1 //===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file is a part of MemorySanitizer, a detector of uninitialized
11 /// reads.
12 ///
13 /// The algorithm of the tool is similar to Memcheck
14 /// (http://goo.gl/QKbem). We associate a few shadow bits with every
15 /// byte of the application memory, poison the shadow of the malloc-ed
16 /// or alloca-ed memory, load the shadow bits on every memory read,
17 /// propagate the shadow bits through some of the arithmetic
18 /// instruction (including MOV), store the shadow bits on every memory
19 /// write, report a bug on some other instructions (e.g. JMP) if the
20 /// associated shadow is poisoned.
21 ///
22 /// But there are differences too. The first and the major one:
23 /// compiler instrumentation instead of binary instrumentation. This
24 /// gives us much better register allocation, possible compiler
25 /// optimizations and a fast start-up. But this brings the major issue
26 /// as well: msan needs to see all program events, including system
27 /// calls and reads/writes in system libraries, so we either need to
28 /// compile *everything* with msan or use a binary translation
29 /// component (e.g. DynamoRIO) to instrument pre-built libraries.
30 /// Another difference from Memcheck is that we use 8 shadow bits per
31 /// byte of application memory and use a direct shadow mapping. This
32 /// greatly simplifies the instrumentation code and avoids races on
33 /// shadow updates (Memcheck is single-threaded so races are not a
34 /// concern there. Memcheck uses 2 shadow bits per byte with a slow
35 /// path storage that uses 8 bits per byte).
36 ///
37 /// The default value of shadow is 0, which means "clean" (not poisoned).
38 ///
39 /// Every module initializer should call __msan_init to ensure that the
40 /// shadow memory is ready. On error, __msan_warning is called. Since
41 /// parameters and return values may be passed via registers, we have a
42 /// specialized thread-local shadow for return values
43 /// (__msan_retval_tls) and parameters (__msan_param_tls).
44 ///
45 /// Origin tracking.
46 ///
47 /// MemorySanitizer can track origins (allocation points) of all uninitialized
48 /// values. This behavior is controlled with a flag (msan-track-origins) and is
49 /// disabled by default.
50 ///
51 /// Origins are 4-byte values created and interpreted by the runtime library.
52 /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53 /// of application memory. Propagation of origins is basically a bunch of
54 /// "select" instructions that pick the origin of a dirty argument, if an
55 /// instruction has one.
56 ///
57 /// Every 4 aligned, consecutive bytes of application memory have one origin
58 /// value associated with them. If these bytes contain uninitialized data
59 /// coming from 2 different allocations, the last store wins. Because of this,
60 /// MemorySanitizer reports can show unrelated origins, but this is unlikely in
61 /// practice.
62 ///
63 /// Origins are meaningless for fully initialized values, so MemorySanitizer
64 /// avoids storing origin to memory when a fully initialized value is stored.
65 /// This way it avoids needless overwritting origin of the 4-byte region on
66 /// a short (i.e. 1 byte) clean store, and it is also good for performance.
67 ///
68 /// Atomic handling.
69 ///
70 /// Ideally, every atomic store of application value should update the
71 /// corresponding shadow location in an atomic way. Unfortunately, atomic store
72 /// of two disjoint locations can not be done without severe slowdown.
73 ///
74 /// Therefore, we implement an approximation that may err on the safe side.
75 /// In this implementation, every atomically accessed location in the program
76 /// may only change from (partially) uninitialized to fully initialized, but
77 /// not the other way around. We load the shadow _after_ the application load,
78 /// and we store the shadow _before_ the app store. Also, we always store clean
79 /// shadow (if the application store is atomic). This way, if the store-load
80 /// pair constitutes a happens-before arc, shadow store and load are correctly
81 /// ordered such that the load will get either the value that was stored, or
82 /// some later value (which is always clean).
83 ///
84 /// This does not work very well with Compare-And-Swap (CAS) and
85 /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86 /// must store the new shadow before the app operation, and load the shadow
87 /// after the app operation. Computers don't work this way. Current
88 /// implementation ignores the load aspect of CAS/RMW, always returning a clean
89 /// value. It implements the store part as a simple atomic store by storing a
90 /// clean shadow.
91
92 //===----------------------------------------------------------------------===//
93
94 #include "llvm/Transforms/Instrumentation.h"
95 #include "llvm/ADT/DepthFirstIterator.h"
96 #include "llvm/ADT/SmallString.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/ADT/StringExtras.h"
99 #include "llvm/ADT/Triple.h"
100 #include "llvm/IR/DataLayout.h"
101 #include "llvm/IR/Function.h"
102 #include "llvm/IR/IRBuilder.h"
103 #include "llvm/IR/InlineAsm.h"
104 #include "llvm/IR/InstVisitor.h"
105 #include "llvm/IR/IntrinsicInst.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/MDBuilder.h"
108 #include "llvm/IR/Module.h"
109 #include "llvm/IR/Type.h"
110 #include "llvm/IR/ValueMap.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/Debug.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/ModuleUtils.h"
118
119 using namespace llvm;
120
121 #define DEBUG_TYPE "msan"
122
123 static const unsigned kOriginSize = 4;
124 static const unsigned kMinOriginAlignment = 4;
125 static const unsigned kShadowTLSAlignment = 8;
126
127 // These constants must be kept in sync with the ones in msan.h.
128 static const unsigned kParamTLSSize = 800;
129 static const unsigned kRetvalTLSSize = 800;
130
131 // Accesses sizes are powers of two: 1, 2, 4, 8.
132 static const size_t kNumberOfAccessSizes = 4;
133
134 /// \brief Track origins of uninitialized values.
135 ///
136 /// Adds a section to MemorySanitizer report that points to the allocation
137 /// (stack or heap) the uninitialized bits came from originally.
138 static cl::opt<int> ClTrackOrigins("msan-track-origins",
139 cl::desc("Track origins (allocation sites) of poisoned memory"),
140 cl::Hidden, cl::init(0));
141 static cl::opt<bool> ClKeepGoing("msan-keep-going",
142 cl::desc("keep going after reporting a UMR"),
143 cl::Hidden, cl::init(false));
144 static cl::opt<bool> ClPoisonStack("msan-poison-stack",
145 cl::desc("poison uninitialized stack variables"),
146 cl::Hidden, cl::init(true));
147 static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
148 cl::desc("poison uninitialized stack variables with a call"),
149 cl::Hidden, cl::init(false));
150 static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
151 cl::desc("poison uninitialized stack variables with the given patter"),
152 cl::Hidden, cl::init(0xff));
153 static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
154 cl::desc("poison undef temps"),
155 cl::Hidden, cl::init(true));
156
157 static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
158 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
159 cl::Hidden, cl::init(true));
160
161 static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
162 cl::desc("exact handling of relational integer ICmp"),
163 cl::Hidden, cl::init(false));
164
165 // This flag controls whether we check the shadow of the address
166 // operand of load or store. Such bugs are very rare, since load from
167 // a garbage address typically results in SEGV, but still happen
168 // (e.g. only lower bits of address are garbage, or the access happens
169 // early at program startup where malloc-ed memory is more likely to
170 // be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
171 static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
172 cl::desc("report accesses through a pointer which has poisoned shadow"),
173 cl::Hidden, cl::init(true));
174
175 static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
176 cl::desc("print out instructions with default strict semantics"),
177 cl::Hidden, cl::init(false));
178
179 static cl::opt<int> ClInstrumentationWithCallThreshold(
180 "msan-instrumentation-with-call-threshold",
181 cl::desc(
182 "If the function being instrumented requires more than "
183 "this number of checks and origin stores, use callbacks instead of "
184 "inline checks (-1 means never use callbacks)."),
185 cl::Hidden, cl::init(3500));
186
187 // This is an experiment to enable handling of cases where shadow is a non-zero
188 // compile-time constant. For some unexplainable reason they were silently
189 // ignored in the instrumentation.
190 static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
191 cl::desc("Insert checks for constant shadow values"),
192 cl::Hidden, cl::init(false));
193
194 namespace {
195
196 // Memory map parameters used in application-to-shadow address calculation.
197 // Offset = (Addr & ~AndMask) ^ XorMask
198 // Shadow = ShadowBase + Offset
199 // Origin = OriginBase + Offset
200 struct MemoryMapParams {
201 uint64_t AndMask;
202 uint64_t XorMask;
203 uint64_t ShadowBase;
204 uint64_t OriginBase;
205 };
206
207 struct PlatformMemoryMapParams {
208 const MemoryMapParams *bits32;
209 const MemoryMapParams *bits64;
210 };
211
212 // i386 Linux
213 static const MemoryMapParams Linux_I386_MemoryMapParams = {
214 0x000080000000, // AndMask
215 0, // XorMask (not used)
216 0, // ShadowBase (not used)
217 0x000040000000, // OriginBase
218 };
219
220 // x86_64 Linux
221 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
222 0x400000000000, // AndMask
223 0, // XorMask (not used)
224 0, // ShadowBase (not used)
225 0x200000000000, // OriginBase
226 };
227
228 // mips64 Linux
229 static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
230 0x004000000000, // AndMask
231 0, // XorMask (not used)
232 0, // ShadowBase (not used)
233 0x002000000000, // OriginBase
234 };
235
236 // i386 FreeBSD
237 static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
238 0x000180000000, // AndMask
239 0x000040000000, // XorMask
240 0x000020000000, // ShadowBase
241 0x000700000000, // OriginBase
242 };
243
244 // x86_64 FreeBSD
245 static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
246 0xc00000000000, // AndMask
247 0x200000000000, // XorMask
248 0x100000000000, // ShadowBase
249 0x380000000000, // OriginBase
250 };
251
252 static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
253 &Linux_I386_MemoryMapParams,
254 &Linux_X86_64_MemoryMapParams,
255 };
256
257 static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
258 NULL,
259 &Linux_MIPS64_MemoryMapParams,
260 };
261
262 static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
263 &FreeBSD_I386_MemoryMapParams,
264 &FreeBSD_X86_64_MemoryMapParams,
265 };
266
267 /// \brief An instrumentation pass implementing detection of uninitialized
268 /// reads.
269 ///
270 /// MemorySanitizer: instrument the code in module to find
271 /// uninitialized reads.
272 class MemorySanitizer : public FunctionPass {
273 public:
MemorySanitizer(int TrackOrigins=0)274 MemorySanitizer(int TrackOrigins = 0)
275 : FunctionPass(ID),
276 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
277 WarningFn(nullptr) {}
getPassName() const278 const char *getPassName() const override { return "MemorySanitizer"; }
279 bool runOnFunction(Function &F) override;
280 bool doInitialization(Module &M) override;
281 static char ID; // Pass identification, replacement for typeid.
282
283 private:
284 void initializeCallbacks(Module &M);
285
286 /// \brief Track origins (allocation points) of uninitialized values.
287 int TrackOrigins;
288
289 LLVMContext *C;
290 Type *IntptrTy;
291 Type *OriginTy;
292 /// \brief Thread-local shadow storage for function parameters.
293 GlobalVariable *ParamTLS;
294 /// \brief Thread-local origin storage for function parameters.
295 GlobalVariable *ParamOriginTLS;
296 /// \brief Thread-local shadow storage for function return value.
297 GlobalVariable *RetvalTLS;
298 /// \brief Thread-local origin storage for function return value.
299 GlobalVariable *RetvalOriginTLS;
300 /// \brief Thread-local shadow storage for in-register va_arg function
301 /// parameters (x86_64-specific).
302 GlobalVariable *VAArgTLS;
303 /// \brief Thread-local shadow storage for va_arg overflow area
304 /// (x86_64-specific).
305 GlobalVariable *VAArgOverflowSizeTLS;
306 /// \brief Thread-local space used to pass origin value to the UMR reporting
307 /// function.
308 GlobalVariable *OriginTLS;
309
310 /// \brief The run-time callback to print a warning.
311 Value *WarningFn;
312 // These arrays are indexed by log2(AccessSize).
313 Value *MaybeWarningFn[kNumberOfAccessSizes];
314 Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
315
316 /// \brief Run-time helper that generates a new origin value for a stack
317 /// allocation.
318 Value *MsanSetAllocaOrigin4Fn;
319 /// \brief Run-time helper that poisons stack on function entry.
320 Value *MsanPoisonStackFn;
321 /// \brief Run-time helper that records a store (or any event) of an
322 /// uninitialized value and returns an updated origin id encoding this info.
323 Value *MsanChainOriginFn;
324 /// \brief MSan runtime replacements for memmove, memcpy and memset.
325 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
326
327 /// \brief Memory map parameters used in application-to-shadow calculation.
328 const MemoryMapParams *MapParams;
329
330 MDNode *ColdCallWeights;
331 /// \brief Branch weights for origin store.
332 MDNode *OriginStoreWeights;
333 /// \brief An empty volatile inline asm that prevents callback merge.
334 InlineAsm *EmptyAsm;
335
336 friend struct MemorySanitizerVisitor;
337 friend struct VarArgAMD64Helper;
338 friend struct VarArgMIPS64Helper;
339 };
340 } // namespace
341
342 char MemorySanitizer::ID = 0;
343 INITIALIZE_PASS(MemorySanitizer, "msan",
344 "MemorySanitizer: detects uninitialized reads.",
345 false, false)
346
createMemorySanitizerPass(int TrackOrigins)347 FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
348 return new MemorySanitizer(TrackOrigins);
349 }
350
351 /// \brief Create a non-const global initialized with the given string.
352 ///
353 /// Creates a writable global for Str so that we can pass it to the
354 /// run-time lib. Runtime uses first 4 bytes of the string to store the
355 /// frame ID, so the string needs to be mutable.
createPrivateNonConstGlobalForString(Module & M,StringRef Str)356 static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
357 StringRef Str) {
358 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
359 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
360 GlobalValue::PrivateLinkage, StrConst, "");
361 }
362
363
364 /// \brief Insert extern declaration of runtime-provided functions and globals.
initializeCallbacks(Module & M)365 void MemorySanitizer::initializeCallbacks(Module &M) {
366 // Only do this once.
367 if (WarningFn)
368 return;
369
370 IRBuilder<> IRB(*C);
371 // Create the callback.
372 // FIXME: this function should have "Cold" calling conv,
373 // which is not yet implemented.
