1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 package org.apache.commons.math.util;
19 
20 import java.math.BigDecimal;
21 import java.math.BigInteger;
22 import java.util.Arrays;
23 
24 import org.apache.commons.math.MathRuntimeException;
25 import org.apache.commons.math.exception.util.Localizable;
26 import org.apache.commons.math.exception.util.LocalizedFormats;
27 import org.apache.commons.math.exception.NonMonotonousSequenceException;
28 
29 /**
30  * Some useful additions to the built-in functions in {@link Math}.
31  * @version $Revision: 1073472 $ $Date: 2011-02-22 20:49:07 +0100 (mar. 22 févr. 2011) $
32  */
33 public final class MathUtils {
34 
35     /** Smallest positive number such that 1 - EPSILON is not numerically equal to 1. */
36     public static final double EPSILON = 0x1.0p-53;
37 
38     /** Safe minimum, such that 1 / SAFE_MIN does not overflow.
39      * <p>In IEEE 754 arithmetic, this is also the smallest normalized
40      * number 2<sup>-1022</sup>.</p>
41      */
42     public static final double SAFE_MIN = 0x1.0p-1022;
43 
44     /**
45      * 2 &pi;.
46      * @since 2.1
47      */
48     public static final double TWO_PI = 2 * FastMath.PI;
49 
50     /** -1.0 cast as a byte. */
51     private static final byte  NB = (byte)-1;
52 
53     /** -1.0 cast as a short. */
54     private static final short NS = (short)-1;
55 
56     /** 1.0 cast as a byte. */
57     private static final byte  PB = (byte)1;
58 
59     /** 1.0 cast as a short. */
60     private static final short PS = (short)1;
61 
62     /** 0.0 cast as a byte. */
63     private static final byte  ZB = (byte)0;
64 
65     /** 0.0 cast as a short. */
66     private static final short ZS = (short)0;
67 
68     /** Gap between NaN and regular numbers. */
69     private static final int NAN_GAP = 4 * 1024 * 1024;
70 
71     /** Offset to order signed double numbers lexicographically. */
72     private static final long SGN_MASK = 0x8000000000000000L;
73 
74     /** Offset to order signed double numbers lexicographically. */
75     private static final int SGN_MASK_FLOAT = 0x80000000;
76 
77     /** All long-representable factorials */
78     private static final long[] FACTORIALS = new long[] {
79                        1l,                  1l,                   2l,
80                        6l,                 24l,                 120l,
81                      720l,               5040l,               40320l,
82                   362880l,            3628800l,            39916800l,
83                479001600l,         6227020800l,         87178291200l,
84            1307674368000l,     20922789888000l,     355687428096000l,
85         6402373705728000l, 121645100408832000l, 2432902008176640000l };
86 
87     /**
88      * Private Constructor
89      */
MathUtils()90     private MathUtils() {
91         super();
92     }
93 
94     /**
95      * Add two integers, checking for overflow.
96      *
97      * @param x an addend
98      * @param y an addend
99      * @return the sum <code>x+y</code>
100      * @throws ArithmeticException if the result can not be represented as an
101      *         int
102      * @since 1.1
103      */
addAndCheck(int x, int y)104     public static int addAndCheck(int x, int y) {
105         long s = (long)x + (long)y;
106         if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
107             throw MathRuntimeException.createArithmeticException(LocalizedFormats.OVERFLOW_IN_ADDITION, x, y);
108         }
109         return (int)s;
110     }
111 
112     /**
113      * Add two long integers, checking for overflow.
114      *
115      * @param a an addend
116      * @param b an addend
117      * @return the sum <code>a+b</code>
118      * @throws ArithmeticException if the result can not be represented as an
119      *         long
120      * @since 1.2
121      */
addAndCheck(long a, long b)122     public static long addAndCheck(long a, long b) {
123         return addAndCheck(a, b, LocalizedFormats.OVERFLOW_IN_ADDITION);
124     }
125 
126     /**
127      * Add two long integers, checking for overflow.
128      *
129      * @param a an addend
130      * @param b an addend
131      * @param pattern the pattern to use for any thrown exception.
132      * @return the sum <code>a+b</code>
133      * @throws ArithmeticException if the result can not be represented as an
134      *         long
135      * @since 1.2
136      */
addAndCheck(long a, long b, Localizable pattern)137     private static long addAndCheck(long a, long b, Localizable pattern) {
138         long ret;
139         if (a > b) {
140             // use symmetry to reduce boundary cases
141             ret = addAndCheck(b, a, pattern);
142         } else {
143             // assert a <= b
144 
145             if (a < 0) {
146                 if (b < 0) {
147                     // check for negative overflow
148                     if (Long.MIN_VALUE - b <= a) {
149                         ret = a + b;
150                     } else {
151                         throw MathRuntimeException.createArithmeticException(pattern, a, b);
152                     }
153                 } else {
154                     // opposite sign addition is always safe
155                     ret = a + b;
156                 }
157             } else {
158                 // assert a >= 0
159                 // assert b >= 0
160 
161                 // check for positive overflow
162                 if (a <= Long.MAX_VALUE - b) {
163                     ret = a + b;
164                 } else {
165                     throw MathRuntimeException.createArithmeticException(pattern, a, b);
166                 }
167             }
168         }
169         return ret;
170     }
171 
172     /**
173      * Returns an exact representation of the <a
174      * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
175      * Coefficient</a>, "<code>n choose k</code>", the number of
176      * <code>k</code>-element subsets that can be selected from an
177      * <code>n</code>-element set.
178      * <p>
179      * <Strong>Preconditions</strong>:
180      * <ul>
181      * <li> <code>0 <= k <= n </code> (otherwise
182      * <code>IllegalArgumentException</code> is thrown)</li>
183      * <li> The result is small enough to fit into a <code>long</code>. The
184      * largest value of <code>n</code> for which all coefficients are
185      * <code> < Long.MAX_VALUE</code> is 66. If the computed value exceeds
186      * <code>Long.MAX_VALUE</code> an <code>ArithMeticException</code> is
187      * thrown.</li>
188      * </ul></p>
189      *
190      * @param n the size of the set
191      * @param k the size of the subsets to be counted
192      * @return <code>n choose k</code>
193      * @throws IllegalArgumentException if preconditions are not met.
194      * @throws ArithmeticException if the result is too large to be represented
195      *         by a long integer.
196      */
binomialCoefficient(final int n, final int k)197     public static long binomialCoefficient(final int n, final int k) {
198         checkBinomial(n, k);
199         if ((n == k) || (k == 0)) {
200             return 1;
201         }
202         if ((k == 1) || (k == n - 1)) {
203             return n;
204         }
205         // Use symmetry for large k
206         if (k > n / 2)
207             return binomialCoefficient(n, n - k);
208 
209         // We use the formula
210         // (n choose k) = n! / (n-k)! / k!
211         // (n choose k) == ((n-k+1)*...*n) / (1*...*k)
212         // which could be written
213         // (n choose k) == (n-1 choose k-1) * n / k
214         long result = 1;
215         if (n <= 61) {
216             // For n <= 61, the naive implementation cannot overflow.
217             int i = n - k + 1;
218             for (int j = 1; j <= k; j++) {
219                 result = result * i / j;
220                 i++;
221             }
222         } else if (n <= 66) {
223             // For n > 61 but n <= 66, the result cannot overflow,
224             // but we must take care not to overflow intermediate values.
225             int i = n - k + 1;
226             for (int j = 1; j <= k; j++) {
227                 // We know that (result * i) is divisible by j,
228                 // but (result * i) may overflow, so we split j:
229                 // Filter out the gcd, d, so j/d and i/d are integer.
