N->getOperand(2));
2598 }
2599 
2600 
2601 //===----------------------------------------------------------------------===//
2602 // Widen Vector Operand
2603 //===----------------------------------------------------------------------===//
WidenVectorOperand(SDNode * N,unsigned OpNo)2604 bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
2605   DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
2606         N->dump(&DAG);
2607         dbgs() << "\n");
2608   SDValue Res = SDValue();
2609 
2610   // See if the target wants to custom widen this node.
2611   if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2612     return false;
2613 
2614   switch (N->getOpcode()) {
2615   default:
2616 #ifndef NDEBUG
2617     dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
2618     N->dump(&DAG);
2619     dbgs() << "\n";
2620 #endif
2621     llvm_unreachable("Do not know how to widen this operator's operand!");
2622 
2623   case ISD::BITCAST:            Res = WidenVecOp_BITCAST(N); break;
2624   case ISD::CONCAT_VECTORS:     Res = WidenVecOp_CONCAT_VECTORS(N); break;
2625   case ISD::EXTRACT_SUBVECTOR:  Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
2626   case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
2627   case ISD::STORE:              Res = WidenVecOp_STORE(N); break;
2628   case ISD::MSTORE:             Res = WidenVecOp_MSTORE(N, OpNo); break;
2629   case ISD::SETCC:              Res = WidenVecOp_SETCC(N); break;
2630 
2631   case ISD::ANY_EXTEND:
2632   case ISD::SIGN_EXTEND:
2633   case ISD::ZERO_EXTEND:
2634     Res = WidenVecOp_EXTEND(N);
2635     break;
2636 
2637   case ISD::FP_EXTEND:
2638   case ISD::FP_TO_SINT:
2639   case ISD::FP_TO_UINT:
2640   case ISD::SINT_TO_FP:
2641   case ISD::UINT_TO_FP:
2642   case ISD::TRUNCATE:
2643     Res = WidenVecOp_Convert(N);
2644     break;
2645   }
2646 
2647   // If Res is null, the sub-method took care of registering the result.
2648   if (!Res.getNode()) return false;
2649 
2650   // If the result is N, the sub-method updated N in place.  Tell the legalizer
2651   // core about this.
2652   if (Res.getNode() == N)
2653     return true;
2654 
2655 
2656   assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2657          "Invalid operand expansion");
2658 
2659   ReplaceValueWith(SDValue(N, 0), Res);
2660   return false;
2661 }
2662 
WidenVecOp_EXTEND(SDNode * N)2663 SDValue DAGTypeLegalizer::WidenVecOp_EXTEND(SDNode *N) {
2664   SDLoc DL(N);
2665   EVT VT = N->getValueType(0);
2666 
2667   SDValue InOp = N->getOperand(0);
2668   // If some legalization strategy other than widening is used on the operand,
2669   // we can't safely assume that just extending the low lanes is the correct
2670   // transformation.
2671   if (getTypeAction(InOp.getValueType()) != TargetLowering::TypeWidenVector)
2672     return WidenVecOp_Convert(N);
2673   InOp = GetWidenedVector(InOp);
2674   assert(VT.getVectorNumElements() <
2675              InOp.getValueType().getVectorNumElements() &&
2676          "Input wasn't widened!");
2677 
2678   // We may need to further widen the operand until it has the same total
2679   // vector size as the result.
2680   EVT InVT = InOp.getValueType();
2681   if (InVT.getSizeInBits() != VT.getSizeInBits()) {
2682     EVT InEltVT = InVT.getVectorElementType();
2683     for (int i = MVT::FIRST_VECTOR_VALUETYPE, e = MVT::LAST_VECTOR_VALUETYPE; i < e; ++i) {
2684       EVT FixedVT = (MVT::SimpleValueType)i;
2685       EVT FixedEltVT = FixedVT.getVectorElementType();
2686       if (TLI.isTypeLegal(FixedVT) &&
2687           FixedVT.getSizeInBits() == VT.getSizeInBits() &&
2688           FixedEltVT == InEltVT) {
2689         assert(FixedVT.getVectorNumElements() >= VT.getVectorNumElements() &&
2690                "Not enough elements in the fixed type for the operand!");
2691         assert(FixedVT.getVectorNumElements() != InVT.getVectorNumElements() &&
2692                "We can't have the same type as we started with!");
2693         if (FixedVT.getVectorNumElements() > InVT.getVectorNumElements())
2694           InOp = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, FixedVT,
2695                              DAG.getUNDEF(FixedVT), InOp,
2696                              DAG.getConstant(0, TLI.getVectorIdxTy()));
2697         else
2698           InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, FixedVT, InOp,
2699                              DAG.getConstant(0, TLI.getVectorIdxTy()));
2700         break;
2701       }
2702     }
2703     InVT = InOp.getValueType();
2704     if (InVT.getSizeInBits() != VT.getSizeInBits())
2705       // We couldn't find a legal vector type that was a widening of the input
2706       // and could be extended in-register to the result type, so we have to
2707       // scalarize.