374 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
375 : "__msan_warning_noreturn";
376 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
377
378 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
379 AccessSizeIndex++) {
380 unsigned AccessSize = 1 << AccessSizeIndex;
381 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
382 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
383 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
384 IRB.getInt32Ty(), nullptr);
385
386 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
387 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
388 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
389 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
390 }
391
392 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
393 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
394 IRB.getInt8PtrTy(), IntptrTy, nullptr);
395 MsanPoisonStackFn =
396 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
397 IRB.getInt8PtrTy(), IntptrTy, nullptr);
398 MsanChainOriginFn = M.getOrInsertFunction(
399 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
400 MemmoveFn = M.getOrInsertFunction(
401 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
402 IRB.getInt8PtrTy(), IntptrTy, nullptr);
403 MemcpyFn = M.getOrInsertFunction(
404 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
405 IntptrTy, nullptr);
406 MemsetFn = M.getOrInsertFunction(
407 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
408 IntptrTy, nullptr);
409
410 // Create globals.
411 RetvalTLS = new GlobalVariable(
412 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
413 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
414 GlobalVariable::InitialExecTLSModel);
415 RetvalOriginTLS = new GlobalVariable(
416 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
417 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
418
419 ParamTLS = new GlobalVariable(
420 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
421 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
422 GlobalVariable::InitialExecTLSModel);
423 ParamOriginTLS = new GlobalVariable(
424 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
425 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
426 nullptr, GlobalVariable::InitialExecTLSModel);
427
428 VAArgTLS = new GlobalVariable(
429 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
430 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
431 GlobalVariable::InitialExecTLSModel);
432 VAArgOverflowSizeTLS = new GlobalVariable(
433 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
434 "__msan_va_arg_overflow_size_tls", nullptr,
435 GlobalVariable::InitialExecTLSModel);
436 OriginTLS = new GlobalVariable(
437 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
438 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
439
440 // We insert an empty inline asm after __msan_report* to avoid callback merge.
441 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
442 StringRef(""), StringRef(""),
443 /*hasSideEffects=*/true);
444 }
445
446 /// \brief Module-level initialization.
447 ///
448 /// inserts a call to __msan_init to the module's constructor list.
doInitialization(Module & M)449 bool MemorySanitizer::doInitialization(Module &M) {
450 auto &DL = M.getDataLayout();
451
452 Triple TargetTriple(M.getTargetTriple());
453 switch (TargetTriple.getOS()) {
454 case Triple::FreeBSD:
455 switch (TargetTriple.getArch()) {
456 case Triple::x86_64:
457 MapParams = FreeBSD_X86_MemoryMapParams.bits64;
458 break;
459 case Triple::x86:
460 MapParams = FreeBSD_X86_MemoryMapParams.bits32;
461 break;
462 default:
463 report_fatal_error("unsupported architecture");
464 }
465 break;
466 case Triple::Linux:
467 switch (TargetTriple.getArch()) {
468 case Triple::x86_64:
469 MapParams = Linux_X86_MemoryMapParams.bits64;
470 break;
471 case Triple::x86:
472 MapParams = Linux_X86_MemoryMapParams.bits32;
473 break;
474 case Triple::mips64:
475 case Triple::mips64el:
476 MapParams = Linux_MIPS_MemoryMapParams.bits64;
477 break;
478 default:
479 report_fatal_error("unsupported architecture");
480 }
481 break;
482 default:
483 report_fatal_error("unsupported operating system");
484 }
485
486 C = &(M.getContext());
487 IRBuilder<> IRB(*C);
488 IntptrTy = IRB.getIntPtrTy(DL);
489 OriginTy = IRB.getInt32Ty();
490
491 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
492 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
493
494 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
495 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
496 "__msan_init", IRB.getVoidTy(), nullptr)), 0);
497
498 if (TrackOrigins)
499 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
500 IRB.getInt32(TrackOrigins), "__msan_track_origins");
501
502 if (ClKeepGoing)
503 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
504 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
505
506 return true;
507 }
508
509 namespace {
510
511 /// \brief A helper class that handles instrumentation of VarArg
512 /// functions on a particular platform.
513 ///
514 /// Implementations are expected to insert the instrumentation
515 /// necessary to propagate argument shadow through VarArg function
516 /// calls. Visit* methods are called during an InstVisitor pass over
517 /// the function, and should avoid creating new basic blocks. A new
518 /// instance of this class is created for each instrumented function.
519 struct VarArgHelper {
520 /// \brief Visit a CallSite.
521 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
522
523 /// \brief Visit a va_start call.
524 virtual void visitVAStartInst(VAStartInst &I) = 0;
525
526 /// \brief Visit a va_copy call.
527 virtual void visitVACopyInst(VACopyInst &I) = 0;
528
529 /// \brief Finalize function instrumentation.
530 ///
531 /// This method is called after visiting all interesting (see above)
532 /// instructions in a function.
533 virtual void finalizeInstrumentation() = 0;
534
~VarArgHelper__anone66e8aa50211::VarArgHelper535 virtual ~VarArgHelper() {}
536 };
537
538 struct MemorySanitizerVisitor;
539
540 VarArgHelper*
541 CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
542 MemorySanitizerVisitor &Visitor);
543
TypeSizeToSizeIndex(unsigned TypeSize)544 unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
545 if (TypeSize <= 8) return 0;
546 return Log2_32_Ceil(TypeSize / 8);
547 }
548
549 /// This class does all the work for a given function. Store and Load
550 /// instructions store and load corresponding shadow and origin
551 /// values. Most instructions propagate shadow from arguments to their
552 /// return values. Certain instructions (most importantly, BranchInst)
553 /// test their argument shadow and print reports (with a runtime call) if it's
554 /// non-zero.
555 struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
556 Function &F;
557 MemorySanitizer &MS;
558 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
559 ValueMap<Value*, Value*> ShadowMap, OriginMap;
560 std::unique_ptr<VarArgHelper> VAHelper;
561
562 // The following flags disable parts of MSan instrumentation based on
563 // blacklist contents and command-line options.
564 bool InsertChecks;
565 bool PropagateShadow;
566 bool PoisonStack;
567 bool PoisonUndef;
568 bool CheckReturnValue;
569
570 struct ShadowOriginAndInsertPoint {
571 Value *Shadow;
572 Value *Origin;
573 Instruction *OrigIns;
ShadowOriginAndInsertPoint__anone66e8aa50211::MemorySanitizerVisitor::ShadowOriginAndInsertPoint574 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
575 : Shadow(S), Origin(O), OrigIns(I) { }
576 };
577 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
578 SmallVector<Instruction*, 16> StoreList;
579
MemorySanitizerVisitor__anone66e8aa50211::MemorySanitizerVisitor580 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
581 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
582 bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory);
583 InsertChecks = SanitizeFunction;
584 PropagateShadow = SanitizeFunction;
585 PoisonStack = SanitizeFunction && ClPoisonStack;
586 PoisonUndef = SanitizeFunction && ClPoisonUndef;
587 // FIXME: Consider using SpecialCaseList to specify a list of functions that
588 // must always return fully initialized values. For now, we hardcode "main".
589 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
590
591 DEBUG(if (!InsertChecks)
592 dbgs() << "MemorySanitizer is not inserting checks into '"
593 << F.getName() << "'\n");
594 }
595
updateOrigin__anone66e8aa50211::MemorySanitizerVisitor596 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
597 if (MS.TrackOrigins <= 1) return V;
598 return IRB.CreateCall(MS.MsanChainOriginFn, V);
599 }
600
originToIntptr__anone66e8aa50211::MemorySanitizerVisitor601 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) {
602 const DataLayout &DL = F.getParent()->getDataLayout();
603 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
604 if (IntptrSize == kOriginSize) return Origin;
605 assert(IntptrSize == kOriginSize * 2);
606 Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false);
607 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8));
608 }
609
610 /// \brief Fill memory range with the given origin value.
paintOrigin__anone66e8aa50211::MemorySanitizerVisitor611 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr,
612 unsigned Size, unsigned Alignment) {
613 const DataLayout &DL = F.getParent()->getDataLayout();
614 unsigned IntptrAlignment = DL.getABITypeAlignment(MS.IntptrTy);
615 unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy);
616 assert(IntptrAlignment >= kMinOriginAlignment);
617 assert(IntptrSize >= kOriginSize);
618
619 unsigned Ofs = 0;
620 unsigned CurrentAlignment = Alignment;
621 if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) {
622 Value *IntptrOrigin = originToIntptr(IRB, Origin);
623 Value *IntptrOriginPtr =
624 IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0));
625 for (unsigned i = 0; i < Size / IntptrSize; ++i) {
626 Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i)
627 : IntptrOriginPtr;
628 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
629 Ofs += IntptrSize / kOriginSize;
630 CurrentAlignment = IntptrAlignment;
631 }
632 }
633
634 for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) {
635 Value *GEP =
636 i ? IRB.CreateConstGEP1_32(nullptr, OriginPtr, i) : OriginPtr;
637 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
638 CurrentAlignment = kMinOriginAlignment;
639 }
640 }
641
storeOrigin__anone66e8aa50211::MemorySanitizerVisitor642 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
643 unsigned Alignment, bool AsCall) {
644 const DataLayout &DL = F.getParent()->getDataLayout();
645 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
646 unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType());
647 if (isa<StructType>(Shadow->getType())) {
648 paintOrigin(IRB, updateOrigin(Origin, IRB),
649 getOriginPtr(Addr, IRB, Alignment), StoreSize,
650 OriginAlignment);
651 } else {
652 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
653 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
654 if (ConstantShadow) {
655 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue())
656 paintOrigin(IRB, updateOrigin(Origin, IRB),
657 getOriginPtr(Addr, IRB, Alignment), StoreSize,
658 OriginAlignment);
659 return;
660 }
661
662 unsigned TypeSizeInBits =
663 DL.getTypeSizeInBits(ConvertedShadow->getType());
664 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
665 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
666 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
667 Value *ConvertedShadow2 = IRB.CreateZExt(
668 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
669 IRB.CreateCall3(Fn, ConvertedShadow2,
670 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
671 Origin);
672 } else {
673 Value *Cmp = IRB.CreateICmpNE(
674 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
675 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
676 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
677 IRBuilder<> IRBNew(CheckTerm);
678 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew),
679 getOriginPtr(Addr, IRBNew, Alignment), StoreSize,
680 OriginAlignment);
681 }
682 }
683 }
684
materializeStores__anone66e8aa50211::MemorySanitizerVisitor685 void materializeStores(bool InstrumentWithCalls) {
686 for (auto Inst : StoreList) {
687 StoreInst &SI = *dyn_cast<StoreInst>(Inst);
688
689 IRBuilder<> IRB(&SI);
690 Value *Val = SI.getValueOperand();
691 Value *Addr = SI.getPointerOperand();
692 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
693 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
694
695 StoreInst *NewSI =
696 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
697 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
698 (void)NewSI;
699
700 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
701
702 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
703
704 if (MS.TrackOrigins && !SI.isAtomic())
705 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
706 InstrumentWithCalls);
707 }
708 }
709
materializeOneCheck__anone66e8aa50211::MemorySanitizerVisitor710 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
711 bool AsCall) {
712 IRBuilder<> IRB(OrigIns);
713 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
714 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
715 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
716
717 Constant *ConstantShadow = dyn_cast_or_null<Constant>(ConvertedShadow);
718 if (ConstantShadow) {
719 if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) {
720 if (MS.TrackOrigins) {
721 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
722 MS.OriginTLS);
723 }
724 IRB.CreateCall(MS.WarningFn);
725 IRB.CreateCall(MS.EmptyAsm);
726 // FIXME: Insert UnreachableInst if !ClKeepGoing?
727 // This may invalidate some of the following checks and needs to be done
728 // at the very end.
729 }
730 return;
731 }
732
733 const DataLayout &DL = OrigIns->getModule()->getDataLayout();
734
735 unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType());
736 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
737 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
738 Value *Fn = MS.MaybeWarningFn[SizeIndex];
739 Value *ConvertedShadow2 =
740 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
741 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
742 ? Origin
743 : (Value *)IRB.getInt32(0));
744 } else {
745 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
746 getCleanShadow(ConvertedShadow), "_mscmp");
747 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
748 Cmp, OrigIns,
749 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
750
751 IRB.SetInsertPoint(CheckTerm);
752 if (MS.TrackOrigins) {
753 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
754 MS.OriginTLS);
755 }
756 IRB.CreateCall(MS.WarningFn);
757 IRB.CreateCall(MS.EmptyAsm);
758 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
759 }
760 }
761
materializeChecks__anone66e8aa50211::MemorySanitizerVisitor762 void materializeChecks(bool InstrumentWithCalls) {
763 for (const auto &ShadowData : InstrumentationList) {
764 Instruction *OrigIns = ShadowData.OrigIns;
765 Value *Shadow = ShadowData.Shadow;
766 Value *Origin = ShadowData.Origin;
767 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
768 }
769 DEBUG(dbgs() << "DONE:\n" << F);
770 }
771
772 /// \brief Add MemorySanitizer instrumentation to a function.
runOnFunction__anone66e8aa50211::MemorySanitizerVisitor773 bool runOnFunction() {
774 MS.initializeCallbacks(*F.getParent());
775
776 // In the presence of unreachable blocks, we may see Phi nodes with
777 // incoming nodes from such blocks. Since InstVisitor skips unreachable
778 // blocks, such nodes will not have any shadow value associated with them.
779 // It's easier to remove unreachable blocks than deal with missing shadow.
780 removeUnreachableBlocks(F);
781
782 // Iterate all BBs in depth-first order and create shadow instructions
783 // for all instructions (where applicable).
784 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
785 for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
786 visit(*BB);
787
788
789 // Finalize PHI nodes.
790 for (PHINode *PN : ShadowPHINodes) {
791 PHINode *PNS = cast<PHINode>(getShadow(PN));
792 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
793 size_t NumValues = PN->getNumIncomingValues();
794 for (size_t v = 0; v < NumValues; v++) {
795 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
796 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
797 }
798 }
799
800 VAHelper->finalizeInstrumentation();
801
802 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
803 InstrumentationList.size() + StoreList.size() >
804 (unsigned)ClInstrumentationWithCallThreshold;
805
806 // Delayed instrumentation of StoreInst.
807 // This may add new checks to be inserted later.
808 materializeStores(InstrumentWithCalls);
809
810 // Insert shadow value checks.