230                 // result is divisible by (j/d) because (j/d)
231                 // is relative prime to (i/d) and is a divisor of
232                 // result * (i/d).
233                 final long d = gcd(i, j);
234                 result = (result / (j / d)) * (i / d);
235                 i++;
236             }
237         } else {
238             // For n > 66, a result overflow might occur, so we check
239             // the multiplication, taking care to not overflow
240             // unnecessary.
241             int i = n - k + 1;
242             for (int j = 1; j <= k; j++) {
243                 final long d = gcd(i, j);
244                 result = mulAndCheck(result / (j / d), i / d);
245                 i++;
246             }
247         }
248         return result;
249     }
250 
251     /**
252      * Returns a <code>double</code> representation of the <a
253      * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
254      * Coefficient</a>, "<code>n choose k</code>", the number of
255      * <code>k</code>-element subsets that can be selected from an
256      * <code>n</code>-element set.
257      * <p>
258      * <Strong>Preconditions</strong>:
259      * <ul>
260      * <li> <code>0 <= k <= n </code> (otherwise
261      * <code>IllegalArgumentException</code> is thrown)</li>
262      * <li> The result is small enough to fit into a <code>double</code>. The
263      * largest value of <code>n</code> for which all coefficients are <
264      * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE,
265      * Double.POSITIVE_INFINITY is returned</li>
266      * </ul></p>
267      *
268      * @param n the size of the set
269      * @param k the size of the subsets to be counted
270      * @return <code>n choose k</code>
271      * @throws IllegalArgumentException if preconditions are not met.
272      */
binomialCoefficientDouble(final int n, final int k)273     public static double binomialCoefficientDouble(final int n, final int k) {
274         checkBinomial(n, k);
275         if ((n == k) || (k == 0)) {
276             return 1d;
277         }
278         if ((k == 1) || (k == n - 1)) {
279             return n;
280         }
281         if (k > n/2) {
282             return binomialCoefficientDouble(n, n - k);
283         }
284         if (n < 67) {
285             return binomialCoefficient(n,k);
286         }
287 
288         double result = 1d;
289         for (int i = 1; i <= k; i++) {
290              result *= (double)(n - k + i) / (double)i;
291         }
292 
293         return FastMath.floor(result + 0.5);
294     }
295 
296     /**
297      * Returns the natural <code>log</code> of the <a
298      * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial
299      * Coefficient</a>, "<code>n choose k</code>", the number of
300      * <code>k</code>-element subsets that can be selected from an
301      * <code>n</code>-element set.
302      * <p>
303      * <Strong>Preconditions</strong>:
304      * <ul>
305      * <li> <code>0 <= k <= n </code> (otherwise
306      * <code>IllegalArgumentException</code> is thrown)</li>
307      * </ul></p>
308      *
309      * @param n the size of the set
310      * @param k the size of the subsets to be counted
311      * @return <code>n choose k</code>
312      * @throws IllegalArgumentException if preconditions are not met.
313      */
binomialCoefficientLog(final int n, final int k)314     public static double binomialCoefficientLog(final int n, final int k) {
315         checkBinomial(n, k);
316         if ((n == k) || (k == 0)) {
317             return 0;
318         }
319         if ((k == 1) || (k == n - 1)) {
320             return FastMath.log(n);
321         }
322 
323         /*
324          * For values small enough to do exact integer computation,
325          * return the log of the exact value
326          */
327         if (n < 67) {
328             return FastMath.log(binomialCoefficient(n,k));
329         }
330 
331         /*
332          * Return the log of binomialCoefficientDouble for values that will not
333          * overflow binomialCoefficientDouble
334          */
335         if (n < 1030) {
336             return FastMath.log(binomialCoefficientDouble(n, k));
337         }
338 
339         if (k > n / 2) {
340             return binomialCoefficientLog(n, n - k);
341         }
342 
343         /*
344          * Sum logs for values that could overflow
345          */
346         double logSum = 0;
347 
348         // n!/(n-k)!
349         for (int i = n - k + 1; i <= n; i++) {
350             logSum += FastMath.log(i);
351         }
352 
353         // divide by k!
354         for (int i = 2; i <= k; i++) {
355             logSum -= FastMath.log(i);
356         }
357 
358         return logSum;
359     }
360 
361     /**
362      * Check binomial preconditions.
363      * @param n the size of the set
364      * @param k the size of the subsets to be counted
365      * @exception IllegalArgumentException if preconditions are not met.
366      */
checkBinomial(final int n, final int k)367     private static void checkBinomial(final int n, final int k)
368         throws IllegalArgumentException {
369         if (n < k) {
370             throw MathRuntimeException.createIllegalArgumentException(
371                 LocalizedFormats.BINOMIAL_INVALID_PARAMETERS_ORDER,
372                 n, k);
373         }
374         if (n < 0) {
375             throw MathRuntimeException.createIllegalArgumentException(
376                   LocalizedFormats.BINOMIAL_NEGATIVE_PARAMETER,
377                   n);
378         }
379     }
380 
381     /**
382      * Compares two numbers given some amount of allowed error.
383      *
384      * @param x the first number
385      * @param y the second number
386      * @param eps the amount of error to allow when checking for equality
387      * @return <ul><li>0 if  {@link #equals(double, double, double) equals(x, y, eps)}</li>
388      *       <li>&lt; 0 if !{@link #equals(double, double, double) equals(x, y, eps)} &amp;&amp; x &lt; y</li>
389      *       <li>> 0 if !{@link #equals(double, double, double) equals(x, y, eps)} &amp;&amp; x > y</li></ul>
390      */
compareTo(double x, double y, double eps)391     public static int compareTo(double x, double y, double eps) {
392         if (equals(x, y, eps)) {
393             return 0;
394         } else if (x < y) {
395           return -1;
396         }
397         return 1;
398     }
399 
400     /**
401      * Returns the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html">
402      * hyperbolic cosine</a> of x.
403      *
404      * @param x double value for which to find the hyperbolic cosine
405      * @return hyperbolic cosine of x
406      */
cosh(double x)407     public static double cosh(double x) {
408         return (FastMath.exp(x) + FastMath.exp(-x)) / 2.0;
409     }
410 
411     /**
412      * Returns true iff they are strictly equal.
413      *
414      * @param x first value
415      * @param y second value
416      * @return {@code true} if the values are equal.
417      * @deprecated as of 2.2 his method considers that {@code NaN == NaN}. In release
418      * 3.0, the semantics will change in order to comply with IEEE754 where it
419      * is specified that {@code NaN != NaN}.
420      * New methods have been added for those cases wher the old semantics is
421      * useful (see e.g. {@link #equalsIncludingNaN(float,float)
422      * equalsIncludingNaN}.
423      */
424     @Deprecated
equals(float x, float y)425     public static boolean equals(float x, float y) {
426         return (Float.isNaN(x) && Float.isNaN(y)) || x == y;
427     }
428 
429     /**
430      * Returns true if both arguments are NaN or neither is NaN and they are
431      * equal as defined by {@link #equals(float,float,int) equals(x, y, 1)}.
432      *
433      * @param x first value
434      * @param y second value
435      * @return {@code true} if the values are equal or both are NaN.
436      * @since 2.2
437      */
equalsIncludingNaN(float x, float y)438     public static boolean equalsIncludingNaN(float x, float y) {
439         return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, 1);
440     }
441 
442     /**
443      * Returns true if both arguments are equal or within the range of allowed
444      * error (inclusive).
445      *
446      * @param x first value
447      * @param y second value
448      * @param eps the amount of absolute error to allow.
449      * @return {@code true} if the values are equal or within range of each other.