2708       return WidenVecOp_Convert(N);
2709   }
2710 
2711   // Use special DAG nodes to represent the operation of extending the
2712   // low lanes.
2713   switch (N->getOpcode()) {
2714   default:
2715     llvm_unreachable("Extend legalization on on extend operation!");
2716   case ISD::ANY_EXTEND:
2717     return DAG.getAnyExtendVectorInReg(InOp, DL, VT);
2718   case ISD::SIGN_EXTEND:
2719     return DAG.getSignExtendVectorInReg(InOp, DL, VT);
2720   case ISD::ZERO_EXTEND:
2721     return DAG.getZeroExtendVectorInReg(InOp, DL, VT);
2722   }
2723 }
2724 
WidenVecOp_Convert(SDNode * N)2725 SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
2726   // Since the result is legal and the input is illegal, it is unlikely
2727   // that we can fix the input to a legal type so unroll the convert
2728   // into some scalar code and create a nasty build vector.
2729   EVT VT = N->getValueType(0);
2730   EVT EltVT = VT.getVectorElementType();
2731   SDLoc dl(N);
2732   unsigned NumElts = VT.getVectorNumElements();
2733   SDValue InOp = N->getOperand(0);
2734   if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2735     InOp = GetWidenedVector(InOp);
2736   EVT InVT = InOp.getValueType();
2737   EVT InEltVT = InVT.getVectorElementType();
2738 
2739   unsigned Opcode = N->getOpcode();
2740   SmallVector<SDValue, 16> Ops(NumElts);
2741   for (unsigned i=0; i < NumElts; ++i)
2742     Ops[i] = DAG.getNode(Opcode, dl, EltVT,
2743                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2744                                      DAG.getConstant(i, TLI.getVectorIdxTy())));
2745 
2746   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2747 }
2748 
WidenVecOp_BITCAST(SDNode * N)2749 SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
2750   EVT VT = N->getValueType(0);
2751   SDValue InOp = GetWidenedVector(N->getOperand(0));
2752   EVT InWidenVT = InOp.getValueType();
2753   SDLoc dl(N);
2754 
2755   // Check if we can convert between two legal vector types and extract.
2756   unsigned InWidenSize = InWidenVT.getSizeInBits();
2757   unsigned Size = VT.getSizeInBits();
2758   // x86mmx is not an acceptable vector element type, so don't try.
2759   if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
2760     unsigned NewNumElts = InWidenSize / Size;
2761     EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
2762     if (TLI.isTypeLegal(NewVT)) {
2763       SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
2764       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
2765                          DAG.getConstant(0, TLI.getVectorIdxTy()));
2766     }
2767   }
2768 
2769   return CreateStackStoreLoad(InOp, VT);
2770 }
2771 
WidenVecOp_CONCAT_VECTORS(SDNode * N)2772 SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
2773   // If the input vector is not legal, it is likely that we will not find a
2774   // legal vector of the same size. Replace the concatenate vector with a
2775   // nasty build vector.