811 materializeChecks(InstrumentWithCalls);
812
813 return true;
814 }
815
816 /// \brief Compute the shadow type that corresponds to a given Value.
getShadowTy__anone66e8aa50211::MemorySanitizerVisitor817 Type *getShadowTy(Value *V) {
818 return getShadowTy(V->getType());
819 }
820
821 /// \brief Compute the shadow type that corresponds to a given Type.
getShadowTy__anone66e8aa50211::MemorySanitizerVisitor822 Type *getShadowTy(Type *OrigTy) {
823 if (!OrigTy->isSized()) {
824 return nullptr;
825 }
826 // For integer type, shadow is the same as the original type.
827 // This may return weird-sized types like i1.
828 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
829 return IT;
830 const DataLayout &DL = F.getParent()->getDataLayout();
831 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
832 uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType());
833 return VectorType::get(IntegerType::get(*MS.C, EltSize),
834 VT->getNumElements());
835 }
836 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
837 return ArrayType::get(getShadowTy(AT->getElementType()),
838 AT->getNumElements());
839 }
840 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
841 SmallVector<Type*, 4> Elements;
842 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
843 Elements.push_back(getShadowTy(ST->getElementType(i)));
844 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
845 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
846 return Res;
847 }
848 uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy);
849 return IntegerType::get(*MS.C, TypeSize);
850 }
851
852 /// \brief Flatten a vector type.
getShadowTyNoVec__anone66e8aa50211::MemorySanitizerVisitor853 Type *getShadowTyNoVec(Type *ty) {
854 if (VectorType *vt = dyn_cast<VectorType>(ty))
855 return IntegerType::get(*MS.C, vt->getBitWidth());
856 return ty;
857 }
858
859 /// \brief Convert a shadow value to it's flattened variant.
convertToShadowTyNoVec__anone66e8aa50211::MemorySanitizerVisitor860 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
861 Type *Ty = V->getType();
862 Type *NoVecTy = getShadowTyNoVec(Ty);
863 if (Ty == NoVecTy) return V;
864 return IRB.CreateBitCast(V, NoVecTy);
865 }
866
867 /// \brief Compute the integer shadow offset that corresponds to a given
868 /// application address.
869 ///
870 /// Offset = (Addr & ~AndMask) ^ XorMask
getShadowPtrOffset__anone66e8aa50211::MemorySanitizerVisitor871 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
872 uint64_t AndMask = MS.MapParams->AndMask;
873 assert(AndMask != 0 && "AndMask shall be specified");
874 Value *OffsetLong =
875 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
876 ConstantInt::get(MS.IntptrTy, ~AndMask));
877
878 uint64_t XorMask = MS.MapParams->XorMask;
879 if (XorMask != 0)
880 OffsetLong = IRB.CreateXor(OffsetLong,
881 ConstantInt::get(MS.IntptrTy, XorMask));
882 return OffsetLong;
883 }
884
885 /// \brief Compute the shadow address that corresponds to a given application
886 /// address.
887 ///
888 /// Shadow = ShadowBase + Offset
getShadowPtr__anone66e8aa50211::MemorySanitizerVisitor889 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
890 IRBuilder<> &IRB) {
891 Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
892 uint64_t ShadowBase = MS.MapParams->ShadowBase;
893 if (ShadowBase != 0)
894 ShadowLong =
895 IRB.CreateAdd(ShadowLong,
896 ConstantInt::get(MS.IntptrTy, ShadowBase));
897 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
898 }
899
900 /// \brief Compute the origin address that corresponds to a given application
901 /// address.
902 ///
903 /// OriginAddr = (OriginBase + Offset) & ~3ULL
getOriginPtr__anone66e8aa50211::MemorySanitizerVisitor904 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
905 Value *OriginLong = getShadowPtrOffset(Addr, IRB);
906 uint64_t OriginBase = MS.MapParams->OriginBase;
907 if (OriginBase != 0)
908 OriginLong =
909 IRB.CreateAdd(OriginLong,
910 ConstantInt::get(MS.IntptrTy, OriginBase));
911 if (Alignment < kMinOriginAlignment) {
912 uint64_t Mask = kMinOriginAlignment - 1;
913 OriginLong = IRB.CreateAnd(OriginLong,
914 ConstantInt::get(MS.IntptrTy, ~Mask));
915 }
916 return IRB.CreateIntToPtr(OriginLong,
917 PointerType::get(IRB.getInt32Ty(), 0));
918 }
919
920 /// \brief Compute the shadow address for a given function argument.
921 ///
922 /// Shadow = ParamTLS+ArgOffset.
getShadowPtrForArgument__anone66e8aa50211::MemorySanitizerVisitor923 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
924 int ArgOffset) {
925 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
926 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
927 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
928 "_msarg");
929 }
930
931 /// \brief Compute the origin address for a given function argument.
getOriginPtrForArgument__anone66e8aa50211::MemorySanitizerVisitor932 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
933 int ArgOffset) {
934 if (!MS.TrackOrigins) return nullptr;
935 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
936 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
937 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
938 "_msarg_o");
939 }
940
941 /// \brief Compute the shadow address for a retval.
getShadowPtrForRetval__anone66e8aa50211::MemorySanitizerVisitor942 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
943 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
944 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
945 "_msret");
946 }
947
948 /// \brief Compute the origin address for a retval.
getOriginPtrForRetval__anone66e8aa50211::MemorySanitizerVisitor949 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
950 // We keep a single origin for the entire retval. Might be too optimistic.
951 return MS.RetvalOriginTLS;
952 }
953
954 /// \brief Set SV to be the shadow value for V.
setShadow__anone66e8aa50211::MemorySanitizerVisitor955 void setShadow(Value *V, Value *SV) {
956 assert(!ShadowMap.count(V) && "Values may only have one shadow");
957 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
958 }
959
960 /// \brief Set Origin to be the origin value for V.
setOrigin__anone66e8aa50211::MemorySanitizerVisitor961 void setOrigin(Value *V, Value *Origin) {
962 if (!MS.TrackOrigins) return;
963 assert(!OriginMap.count(V) && "Values may only have one origin");
964 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
965 OriginMap[V] = Origin;
966 }
967
968 /// \brief Create a clean shadow value for a given value.
969 ///
970 /// Clean shadow (all zeroes) means all bits of the value are defined
971 /// (initialized).
getCleanShadow__anone66e8aa50211::MemorySanitizerVisitor972 Constant *getCleanShadow(Value *V) {
973 Type *ShadowTy = getShadowTy(V);
974 if (!ShadowTy)
975 return nullptr;
976 return Constant::getNullValue(ShadowTy);
977 }
978
979 /// \brief Create a dirty shadow of a given shadow type.
getPoisonedShadow__anone66e8aa50211::MemorySanitizerVisitor980 Constant *getPoisonedShadow(Type *ShadowTy) {
981 assert(ShadowTy);
982 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
983 return Constant::getAllOnesValue(ShadowTy);
984 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
985 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
986 getPoisonedShadow(AT->getElementType()));
987 return ConstantArray::get(AT, Vals);
988 }
989 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
990 SmallVector<Constant *, 4> Vals;
991 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
992 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
993 return ConstantStruct::get(ST, Vals);
994 }
995 llvm_unreachable("Unexpected shadow type");
996 }
997
998 /// \brief Create a dirty shadow for a given value.
getPoisonedShadow__anone66e8aa50211::MemorySanitizerVisitor999 Constant *getPoisonedShadow(Value *V) {
1000 Type *ShadowTy = getShadowTy(V);
1001 if (!ShadowTy)
1002 return nullptr;
1003 return getPoisonedShadow(ShadowTy);
1004 }
1005
1006 /// \brief Create a clean (zero) origin.
getCleanOrigin__anone66e8aa50211::MemorySanitizerVisitor1007 Value *getCleanOrigin() {
1008 return Constant::getNullValue(MS.OriginTy);
1009 }
1010
1011 /// \brief Get the shadow value for a given Value.
1012 ///
1013 /// This function either returns the value set earlier with setShadow,
1014 /// or extracts if from ParamTLS (for function arguments).
getShadow__anone66e8aa50211::MemorySanitizerVisitor1015 Value *getShadow(Value *V) {
1016 if (!PropagateShadow) return getCleanShadow(V);
1017 if (Instruction *I = dyn_cast<Instruction>(V)) {
1018 // For instructions the shadow is already stored in the map.
1019 Value *Shadow = ShadowMap[V];
1020 if (!Shadow) {
1021 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
1022 (void)I;
1023 assert(Shadow && "No shadow for a value");
1024 }
1025 return Shadow;
1026 }
1027 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
1028 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
1029 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
1030 (void)U;
1031 return AllOnes;
1032 }
1033 if (Argument *A = dyn_cast<Argument>(V)) {
1034 // For arguments we compute the shadow on demand and store it in the map.
1035 Value **ShadowPtr = &ShadowMap[V];
1036 if (*ShadowPtr)
1037 return *ShadowPtr;
1038 Function *F = A->getParent();
1039 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
1040 unsigned ArgOffset = 0;
1041 const DataLayout &DL = F->getParent()->getDataLayout();
1042 for (auto &FArg : F->args()) {
1043 if (!FArg.getType()->isSized()) {
1044 DEBUG(dbgs() << "Arg is not sized\n");
1045 continue;
1046 }
1047 unsigned Size =
1048 FArg.hasByValAttr()
1049 ? DL.getTypeAllocSize(FArg.getType()->getPointerElementType())
1050 : DL.getTypeAllocSize(FArg.getType());
1051 if (A == &FArg) {
1052 bool Overflow = ArgOffset + Size > kParamTLSSize;
1053 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
1054 if (FArg.hasByValAttr()) {
1055 // ByVal pointer itself has clean shadow. We copy the actual
1056 // argument shadow to the underlying memory.
1057 // Figure out maximal valid memcpy alignment.
1058 unsigned ArgAlign = FArg.getParamAlignment();
1059 if (ArgAlign == 0) {
1060 Type *EltType = A->getType()->getPointerElementType();
1061 ArgAlign = DL.getABITypeAlignment(EltType);
1062 }
1063 if (Overflow) {
1064 // ParamTLS overflow.
1065 EntryIRB.CreateMemSet(
1066 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
1067 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
1068 } else {
1069 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1070 Value *Cpy = EntryIRB.CreateMemCpy(
1071 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
1072 CopyAlign);
1073 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
1074 (void)Cpy;
1075 }
1076 *ShadowPtr = getCleanShadow(V);
1077 } else {
1078 if (Overflow) {
1079 // ParamTLS overflow.
1080 *ShadowPtr = getCleanShadow(V);
1081 } else {
1082 *ShadowPtr =
1083 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
1084 }
1085 }
1086 DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
1087 **ShadowPtr << "\n");
1088 if (MS.TrackOrigins && !Overflow) {
1089 Value *OriginPtr =
1090 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
1091 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
1092 } else {
1093 setOrigin(A, getCleanOrigin());
1094 }
1095 }
1096 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
1097 }
1098 assert(*ShadowPtr && "Could not find shadow for an argument");
1099 return *ShadowPtr;
1100 }
1101 // For everything else the shadow is zero.
1102 return getCleanShadow(V);
1103 }
1104
1105 /// \brief Get the shadow for i-th argument of the instruction I.
getShadow__anone66e8aa50211::MemorySanitizerVisitor1106 Value *getShadow(Instruction *I, int i) {
1107 return getShadow(I->getOperand(i));
1108 }
1109
1110 /// \brief Get the origin for a value.
getOrigin__anone66e8aa50211::MemorySanitizerVisitor1111 Value *getOrigin(Value *V) {
1112 if (!MS.TrackOrigins) return nullptr;
1113 if (!PropagateShadow) return getCleanOrigin();
1114 if (isa<Constant>(V)) return getCleanOrigin();
1115 assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1116 "Unexpected value type in getOrigin()");
1117 Value *Origin = OriginMap[V];
1118 assert(Origin && "Missing origin");
1119 return Origin;
1120 }
1121
1122 /// \brief Get the origin for i-th argument of the instruction I.
getOrigin__anone66e8aa50211::MemorySanitizerVisitor1123 Value *getOrigin(Instruction *I, int i) {
1124 return getOrigin(I->getOperand(i));
1125 }
1126
1127 /// \brief Remember the place where a shadow check should be inserted.
1128 ///
1129 /// This location will be later instrumented with a check that will print a
1130 /// UMR warning in runtime if the shadow value is not 0.
insertShadowCheck__anone66e8aa50211::MemorySanitizerVisitor1131 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1132 assert(Shadow);
1133 if (!InsertChecks) return;
1134 #ifndef NDEBUG
1135 Type *ShadowTy = Shadow->getType();
1136 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1137 "Can only insert checks for integer and vector shadow types");
1138 #endif
1139 InstrumentationList.push_back(
1140 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1141 }
1142
1143 /// \brief Remember the place where a shadow check should be inserted.
1144 ///
1145 /// This location will be later instrumented with a check that will print a
1146 /// UMR warning in runtime if the value is not fully defined.
insertShadowCheck__anone66e8aa50211::MemorySanitizerVisitor1147 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1148 assert(Val);
1149 Value *Shadow, *Origin;
1150 if (ClCheckConstantShadow) {
1151 Shadow = getShadow(Val);
1152 if (!Shadow) return;
1153 Origin = getOrigin(Val);
1154 } else {
1155 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1156 if (!Shadow) return;
1157 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1158 }
1159 insertShadowCheck(Shadow, Origin, OrigIns);
1160 }
1161
addReleaseOrdering__anone66e8aa50211::MemorySanitizerVisitor1162 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1163 switch (a) {
1164 case NotAtomic:
1165 return NotAtomic;
1166 case Unordered:
1167 case Monotonic:
1168 case Release:
1169 return Release;
1170 case Acquire:
1171 case AcquireRelease:
1172 return AcquireRelease;
1173 case SequentiallyConsistent:
1174 return SequentiallyConsistent;
1175 }
1176 llvm_unreachable("Unknown ordering");
1177 }
1178
addAcquireOrdering__anone66e8aa50211::MemorySanitizerVisitor1179 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1180 switch (a) {
1181 case NotAtomic:
1182 return NotAtomic;
1183 case Unordered:
1184 case Monotonic:
1185 case Acquire:
1186 return Acquire;
1187 case Release:
1188 case AcquireRelease:
1189 return AcquireRelease;
1190 case SequentiallyConsistent:
1191 return SequentiallyConsistent;
1192 }
1193 llvm_unreachable("Unknown ordering");
1194 }
1195
1196 // ------------------- Visitors.
1197
1198 /// \brief Instrument LoadInst
1199 ///
1200 /// Loads the corresponding shadow and (optionally) origin.