450      * @since 2.2
451      */
equals(float x, float y, float eps)452     public static boolean equals(float x, float y, float eps) {
453         return equals(x, y, 1) || FastMath.abs(y - x) <= eps;
454     }
455 
456     /**
457      * Returns true if both arguments are NaN or are equal or within the range
458      * of allowed error (inclusive).
459      *
460      * @param x first value
461      * @param y second value
462      * @param eps the amount of absolute error to allow.
463      * @return {@code true} if the values are equal or within range of each other,
464      * or both are NaN.
465      * @since 2.2
466      */
equalsIncludingNaN(float x, float y, float eps)467     public static boolean equalsIncludingNaN(float x, float y, float eps) {
468         return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
469     }
470 
471     /**
472      * Returns true if both arguments are equal or within the range of allowed
473      * error (inclusive).
474      * Two float numbers are considered equal if there are {@code (maxUlps - 1)}
475      * (or fewer) floating point numbers between them, i.e. two adjacent floating
476      * point numbers are considered equal.
477      * Adapted from <a
478      * href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm">
479      * Bruce Dawson</a>
480      *
481      * @param x first value
482      * @param y second value
483      * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
484      * values between {@code x} and {@code y}.
485      * @return {@code true} if there are fewer than {@code maxUlps} floating
486      * point values between {@code x} and {@code y}.
487      * @since 2.2
488      */
equals(float x, float y, int maxUlps)489     public static boolean equals(float x, float y, int maxUlps) {
490         // Check that "maxUlps" is non-negative and small enough so that
491         // NaN won't compare as equal to anything (except another NaN).
492         assert maxUlps > 0 && maxUlps < NAN_GAP;
493 
494         int xInt = Float.floatToIntBits(x);
495         int yInt = Float.floatToIntBits(y);
496 
497         // Make lexicographically ordered as a two's-complement integer.
498         if (xInt < 0) {
499             xInt = SGN_MASK_FLOAT - xInt;
500         }
501         if (yInt < 0) {
502             yInt = SGN_MASK_FLOAT - yInt;
503         }
504 
505         final boolean isEqual = FastMath.abs(xInt - yInt) <= maxUlps;
506 
507         return isEqual && !Float.isNaN(x) && !Float.isNaN(y);
508     }
509 
510     /**
511      * Returns true if both arguments are NaN or if they are equal as defined
512      * by {@link #equals(float,float,int) equals(x, y, maxUlps)}.
513      *
514      * @param x first value
515      * @param y second value
516      * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
517      * values between {@code x} and {@code y}.
518      * @return {@code true} if both arguments are NaN or if there are less than
519      * {@code maxUlps} floating point values between {@code x} and {@code y}.
520      * @since 2.2
521      */
522     public static boolean equalsIncludingNaN(float x, float y, int maxUlps) {
523         return (Float.isNaN(x) && Float.isNaN(y)) || equals(x, y, maxUlps);
524     }
525 
526     /**
527      * Returns true iff both arguments are null or have same dimensions and all
528      * their elements are equal as defined by
529      * {@link #equals(float,float)}.
530      *
531      * @param x first array
532      * @param y second array
533      * @return true if the values are both null or have same dimension
534      * and equal elements.
535      * @deprecated as of 2.2 this method considers that {@code NaN == NaN}. In release
536      * 3.0, the semantics will change in order to comply with IEEE754 where it
537      * is specified that {@code NaN != NaN}.
538      * New methods have been added for those cases where the old semantics is
539      * useful (see e.g. {@link #equalsIncludingNaN(float[],float[])
540      * equalsIncludingNaN}.
541      */
542     @Deprecated
543     public static boolean equals(float[] x, float[] y) {
544         if ((x == null) || (y == null)) {
545             return !((x == null) ^ (y == null));
546         }
547         if (x.length != y.length) {
548             return false;
549         }
550         for (int i = 0; i < x.length; ++i) {
551             if (!equals(x[i], y[i])) {
552                 return false;
553             }
554         }
555         return true;
556     }
557 
558     /**
559      * Returns true iff both arguments are null or have same dimensions and all
560      * their elements are equal as defined by
561      * {@link #equalsIncludingNaN(float,float)}.
562      *
563      * @param x first array
564      * @param y second array
565      * @return true if the values are both null or have same dimension and
566      * equal elements
567      * @since 2.2
568      */
569     public static boolean equalsIncludingNaN(float[] x, float[] y) {
570         if ((x == null) || (y == null)) {
571             return !((x == null) ^ (y == null));
572         }
573         if (x.length != y.length) {
574             return false;
575         }
576         for (int i = 0; i < x.length; ++i) {
577             if (!equalsIncludingNaN(x[i], y[i])) {
578                 return false;
579             }
580         }
581         return true;
582     }
583 
584     /**
585      * Returns true iff both arguments are NaN or neither is NaN and they are
586      * equal
587      *
588      * <p>This method considers that {@code NaN == NaN}. In release
589      * 3.0, the semantics will change in order to comply with IEEE754 where it
590      * is specified that {@code NaN != NaN}.
591      * New methods have been added for those cases where the old semantics
592      * (w.r.t. NaN) is useful (see e.g.
593      * {@link #equalsIncludingNaN(double,double, double) equalsIncludingNaN}.
594      * </p>
595      *
596      * @param x first value
597      * @param y second value
598      * @return {@code true} if the values are equal.
599      */
600     public static boolean equals(double x, double y) {
601         return (Double.isNaN(x) && Double.isNaN(y)) || x == y;
602     }
603 
604     /**
605      * Returns true if both arguments are NaN or neither is NaN and they are
606      * equal as defined by {@link #equals(double,double,int) equals(x, y, 1)}.
607      *
608      * @param x first value
609      * @param y second value
610      * @return {@code true} if the values are equal or both are NaN.
611      * @since 2.2
612      */
613     public static boolean equalsIncludingNaN(double x, double y) {
614         return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, 1);
615     }
616 
617     /**
618      * Returns true if both arguments are equal or within the range of allowed
619      * error (inclusive).
620      * <p>
621      * Two NaNs are considered equals, as are two infinities with same sign.
622      * </p>
623      * <p>This method considers that {@code NaN == NaN}. In release
624      * 3.0, the semantics will change in order to comply with IEEE754 where it
625      * is specified that {@code NaN != NaN}.
626      * New methods have been added for those cases where the old semantics
627      * (w.r.t. NaN) is useful (see e.g.
628      * {@link #equalsIncludingNaN(double,double, double) equalsIncludingNaN}.
629      * </p>
630      * @param x first value
631      * @param y second value
632      * @param eps the amount of absolute error to allow.
633      * @return {@code true} if the values are equal or within range of each other.
634      */
635     public static boolean equals(double x, double y, double eps) {
636         return equals(x, y) || FastMath.abs(y - x) <= eps;
637     }
638 
639     /**
640      * Returns true if both arguments are NaN or are equal or within the range
641      * of allowed error (inclusive).
642      *
643      * @param x first value
644      * @param y second value
645      * @param eps the amount of absolute error to allow.
646      * @return {@code true} if the values are equal or within range of each other,
647      * or both are NaN.
648      * @since 2.2
649      */
650     public static boolean equalsIncludingNaN(double x, double y, double eps) {
651         return equalsIncludingNaN(x, y) || (FastMath.abs(y - x) <= eps);
652     }
653 
654     /**
655      * Returns true if both arguments are equal or within the range of allowed
656      * error (inclusive).
657      * Two float numbers are considered equal if there are {@code (maxUlps - 1)}
658      * (or fewer) floating point numbers between them, i.e. two adjacent floating
659      * point numbers are considered equal.