2776   EVT VT = N->getValueType(0);
2777   EVT EltVT = VT.getVectorElementType();
2778   SDLoc dl(N);
2779   unsigned NumElts = VT.getVectorNumElements();
2780   SmallVector<SDValue, 16> Ops(NumElts);
2781 
2782   EVT InVT = N->getOperand(0).getValueType();
2783   unsigned NumInElts = InVT.getVectorNumElements();
2784 
2785   unsigned Idx = 0;
2786   unsigned NumOperands = N->getNumOperands();
2787   for (unsigned i=0; i < NumOperands; ++i) {
2788     SDValue InOp = N->getOperand(i);
2789     if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2790       InOp = GetWidenedVector(InOp);
2791     for (unsigned j=0; j < NumInElts; ++j)
2792       Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2793                                DAG.getConstant(j, TLI.getVectorIdxTy()));
2794   }
2795   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2796 }
2797 
WidenVecOp_EXTRACT_SUBVECTOR(SDNode * N)2798 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
2799   SDValue InOp = GetWidenedVector(N->getOperand(0));
2800   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
2801                      N->getValueType(0), InOp, N->getOperand(1));
2802 }
2803 
WidenVecOp_EXTRACT_VECTOR_ELT(SDNode * N)2804 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2805   SDValue InOp = GetWidenedVector(N->getOperand(0));
2806   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
2807                      N->getValueType(0), InOp, N->getOperand(1));
2808 }
2809 
WidenVecOp_STORE(SDNode * N)2810 SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
2811   // We have to widen the value but we want only to store the original
2812   // vector type.
2813   StoreSDNode *ST = cast<StoreSDNode>(N);
2814 
2815   SmallVector<SDValue, 16> StChain;
2816   if (ST->isTruncatingStore())
2817     GenWidenVectorTruncStores(StChain, ST);
2818   else
2819     GenWidenVectorStores(StChain, ST);
2820 
2821   if (StChain.size() == 1)
2822     return StChain[0];
2823   else
2824     return DAG.getNode(ISD::TokenFactor, SDLoc(ST), MVT::Other, StChain);
2825 }
2826 
WidenVecOp_MSTORE(SDNode * N,unsigned OpNo)2827 SDValue DAGTypeLegalizer::WidenVecOp_MSTORE(SDNode *N, unsigned OpNo) {
2828   MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
2829   SDValue Mask = MST->getMask();
2830   EVT MaskVT = Mask.getValueType();
2831   SDValue StVal = MST->getValue();
2832   // Widen the value
2833   SDValue WideVal = GetWidenedVector(StVal);
2834   SDLoc dl(N);
2835 
2836   if (OpNo == 2 || getTypeAction(MaskVT) == TargetLowering::TypeWidenVector)
2837     Mask = GetWidenedVector(Mask);
2838   else {
2839     // The mask should be widened as well
2840     EVT BoolVT = getSetCCResultType(WideVal.getValueType());
2841     // We can't use ModifyToType() because we should fill the mask with
2842     // zeroes
2843     unsigned WidenNumElts = BoolVT.getVectorNumElements();
2844     unsigned MaskNumElts = MaskVT.getVectorNumElements();
2845 
2846     unsigned NumConcat = WidenNumElts / MaskNumElts;
2847     SmallVector<SDValue, 16> Ops(NumConcat);
2848     SDValue ZeroVal = DAG.getConstant(0, MaskVT);
2849     Ops[0] = Mask;
2850     for (unsigned i = 1; i != NumConcat; ++i)
2851       Ops[i] = ZeroVal;
2852 
2853     Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, BoolVT, Ops);
2854   }
2855   assert(Mask.getValueType().getVectorNumElements() ==
2856          WideVal.getValueType().getVectorNumElements() &&
2857          "Mask and data vectors should have the same number of elements");
2858   return DAG.getMaskedStore(MST->getChain(), dl, WideVal, MST->getBasePtr(),
2859                             Mask, MST->getMemoryVT(), MST->getMemOperand(),
2860                             false);
2861 }
2862 
WidenVecOp_SETCC(SDNode * N)2863 SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
2864   SDValue InOp0 = GetWidenedVector(N->getOperand(0));
2865   SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2866   SDLoc dl(N);
2867 
2868   // WARNING: In this code we widen the compare instruction with garbage.
2869   // This garbage may contain denormal floats which may be slow. Is this a real
2870   // concern ? Should we zero the unused lanes if this is a float compare ?
2871 
2872   // Get a new SETCC node to compare the newly widened operands.
2873   // Only some of the compared elements are legal.