1201 /// Optionally, checks that the load address is fully defined.
visitLoadInst__anone66e8aa50211::MemorySanitizerVisitor1202 void visitLoadInst(LoadInst &I) {
1203 assert(I.getType()->isSized() && "Load type must have size");
1204 IRBuilder<> IRB(I.getNextNode());
1205 Type *ShadowTy = getShadowTy(&I);
1206 Value *Addr = I.getPointerOperand();
1207 if (PropagateShadow && !I.getMetadata("nosanitize")) {
1208 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1209 setShadow(&I,
1210 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1211 } else {
1212 setShadow(&I, getCleanShadow(&I));
1213 }
1214
1215 if (ClCheckAccessAddress)
1216 insertShadowCheck(I.getPointerOperand(), &I);
1217
1218 if (I.isAtomic())
1219 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1220
1221 if (MS.TrackOrigins) {
1222 if (PropagateShadow) {
1223 unsigned Alignment = I.getAlignment();
1224 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1225 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
1226 OriginAlignment));
1227 } else {
1228 setOrigin(&I, getCleanOrigin());
1229 }
1230 }
1231 }
1232
1233 /// \brief Instrument StoreInst
1234 ///
1235 /// Stores the corresponding shadow and (optionally) origin.
1236 /// Optionally, checks that the store address is fully defined.
visitStoreInst__anone66e8aa50211::MemorySanitizerVisitor1237 void visitStoreInst(StoreInst &I) {
1238 StoreList.push_back(&I);
1239 }
1240
handleCASOrRMW__anone66e8aa50211::MemorySanitizerVisitor1241 void handleCASOrRMW(Instruction &I) {
1242 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1243
1244 IRBuilder<> IRB(&I);
1245 Value *Addr = I.getOperand(0);
1246 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1247
1248 if (ClCheckAccessAddress)
1249 insertShadowCheck(Addr, &I);
1250
1251 // Only test the conditional argument of cmpxchg instruction.
1252 // The other argument can potentially be uninitialized, but we can not
1253 // detect this situation reliably without possible false positives.
1254 if (isa<AtomicCmpXchgInst>(I))
1255 insertShadowCheck(I.getOperand(1), &I);
1256
1257 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1258
1259 setShadow(&I, getCleanShadow(&I));
1260 setOrigin(&I, getCleanOrigin());
1261 }
1262
visitAtomicRMWInst__anone66e8aa50211::MemorySanitizerVisitor1263 void visitAtomicRMWInst(AtomicRMWInst &I) {
1264 handleCASOrRMW(I);
1265 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1266 }
1267
visitAtomicCmpXchgInst__anone66e8aa50211::MemorySanitizerVisitor1268 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1269 handleCASOrRMW(I);
1270 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
1271 }
1272
1273 // Vector manipulation.
visitExtractElementInst__anone66e8aa50211::MemorySanitizerVisitor1274 void visitExtractElementInst(ExtractElementInst &I) {
1275 insertShadowCheck(I.getOperand(1), &I);
1276 IRBuilder<> IRB(&I);
1277 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1278 "_msprop"));
1279 setOrigin(&I, getOrigin(&I, 0));
1280 }
1281
visitInsertElementInst__anone66e8aa50211::MemorySanitizerVisitor1282 void visitInsertElementInst(InsertElementInst &I) {
1283 insertShadowCheck(I.getOperand(2), &I);
1284 IRBuilder<> IRB(&I);
1285 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1286 I.getOperand(2), "_msprop"));
1287 setOriginForNaryOp(I);
1288 }
1289
visitShuffleVectorInst__anone66e8aa50211::MemorySanitizerVisitor1290 void visitShuffleVectorInst(ShuffleVectorInst &I) {
1291 insertShadowCheck(I.getOperand(2), &I);
1292 IRBuilder<> IRB(&I);
1293 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1294 I.getOperand(2), "_msprop"));
1295 setOriginForNaryOp(I);
1296 }
1297
1298 // Casts.
visitSExtInst__anone66e8aa50211::MemorySanitizerVisitor1299 void visitSExtInst(SExtInst &I) {
1300 IRBuilder<> IRB(&I);
1301 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1302 setOrigin(&I, getOrigin(&I, 0));
1303 }
1304
visitZExtInst__anone66e8aa50211::MemorySanitizerVisitor1305 void visitZExtInst(ZExtInst &I) {
1306 IRBuilder<> IRB(&I);
1307 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1308 setOrigin(&I, getOrigin(&I, 0));
1309 }
1310
visitTruncInst__anone66e8aa50211::MemorySanitizerVisitor1311 void visitTruncInst(TruncInst &I) {
1312 IRBuilder<> IRB(&I);
1313 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1314 setOrigin(&I, getOrigin(&I, 0));
1315 }
1316
visitBitCastInst__anone66e8aa50211::MemorySanitizerVisitor1317 void visitBitCastInst(BitCastInst &I) {
1318 IRBuilder<> IRB(&I);
1319 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1320 setOrigin(&I, getOrigin(&I, 0));
1321 }
1322
visitPtrToIntInst__anone66e8aa50211::MemorySanitizerVisitor1323 void visitPtrToIntInst(PtrToIntInst &I) {
1324 IRBuilder<> IRB(&I);
1325 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1326 "_msprop_ptrtoint"));
1327 setOrigin(&I, getOrigin(&I, 0));
1328 }
1329
visitIntToPtrInst__anone66e8aa50211::MemorySanitizerVisitor1330 void visitIntToPtrInst(IntToPtrInst &I) {
1331 IRBuilder<> IRB(&I);
1332 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1333 "_msprop_inttoptr"));
1334 setOrigin(&I, getOrigin(&I, 0));
1335 }
1336
visitFPToSIInst__anone66e8aa50211::MemorySanitizerVisitor1337 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
visitFPToUIInst__anone66e8aa50211::MemorySanitizerVisitor1338 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
visitSIToFPInst__anone66e8aa50211::MemorySanitizerVisitor1339 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
visitUIToFPInst__anone66e8aa50211::MemorySanitizerVisitor1340 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
visitFPExtInst__anone66e8aa50211::MemorySanitizerVisitor1341 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
visitFPTruncInst__anone66e8aa50211::MemorySanitizerVisitor1342 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1343
1344 /// \brief Propagate shadow for bitwise AND.
1345 ///
1346 /// This code is exact, i.e. if, for example, a bit in the left argument
1347 /// is defined and 0, then neither the value not definedness of the
1348 /// corresponding bit in B don't affect the resulting shadow.
visitAnd__anone66e8aa50211::MemorySanitizerVisitor1349 void visitAnd(BinaryOperator &I) {
1350 IRBuilder<> IRB(&I);
1351 // "And" of 0 and a poisoned value results in unpoisoned value.
1352 // 1&1 => 1; 0&1 => 0; p&1 => p;
1353 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1354 // 1&p => p; 0&p => 0; p&p => p;
1355 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1356 Value *S1 = getShadow(&I, 0);
1357 Value *S2 = getShadow(&I, 1);
1358 Value *V1 = I.getOperand(0);
1359 Value *V2 = I.getOperand(1);
1360 if (V1->getType() != S1->getType()) {
1361 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1362 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1363 }
1364 Value *S1S2 = IRB.CreateAnd(S1, S2);
1365 Value *V1S2 = IRB.CreateAnd(V1, S2);
1366 Value *S1V2 = IRB.CreateAnd(S1, V2);
1367 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1368 setOriginForNaryOp(I);
1369 }
1370
visitOr__anone66e8aa50211::MemorySanitizerVisitor1371 void visitOr(BinaryOperator &I) {
1372 IRBuilder<> IRB(&I);
1373 // "Or" of 1 and a poisoned value results in unpoisoned value.
1374 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1375 // 1|0 => 1; 0|0 => 0; p|0 => p;
1376 // 1|p => 1; 0|p => p; p|p => p;
1377 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1378 Value *S1 = getShadow(&I, 0);
1379 Value *S2 = getShadow(&I, 1);
1380 Value *V1 = IRB.CreateNot(I.getOperand(0));
1381 Value *V2 = IRB.CreateNot(I.getOperand(1));
1382 if (V1->getType() != S1->getType()) {
1383 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1384 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1385 }
1386 Value *S1S2 = IRB.CreateAnd(S1, S2);
1387 Value *V1S2 = IRB.CreateAnd(V1, S2);
1388 Value *S1V2 = IRB.CreateAnd(S1, V2);
1389 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1390 setOriginForNaryOp(I);
1391 }
1392
1393 /// \brief Default propagation of shadow and/or origin.
1394 ///
1395 /// This class implements the general case of shadow propagation, used in all
1396 /// cases where we don't know and/or don't care about what the operation
1397 /// actually does. It converts all input shadow values to a common type
1398 /// (extending or truncating as necessary), and bitwise OR's them.
1399 ///
1400 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1401 /// fully initialized), and less prone to false positives.
1402 ///
1403 /// This class also implements the general case of origin propagation. For a
1404 /// Nary operation, result origin is set to the origin of an argument that is
1405 /// not entirely initialized. If there is more than one such arguments, the
1406 /// rightmost of them is picked. It does not matter which one is picked if all
1407 /// arguments are initialized.
1408 template <bool CombineShadow>
1409 class Combiner {
1410 Value *Shadow;
1411 Value *Origin;
1412 IRBuilder<> &IRB;
1413 MemorySanitizerVisitor *MSV;
1414
1415 public:
Combiner(MemorySanitizerVisitor * MSV,IRBuilder<> & IRB)1416 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
1417 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
1418
1419 /// \brief Add a pair of shadow and origin values to the mix.
Add(Value * OpShadow,Value * OpOrigin)1420 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1421 if (CombineShadow) {
1422 assert(OpShadow);
1423 if (!Shadow)
1424 Shadow = OpShadow;
1425 else {
1426 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1427 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1428 }
1429 }
1430
1431 if (MSV->MS.TrackOrigins) {
1432 assert(OpOrigin);
1433 if (!Origin) {
1434 Origin = OpOrigin;
1435 } else {
1436 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1437 // No point in adding something that might result in 0 origin value.
1438 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1439 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1440 Value *Cond =
1441 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1442 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1443 }
1444 }
1445 }
1446 return *this;
1447 }
1448
1449 /// \brief Add an application value to the mix.
Add(Value * V)1450 Combiner &Add(Value *V) {
1451 Value *OpShadow = MSV->getShadow(V);
1452 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
1453 return Add(OpShadow, OpOrigin);
1454 }
1455
1456 /// \brief Set the current combined values as the given instruction's shadow
1457 /// and origin.
Done(Instruction * I)1458 void Done(Instruction *I) {
1459 if (CombineShadow) {
1460 assert(Shadow);
1461 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1462 MSV->setShadow(I, Shadow);
1463 }
1464 if (MSV->MS.TrackOrigins) {
1465 assert(Origin);
1466 MSV->setOrigin(I, Origin);
1467 }
1468 }
1469 };
1470
1471 typedef Combiner<true> ShadowAndOriginCombiner;
1472 typedef Combiner<false> OriginCombiner;
1473
1474 /// \brief Propagate origin for arbitrary operation.
setOriginForNaryOp__anone66e8aa50211::MemorySanitizerVisitor1475 void setOriginForNaryOp(Instruction &I) {
1476 if (!MS.TrackOrigins) return;
1477 IRBuilder<> IRB(&I);
1478 OriginCombiner OC(this, IRB);
1479 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1480 OC.Add(OI->get());
1481 OC.Done(&I);
1482 }
1483
VectorOrPrimitiveTypeSizeInBits__anone66e8aa50211::MemorySanitizerVisitor1484 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
1485 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1486 "Vector of pointers is not a valid shadow type");
1487 return Ty->isVectorTy() ?
1488 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1489 Ty->getPrimitiveSizeInBits();
1490 }
1491
1492 /// \brief Cast between two shadow types, extending or truncating as
1493 /// necessary.
CreateShadowCast__anone66e8aa50211::MemorySanitizerVisitor1494 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1495 bool Signed = false) {
1496 Type *srcTy = V->getType();
1497 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
1498 return IRB.CreateIntCast(V, dstTy, Signed);
1499 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1500 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
1501 return IRB.CreateIntCast(V, dstTy, Signed);
1502 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1503 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1504 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1505 Value *V2 =
1506 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
1507 return IRB.CreateBitCast(V2, dstTy);
1508 // TODO: handle struct types.
1509 }
1510
1511 /// \brief Cast an application value to the type of its own shadow.
CreateAppToShadowCast__anone66e8aa50211::MemorySanitizerVisitor1512 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1513 Type *ShadowTy = getShadowTy(V);
1514 if (V->getType() == ShadowTy)
1515 return V;
1516 if (V->getType()->isPtrOrPtrVectorTy())
1517 return IRB.CreatePtrToInt(V, ShadowTy);
1518 else
1519 return IRB.CreateBitCast(V, ShadowTy);
1520 }
1521
1522 /// \brief Propagate shadow for arbitrary operation.
handleShadowOr__anone66e8aa50211::MemorySanitizerVisitor1523 void handleShadowOr(Instruction &I) {
1524 IRBuilder<> IRB(&I);
1525 ShadowAndOriginCombiner SC(this, IRB);
1526 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1527 SC.Add(OI->get());
1528 SC.Done(&I);
1529 }
1530
1531 // \brief Handle multiplication by constant.