660      * Adapted from <a
661      * href="http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm">
662      * Bruce Dawson</a>
663      *
664      * <p>This method considers that {@code NaN == NaN}. In release
665      * 3.0, the semantics will change in order to comply with IEEE754 where it
666      * is specified that {@code NaN != NaN}.
667      * New methods have been added for those cases where the old semantics
668      * (w.r.t. NaN) is useful (see e.g.
669      * {@link #equalsIncludingNaN(double,double, int) equalsIncludingNaN}.
670      * </p>
671      *
672      * @param x first value
673      * @param y second value
674      * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
675      * values between {@code x} and {@code y}.
676      * @return {@code true} if there are fewer than {@code maxUlps} floating
677      * point values between {@code x} and {@code y}.
678      */
679     public static boolean equals(double x, double y, int maxUlps) {
680         // Check that "maxUlps" is non-negative and small enough so that
681         // NaN won't compare as equal to anything (except another NaN).
682         assert maxUlps > 0 && maxUlps < NAN_GAP;
683 
684         long xInt = Double.doubleToLongBits(x);
685         long yInt = Double.doubleToLongBits(y);
686 
687         // Make lexicographically ordered as a two's-complement integer.
688         if (xInt < 0) {
689             xInt = SGN_MASK - xInt;
690         }
691         if (yInt < 0) {
692             yInt = SGN_MASK - yInt;
693         }
694 
695         return FastMath.abs(xInt - yInt) <= maxUlps;
696     }
697 
698     /**
699      * Returns true if both arguments are NaN or if they are equal as defined
700      * by {@link #equals(double,double,int) equals(x, y, maxUlps}.
701      *
702      * @param x first value
703      * @param y second value
704      * @param maxUlps {@code (maxUlps - 1)} is the number of floating point
705      * values between {@code x} and {@code y}.
706      * @return {@code true} if both arguments are NaN or if there are less than
707      * {@code maxUlps} floating point values between {@code x} and {@code y}.
708      * @since 2.2
709      */
710     public static boolean equalsIncludingNaN(double x, double y, int maxUlps) {
711         return (Double.isNaN(x) && Double.isNaN(y)) || equals(x, y, maxUlps);
712     }
713 
714     /**
715      * Returns true iff both arguments are null or have same dimensions and all
716      * their elements are equal as defined by
717      * {@link #equals(double,double)}.
718      *
719      * <p>This method considers that {@code NaN == NaN}. In release
720      * 3.0, the semantics will change in order to comply with IEEE754 where it
721      * is specified that {@code NaN != NaN}.
722      * New methods have been added for those cases wher the old semantics is
723      * useful (see e.g. {@link #equalsIncludingNaN(double[],double[])
724      * equalsIncludingNaN}.
725      * </p>
726      * @param x first array
727      * @param y second array
728      * @return true if the values are both null or have same dimension
729      * and equal elements.
730      */
731     public static boolean equals(double[] x, double[] y) {
732         if ((x == null) || (y == null)) {
733             return !((x == null) ^ (y == null));
734         }
735         if (x.length != y.length) {
736             return false;
737         }
738         for (int i = 0; i < x.length; ++i) {
739             if (!equals(x[i], y[i])) {
740                 return false;
741             }
742         }
743         return true;
744     }
745 
746     /**
747      * Returns true iff both arguments are null or have same dimensions and all
748      * their elements are equal as defined by
749      * {@link #equalsIncludingNaN(double,double)}.
750      *
751      * @param x first array
752      * @param y second array
753      * @return true if the values are both null or have same dimension and
754      * equal elements
755      * @since 2.2
756      */
757     public static boolean equalsIncludingNaN(double[] x, double[] y) {
758         if ((x == null) || (y == null)) {
759             return !((x == null) ^ (y == null));
760         }
761         if (x.length != y.length) {
762             return false;
763         }
764         for (int i = 0; i < x.length; ++i) {
765             if (!equalsIncludingNaN(x[i], y[i])) {
766                 return false;
767             }
768         }
769         return true;
770     }
771 
772     /**
773      * Returns n!. Shorthand for <code>n</code> <a
774      * href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the
775      * product of the numbers <code>1,...,n</code>.
776      * <p>
777      * <Strong>Preconditions</strong>:
778      * <ul>
779      * <li> <code>n >= 0</code> (otherwise
780      * <code>IllegalArgumentException</code> is thrown)</li>
781      * <li> The result is small enough to fit into a <code>long</code>. The
782      * largest value of <code>n</code> for which <code>n!</code> <
783      * Long.MAX_VALUE</code> is 20. If the computed value exceeds <code>Long.MAX_VALUE</code>
784      * an <code>ArithMeticException </code> is thrown.</li>
785      * </ul>
786      * </p>
787      *
788      * @param n argument
789      * @return <code>n!</code>
790      * @throws ArithmeticException if the result is too large to be represented
791      *         by a long integer.
792      * @throws IllegalArgumentException if n < 0
793      */
794     public static long factorial(final int n) {
795         if (n < 0) {
796             throw MathRuntimeException.createIllegalArgumentException(
797                   LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
798                   n);
799         }
800         if (n > 20) {
801             throw new ArithmeticException(
802                     "factorial value is too large to fit in a long");
803         }
804         return FACTORIALS[n];
805     }
806 
807     /**
808      * Returns n!. Shorthand for <code>n</code> <a
809      * href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the
810      * product of the numbers <code>1,...,n</code> as a <code>double</code>.
811      * <p>
812      * <Strong>Preconditions</strong>:
813      * <ul>
814      * <li> <code>n >= 0</code> (otherwise
815      * <code>IllegalArgumentException</code> is thrown)</li>
816      * <li> The result is small enough to fit into a <code>double</code>. The
817      * largest value of <code>n</code> for which <code>n!</code> <
818      * Double.MAX_VALUE</code> is 170. If the computed value exceeds
819      * Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li>
820      * </ul>
821      * </p>
822      *
823      * @param n argument
824      * @return <code>n!</code>
825      * @throws IllegalArgumentException if n < 0
826      */
827     public static double factorialDouble(final int n) {
828         if (n < 0) {
829             throw MathRuntimeException.createIllegalArgumentException(
830                   LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
831                   n);
832         }
833         if (n < 21) {
834             return factorial(n);
835         }
836         return FastMath.floor(FastMath.exp(factorialLog(n)) + 0.5);
837     }
838 
839     /**
840      * Returns the natural logarithm of n!.
841      * <p>
842      * <Strong>Preconditions</strong>:
843      * <ul>
844      * <li> <code>n >= 0</code> (otherwise
845      * <code>IllegalArgumentException</code> is thrown)</li>
846      * </ul></p>
847      *
848      * @param n argument
849      * @return <code>n!</code>
850      * @throws IllegalArgumentException if preconditions are not met.
851      */
852     public static double factorialLog(final int n) {
853         if (n < 0) {
854             throw MathRuntimeException.createIllegalArgumentException(
855                   LocalizedFormats.FACTORIAL_NEGATIVE_PARAMETER,
856                   n);
857         }
858         if (n < 21) {
859             return FastMath.log(factorial(n));
860         }
861         double logSum = 0;
862         for (int i = 2; i <= n; i++) {
863             logSum += FastMath.log(i);
864         }
865         return logSum;
866     }
867 
868     /**
869      * <p>
870      * Gets the greatest common divisor of the absolute value of two numbers,
871      * using the "binary gcd" method which avoids division and modulo
872      * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
873      * Stein (1961).