2874   EVT SVT = TLI.getSetCCResultType(*DAG.getContext(), InOp0.getValueType());
2875   SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
2876                      SVT, InOp0, InOp1, N->getOperand(2));
2877 
2878   // Extract the needed results from the result vector.
2879   EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
2880                                SVT.getVectorElementType(),
2881                                N->getValueType(0).getVectorNumElements());
2882   SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
2883                            ResVT, WideSETCC, DAG.getConstant(0,
2884                                              TLI.getVectorIdxTy()));
2885 
2886   return PromoteTargetBoolean(CC, N->getValueType(0));
2887 }
2888 
2889 
2890 //===----------------------------------------------------------------------===//
2891 // Vector Widening Utilities
2892 //===----------------------------------------------------------------------===//
2893 
2894 // Utility function to find the type to chop up a widen vector for load/store
2895 //  TLI:       Target lowering used to determine legal types.
2896 //  Width:     Width left need to load/store.
2897 //  WidenVT:   The widen vector type to load to/store from
2898 //  Align:     If 0, don't allow use of a wider type
2899 //  WidenEx:   If Align is not 0, the amount additional we can load/store from.
2900 
FindMemType(SelectionDAG & DAG,const TargetLowering & TLI,unsigned Width,EVT WidenVT,unsigned Align=0,unsigned WidenEx=0)2901 static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
2902                        unsigned Width, EVT WidenVT,
2903                        unsigned Align = 0, unsigned WidenEx = 0) {
2904   EVT WidenEltVT = WidenVT.getVectorElementType();
2905   unsigned WidenWidth = WidenVT.getSizeInBits();
2906   unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
2907   unsigned AlignInBits = Align*8;
2908 
2909   // If we have one element to load/store, return it.
2910   EVT RetVT = WidenEltVT;
2911   if (Width == WidenEltWidth)
2912     return RetVT;
2913 
2914   // See if there is larger legal integer than the element type to load/store
2915   unsigned VT;
2916   for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
2917        VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
2918     EVT MemVT((MVT::SimpleValueType) VT);
2919     unsigned MemVTWidth = MemVT.getSizeInBits();
2920     if (MemVT.getSizeInBits() <= WidenEltWidth)
2921       break;
2922     if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
2923         isPowerOf2_32(WidenWidth / MemVTWidth) &&
2924         (MemVTWidth <= Width ||
2925          (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2926       RetVT = MemVT;
2927       break;
2928     }
2929   }
2930 
2931   // See if there is a larger vector type to load/store that has the same vector
2932   // element type and is evenly divisible with the WidenVT.
2933   for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
2934        VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
2935     EVT MemVT = (MVT::SimpleValueType) VT;
2936     unsigned MemVTWidth = MemVT.getSizeInBits();
2937     if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
2938         (WidenWidth % MemVTWidth) == 0 &&
2939         isPowerOf2_32(WidenWidth / MemVTWidth) &&
2940         (MemVTWidth <= Width ||
2941          (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2942       if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
2943         return MemVT;
2944     }
2945   }
2946 
2947   return RetVT;
2948 }
2949 
2950 // Builds a vector type from scalar loads
2951 //  VecTy: Resulting Vector type
2952 //  LDOps: Load operators to build a vector type
2953 //  [Start,End) the list of loads to use.
BuildVectorFromScalar(SelectionDAG & DAG,EVT VecTy,SmallVectorImpl<SDValue> & LdOps,unsigned Start,unsigned End)2954 static SDValue BuildVectorFromScalar(SelectionDAG& DAG, EVT VecTy,
2955                                      SmallVectorImpl<SDValue> &LdOps,
2956                                      unsigned Start, unsigned End) {
2957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2958   SDLoc dl(LdOps[Start]);
2959   EVT LdTy = LdOps[Start].getValueType();
2960   unsigned Width = VecTy.getSizeInBits();
2961   unsigned NumElts = Width / LdTy.getSizeInBits();
2962   EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
2963 
2964   unsigned Idx = 1;
2965   SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
2966 
2967   for (unsigned i = Start + 1; i != End; ++i) {
2968     EVT NewLdTy = LdOps[i].getValueType();
2969     if (NewLdTy != LdTy) {
2970       NumElts = Width / NewLdTy.getSizeInBits();
2971       NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
2972       VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
2973       // Readjust position and vector position based on new load type
2974       Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
2975       LdTy = NewLdTy;
2976     }
2977     VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
2978                         DAG.getConstant(Idx++, TLI.getVectorIdxTy()));
2979   }
2980   return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
2981 }
2982 
GenWidenVectorLoads(SmallVectorImpl<SDValue> & LdChain,LoadSDNode * LD)2983 SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
2984                                               LoadSDNode *LD) {
2985   // The strategy assumes that we can efficiently load powers of two widths.