1532 //
1533 // Handle a special case of multiplication by constant that may have one or
1534 // more zeros in the lower bits. This makes corresponding number of lower bits
1535 // of the result zero as well. We model it by shifting the other operand
1536 // shadow left by the required number of bits. Effectively, we transform
1537 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1538 // We use multiplication by 2**N instead of shift to cover the case of
1539 // multiplication by 0, which may occur in some elements of a vector operand.
handleMulByConstant__anone66e8aa50211::MemorySanitizerVisitor1540 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1541 Value *OtherArg) {
1542 Constant *ShadowMul;
1543 Type *Ty = ConstArg->getType();
1544 if (Ty->isVectorTy()) {
1545 unsigned NumElements = Ty->getVectorNumElements();
1546 Type *EltTy = Ty->getSequentialElementType();
1547 SmallVector<Constant *, 16> Elements;
1548 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1549 ConstantInt *Elt =
1550 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
1551 APInt V = Elt->getValue();
1552 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1553 Elements.push_back(ConstantInt::get(EltTy, V2));
1554 }
1555 ShadowMul = ConstantVector::get(Elements);
1556 } else {
1557 ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
1558 APInt V = Elt->getValue();
1559 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1560 ShadowMul = ConstantInt::get(Elt->getType(), V2);
1561 }
1562
1563 IRBuilder<> IRB(&I);
1564 setShadow(&I,
1565 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1566 setOrigin(&I, getOrigin(OtherArg));
1567 }
1568
visitMul__anone66e8aa50211::MemorySanitizerVisitor1569 void visitMul(BinaryOperator &I) {
1570 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1571 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1572 if (constOp0 && !constOp1)
1573 handleMulByConstant(I, constOp0, I.getOperand(1));
1574 else if (constOp1 && !constOp0)
1575 handleMulByConstant(I, constOp1, I.getOperand(0));
1576 else
1577 handleShadowOr(I);
1578 }
1579
visitFAdd__anone66e8aa50211::MemorySanitizerVisitor1580 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
visitFSub__anone66e8aa50211::MemorySanitizerVisitor1581 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
visitFMul__anone66e8aa50211::MemorySanitizerVisitor1582 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
visitAdd__anone66e8aa50211::MemorySanitizerVisitor1583 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
visitSub__anone66e8aa50211::MemorySanitizerVisitor1584 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
visitXor__anone66e8aa50211::MemorySanitizerVisitor1585 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1586
handleDiv__anone66e8aa50211::MemorySanitizerVisitor1587 void handleDiv(Instruction &I) {
1588 IRBuilder<> IRB(&I);
1589 // Strict on the second argument.
1590 insertShadowCheck(I.getOperand(1), &I);
1591 setShadow(&I, getShadow(&I, 0));
1592 setOrigin(&I, getOrigin(&I, 0));
1593 }
1594
visitUDiv__anone66e8aa50211::MemorySanitizerVisitor1595 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
visitSDiv__anone66e8aa50211::MemorySanitizerVisitor1596 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
visitFDiv__anone66e8aa50211::MemorySanitizerVisitor1597 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
visitURem__anone66e8aa50211::MemorySanitizerVisitor1598 void visitURem(BinaryOperator &I) { handleDiv(I); }
visitSRem__anone66e8aa50211::MemorySanitizerVisitor1599 void visitSRem(BinaryOperator &I) { handleDiv(I); }
visitFRem__anone66e8aa50211::MemorySanitizerVisitor1600 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1601
1602 /// \brief Instrument == and != comparisons.
1603 ///
1604 /// Sometimes the comparison result is known even if some of the bits of the
1605 /// arguments are not.
handleEqualityComparison__anone66e8aa50211::MemorySanitizerVisitor1606 void handleEqualityComparison(ICmpInst &I) {
1607 IRBuilder<> IRB(&I);
1608 Value *A = I.getOperand(0);
1609 Value *B = I.getOperand(1);
1610 Value *Sa = getShadow(A);
1611 Value *Sb = getShadow(B);
1612
1613 // Get rid of pointers and vectors of pointers.
1614 // For ints (and vectors of ints), types of A and Sa match,
1615 // and this is a no-op.
1616 A = IRB.CreatePointerCast(A, Sa->getType());
1617 B = IRB.CreatePointerCast(B, Sb->getType());
1618
1619 // A == B <==> (C = A^B) == 0
1620 // A != B <==> (C = A^B) != 0
1621 // Sc = Sa | Sb
1622 Value *C = IRB.CreateXor(A, B);
1623 Value *Sc = IRB.CreateOr(Sa, Sb);
1624 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1625 // Result is defined if one of the following is true
1626 // * there is a defined 1 bit in C
1627 // * C is fully defined
1628 // Si = !(C & ~Sc) && Sc
1629 Value *Zero = Constant::getNullValue(Sc->getType());
1630 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1631 Value *Si =
1632 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1633 IRB.CreateICmpEQ(
1634 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1635 Si->setName("_msprop_icmp");
1636 setShadow(&I, Si);
1637 setOriginForNaryOp(I);
1638 }
1639
1640 /// \brief Build the lowest possible value of V, taking into account V's
1641 /// uninitialized bits.
getLowestPossibleValue__anone66e8aa50211::MemorySanitizerVisitor1642 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1643 bool isSigned) {
1644 if (isSigned) {
1645 // Split shadow into sign bit and other bits.
1646 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1647 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1648 // Maximise the undefined shadow bit, minimize other undefined bits.
1649 return
1650 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1651 } else {
1652 // Minimize undefined bits.
1653 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1654 }
1655 }
1656
1657 /// \brief Build the highest possible value of V, taking into account V's
1658 /// uninitialized bits.
getHighestPossibleValue__anone66e8aa50211::MemorySanitizerVisitor1659 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1660 bool isSigned) {
1661 if (isSigned) {
1662 // Split shadow into sign bit and other bits.
1663 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1664 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1665 // Minimise the undefined shadow bit, maximise other undefined bits.
1666 return
1667 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1668 } else {
1669 // Maximize undefined bits.
1670 return IRB.CreateOr(A, Sa);
1671 }
1672 }
1673
1674 /// \brief Instrument relational comparisons.
1675 ///
1676 /// This function does exact shadow propagation for all relational
1677 /// comparisons of integers, pointers and vectors of those.
1678 /// FIXME: output seems suboptimal when one of the operands is a constant
handleRelationalComparisonExact__anone66e8aa50211::MemorySanitizerVisitor1679 void handleRelationalComparisonExact(ICmpInst &I) {
1680 IRBuilder<> IRB(&I);
1681 Value *A = I.getOperand(0);
1682 Value *B = I.getOperand(1);
1683 Value *Sa = getShadow(A);
1684 Value *Sb = getShadow(B);
1685
1686 // Get rid of pointers and vectors of pointers.
1687 // For ints (and vectors of ints), types of A and Sa match,
1688 // and this is a no-op.
1689 A = IRB.CreatePointerCast(A, Sa->getType());
1690 B = IRB.CreatePointerCast(B, Sb->getType());
1691
1692 // Let [a0, a1] be the interval of possible values of A, taking into account
1693 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1694 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
1695 bool IsSigned = I.isSigned();
1696 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1697 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1698 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1699 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1700 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1701 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1702 Value *Si = IRB.CreateXor(S1, S2);
1703 setShadow(&I, Si);
1704 setOriginForNaryOp(I);
1705 }
1706
1707 /// \brief Instrument signed relational comparisons.
1708 ///
1709 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1710 /// propagating the highest bit of the shadow. Everything else is delegated
1711 /// to handleShadowOr().
handleSignedRelationalComparison__anone66e8aa50211::MemorySanitizerVisitor1712 void handleSignedRelationalComparison(ICmpInst &I) {
1713 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1714 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1715 Value* op = nullptr;
1716 CmpInst::Predicate pre = I.getPredicate();
1717 if (constOp0 && constOp0->isNullValue() &&
1718 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1719 op = I.getOperand(1);
1720 } else if (constOp1 && constOp1->isNullValue() &&
1721 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1722 op = I.getOperand(0);
1723 }
1724 if (op) {
1725 IRBuilder<> IRB(&I);
1726 Value* Shadow =
1727 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1728 setShadow(&I, Shadow);
1729 setOrigin(&I, getOrigin(op));
1730 } else {
1731 handleShadowOr(I);
1732 }
1733 }
1734
visitICmpInst__anone66e8aa50211::MemorySanitizerVisitor1735 void visitICmpInst(ICmpInst &I) {
1736 if (!ClHandleICmp) {
1737 handleShadowOr(I);
1738 return;
1739 }
1740 if (I.isEquality()) {
1741 handleEqualityComparison(I);
1742 return;
1743 }
1744
1745 assert(I.isRelational());
1746 if (ClHandleICmpExact) {
1747 handleRelationalComparisonExact(I);
1748 return;
1749 }
1750 if (I.isSigned()) {
1751 handleSignedRelationalComparison(I);
1752 return;
1753 }
1754
1755 assert(I.isUnsigned());
1756 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1757 handleRelationalComparisonExact(I);
1758 return;
1759 }
1760
1761 handleShadowOr(I);
1762 }
1763
visitFCmpInst__anone66e8aa50211::MemorySanitizerVisitor1764 void visitFCmpInst(FCmpInst &I) {
1765 handleShadowOr(I);
1766 }
1767
handleShift__anone66e8aa50211::MemorySanitizerVisitor1768 void handleShift(BinaryOperator &I) {
1769 IRBuilder<> IRB(&I);
1770 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1771 // Otherwise perform the same shift on S1.
1772 Value *S1 = getShadow(&I, 0);
1773 Value *S2 = getShadow(&I, 1);
1774 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1775 S2->getType());
1776 Value *V2 = I.getOperand(1);
1777 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1778 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1779 setOriginForNaryOp(I);
1780 }
1781
visitShl__anone66e8aa50211::MemorySanitizerVisitor1782 void visitShl(BinaryOperator &I) { handleShift(I); }
visitAShr__anone66e8aa50211::MemorySanitizerVisitor1783 void visitAShr(BinaryOperator &I) { handleShift(I); }
visitLShr__anone66e8aa50211::MemorySanitizerVisitor1784 void visitLShr(BinaryOperator &I) { handleShift(I); }
1785
1786 /// \brief Instrument llvm.memmove
1787 ///
1788 /// At this point we don't know if llvm.memmove will be inlined or not.
1789 /// If we don't instrument it and it gets inlined,
1790 /// our interceptor will not kick in and we will lose the memmove.
1791 /// If we instrument the call here, but it does not get inlined,
1792 /// we will memove the shadow twice: which is bad in case
1793 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1794 ///
1795 /// Similar situation exists for memcpy and memset.
visitMemMoveInst__anone66e8aa50211::MemorySanitizerVisitor1796 void visitMemMoveInst(MemMoveInst &I) {
1797 IRBuilder<> IRB(&I);
1798 IRB.CreateCall3(
1799 MS.MemmoveFn,
1800 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1801 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1802 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1803 I.eraseFromParent();
1804 }
1805
1806 // Similar to memmove: avoid copying shadow twice.
1807 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1808 // FIXME: consider doing manual inline for small constant sizes and proper
1809 // alignment.
visitMemCpyInst__anone66e8aa50211::MemorySanitizerVisitor1810 void visitMemCpyInst(MemCpyInst &I) {
1811 IRBuilder<> IRB(&I);
1812 IRB.CreateCall3(
1813 MS.MemcpyFn,
1814 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1815 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1816 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1817 I.eraseFromParent();
1818 }
1819
1820 // Same as memcpy.
visitMemSetInst__anone66e8aa50211::MemorySanitizerVisitor1821 void visitMemSetInst(MemSetInst &I) {
1822 IRBuilder<> IRB(&I);
1823 IRB.CreateCall3(
1824 MS.MemsetFn,
1825 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1826 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1827 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1828 I.eraseFromParent();
1829 }
1830
visitVAStartInst__anone66e8aa50211::MemorySanitizerVisitor1831 void visitVAStartInst(VAStartInst &I) {
1832 VAHelper->visitVAStartInst(I);
1833 }
1834
visitVACopyInst__anone66e8aa50211::MemorySanitizerVisitor1835 void visitVACopyInst(VACopyInst &I) {
1836 VAHelper->visitVACopyInst(I);
1837 }
1838
1839 enum IntrinsicKind {
1840 IK_DoesNotAccessMemory,
1841 IK_OnlyReadsMemory,
1842 IK_WritesMemory
1843 };
1844
getIntrinsicKind__anone66e8aa50211::MemorySanitizerVisitor1845 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1846 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1847 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1848 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1849 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1850 const int UnknownModRefBehavior = IK_WritesMemory;
1851 #define GET_INTRINSIC_MODREF_BEHAVIOR
1852 #define ModRefBehavior IntrinsicKind
1853 #include "llvm/IR/Intrinsics.gen"
1854 #undef ModRefBehavior
1855 #undef GET_INTRINSIC_MODREF_BEHAVIOR
1856 }
1857
1858 /// \brief Handle vector store-like intrinsics.
1859 ///
1860 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1861 /// has 1 pointer argument and 1 vector argument, returns void.
handleVectorStoreIntrinsic__anone66e8aa50211::MemorySanitizerVisitor1862 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1863 IRBuilder<> IRB(&I);
1864 Value* Addr = I.getArgOperand(0);
1865 Value *Shadow = getShadow(&I, 1);
1866 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1867
1868 // We don't know the pointer alignment (could be unaligned SSE store!).
1869 // Have to assume to worst case.
1870 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1871
1872 if (ClCheckAccessAddress)
1873 insertShadowCheck(Addr, &I);
1874
1875 // FIXME: use ClStoreCleanOrigin
1876 // FIXME: factor out common code from materializeStores
1877 if (MS.TrackOrigins)
1878 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
1879 return true;
1880 }
1881
1882 /// \brief Handle vector load-like intrinsics.
1883 ///
1884 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1885 /// has 1 pointer argument, returns a vector.
handleVectorLoadIntrinsic__anone66e8aa50211::MemorySanitizerVisitor1886 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1887 IRBuilder<> IRB(&I);
1888 Value *Addr = I.getArgOperand(0);
1889
1890 Type *ShadowTy = getShadowTy(&I);
1891 if (PropagateShadow) {
1892 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1893 // We don't know the pointer alignment (could be unaligned SSE load!).
1894 // Have to assume to worst case.
1895 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1896 } else {
1897 setShadow(&I, getCleanShadow(&I));
1898 }
1899
1900 if (ClCheckAccessAddress)
1901 insertShadowCheck(Addr, &I);
1902
1903 if (MS.TrackOrigins) {
1904 if (PropagateShadow)
1905 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
1906 else
1907 setOrigin(&I, getCleanOrigin());
1908 }
1909 return true;
1910 }
1911
1912 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1913 ///
1914 /// Instrument intrinsics with any number of arguments of the same type,
1915 /// equal to the return type. The type should be simple (no aggregates or
1916 /// pointers; vectors are fine).
1917 /// Caller guarantees that this intrinsic does not access memory.
maybeHandleSimpleNomemIntrinsic__anone66e8aa50211::MemorySanitizerVisitor1918 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1919 Type *RetTy = I.getType();
1920 if (!(RetTy->isIntOrIntVectorTy() ||
1921 RetTy->isFPOrFPVectorTy() ||
1922 RetTy->isX86_MMXTy()))
1923 return false;
1924
1925 unsigned NumArgOperands = I.getNumArgOperands();
1926
1927 for (unsigned i = 0; i < NumArgOperands; ++i) {
1928 Type *Ty = I.getArgOperand(i)->getType();
1929 if (Ty != RetTy)
1930 return false;
1931 }
1932
1933 IRBuilder<> IRB(&I);
1934 ShadowAndOriginCombiner SC(this, IRB);
1935 for (unsigned i = 0; i < NumArgOperands; ++i)
1936 SC.Add(I.getArgOperand(i));
1937 SC.Done(&I);
1938
1939 return true;
1940 }
1941
1942 /// \brief Heuristically instrument unknown intrinsics.