874      * </p>
875      * Special cases:
876      * <ul>
877      * <li>The invocations
878      * <code>gcd(Integer.MIN_VALUE, Integer.MIN_VALUE)</code>,
879      * <code>gcd(Integer.MIN_VALUE, 0)</code> and
880      * <code>gcd(0, Integer.MIN_VALUE)</code> throw an
881      * <code>ArithmeticException</code>, because the result would be 2^31, which
882      * is too large for an int value.</li>
883      * <li>The result of <code>gcd(x, x)</code>, <code>gcd(0, x)</code> and
884      * <code>gcd(x, 0)</code> is the absolute value of <code>x</code>, except
885      * for the special cases above.
886      * <li>The invocation <code>gcd(0, 0)</code> is the only one which returns
887      * <code>0</code>.</li>
888      * </ul>
889      *
890      * @param p any number
891      * @param q any number
892      * @return the greatest common divisor, never negative
893      * @throws ArithmeticException if the result cannot be represented as a
894      * nonnegative int value
895      * @since 1.1
896      */
897     public static int gcd(final int p, final int q) {
898         int u = p;
899         int v = q;
900         if ((u == 0) || (v == 0)) {
901             if ((u == Integer.MIN_VALUE) || (v == Integer.MIN_VALUE)) {
902                 throw MathRuntimeException.createArithmeticException(
903                         LocalizedFormats.GCD_OVERFLOW_32_BITS,
904                         p, q);
905             }
906             return FastMath.abs(u) + FastMath.abs(v);
907         }
908         // keep u and v negative, as negative integers range down to
909         // -2^31, while positive numbers can only be as large as 2^31-1
910         // (i.e. we can't necessarily negate a negative number without
911         // overflow)
912         /* assert u!=0 && v!=0; */
913         if (u > 0) {
914             u = -u;
915         } // make u negative
916         if (v > 0) {
917             v = -v;
918         } // make v negative
919         // B1. [Find power of 2]
920         int k = 0;
921         while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are
922                                                             // both even...
923             u /= 2;
924             v /= 2;
925             k++; // cast out twos.
926         }
927         if (k == 31) {
928             throw MathRuntimeException.createArithmeticException(
929                     LocalizedFormats.GCD_OVERFLOW_32_BITS,
930                     p, q);
931         }
932         // B2. Initialize: u and v have been divided by 2^k and at least
933         // one is odd.
934         int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
935         // t negative: u was odd, v may be even (t replaces v)
936         // t positive: u was even, v is odd (t replaces u)
937         do {
938             /* assert u<0 && v<0; */
939             // B4/B3: cast out twos from t.
940             while ((t & 1) == 0) { // while t is even..
941                 t /= 2; // cast out twos
942             }
943             // B5 [reset max(u,v)]
944             if (t > 0) {
945                 u = -t;
946             } else {
947                 v = t;
948             }
949             // B6/B3. at this point both u and v should be odd.
950             t = (v - u) / 2;
951             // |u| larger: t positive (replace u)
952             // |v| larger: t negative (replace v)
953         } while (t != 0);
954         return -u * (1 << k); // gcd is u*2^k
955     }
956 
957     /**
958      * <p>
959      * Gets the greatest common divisor of the absolute value of two numbers,
960      * using the "binary gcd" method which avoids division and modulo
961      * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef
962      * Stein (1961).
963      * </p>
964      * Special cases:
965      * <ul>
966      * <li>The invocations
967      * <code>gcd(Long.MIN_VALUE, Long.MIN_VALUE)</code>,
968      * <code>gcd(Long.MIN_VALUE, 0L)</code> and
969      * <code>gcd(0L, Long.MIN_VALUE)</code> throw an
970      * <code>ArithmeticException</code>, because the result would be 2^63, which
971      * is too large for a long value.</li>
972      * <li>The result of <code>gcd(x, x)</code>, <code>gcd(0L, x)</code> and
973      * <code>gcd(x, 0L)</code> is the absolute value of <code>x</code>, except
974      * for the special cases above.
975      * <li>The invocation <code>gcd(0L, 0L)</code> is the only one which returns
976      * <code>0L</code>.</li>
977      * </ul>
978      *
979      * @param p any number
980      * @param q any number
981      * @return the greatest common divisor, never negative
982      * @throws ArithmeticException if the result cannot be represented as a nonnegative long
983      * value
984      * @since 2.1
985      */
986     public static long gcd(final long p, final long q) {
987         long u = p;
988         long v = q;
989         if ((u == 0) || (v == 0)) {
990             if ((u == Long.MIN_VALUE) || (v == Long.MIN_VALUE)){
991                 throw MathRuntimeException.createArithmeticException(
992                         LocalizedFormats.GCD_OVERFLOW_64_BITS,
993                         p, q);
994             }
995             return FastMath.abs(u) + FastMath.abs(v);
996         }
997         // keep u and v negative, as negative integers range down to
998         // -2^63, while positive numbers can only be as large as 2^63-1
999         // (i.e. we can't necessarily negate a negative number without
1000         // overflow)
1001         /* assert u!=0 && v!=0; */
1002         if (u > 0) {
1003             u = -u;
1004         } // make u negative
1005         if (v > 0) {
1006             v = -v;
1007         } // make v negative
1008         // B1. [Find power of 2]
1009         int k = 0;
1010         while ((u & 1) == 0 && (v & 1) == 0 && k < 63) { // while u and v are
1011                                                             // both even...
1012             u /= 2;
1013             v /= 2;
1014             k++; // cast out twos.
1015         }
1016         if (k == 63) {
1017             throw MathRuntimeException.createArithmeticException(
1018                     LocalizedFormats.GCD_OVERFLOW_64_BITS,
1019                     p, q);
1020         }
1021         // B2. Initialize: u and v have been divided by 2^k and at least
1022         // one is odd.
1023         long t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */;
1024         // t negative: u was odd, v may be even (t replaces v)
1025         // t positive: u was even, v is odd (t replaces u)
1026         do {
1027             /* assert u<0 && v<0; */
1028             // B4/B3: cast out twos from t.
1029             while ((t & 1) == 0) { // while t is even..
1030                 t /= 2; // cast out twos
1031             }
1032             // B5 [reset max(u,v)]
1033             if (t > 0) {
1034                 u = -t;
1035             } else {
1036                 v = t;
1037             }
1038             // B6/B3. at this point both u and v should be odd.
1039             t = (v - u) / 2;
1040             // |u| larger: t positive (replace u)
1041             // |v| larger: t negative (replace v)
1042         } while (t != 0);
1043         return -u * (1L << k); // gcd is u*2^k
1044     }
1045 
1046     /**
1047      * Returns an integer hash code representing the given double value.
1048      *
1049      * @param value the value to be hashed
1050      * @return the hash code
1051      */
1052     public static int hash(double value) {
1053         return new Double(value).hashCode();
1054     }
1055 
1056     /**
1057      * Returns an integer hash code representing the given double array.
1058      *
1059      * @param value the value to be hashed (may be null)
1060      * @return the hash code
1061      * @since 1.2
1062      */
1063     public static int hash(double[] value) {
1064         return Arrays.hashCode(value);
1065     }
1066 
1067     /**
1068      * For a byte value x, this method returns (byte)(+1) if x >= 0 and
1069      * (byte)(-1) if x < 0.
1070      *
1071      * @param x the value, a byte
1072      * @return (byte)(+1) or (byte)(-1), depending on the sign of x
1073      */
1074     public static byte indicator(final byte x) {
1075         return (x >= ZB) ? PB : NB;
1076     }
1077 
1078     /**
1079      * For a double precision value x, this method returns +1.0 if x >= 0 and
1080      * -1.0 if x < 0. Returns <code>NaN</code> if <code>x</code> is
1081      * <code>NaN</code>.