2986   // The routines chops the vector into the largest vector loads with the same
2987   // element type or scalar loads and then recombines it to the widen vector
2988   // type.
2989   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
2990   unsigned WidenWidth = WidenVT.getSizeInBits();
2991   EVT LdVT    = LD->getMemoryVT();
2992   SDLoc dl(LD);
2993   assert(LdVT.isVector() && WidenVT.isVector());
2994   assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
2995 
2996   // Load information
2997   SDValue   Chain = LD->getChain();
2998   SDValue   BasePtr = LD->getBasePtr();
2999   unsigned  Align    = LD->getAlignment();
3000   bool      isVolatile = LD->isVolatile();
3001   bool      isNonTemporal = LD->isNonTemporal();
3002   bool      isInvariant = LD->isInvariant();
3003   AAMDNodes AAInfo = LD->getAAInfo();
3004 
3005   int LdWidth = LdVT.getSizeInBits();
3006   int WidthDiff = WidenWidth - LdWidth;          // Difference
3007   unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads
3008 
3009   // Find the vector type that can load from.
3010   EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
3011   int NewVTWidth = NewVT.getSizeInBits();
3012   SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
3013                              isVolatile, isNonTemporal, isInvariant, Align,
3014                              AAInfo);
3015   LdChain.push_back(LdOp.getValue(1));
3016 
3017   // Check if we can load the element with one instruction
3018   if (LdWidth <= NewVTWidth) {
3019     if (!NewVT.isVector()) {
3020       unsigned NumElts = WidenWidth / NewVTWidth;
3021       EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
3022       SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
3023       return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
3024     }
3025     if (NewVT == WidenVT)
3026       return LdOp;
3027 
3028     assert(WidenWidth % NewVTWidth == 0);
3029     unsigned NumConcat = WidenWidth / NewVTWidth;
3030     SmallVector<SDValue, 16> ConcatOps(NumConcat);
3031     SDValue UndefVal = DAG.getUNDEF(NewVT);
3032     ConcatOps[0] = LdOp;
3033     for (unsigned i = 1; i != NumConcat; ++i)
3034       ConcatOps[i] = UndefVal;
3035     return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, ConcatOps);
3036   }
3037 
3038   // Load vector by using multiple loads from largest vector to scalar
3039   SmallVector<SDValue, 16> LdOps;
3040   LdOps.push_back(LdOp);
3041 
3042   LdWidth -= NewVTWidth;
3043   unsigned Offset = 0;
3044 
3045   while (LdWidth > 0) {
3046     unsigned Increment = NewVTWidth / 8;
3047     Offset += Increment;
3048     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3049                           DAG.getConstant(Increment, BasePtr.getValueType()));
3050 
3051     SDValue L;
3052     if (LdWidth < NewVTWidth) {
3053       // Our current type we are using is too large, find a better size
3054       NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
3055       NewVTWidth = NewVT.getSizeInBits();
3056       L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
3057                       LD->getPointerInfo().getWithOffset(Offset), isVolatile,
3058                       isNonTemporal, isInvariant, MinAlign(Align, Increment),
3059                       AAInfo);
3060       LdChain.push_back(L.getValue(1));
3061       if (L->getValueType(0).isVector()) {
3062         SmallVector<SDValue, 16> Loads;
3063         Loads.push_back(L);
3064         unsigned size = L->getValueSizeInBits(0);
3065         while (size < LdOp->getValueSizeInBits(0)) {
3066           Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
3067           size += L->getValueSizeInBits(0);
3068         }
3069         L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0), Loads);
3070       }
3071     } else {
3072       L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
3073                       LD->getPointerInfo().getWithOffset(Offset), isVolatile,
3074                       isNonTemporal, isInvariant, MinAlign(Align, Increment),
3075                       AAInfo);
3076       LdChain.push_back(L.getValue(1));
3077     }
3078 
3079     LdOps.push_back(L);
3080 
3081 
3082     LdWidth -= NewVTWidth;
3083   }
3084 
3085   // Build the vector from the loads operations
3086   unsigned End = LdOps.size();
3087   if (!LdOps[0].getValueType().isVector())
3088     // All the loads are scalar loads.