1943 ///
1944 /// The main purpose of this code is to do something reasonable with all
1945 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1946 /// We recognize several classes of intrinsics by their argument types and
1947 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1948 /// sure that we know what the intrinsic does.
1949 ///
1950 /// We special-case intrinsics where this approach fails. See llvm.bswap
1951 /// handling as an example of that.
handleUnknownIntrinsic__anone66e8aa50211::MemorySanitizerVisitor1952 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1953 unsigned NumArgOperands = I.getNumArgOperands();
1954 if (NumArgOperands == 0)
1955 return false;
1956
1957 Intrinsic::ID iid = I.getIntrinsicID();
1958 IntrinsicKind IK = getIntrinsicKind(iid);
1959 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1960 bool WritesMemory = IK == IK_WritesMemory;
1961 assert(!(OnlyReadsMemory && WritesMemory));
1962
1963 if (NumArgOperands == 2 &&
1964 I.getArgOperand(0)->getType()->isPointerTy() &&
1965 I.getArgOperand(1)->getType()->isVectorTy() &&
1966 I.getType()->isVoidTy() &&
1967 WritesMemory) {
1968 // This looks like a vector store.
1969 return handleVectorStoreIntrinsic(I);
1970 }
1971
1972 if (NumArgOperands == 1 &&
1973 I.getArgOperand(0)->getType()->isPointerTy() &&
1974 I.getType()->isVectorTy() &&
1975 OnlyReadsMemory) {
1976 // This looks like a vector load.
1977 return handleVectorLoadIntrinsic(I);
1978 }
1979
1980 if (!OnlyReadsMemory && !WritesMemory)
1981 if (maybeHandleSimpleNomemIntrinsic(I))
1982 return true;
1983
1984 // FIXME: detect and handle SSE maskstore/maskload
1985 return false;
1986 }
1987
handleBswap__anone66e8aa50211::MemorySanitizerVisitor1988 void handleBswap(IntrinsicInst &I) {
1989 IRBuilder<> IRB(&I);
1990 Value *Op = I.getArgOperand(0);
1991 Type *OpType = Op->getType();
1992 Function *BswapFunc = Intrinsic::getDeclaration(
1993 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
1994 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1995 setOrigin(&I, getOrigin(Op));
1996 }
1997
1998 // \brief Instrument vector convert instrinsic.
1999 //
2000 // This function instruments intrinsics like cvtsi2ss:
2001 // %Out = int_xxx_cvtyyy(%ConvertOp)
2002 // or
2003 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
2004 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
2005 // number \p Out elements, and (if has 2 arguments) copies the rest of the
2006 // elements from \p CopyOp.
2007 // In most cases conversion involves floating-point value which may trigger a
2008 // hardware exception when not fully initialized. For this reason we require
2009 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
2010 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
2011 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
2012 // return a fully initialized value.
handleVectorConvertIntrinsic__anone66e8aa50211::MemorySanitizerVisitor2013 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
2014 IRBuilder<> IRB(&I);
2015 Value *CopyOp, *ConvertOp;
2016
2017 switch (I.getNumArgOperands()) {
2018 case 2:
2019 CopyOp = I.getArgOperand(0);
2020 ConvertOp = I.getArgOperand(1);
2021 break;
2022 case 1:
2023 ConvertOp = I.getArgOperand(0);
2024 CopyOp = nullptr;
2025 break;
2026 default:
2027 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
2028 }
2029
2030 // The first *NumUsedElements* elements of ConvertOp are converted to the
2031 // same number of output elements. The rest of the output is copied from
2032 // CopyOp, or (if not available) filled with zeroes.
2033 // Combine shadow for elements of ConvertOp that are used in this operation,
2034 // and insert a check.
2035 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
2036 // int->any conversion.
2037 Value *ConvertShadow = getShadow(ConvertOp);
2038 Value *AggShadow = nullptr;
2039 if (ConvertOp->getType()->isVectorTy()) {
2040 AggShadow = IRB.CreateExtractElement(
2041 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
2042 for (int i = 1; i < NumUsedElements; ++i) {
2043 Value *MoreShadow = IRB.CreateExtractElement(
2044 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
2045 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
2046 }
2047 } else {
2048 AggShadow = ConvertShadow;
2049 }
2050 assert(AggShadow->getType()->isIntegerTy());
2051 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
2052
2053 // Build result shadow by zero-filling parts of CopyOp shadow that come from
2054 // ConvertOp.
2055 if (CopyOp) {
2056 assert(CopyOp->getType() == I.getType());
2057 assert(CopyOp->getType()->isVectorTy());
2058 Value *ResultShadow = getShadow(CopyOp);
2059 Type *EltTy = ResultShadow->getType()->getVectorElementType();
2060 for (int i = 0; i < NumUsedElements; ++i) {
2061 ResultShadow = IRB.CreateInsertElement(
2062 ResultShadow, ConstantInt::getNullValue(EltTy),
2063 ConstantInt::get(IRB.getInt32Ty(), i));
2064 }
2065 setShadow(&I, ResultShadow);
2066 setOrigin(&I, getOrigin(CopyOp));
2067 } else {
2068 setShadow(&I, getCleanShadow(&I));
2069 setOrigin(&I, getCleanOrigin());
2070 }
2071 }
2072
2073 // Given a scalar or vector, extract lower 64 bits (or less), and return all
2074 // zeroes if it is zero, and all ones otherwise.
Lower64ShadowExtend__anone66e8aa50211::MemorySanitizerVisitor2075 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2076 if (S->getType()->isVectorTy())
2077 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2078 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2079 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2080 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2081 }
2082
VariableShadowExtend__anone66e8aa50211::MemorySanitizerVisitor2083 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2084 Type *T = S->getType();
2085 assert(T->isVectorTy());
2086 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2087 return IRB.CreateSExt(S2, T);
2088 }
2089
2090 // \brief Instrument vector shift instrinsic.
2091 //
2092 // This function instruments intrinsics like int_x86_avx2_psll_w.
2093 // Intrinsic shifts %In by %ShiftSize bits.
2094 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2095 // size, and the rest is ignored. Behavior is defined even if shift size is
2096 // greater than register (or field) width.
handleVectorShiftIntrinsic__anone66e8aa50211::MemorySanitizerVisitor2097 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2098 assert(I.getNumArgOperands() == 2);
2099 IRBuilder<> IRB(&I);
2100 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2101 // Otherwise perform the same shift on S1.
2102 Value *S1 = getShadow(&I, 0);
2103 Value *S2 = getShadow(&I, 1);
2104 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2105 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2106 Value *V1 = I.getOperand(0);
2107 Value *V2 = I.getOperand(1);
2108 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
2109 IRB.CreateBitCast(S1, V1->getType()), V2);
2110 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2111 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2112 setOriginForNaryOp(I);
2113 }
2114
2115 // \brief Get an X86_MMX-sized vector type.
getMMXVectorTy__anone66e8aa50211::MemorySanitizerVisitor2116 Type *getMMXVectorTy(unsigned EltSizeInBits) {
2117 const unsigned X86_MMXSizeInBits = 64;
2118 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2119 X86_MMXSizeInBits / EltSizeInBits);
2120 }
2121
2122 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2123 // intrinsic.
getSignedPackIntrinsic__anone66e8aa50211::MemorySanitizerVisitor2124 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2125 switch (id) {
2126 case llvm::Intrinsic::x86_sse2_packsswb_128:
2127 case llvm::Intrinsic::x86_sse2_packuswb_128:
2128 return llvm::Intrinsic::x86_sse2_packsswb_128;
2129
2130 case llvm::Intrinsic::x86_sse2_packssdw_128:
2131 case llvm::Intrinsic::x86_sse41_packusdw:
2132 return llvm::Intrinsic::x86_sse2_packssdw_128;
2133
2134 case llvm::Intrinsic::x86_avx2_packsswb:
2135 case llvm::Intrinsic::x86_avx2_packuswb:
2136 return llvm::Intrinsic::x86_avx2_packsswb;
2137
2138 case llvm::Intrinsic::x86_avx2_packssdw:
2139 case llvm::Intrinsic::x86_avx2_packusdw:
2140 return llvm::Intrinsic::x86_avx2_packssdw;
2141
2142 case llvm::Intrinsic::x86_mmx_packsswb:
2143 case llvm::Intrinsic::x86_mmx_packuswb:
2144 return llvm::Intrinsic::x86_mmx_packsswb;
2145
2146 case llvm::Intrinsic::x86_mmx_packssdw:
2147 return llvm::Intrinsic::x86_mmx_packssdw;
2148 default:
2149 llvm_unreachable("unexpected intrinsic id");
2150 }
2151 }
2152
2153 // \brief Instrument vector pack instrinsic.
2154 //
2155 // This function instruments intrinsics like x86_mmx_packsswb, that
2156 // packs elements of 2 input vectors into half as many bits with saturation.
2157 // Shadow is propagated with the signed variant of the same intrinsic applied
2158 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2159 // EltSizeInBits is used only for x86mmx arguments.
handleVectorPackIntrinsic__anone66e8aa50211::MemorySanitizerVisitor2160 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
2161 assert(I.getNumArgOperands() == 2);
2162 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2163 IRBuilder<> IRB(&I);
2164 Value *S1 = getShadow(&I, 0);
2165 Value *S2 = getShadow(&I, 1);
2166 assert(isX86_MMX || S1->getType()->isVectorTy());
2167
2168 // SExt and ICmpNE below must apply to individual elements of input vectors.
2169 // In case of x86mmx arguments, cast them to appropriate vector types and
2170 // back.
2171 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2172 if (isX86_MMX) {
2173 S1 = IRB.CreateBitCast(S1, T);
2174 S2 = IRB.CreateBitCast(S2, T);
2175 }
2176 Value *S1_ext = IRB.CreateSExt(
2177 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2178 Value *S2_ext = IRB.CreateSExt(
2179 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
2180 if (isX86_MMX) {
2181 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2182 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2183 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2184 }
2185
2186 Function *ShadowFn = Intrinsic::getDeclaration(
2187 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2188
2189 Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack");
2190 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
2191 setShadow(&I, S);
2192 setOriginForNaryOp(I);
2193 }
2194
2195 // \brief Instrument sum-of-absolute-differencies intrinsic.
handleVectorSadIntrinsic__anone66e8aa50211::MemorySanitizerVisitor2196 void handleVectorSadIntrinsic(IntrinsicInst &I) {
2197 const unsigned SignificantBitsPerResultElement = 16;
2198 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2199 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2200 unsigned ZeroBitsPerResultElement =
2201 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2202
2203 IRBuilder<> IRB(&I);
2204 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2205 S = IRB.CreateBitCast(S, ResTy);
2206 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2207 ResTy);
2208 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2209 S = IRB.CreateBitCast(S, getShadowTy(&I));
2210 setShadow(&I, S);
2211 setOriginForNaryOp(I);
2212 }
2213
2214 // \brief Instrument multiply-add intrinsic.