1082      *
1083      * @param x the value, a double
1084      * @return +1.0 or -1.0, depending on the sign of x
1085      */
1086     public static double indicator(final double x) {
1087         if (Double.isNaN(x)) {
1088             return Double.NaN;
1089         }
1090         return (x >= 0.0) ? 1.0 : -1.0;
1091     }
1092 
1093     /**
1094      * For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x <
1095      * 0. Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>.
1096      *
1097      * @param x the value, a float
1098      * @return +1.0F or -1.0F, depending on the sign of x
1099      */
1100     public static float indicator(final float x) {
1101         if (Float.isNaN(x)) {
1102             return Float.NaN;
1103         }
1104         return (x >= 0.0F) ? 1.0F : -1.0F;
1105     }
1106 
1107     /**
1108      * For an int value x, this method returns +1 if x >= 0 and -1 if x < 0.
1109      *
1110      * @param x the value, an int
1111      * @return +1 or -1, depending on the sign of x
1112      */
1113     public static int indicator(final int x) {
1114         return (x >= 0) ? 1 : -1;
1115     }
1116 
1117     /**
1118      * For a long value x, this method returns +1L if x >= 0 and -1L if x < 0.
1119      *
1120      * @param x the value, a long
1121      * @return +1L or -1L, depending on the sign of x
1122      */
1123     public static long indicator(final long x) {
1124         return (x >= 0L) ? 1L : -1L;
1125     }
1126 
1127     /**
1128      * For a short value x, this method returns (short)(+1) if x >= 0 and
1129      * (short)(-1) if x < 0.
1130      *
1131      * @param x the value, a short
1132      * @return (short)(+1) or (short)(-1), depending on the sign of x
1133      */
1134     public static short indicator(final short x) {
1135         return (x >= ZS) ? PS : NS;
1136     }
1137 
1138     /**
1139      * <p>
1140      * Returns the least common multiple of the absolute value of two numbers,
1141      * using the formula <code>lcm(a,b) = (a / gcd(a,b)) * b</code>.
1142      * </p>
1143      * Special cases:
1144      * <ul>
1145      * <li>The invocations <code>lcm(Integer.MIN_VALUE, n)</code> and
1146      * <code>lcm(n, Integer.MIN_VALUE)</code>, where <code>abs(n)</code> is a
1147      * power of 2, throw an <code>ArithmeticException</code>, because the result
1148      * would be 2^31, which is too large for an int value.</li>
1149      * <li>The result of <code>lcm(0, x)</code> and <code>lcm(x, 0)</code> is
1150      * <code>0</code> for any <code>x</code>.
1151      * </ul>
1152      *
1153      * @param a any number
1154      * @param b any number
1155      * @return the least common multiple, never negative
1156      * @throws ArithmeticException
1157      *             if the result cannot be represented as a nonnegative int
1158      *             value
1159      * @since 1.1
1160      */
1161     public static int lcm(int a, int b) {
1162         if (a==0 || b==0){
1163             return 0;
1164         }
1165         int lcm = FastMath.abs(mulAndCheck(a / gcd(a, b), b));
1166         if (lcm == Integer.MIN_VALUE) {
1167             throw MathRuntimeException.createArithmeticException(
1168                 LocalizedFormats.LCM_OVERFLOW_32_BITS,
1169                 a, b);
1170         }
1171         return lcm;
1172     }
1173 
1174     /**
1175      * <p>
1176      * Returns the least common multiple of the absolute value of two numbers,
1177      * using the formula <code>lcm(a,b) = (a / gcd(a,b)) * b</code>.
1178      * </p>
1179      * Special cases:
1180      * <ul>
1181      * <li>The invocations <code>lcm(Long.MIN_VALUE, n)</code> and
1182      * <code>lcm(n, Long.MIN_VALUE)</code>, where <code>abs(n)</code> is a
1183      * power of 2, throw an <code>ArithmeticException</code>, because the result
1184      * would be 2^63, which is too large for an int value.</li>
1185      * <li>The result of <code>lcm(0L, x)</code> and <code>lcm(x, 0L)</code> is
1186      * <code>0L</code> for any <code>x</code>.
1187      * </ul>
1188      *
1189      * @param a any number
1190      * @param b any number
1191      * @return the least common multiple, never negative
1192      * @throws ArithmeticException if the result cannot be represented as a nonnegative long
1193      * value
1194      * @since 2.1
1195      */
1196     public static long lcm(long a, long b) {
1197         if (a==0 || b==0){
1198             return 0;
1199         }
1200         long lcm = FastMath.abs(mulAndCheck(a / gcd(a, b), b));
1201         if (lcm == Long.MIN_VALUE){
1202             throw MathRuntimeException.createArithmeticException(
1203                 LocalizedFormats.LCM_OVERFLOW_64_BITS,
1204                 a, b);
1205         }
1206         return lcm;
1207     }
1208 
1209     /**
1210      * <p>Returns the
1211      * <a href="http://mathworld.wolfram.com/Logarithm.html">logarithm</a>
1212      * for base <code>b</code> of <code>x</code>.
1213      * </p>
1214      * <p>Returns <code>NaN<code> if either argument is negative.  If
1215      * <code>base</code> is 0 and <code>x</code> is positive, 0 is returned.
1216      * If <code>base</code> is positive and <code>x</code> is 0,
1217      * <code>Double.NEGATIVE_INFINITY</code> is returned.  If both arguments
1218      * are 0, the result is <code>NaN</code>.</p>
1219      *
1220      * @param base the base of the logarithm, must be greater than 0
1221      * @param x argument, must be greater than 0
1222      * @return the value of the logarithm - the number y such that base^y = x.
1223      * @since 1.2
1224      */
1225     public static double log(double base, double x) {
1226         return FastMath.log(x)/FastMath.log(base);
1227     }
1228 
1229     /**
1230      * Multiply two integers, checking for overflow.
1231      *
1232      * @param x a factor
1233      * @param y a factor
1234      * @return the product <code>x*y</code>
1235      * @throws ArithmeticException if the result can not be represented as an
1236      *         int
1237      * @since 1.1
1238      */
1239     public static int mulAndCheck(int x, int y) {
1240         long m = ((long)x) * ((long)y);
1241         if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
1242             throw new ArithmeticException("overflow: mul");
1243         }
1244         return (int)m;
1245     }
1246 
1247     /**
1248      * Multiply two long integers, checking for overflow.
1249      *
1250      * @param a first value
1251      * @param b second value
1252      * @return the product <code>a * b</code>
1253      * @throws ArithmeticException if the result can not be represented as an
1254      *         long
1255      * @since 1.2
1256      */
1257     public static long mulAndCheck(long a, long b) {
1258         long ret;
1259         String msg = "overflow: multiply";
1260         if (a > b) {
1261             // use symmetry to reduce boundary cases
1262             ret = mulAndCheck(b, a);
1263         } else {
1264             if (a < 0) {
1265                 if (b < 0) {
1266                     // check for positive overflow with negative a, negative b
1267                     if (a >= Long.MAX_VALUE / b) {
1268                         ret = a * b;
1269                     } else {
1270                         throw new ArithmeticException(msg);
1271                     }
1272                 } else if (b > 0) {
1273                     // check for negative overflow with negative a, positive b
1274                     if (Long.MIN_VALUE / b <= a) {
1275                         ret = a * b;
1276                     } else {
1277                         throw new ArithmeticException(msg);
1278 
1279                     }
1280                 } else {
1281                     // assert b == 0
1282                     ret = 0;
1283                 }
1284             } else if (a > 0) {
1285                 // assert a > 0
1286                 // assert b > 0
1287 
1288                 // check for positive overflow with positive a, positive b
1289                 if (a <= Long.MAX_VALUE / b) {
1290                     ret = a * b;
1291                 } else {
1292                     throw new ArithmeticException(msg);
1293                 }
1294             } else {
1295                 // assert a == 0
1296                 ret = 0;
1297             }
1298         }
1299         return ret;
1300     }
1301 
1302     /**
1303      * Get the next machine representable number after a number, moving
1304      * in the direction of another number.