3089     return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
3090 
3091   // If the load contains vectors, build the vector using concat vector.
3092   // All of the vectors used to loads are power of 2 and the scalars load
3093   // can be combined to make a power of 2 vector.
3094   SmallVector<SDValue, 16> ConcatOps(End);
3095   int i = End - 1;
3096   int Idx = End;
3097   EVT LdTy = LdOps[i].getValueType();
3098   // First combine the scalar loads to a vector
3099   if (!LdTy.isVector())  {
3100     for (--i; i >= 0; --i) {
3101       LdTy = LdOps[i].getValueType();
3102       if (LdTy.isVector())
3103         break;
3104     }
3105     ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End);
3106   }
3107   ConcatOps[--Idx] = LdOps[i];
3108   for (--i; i >= 0; --i) {
3109     EVT NewLdTy = LdOps[i].getValueType();
3110     if (NewLdTy != LdTy) {
3111       // Create a larger vector
3112       ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
3113                                      makeArrayRef(&ConcatOps[Idx], End - Idx));
3114       Idx = End - 1;
3115       LdTy = NewLdTy;
3116     }
3117     ConcatOps[--Idx] = LdOps[i];
3118   }
3119 
3120   if (WidenWidth == LdTy.getSizeInBits()*(End - Idx))
3121     return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
3122                        makeArrayRef(&ConcatOps[Idx], End - Idx));
3123 
3124   // We need to fill the rest with undefs to build the vector
3125   unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
3126   SmallVector<SDValue, 16> WidenOps(NumOps);
3127   SDValue UndefVal = DAG.getUNDEF(LdTy);
3128   {
3129     unsigned i = 0;
3130     for (; i != End-Idx; ++i)
3131       WidenOps[i] = ConcatOps[Idx+i];
3132     for (; i != NumOps; ++i)
3133       WidenOps[i] = UndefVal;
3134   }
3135   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, WidenOps);
3136 }
3137 
3138 SDValue
GenWidenVectorExtLoads(SmallVectorImpl<SDValue> & LdChain,LoadSDNode * LD,ISD::LoadExtType ExtType)3139 DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
3140                                          LoadSDNode *LD,
3141                                          ISD::LoadExtType ExtType) {
3142   // For extension loads, it may not be more efficient to chop up the vector
3143   // and then extended it.  Instead, we unroll the load and build a new vector.
3144   EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
3145   EVT LdVT    = LD->getMemoryVT();
3146   SDLoc dl(LD);
3147   assert(LdVT.isVector() && WidenVT.isVector());
3148 
3149   // Load information
3150   SDValue   Chain = LD->getChain();
3151   SDValue   BasePtr = LD->getBasePtr();
3152   unsigned  Align    = LD->getAlignment();
3153   bool      isVolatile = LD->isVolatile();
3154   bool      isNonTemporal = LD->isNonTemporal();
3155   bool      isInvariant = LD->isInvariant();
3156   AAMDNodes AAInfo = LD->getAAInfo();
3157 
3158   EVT EltVT = WidenVT.getVectorElementType();
3159   EVT LdEltVT = LdVT.getVectorElementType();
3160   unsigned NumElts = LdVT.getVectorNumElements();
3161 
3162   // Load each element and widen
3163   unsigned WidenNumElts = WidenVT.getVectorNumElements();
3164   SmallVector<SDValue, 16> Ops(WidenNumElts);
3165   unsigned Increment = LdEltVT.getSizeInBits() / 8;
3166   Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
3167                           LD->getPointerInfo(),
3168                           LdEltVT, isVolatile, isNonTemporal, isInvariant,
3169                           Align, AAInfo);
3170   LdChain.push_back(Ops[0].getValue(1));
3171   unsigned i = 0, Offset = Increment;
3172   for (i=1; i < NumElts; ++i, Offset += Increment) {
3173     SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
3174                                      BasePtr,
3175                                      DAG.getConstant(Offset,
3176                                                      BasePtr.getValueType()));
3177     Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
3178                             LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
3179                             isVolatile, isNonTemporal, isInvariant, Align,
3180                             AAInfo);
3181     LdChain.push_back(Ops[i].getValue(1));
3182   }
3183 
3184   // Fill the rest with undefs
3185   SDValue UndefVal = DAG.getUNDEF(EltVT);
3186   for (; i != WidenNumElts; ++i)
3187     Ops[i] = UndefVal;
3188 
3189   return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, Ops);
3190 }
3191 
3192 
GenWidenVectorStores(SmallVectorImpl<SDValue> & StChain,StoreSDNode * ST)3193 void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
3194                                             StoreSDNode *ST) {
3195   // The strategy assumes that we can efficiently store powers of two widths.