handleVectorPmaddIntrinsic__anone66e8aa50211::MemorySanitizerVisitor2215 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2216 unsigned EltSizeInBits = 0) {
2217 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2218 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2219 IRBuilder<> IRB(&I);
2220 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2221 S = IRB.CreateBitCast(S, ResTy);
2222 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2223 ResTy);
2224 S = IRB.CreateBitCast(S, getShadowTy(&I));
2225 setShadow(&I, S);
2226 setOriginForNaryOp(I);
2227 }
2228
visitIntrinsicInst__anone66e8aa50211::MemorySanitizerVisitor2229 void visitIntrinsicInst(IntrinsicInst &I) {
2230 switch (I.getIntrinsicID()) {
2231 case llvm::Intrinsic::bswap:
2232 handleBswap(I);
2233 break;
2234 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
2235 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
2236 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
2237 case llvm::Intrinsic::x86_avx512_cvtss2usi:
2238 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2239 case llvm::Intrinsic::x86_avx512_cvttss2usi:
2240 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2241 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2242 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2243 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2244 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2245 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2246 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2247 case llvm::Intrinsic::x86_sse2_cvtsd2si:
2248 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2249 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2250 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2251 case llvm::Intrinsic::x86_sse2_cvtss2sd:
2252 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2253 case llvm::Intrinsic::x86_sse2_cvttsd2si:
2254 case llvm::Intrinsic::x86_sse_cvtsi2ss:
2255 case llvm::Intrinsic::x86_sse_cvtsi642ss:
2256 case llvm::Intrinsic::x86_sse_cvtss2si64:
2257 case llvm::Intrinsic::x86_sse_cvtss2si:
2258 case llvm::Intrinsic::x86_sse_cvttss2si64:
2259 case llvm::Intrinsic::x86_sse_cvttss2si:
2260 handleVectorConvertIntrinsic(I, 1);
2261 break;
2262 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
2263 case llvm::Intrinsic::x86_sse2_cvtps2pd:
2264 case llvm::Intrinsic::x86_sse_cvtps2pi:
2265 case llvm::Intrinsic::x86_sse_cvttps2pi:
2266 handleVectorConvertIntrinsic(I, 2);
2267 break;
2268 case llvm::Intrinsic::x86_avx2_psll_w:
2269 case llvm::Intrinsic::x86_avx2_psll_d:
2270 case llvm::Intrinsic::x86_avx2_psll_q:
2271 case llvm::Intrinsic::x86_avx2_pslli_w:
2272 case llvm::Intrinsic::x86_avx2_pslli_d:
2273 case llvm::Intrinsic::x86_avx2_pslli_q:
2274 case llvm::Intrinsic::x86_avx2_psrl_w:
2275 case llvm::Intrinsic::x86_avx2_psrl_d:
2276 case llvm::Intrinsic::x86_avx2_psrl_q:
2277 case llvm::Intrinsic::x86_avx2_psra_w:
2278 case llvm::Intrinsic::x86_avx2_psra_d:
2279 case llvm::Intrinsic::x86_avx2_psrli_w:
2280 case llvm::Intrinsic::x86_avx2_psrli_d:
2281 case llvm::Intrinsic::x86_avx2_psrli_q:
2282 case llvm::Intrinsic::x86_avx2_psrai_w:
2283 case llvm::Intrinsic::x86_avx2_psrai_d:
2284 case llvm::Intrinsic::x86_sse2_psll_w:
2285 case llvm::Intrinsic::x86_sse2_psll_d:
2286 case llvm::Intrinsic::x86_sse2_psll_q:
2287 case llvm::Intrinsic::x86_sse2_pslli_w:
2288 case llvm::Intrinsic::x86_sse2_pslli_d:
2289 case llvm::Intrinsic::x86_sse2_pslli_q:
2290 case llvm::Intrinsic::x86_sse2_psrl_w:
2291 case llvm::Intrinsic::x86_sse2_psrl_d:
2292 case llvm::Intrinsic::x86_sse2_psrl_q:
2293 case llvm::Intrinsic::x86_sse2_psra_w:
2294 case llvm::Intrinsic::x86_sse2_psra_d:
2295 case llvm::Intrinsic::x86_sse2_psrli_w:
2296 case llvm::Intrinsic::x86_sse2_psrli_d:
2297 case llvm::Intrinsic::x86_sse2_psrli_q:
2298 case llvm::Intrinsic::x86_sse2_psrai_w:
2299 case llvm::Intrinsic::x86_sse2_psrai_d:
2300 case llvm::Intrinsic::x86_mmx_psll_w:
2301 case llvm::Intrinsic::x86_mmx_psll_d:
2302 case llvm::Intrinsic::x86_mmx_psll_q:
2303 case llvm::Intrinsic::x86_mmx_pslli_w:
2304 case llvm::Intrinsic::x86_mmx_pslli_d:
2305 case llvm::Intrinsic::x86_mmx_pslli_q:
2306 case llvm::Intrinsic::x86_mmx_psrl_w:
2307 case llvm::Intrinsic::x86_mmx_psrl_d:
2308 case llvm::Intrinsic::x86_mmx_psrl_q:
2309 case llvm::Intrinsic::x86_mmx_psra_w:
2310 case llvm::Intrinsic::x86_mmx_psra_d:
2311 case llvm::Intrinsic::x86_mmx_psrli_w:
2312 case llvm::Intrinsic::x86_mmx_psrli_d:
2313 case llvm::Intrinsic::x86_mmx_psrli_q:
2314 case llvm::Intrinsic::x86_mmx_psrai_w:
2315 case llvm::Intrinsic::x86_mmx_psrai_d:
2316 handleVectorShiftIntrinsic(I, /* Variable */ false);
2317 break;
2318 case llvm::Intrinsic::x86_avx2_psllv_d:
2319 case llvm::Intrinsic::x86_avx2_psllv_d_256:
2320 case llvm::Intrinsic::x86_avx2_psllv_q:
2321 case llvm::Intrinsic::x86_avx2_psllv_q_256:
2322 case llvm::Intrinsic::x86_avx2_psrlv_d:
2323 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2324 case llvm::Intrinsic::x86_avx2_psrlv_q:
2325 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2326 case llvm::Intrinsic::x86_avx2_psrav_d:
2327 case llvm::Intrinsic::x86_avx2_psrav_d_256:
2328 handleVectorShiftIntrinsic(I, /* Variable */ true);
2329 break;
2330
2331 case llvm::Intrinsic::x86_sse2_packsswb_128:
2332 case llvm::Intrinsic::x86_sse2_packssdw_128:
2333 case llvm::Intrinsic::x86_sse2_packuswb_128:
2334 case llvm::Intrinsic::x86_sse41_packusdw:
2335 case llvm::Intrinsic::x86_avx2_packsswb:
2336 case llvm::Intrinsic::x86_avx2_packssdw:
2337 case llvm::Intrinsic::x86_avx2_packuswb:
2338 case llvm::Intrinsic::x86_avx2_packusdw:
2339 handleVectorPackIntrinsic(I);
2340 break;
2341
2342 case llvm::Intrinsic::x86_mmx_packsswb:
2343 case llvm::Intrinsic::x86_mmx_packuswb:
2344 handleVectorPackIntrinsic(I, 16);
2345 break;
2346
2347 case llvm::Intrinsic::x86_mmx_packssdw:
2348 handleVectorPackIntrinsic(I, 32);
2349 break;
2350
2351 case llvm::Intrinsic::x86_mmx_psad_bw:
2352 case llvm::Intrinsic::x86_sse2_psad_bw:
2353 case llvm::Intrinsic::x86_avx2_psad_bw:
2354 handleVectorSadIntrinsic(I);
2355 break;
2356
2357 case llvm::Intrinsic::x86_sse2_pmadd_wd:
2358 case llvm::Intrinsic::x86_avx2_pmadd_wd:
2359 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2360 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2361 handleVectorPmaddIntrinsic(I);
2362 break;
2363
2364 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2365 handleVectorPmaddIntrinsic(I, 8);
2366 break;
2367
2368 case llvm::Intrinsic::x86_mmx_pmadd_wd:
2369 handleVectorPmaddIntrinsic(I, 16);
2370 break;
2371
2372 default:
2373 if (!handleUnknownIntrinsic(I))
2374 visitInstruction(I);
2375 break;
2376 }
2377 }
2378
visitCallSite__anone66e8aa50211::MemorySanitizerVisitor2379 void visitCallSite(CallSite CS) {
2380 Instruction &I = *CS.getInstruction();
2381 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2382 if (CS.isCall()) {
2383 CallInst *Call = cast<CallInst>(&I);
2384
2385 // For inline asm, do the usual thing: check argument shadow and mark all
2386 // outputs as clean. Note that any side effects of the inline asm that are
2387 // not immediately visible in its constraints are not handled.
2388 if (Call->isInlineAsm()) {
2389 visitInstruction(I);
2390 return;
2391 }
2392
2393 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
2394
2395 // We are going to insert code that relies on the fact that the callee
2396 // will become a non-readonly function after it is instrumented by us. To
2397 // prevent this code from being optimized out, mark that function
2398 // non-readonly in advance.
2399 if (Function *Func = Call->getCalledFunction()) {
2400 // Clear out readonly/readnone attributes.
2401 AttrBuilder B;
2402 B.addAttribute(Attribute::ReadOnly)
2403 .addAttribute(Attribute::ReadNone);
2404 Func->removeAttributes(AttributeSet::FunctionIndex,
2405 AttributeSet::get(Func->getContext(),
2406 AttributeSet::FunctionIndex,
2407 B));
2408 }
2409 }
2410 IRBuilder<> IRB(&I);
2411
2412 unsigned ArgOffset = 0;
2413 DEBUG(dbgs() << " CallSite: " << I << "\n");
2414 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2415 ArgIt != End; ++ArgIt) {
2416 Value *A = *ArgIt;
2417 unsigned i = ArgIt - CS.arg_begin();
2418 if (!A->getType()->isSized()) {
2419 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2420 continue;
2421 }
2422 unsigned Size = 0;
2423 Value *Store = nullptr;
2424 // Compute the Shadow for arg even if it is ByVal, because
2425 // in that case getShadow() will copy the actual arg shadow to
2426 // __msan_param_tls.
2427 Value *ArgShadow = getShadow(A);
2428 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2429 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2430 " Shadow: " << *ArgShadow << "\n");
2431 bool ArgIsInitialized = false;
2432 const DataLayout &DL = F.getParent()->getDataLayout();
2433 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
2434 assert(A->getType()->isPointerTy() &&
2435 "ByVal argument is not a pointer!");
2436 Size = DL.getTypeAllocSize(A->getType()->getPointerElementType());
2437 if (ArgOffset + Size > kParamTLSSize) break;
2438 unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2439 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
2440 Store = IRB.CreateMemCpy(ArgShadowBase,
2441 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2442 Size, Alignment);
2443 } else {
2444 Size = DL.getTypeAllocSize(A->getType());
2445 if (ArgOffset + Size > kParamTLSSize) break;
2446 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2447 kShadowTLSAlignment);
2448 Constant *Cst = dyn_cast<Constant>(ArgShadow);
2449 if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
2450 }
2451 if (MS.TrackOrigins && !ArgIsInitialized)
2452 IRB.CreateStore(getOrigin(A),
2453 getOriginPtrForArgument(A, IRB, ArgOffset));
2454 (void)Store;
2455 assert(Size != 0 && Store != nullptr);
2456 DEBUG(dbgs() << " Param:" << *Store << "\n");
2457 ArgOffset += RoundUpToAlignment(Size, 8);
2458 }
2459 DEBUG(dbgs() << " done with call args\n");
2460
2461 FunctionType *FT =
2462 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
2463 if (FT->isVarArg()) {
2464 VAHelper->visitCallSite(CS, IRB);
2465 }
2466
2467 // Now, get the shadow for the RetVal.
2468 if (!I.getType()->isSized()) return;
2469 IRBuilder<> IRBBefore(&I);
2470 // Until we have full dynamic coverage, make sure the retval shadow is 0.
2471 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
2472 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
2473 Instruction *NextInsn = nullptr;
2474 if (CS.isCall()) {
2475 NextInsn = I.getNextNode();
2476 } else {
2477 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2478 if (!NormalDest->getSinglePredecessor()) {
2479 // FIXME: this case is tricky, so we are just conservative here.
2480 // Perhaps we need to split the edge between this BB and NormalDest,
2481 // but a naive attempt to use SplitEdge leads to a crash.
2482 setShadow(&I, getCleanShadow(&I));
2483 setOrigin(&I, getCleanOrigin());
2484 return;
2485 }
2486 NextInsn = NormalDest->getFirstInsertionPt();
2487 assert(NextInsn &&
2488 "Could not find insertion point for retval shadow load");
2489 }
2490 IRBuilder<> IRBAfter(NextInsn);
2491 Value *RetvalShadow =
2492 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2493 kShadowTLSAlignment, "_msret");
2494 setShadow(&I, RetvalShadow);
2495 if (MS.TrackOrigins)
2496 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2497 }
2498
visitReturnInst__anone66e8aa50211::MemorySanitizerVisitor2499 void visitReturnInst(ReturnInst &I) {
2500 IRBuilder<> IRB(&I);
2501 Value *RetVal = I.getReturnValue();
2502 if (!RetVal) return;
2503 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2504 if (CheckReturnValue) {
2505 insertShadowCheck(RetVal, &I);
2506 Value *Shadow = getCleanShadow(RetVal);
2507 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2508 } else {
2509 Value *Shadow = getShadow(RetVal);
2510 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2511 // FIXME: make it conditional if ClStoreCleanOrigin==0
2512 if (MS.TrackOrigins)
2513 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2514 }
2515 }
2516
visitPHINode__anone66e8aa50211::MemorySanitizerVisitor2517 void visitPHINode(PHINode &I) {
2518 IRBuilder<> IRB(&I);
2519 if (!PropagateShadow) {
2520 setShadow(&I, getCleanShadow(&I));
2521 setOrigin(&I, getCleanOrigin());
2522 return;
2523 }
2524
2525 ShadowPHINodes.push_back(&I);
2526 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2527 "_msphi_s"));
2528 if (MS.TrackOrigins)
2529 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2530 "_msphi_o"));
2531 }
2532
visitAllocaInst__anone66e8aa50211::MemorySanitizerVisitor2533 void visitAllocaInst(AllocaInst &I) {
2534 setShadow(&I, getCleanShadow(&I));
2535 setOrigin(&I, getCleanOrigin());
2536 IRBuilder<> IRB(I.getNextNode());
2537 const DataLayout &DL = F.getParent()->getDataLayout();
2538 uint64_t Size = DL.getTypeAllocSize(I.getAllocatedType());
2539 if (PoisonStack && ClPoisonStackWithCall) {
2540 IRB.CreateCall2(MS.MsanPoisonStackFn,
2541 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2542 ConstantInt::get(MS.IntptrTy, Size));
2543 } else {
2544 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
2545 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2546 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
2547 }
2548
2549 if (PoisonStack && MS.TrackOrigins) {
2550 SmallString<2048> StackDescriptionStorage;
2551 raw_svector_ostream StackDescription(StackDescriptionStorage);
2552 // We create a string with a description of the stack allocation and
2553 // pass it into __msan_set_alloca_origin.
2554 // It will be printed by the run-time if stack-originated UMR is found.
2555 // The first 4 bytes of the string are set to '----' and will be replaced
2556 // by __msan_va_arg_overflow_size_tls at the first call.
2557 StackDescription << "----" << I.getName() << "@" << F.getName();
2558 Value *Descr =
2559 createPrivateNonConstGlobalForString(*F.getParent(),
2560 StackDescription.str());
2561
2562 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
2563 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2564 ConstantInt::get(MS.IntptrTy, Size),
2565 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2566 IRB.CreatePointerCast(&F, MS.IntptrTy));
2567 }
2568 }
2569
visitSelectInst__anone66e8aa50211::MemorySanitizerVisitor2570 void visitSelectInst(SelectInst& I) {
2571 IRBuilder<> IRB(&I);
2572 // a = select b, c, d
2573 Value *B = I.getCondition();
2574 Value *C = I.getTrueValue();
2575 Value *D = I.getFalseValue();
2576 Value *Sb = getShadow(B);
2577 Value *Sc = getShadow(C);
2578 Value *Sd = getShadow(D);
2579
2580 // Result shadow if condition shadow is 0.
2581 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2582 Value *Sa1;
2583 if (I.getType()->isAggregateType()) {
2584 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2585 // an extra "select". This results in much more compact IR.
2586 // Sa = select Sb, poisoned, (select b, Sc, Sd)
2587 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
2588 } else {
2589 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2590 // If Sb (condition is poisoned), look for bits in c and d that are equal
2591 // and both unpoisoned.
2592 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2593
2594 // Cast arguments to shadow-compatible type.
2595 C = CreateAppToShadowCast(IRB, C);
2596 D = CreateAppToShadowCast(IRB, D);
2597
2598 // Result shadow if condition shadow is 1.
2599 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
2600 }
2601 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2602 setShadow(&I, Sa);
2603 if (MS.TrackOrigins) {
2604 // Origins are always i32, so any vector conditions must be flattened.
2605 // FIXME: consider tracking vector origins for app vectors?