1305      * <p>
1306      * If <code>direction</code> is greater than or equal to<code>d</code>,
1307      * the smallest machine representable number strictly greater than
1308      * <code>d</code> is returned; otherwise the largest representable number
1309      * strictly less than <code>d</code> is returned.</p>
1310      * <p>
1311      * If <code>d</code> is NaN or Infinite, it is returned unchanged.</p>
1312      *
1313      * @param d base number
1314      * @param direction (the only important thing is whether
1315      * direction is greater or smaller than d)
1316      * @return the next machine representable number in the specified direction
1317      * @since 1.2
1318      * @deprecated as of 2.2, replaced by {@link FastMath#nextAfter(double, double)}
1319      * which handles Infinities differently, and returns direction if d and direction compare equal.
1320      */
1321     @Deprecated
1322     public static double nextAfter(double d, double direction) {
1323 
1324         // handling of some important special cases
1325         if (Double.isNaN(d) || Double.isInfinite(d)) {
1326                 return d;
1327         } else if (d == 0) {
1328                 return (direction < 0) ? -Double.MIN_VALUE : Double.MIN_VALUE;
1329         }
1330         // special cases MAX_VALUE to infinity and  MIN_VALUE to 0
1331         // are handled just as normal numbers
1332 
1333         // split the double in raw components
1334         long bits     = Double.doubleToLongBits(d);
1335         long sign     = bits & 0x8000000000000000L;
1336         long exponent = bits & 0x7ff0000000000000L;
1337         long mantissa = bits & 0x000fffffffffffffL;
1338 
1339         if (d * (direction - d) >= 0) {
1340                 // we should increase the mantissa
1341                 if (mantissa == 0x000fffffffffffffL) {
1342                         return Double.longBitsToDouble(sign |
1343                                         (exponent + 0x0010000000000000L));
1344                 } else {
1345                         return Double.longBitsToDouble(sign |
1346                                         exponent | (mantissa + 1));
1347                 }
1348         } else {
1349                 // we should decrease the mantissa
1350                 if (mantissa == 0L) {
1351                         return Double.longBitsToDouble(sign |
1352                                         (exponent - 0x0010000000000000L) |
1353                                         0x000fffffffffffffL);
1354                 } else {
1355                         return Double.longBitsToDouble(sign |
1356                                         exponent | (mantissa - 1));
1357                 }
1358         }
1359     }
1360 
1361     /**
1362      * Scale a number by 2<sup>scaleFactor</sup>.
1363      * <p>If <code>d</code> is 0 or NaN or Infinite, it is returned unchanged.</p>
1364      *
1365      * @param d base number
1366      * @param scaleFactor power of two by which d should be multiplied
1367      * @return d &times; 2<sup>scaleFactor</sup>
1368      * @since 2.0
1369      * @deprecated as of 2.2, replaced by {@link FastMath#scalb(double, int)}
1370      */
1371     @Deprecated
1372     public static double scalb(final double d, final int scaleFactor) {
1373         return FastMath.scalb(d, scaleFactor);
1374     }
1375 
1376     /**
1377      * Normalize an angle in a 2&pi wide interval around a center value.
1378      * <p>This method has three main uses:</p>
1379      * <ul>
1380      *   <li>normalize an angle between 0 and 2&pi;:<br/>
1381      *       <code>a = MathUtils.normalizeAngle(a, FastMath.PI);</code></li>
1382      *   <li>normalize an angle between -&pi; and +&pi;<br/>
1383      *       <code>a = MathUtils.normalizeAngle(a, 0.0);</code></li>
1384      *   <li>compute the angle between two defining angular positions:<br>
1385      *       <code>angle = MathUtils.normalizeAngle(end, start) - start;</code></li>
1386      * </ul>
1387      * <p>Note that due to numerical accuracy and since &pi; cannot be represented
1388      * exactly, the result interval is <em>closed</em>, it cannot be half-closed
1389      * as would be more satisfactory in a purely mathematical view.</p>
1390      * @param a angle to normalize
1391      * @param center center of the desired 2&pi; interval for the result
1392      * @return a-2k&pi; with integer k and center-&pi; &lt;= a-2k&pi; &lt;= center+&pi;
1393      * @since 1.2
1394      */
1395      public static double normalizeAngle(double a, double center) {
1396          return a - TWO_PI * FastMath.floor((a + FastMath.PI - center) / TWO_PI);
1397      }
1398 
1399      /**
1400       * <p>Normalizes an array to make it sum to a specified value.
1401       * Returns the result of the transformation <pre>
1402       *    x |-> x * normalizedSum / sum
1403       * </pre>
1404       * applied to each non-NaN element x of the input array, where sum is the
1405       * sum of the non-NaN entries in the input array.</p>
1406       *
1407       * <p>Throws IllegalArgumentException if <code>normalizedSum</code> is infinite
1408       * or NaN and ArithmeticException if the input array contains any infinite elements
1409       * or sums to 0</p>
1410       *
1411       * <p>Ignores (i.e., copies unchanged to the output array) NaNs in the input array.</p>
1412       *
1413       * @param values input array to be normalized
1414       * @param normalizedSum target sum for the normalized array
1415       * @return normalized array
1416       * @throws ArithmeticException if the input array contains infinite elements or sums to zero
1417       * @throws IllegalArgumentException if the target sum is infinite or NaN
1418       * @since 2.1
1419       */
1420      public static double[] normalizeArray(double[] values, double normalizedSum)
1421        throws ArithmeticException, IllegalArgumentException {
1422          if (Double.isInfinite(normalizedSum)) {
1423              throw MathRuntimeException.createIllegalArgumentException(
1424                      LocalizedFormats.NORMALIZE_INFINITE);
1425          }
1426          if (Double.isNaN(normalizedSum)) {
1427              throw MathRuntimeException.createIllegalArgumentException(
1428                      LocalizedFormats.NORMALIZE_NAN);
1429          }
1430          double sum = 0d;
1431          final int len = values.length;
1432          double[] out = new double[len];
1433          for (int i = 0; i < len; i++) {
1434              if (Double.isInfinite(values[i])) {
1435                  throw MathRuntimeException.createArithmeticException(
1436                          LocalizedFormats.INFINITE_ARRAY_ELEMENT, values[i], i);
1437              }
1438              if (!Double.isNaN(values[i])) {
1439                  sum += values[i];
1440              }
1441          }
1442          if (sum == 0) {
1443              throw MathRuntimeException.createArithmeticException(LocalizedFormats.ARRAY_SUMS_TO_ZERO);
1444          }
1445          for (int i = 0; i < len; i++) {
1446              if (Double.isNaN(values[i])) {
1447                  out[i] = Double.NaN;
1448              } else {
1449                  out[i] = values[i] * normalizedSum / sum;
1450              }
1451          }
1452          return out;
1453      }
1454 
1455     /**
1456      * Round the given value to the specified number of decimal places. The
1457      * value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method.
1458      *
1459      * @param x the value to round.
1460      * @param scale the number of digits to the right of the decimal point.
1461      * @return the rounded value.
1462      * @since 1.1
1463      */
1464     public static double round(double x, int scale) {
1465         return round(x, scale, BigDecimal.ROUND_HALF_UP);
1466     }
1467 
1468     /**
1469      * Round the given value to the specified number of decimal places. The
1470      * value is rounded using the given method which is any method defined in
1471      * {@link BigDecimal}.
1472      *
1473      * @param x the value to round.