3196   // The routines chops the vector into the largest vector stores with the same
3197   // element type or scalar stores.
3198   SDValue  Chain = ST->getChain();
3199   SDValue  BasePtr = ST->getBasePtr();
3200   unsigned Align = ST->getAlignment();
3201   bool     isVolatile = ST->isVolatile();
3202   bool     isNonTemporal = ST->isNonTemporal();
3203   AAMDNodes AAInfo = ST->getAAInfo();
3204   SDValue  ValOp = GetWidenedVector(ST->getValue());
3205   SDLoc dl(ST);
3206 
3207   EVT StVT = ST->getMemoryVT();
3208   unsigned StWidth = StVT.getSizeInBits();
3209   EVT ValVT = ValOp.getValueType();
3210   unsigned ValWidth = ValVT.getSizeInBits();
3211   EVT ValEltVT = ValVT.getVectorElementType();
3212   unsigned ValEltWidth = ValEltVT.getSizeInBits();
3213   assert(StVT.getVectorElementType() == ValEltVT);
3214 
3215   int Idx = 0;          // current index to store
3216   unsigned Offset = 0;  // offset from base to store
3217   while (StWidth != 0) {
3218     // Find the largest vector type we can store with
3219     EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
3220     unsigned NewVTWidth = NewVT.getSizeInBits();
3221     unsigned Increment = NewVTWidth / 8;
3222     if (NewVT.isVector()) {
3223       unsigned NumVTElts = NewVT.getVectorNumElements();
3224       do {
3225         SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
3226                                    DAG.getConstant(Idx, TLI.getVectorIdxTy()));
3227         StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
3228                                     ST->getPointerInfo().getWithOffset(Offset),
3229                                        isVolatile, isNonTemporal,
3230                                        MinAlign(Align, Offset), AAInfo));
3231         StWidth -= NewVTWidth;
3232         Offset += Increment;
3233         Idx += NumVTElts;
3234         BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3235                               DAG.getConstant(Increment, BasePtr.getValueType()));
3236       } while (StWidth != 0 && StWidth >= NewVTWidth);
3237     } else {
3238       // Cast the vector to the scalar type we can store
3239       unsigned NumElts = ValWidth / NewVTWidth;
3240       EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
3241       SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
3242       // Readjust index position based on new vector type
3243       Idx = Idx * ValEltWidth / NewVTWidth;
3244       do {
3245         SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
3246                       DAG.getConstant(Idx++, TLI.getVectorIdxTy()));
3247         StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
3248                                     ST->getPointerInfo().getWithOffset(Offset),
3249                                        isVolatile, isNonTemporal,
3250                                        MinAlign(Align, Offset), AAInfo));
3251         StWidth -= NewVTWidth;
3252         Offset += Increment;
3253         BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
3254                             DAG.getConstant(Increment, BasePtr.getValueType()));
3255       } while (StWidth != 0 && StWidth >= NewVTWidth);
3256       // Restore index back to be relative to the original widen element type
3257       Idx = Idx * NewVTWidth / ValEltWidth;
3258     }
3259   }
3260 }
3261 
3262 void
GenWidenVectorTruncStores(SmallVectorImpl<SDValue> & StChain,StoreSDNode * ST)3263 DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
3264                                             StoreSDNode *ST) {
3265   // For extension loads, it may not be more efficient to truncate the vector
3266   // and then store it.  Instead, we extract each element and then store it.