2606 if (B->getType()->isVectorTy()) {
2607 Type *FlatTy = getShadowTyNoVec(B->getType());
2608 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
2609 ConstantInt::getNullValue(FlatTy));
2610 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
2611 ConstantInt::getNullValue(FlatTy));
2612 }
2613 // a = select b, c, d
2614 // Oa = Sb ? Ob : (b ? Oc : Od)
2615 setOrigin(
2616 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
2617 IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
2618 getOrigin(I.getFalseValue()))));
2619 }
2620 }
2621
visitLandingPadInst__anone66e8aa50211::MemorySanitizerVisitor2622 void visitLandingPadInst(LandingPadInst &I) {
2623 // Do nothing.
2624 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2625 setShadow(&I, getCleanShadow(&I));
2626 setOrigin(&I, getCleanOrigin());
2627 }
2628
visitGetElementPtrInst__anone66e8aa50211::MemorySanitizerVisitor2629 void visitGetElementPtrInst(GetElementPtrInst &I) {
2630 handleShadowOr(I);
2631 }
2632
visitExtractValueInst__anone66e8aa50211::MemorySanitizerVisitor2633 void visitExtractValueInst(ExtractValueInst &I) {
2634 IRBuilder<> IRB(&I);
2635 Value *Agg = I.getAggregateOperand();
2636 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2637 Value *AggShadow = getShadow(Agg);
2638 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2639 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2640 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2641 setShadow(&I, ResShadow);
2642 setOriginForNaryOp(I);
2643 }
2644
visitInsertValueInst__anone66e8aa50211::MemorySanitizerVisitor2645 void visitInsertValueInst(InsertValueInst &I) {
2646 IRBuilder<> IRB(&I);
2647 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2648 Value *AggShadow = getShadow(I.getAggregateOperand());
2649 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2650 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2651 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2652 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2653 DEBUG(dbgs() << " Res: " << *Res << "\n");
2654 setShadow(&I, Res);
2655 setOriginForNaryOp(I);
2656 }
2657
dumpInst__anone66e8aa50211::MemorySanitizerVisitor2658 void dumpInst(Instruction &I) {
2659 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2660 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2661 } else {
2662 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2663 }
2664 errs() << "QQQ " << I << "\n";
2665 }
2666
visitResumeInst__anone66e8aa50211::MemorySanitizerVisitor2667 void visitResumeInst(ResumeInst &I) {
2668 DEBUG(dbgs() << "Resume: " << I << "\n");
2669 // Nothing to do here.
2670 }
2671
visitInstruction__anone66e8aa50211::MemorySanitizerVisitor2672 void visitInstruction(Instruction &I) {
2673 // Everything else: stop propagating and check for poisoned shadow.
2674 if (ClDumpStrictInstructions)
2675 dumpInst(I);
2676 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2677 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
2678 insertShadowCheck(I.getOperand(i), &I);
2679 setShadow(&I, getCleanShadow(&I));
2680 setOrigin(&I, getCleanOrigin());
2681 }
2682 };
2683
2684 /// \brief AMD64-specific implementation of VarArgHelper.
2685 struct VarArgAMD64Helper : public VarArgHelper {
2686 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2687 // See a comment in visitCallSite for more details.
2688 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
2689 static const unsigned AMD64FpEndOffset = 176;
2690
2691 Function &F;
2692 MemorySanitizer &MS;
2693 MemorySanitizerVisitor &MSV;
2694 Value *VAArgTLSCopy;
2695 Value *VAArgOverflowSize;
2696
2697 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2698
VarArgAMD64Helper__anone66e8aa50211::VarArgAMD64Helper2699 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2700 MemorySanitizerVisitor &MSV)
2701 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2702 VAArgOverflowSize(nullptr) {}
2703
2704 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2705
classifyArgument__anone66e8aa50211::VarArgAMD64Helper2706 ArgKind classifyArgument(Value* arg) {
2707 // A very rough approximation of X86_64 argument classification rules.
2708 Type *T = arg->getType();
2709 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2710 return AK_FloatingPoint;
2711 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2712 return AK_GeneralPurpose;
2713 if (T->isPointerTy())
2714 return AK_GeneralPurpose;
2715 return AK_Memory;
2716 }
2717
2718 // For VarArg functions, store the argument shadow in an ABI-specific format
2719 // that corresponds to va_list layout.
2720 // We do this because Clang lowers va_arg in the frontend, and this pass
2721 // only sees the low level code that deals with va_list internals.
2722 // A much easier alternative (provided that Clang emits va_arg instructions)
2723 // would have been to associate each live instance of va_list with a copy of
2724 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2725 // order.
visitCallSite__anone66e8aa50211::VarArgAMD64Helper2726 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
2727 unsigned GpOffset = 0;
2728 unsigned FpOffset = AMD64GpEndOffset;
2729 unsigned OverflowOffset = AMD64FpEndOffset;
2730 const DataLayout &DL = F.getParent()->getDataLayout();
2731 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2732 ArgIt != End; ++ArgIt) {
2733 Value *A = *ArgIt;
2734 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2735 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2736 if (IsByVal) {
2737 // ByVal arguments always go to the overflow area.
2738 assert(A->getType()->isPointerTy());
2739 Type *RealTy = A->getType()->getPointerElementType();
2740 uint64_t ArgSize = DL.getTypeAllocSize(RealTy);
2741 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
2742 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
2743 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2744 ArgSize, kShadowTLSAlignment);
2745 } else {
2746 ArgKind AK = classifyArgument(A);
2747 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2748 AK = AK_Memory;
2749 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2750 AK = AK_Memory;
2751 Value *Base;
2752 switch (AK) {
2753 case AK_GeneralPurpose:
2754 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2755 GpOffset += 8;
2756 break;
2757 case AK_FloatingPoint:
2758 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2759 FpOffset += 16;
2760 break;
2761 case AK_Memory:
2762 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
2763 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2764 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
2765 }
2766 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2767 }
2768 }
2769 Constant *OverflowSize =
2770 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2771 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2772 }
2773
2774 /// \brief Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anone66e8aa50211::VarArgAMD64Helper2775 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
2776 int ArgOffset) {
2777 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2778 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2779 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
2780 "_msarg");
2781 }
2782
visitVAStartInst__anone66e8aa50211::VarArgAMD64Helper2783 void visitVAStartInst(VAStartInst &I) override {
2784 IRBuilder<> IRB(&I);
2785 VAStartInstrumentationList.push_back(&I);
2786 Value *VAListTag = I.getArgOperand(0);
2787 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2788
2789 // Unpoison the whole __va_list_tag.
2790 // FIXME: magic ABI constants.
2791 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2792 /* size */24, /* alignment */8, false);
2793 }
2794
visitVACopyInst__anone66e8aa50211::VarArgAMD64Helper2795 void visitVACopyInst(VACopyInst &I) override {
2796 IRBuilder<> IRB(&I);
2797 Value *VAListTag = I.getArgOperand(0);
2798 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2799
2800 // Unpoison the whole __va_list_tag.
2801 // FIXME: magic ABI constants.
2802 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2803 /* size */24, /* alignment */8, false);
2804 }
2805
finalizeInstrumentation__anone66e8aa50211::VarArgAMD64Helper2806 void finalizeInstrumentation() override {
2807 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2808 "finalizeInstrumentation called twice");
2809 if (!VAStartInstrumentationList.empty()) {
2810 // If there is a va_start in this function, make a backup copy of
2811 // va_arg_tls somewhere in the function entry block.
2812 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2813 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2814 Value *CopySize =
2815 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2816 VAArgOverflowSize);
2817 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2818 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2819 }
2820
2821 // Instrument va_start.
2822 // Copy va_list shadow from the backup copy of the TLS contents.
2823 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2824 CallInst *OrigInst = VAStartInstrumentationList[i];
2825 IRBuilder<> IRB(OrigInst->getNextNode());
2826 Value *VAListTag = OrigInst->getArgOperand(0);
2827
2828 Value *RegSaveAreaPtrPtr =
2829 IRB.CreateIntToPtr(
2830 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2831 ConstantInt::get(MS.IntptrTy, 16)),
2832 Type::getInt64PtrTy(*MS.C));
2833 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2834 Value *RegSaveAreaShadowPtr =
2835 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2836 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2837 AMD64FpEndOffset, 16);
2838
2839 Value *OverflowArgAreaPtrPtr =
2840 IRB.CreateIntToPtr(
2841 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2842 ConstantInt::get(MS.IntptrTy, 8)),
2843 Type::getInt64PtrTy(*MS.C));
2844 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2845 Value *OverflowArgAreaShadowPtr =
2846 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
2847 Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy,
2848 AMD64FpEndOffset);
2849 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2850 }
2851 }
2852 };
2853
2854 /// \brief MIPS64-specific implementation of VarArgHelper.
2855 struct VarArgMIPS64Helper : public VarArgHelper {
2856 Function &F;
2857 MemorySanitizer &MS;
2858 MemorySanitizerVisitor &MSV;
2859 Value *VAArgTLSCopy;
2860 Value *VAArgSize;
2861
2862 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2863
VarArgMIPS64Helper__anone66e8aa50211::VarArgMIPS64Helper2864 VarArgMIPS64Helper(Function &F, MemorySanitizer &MS,
2865 MemorySanitizerVisitor &MSV)
2866 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2867 VAArgSize(nullptr) {}
2868
visitCallSite__anone66e8aa50211::VarArgMIPS64Helper2869 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
2870 unsigned VAArgOffset = 0;
2871 const DataLayout &DL = F.getParent()->getDataLayout();
2872 for (CallSite::arg_iterator ArgIt = CS.arg_begin() + 1, End = CS.arg_end();
2873 ArgIt != End; ++ArgIt) {
2874 Value *A = *ArgIt;
2875 Value *Base;
2876 uint64_t ArgSize = DL.getTypeAllocSize(A->getType());
2877 #if defined(__MIPSEB__) || defined(MIPSEB)
2878 // Adjusting the shadow for argument with size < 8 to match the placement
2879 // of bits in big endian system
2880 if (ArgSize < 8)
2881 VAArgOffset += (8 - ArgSize);
2882 #endif
2883 Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset);
2884 VAArgOffset += ArgSize;
2885 VAArgOffset = RoundUpToAlignment(VAArgOffset, 8);
2886 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
2887 }
2888
2889 Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset);
2890 // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of
2891 // a new class member i.e. it is the total size of all VarArgs.
2892 IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS);
2893 }
2894
2895 /// \brief Compute the shadow address for a given va_arg.
getShadowPtrForVAArgument__anone66e8aa50211::VarArgMIPS64Helper2896 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
2897 int ArgOffset) {
2898 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2899 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
2900 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
2901 "_msarg");
2902 }
2903
visitVAStartInst__anone66e8aa50211::VarArgMIPS64Helper2904 void visitVAStartInst(VAStartInst &I) override {
2905 IRBuilder<> IRB(&I);
2906 VAStartInstrumentationList.push_back(&I);
2907 Value *VAListTag = I.getArgOperand(0);
2908 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2909 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2910 /* size */8, /* alignment */8, false);
2911 }
2912
visitVACopyInst__anone66e8aa50211::VarArgMIPS64Helper2913 void visitVACopyInst(VACopyInst &I) override {
2914 IRBuilder<> IRB(&I);
2915 Value *VAListTag = I.getArgOperand(0);
2916 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2917 // Unpoison the whole __va_list_tag.
2918 // FIXME: magic ABI constants.
2919 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
2920 /* size */8, /* alignment */8, false);
2921 }
2922
finalizeInstrumentation__anone66e8aa50211::VarArgMIPS64Helper2923 void finalizeInstrumentation() override {
2924 assert(!VAArgSize && !VAArgTLSCopy &&
2925 "finalizeInstrumentation called twice");
2926 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2927 VAArgSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2928 Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0),
2929 VAArgSize);
2930
2931 if (!VAStartInstrumentationList.empty()) {
2932 // If there is a va_start in this function, make a backup copy of
2933 // va_arg_tls somewhere in the function entry block.
2934 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2935 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2936 }
2937
2938 // Instrument va_start.
2939 // Copy va_list shadow from the backup copy of the TLS contents.
2940 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2941 CallInst *OrigInst = VAStartInstrumentationList[i];
2942 IRBuilder<> IRB(OrigInst->getNextNode());
2943 Value *VAListTag = OrigInst->getArgOperand(0);
2944 Value *RegSaveAreaPtrPtr =
2945 IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2946 Type::getInt64PtrTy(*MS.C));
2947 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2948 Value *RegSaveAreaShadowPtr =
2949 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2950 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy, CopySize, 8);
2951 }
2952 }
2953 };
2954
2955 /// \brief A no-op implementation of VarArgHelper.
2956 struct VarArgNoOpHelper : public VarArgHelper {
VarArgNoOpHelper__anone66e8aa50211::VarArgNoOpHelper2957 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2958 MemorySanitizerVisitor &MSV) {}
2959
visitCallSite__anone66e8aa50211::VarArgNoOpHelper2960 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
2961
visitVAStartInst__anone66e8aa50211::VarArgNoOpHelper2962 void visitVAStartInst(VAStartInst &I) override {}
2963
visitVACopyInst__anone66e8aa50211::VarArgNoOpHelper2964 void visitVACopyInst(VACopyInst &I) override {}
2965
finalizeInstrumentation__anone66e8aa50211::VarArgNoOpHelper2966 void finalizeInstrumentation() override {}
2967 };
2968
CreateVarArgHelper(Function & Func,MemorySanitizer & Msan,MemorySanitizerVisitor & Visitor)2969 VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
2970 MemorySanitizerVisitor &Visitor) {
2971 // VarArg handling is only implemented on AMD64. False positives are possible
2972 // on other platforms.
2973 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2974 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2975 return new VarArgAMD64Helper(Func, Msan, Visitor);
2976 else if (TargetTriple.getArch() == llvm::Triple::mips64 ||
2977 TargetTriple.getArch() == llvm::Triple::mips64el)
2978 return new VarArgMIPS64Helper(Func, Msan, Visitor);
2979 else
2980 return new VarArgNoOpHelper(Func, Msan, Visitor);
2981 }
2982
2983 } // namespace
2984
runOnFunction(Function & F)2985 bool MemorySanitizer::runOnFunction(Function &F) {
2986 MemorySanitizerVisitor Visitor(F, *this);
2987
2988 // Clear out readonly/readnone attributes.
2989 AttrBuilder B;
2990 B.addAttribute(Attribute::ReadOnly)
2991 .addAttribute(Attribute::ReadNone);
2992 F.removeAttributes(AttributeSet::FunctionIndex,
2993 AttributeSet::get(F.getContext(),
2994 AttributeSet::FunctionIndex, B));
2995
2996 return Visitor.runOnFunction();
2997 }
2998