3267   SDValue  Chain = ST->getChain();
3268   SDValue  BasePtr = ST->getBasePtr();
3269   unsigned Align = ST->getAlignment();
3270   bool     isVolatile = ST->isVolatile();
3271   bool     isNonTemporal = ST->isNonTemporal();
3272   AAMDNodes AAInfo = ST->getAAInfo();
3273   SDValue  ValOp = GetWidenedVector(ST->getValue());
3274   SDLoc dl(ST);
3275 
3276   EVT StVT = ST->getMemoryVT();
3277   EVT ValVT = ValOp.getValueType();
3278 
3279   // It must be true that we the widen vector type is bigger than where
3280   // we need to store.
3281   assert(StVT.isVector() && ValOp.getValueType().isVector());
3282   assert(StVT.bitsLT(ValOp.getValueType()));
3283 
3284   // For truncating stores, we can not play the tricks of chopping legal
3285   // vector types and bit cast it to the right type.  Instead, we unroll
3286   // the store.
3287   EVT StEltVT  = StVT.getVectorElementType();
3288   EVT ValEltVT = ValVT.getVectorElementType();
3289   unsigned Increment = ValEltVT.getSizeInBits() / 8;
3290   unsigned NumElts = StVT.getVectorNumElements();
3291   SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
3292                             DAG.getConstant(0, TLI.getVectorIdxTy()));
3293   StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
3294                                       ST->getPointerInfo(), StEltVT,
3295                                       isVolatile, isNonTemporal, Align,
3296                                       AAInfo));
3297   unsigned Offset = Increment;
3298   for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
3299     SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
3300                                      BasePtr, DAG.getConstant(Offset,
3301                                                        BasePtr.getValueType()));
3302     SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
3303                             DAG.getConstant(0, TLI.getVectorIdxTy()));
3304     StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
3305                                       ST->getPointerInfo().getWithOffset(Offset),
3306                                         StEltVT, isVolatile, isNonTemporal,
3307                                         MinAlign(Align, Offset), AAInfo));
3308   }
3309 }
3310 
3311 /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
3312 /// input vector must have the same element type as NVT.
ModifyToType(SDValue InOp,EVT NVT)3313 SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
3314   // Note that InOp might have been widened so it might already have
3315   // the right width or it might need be narrowed.
3316   EVT InVT = InOp.getValueType();
3317   assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
3318          "input and widen element type must match");
3319   SDLoc dl(InOp);
3320 
3321   // Check if InOp already has the right width.
3322   if (InVT == NVT)
3323     return InOp;
3324 
3325   unsigned InNumElts = InVT.getVectorNumElements();
3326   unsigned WidenNumElts = NVT.getVectorNumElements();
3327   if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
3328     unsigned NumConcat = WidenNumElts / InNumElts;
3329     SmallVector<SDValue, 16> Ops(NumConcat);
3330     SDValue UndefVal = DAG.getUNDEF(InVT);
3331     Ops[0] = InOp;
3332     for (unsigned i = 1; i != NumConcat; ++i)
3333       Ops[i] = UndefVal;
3334 
3335     return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, Ops);
3336   }
3337 
3338   if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
3339     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
3340                        DAG.getConstant(0, TLI.getVectorIdxTy()));
3341 
3342   // Fall back to extract and build.
3343   SmallVector<SDValue, 16> Ops(WidenNumElts);
3344   EVT EltVT = NVT.getVectorElementType();
3345   unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
3346   unsigned Idx;
3347   for (Idx = 0; Idx < MinNumElts; ++Idx)
3348     Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
3349                            DAG.getConstant(Idx, TLI.getVectorIdxTy()));
3350 
3351   SDValue UndefVal = DAG.getUNDEF(EltVT);
3352   for ( ; Idx < WidenNumElts; ++Idx)
3353     Ops[Idx] = UndefVal;
3354   return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops);
3355 }
3356