1474      * @param scale the number of digits to the right of the decimal point.
1475      * @param roundingMethod the rounding method as defined in
1476      *        {@link BigDecimal}.
1477      * @return the rounded value.
1478      * @since 1.1
1479      */
1480     public static double round(double x, int scale, int roundingMethod) {
1481         try {
1482             return (new BigDecimal
1483                    (Double.toString(x))
1484                    .setScale(scale, roundingMethod))
1485                    .doubleValue();
1486         } catch (NumberFormatException ex) {
1487             if (Double.isInfinite(x)) {
1488                 return x;
1489             } else {
1490                 return Double.NaN;
1491             }
1492         }
1493     }
1494 
1495     /**
1496      * Round the given value to the specified number of decimal places. The
1497      * value is rounding using the {@link BigDecimal#ROUND_HALF_UP} method.
1498      *
1499      * @param x the value to round.
1500      * @param scale the number of digits to the right of the decimal point.
1501      * @return the rounded value.
1502      * @since 1.1
1503      */
1504     public static float round(float x, int scale) {
1505         return round(x, scale, BigDecimal.ROUND_HALF_UP);
1506     }
1507 
1508     /**
1509      * Round the given value to the specified number of decimal places. The
1510      * value is rounded using the given method which is any method defined in
1511      * {@link BigDecimal}.
1512      *
1513      * @param x the value to round.
1514      * @param scale the number of digits to the right of the decimal point.
1515      * @param roundingMethod the rounding method as defined in
1516      *        {@link BigDecimal}.
1517      * @return the rounded value.
1518      * @since 1.1
1519      */
1520     public static float round(float x, int scale, int roundingMethod) {
1521         float sign = indicator(x);
1522         float factor = (float)FastMath.pow(10.0f, scale) * sign;
1523         return (float)roundUnscaled(x * factor, sign, roundingMethod) / factor;
1524     }
1525 
1526     /**
1527      * Round the given non-negative, value to the "nearest" integer. Nearest is
1528      * determined by the rounding method specified. Rounding methods are defined
1529      * in {@link BigDecimal}.
1530      *
1531      * @param unscaled the value to round.
1532      * @param sign the sign of the original, scaled value.
1533      * @param roundingMethod the rounding method as defined in
1534      *        {@link BigDecimal}.
1535      * @return the rounded value.
1536      * @since 1.1
1537      */
1538     private static double roundUnscaled(double unscaled, double sign,
1539         int roundingMethod) {
1540         switch (roundingMethod) {
1541         case BigDecimal.ROUND_CEILING :
1542             if (sign == -1) {
1543                 unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
1544             } else {
1545                 unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
1546             }
1547             break;
1548         case BigDecimal.ROUND_DOWN :
1549             unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
1550             break;
1551         case BigDecimal.ROUND_FLOOR :
1552             if (sign == -1) {
1553                 unscaled = FastMath.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY));
1554             } else {
1555                 unscaled = FastMath.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY));
1556             }
1557             break;
1558         case BigDecimal.ROUND_HALF_DOWN : {
1559             unscaled = nextAfter(unscaled, Double.NEGATIVE_INFINITY);
1560             double fraction = unscaled - FastMath.floor(unscaled);
1561             if (fraction > 0.5) {
1562                 unscaled = FastMath.ceil(unscaled);
1563             } else {
1564                 unscaled = FastMath.floor(unscaled);
1565             }
1566             break;
1567         }
1568         case BigDecimal.ROUND_HALF_EVEN : {
1569             double fraction = unscaled - FastMath.floor(unscaled);
1570             if (fraction > 0.5) {
1571                 unscaled = FastMath.ceil(unscaled);
1572             } else if (fraction < 0.5) {
1573                 unscaled = FastMath.floor(unscaled);
1574             } else {
1575                 // The following equality test is intentional and needed for rounding purposes
1576                 if (FastMath.floor(unscaled) / 2.0 == FastMath.floor(Math
1577                     .floor(unscaled) / 2.0)) { // even
1578                     unscaled = FastMath.floor(unscaled);
1579                 } else { // odd
1580                     unscaled = FastMath.ceil(unscaled);
1581                 }
1582             }
1583             break;
1584         }
1585         case BigDecimal.ROUND_HALF_UP : {
1586             unscaled = nextAfter(unscaled, Double.POSITIVE_INFINITY);
1587             double fraction = unscaled - FastMath.floor(unscaled);
1588             if (fraction >= 0.5) {
1589                 unscaled = FastMath.ceil(unscaled);
1590             } else {
1591                 unscaled = FastMath.floor(unscaled);
1592             }
1593             break;
1594         }
1595         case BigDecimal.ROUND_UNNECESSARY :
1596             if (unscaled != FastMath.floor(unscaled)) {
1597                 throw new ArithmeticException("Inexact result from rounding");
1598             }
1599             break;
1600         case BigDecimal.ROUND_UP :
1601             unscaled = FastMath.ceil(nextAfter(unscaled,  Double.POSITIVE_INFINITY));
1602             break;
1603         default :
1604             throw MathRuntimeException.createIllegalArgumentException(
1605                   LocalizedFormats.INVALID_ROUNDING_METHOD,
1606                   roundingMethod,
1607                   "ROUND_CEILING",     BigDecimal.ROUND_CEILING,
1608                   "ROUND_DOWN",        BigDecimal.ROUND_DOWN,
1609                   "ROUND_FLOOR",       BigDecimal.ROUND_FLOOR,
1610                   "ROUND_HALF_DOWN",   BigDecimal.ROUND_HALF_DOWN,
1611                   "ROUND_HALF_EVEN",   BigDecimal.ROUND_HALF_EVEN,
1612                   "ROUND_HALF_UP",     BigDecimal.ROUND_HALF_UP,
1613                   "ROUND_UNNECESSARY", BigDecimal.ROUND_UNNECESSARY,
1614                   "ROUND_UP",          BigDecimal.ROUND_UP);
1615         }
1616         return unscaled;
1617     }
1618 
1619     /**
1620      * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
1621      * for byte value <code>x</code>.
1622      * <p>
1623      * For a byte value x, this method returns (byte)(+1) if x > 0, (byte)(0) if
1624      * x = 0, and (byte)(-1) if x < 0.</p>
1625      *
1626      * @param x the value, a byte
1627      * @return (byte)(+1), (byte)(0), or (byte)(-1), depending on the sign of x
1628      */
1629     public static byte sign(final byte x) {
1630         return (x == ZB) ? ZB : (x > ZB) ? PB : NB;
1631     }
1632 
1633     /**
1634      * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
1635      * for double precision <code>x</code>.
1636      * <p>
1637      * For a double value <code>x</code>, this method returns
1638      * <code>+1.0</code> if <code>x > 0</code>, <code>0.0</code> if
1639      * <code>x = 0.0</code>, and <code>-1.0</code> if <code>x < 0</code>.
1640      * Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>.</p>
1641      *
1642      * @param x the value, a double
1643      * @return +1.0, 0.0, or -1.0, depending on the sign of x
1644      */
1645     public static double sign(final double x) {
1646         if (Double.isNaN(x)) {
1647             return Double.NaN;
1648         }
1649         return (x == 0.0) ? 0.0 : (x > 0.0) ? 1.0 : -1.0;
1650     }
1651 
1652     /**
1653      * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
1654      * for float value <code>x</code>.
1655      * <p>
1656      * For a float value x, this method returns +1.0F if x > 0, 0.0F if x =
1657      * 0.0F, and -1.0F if x < 0. Returns <code>NaN</code> if <code>x</code>
1658      * is <code>NaN</code>.</p>
1659      *
1660      * @param x the value, a float
1661      * @return +1.0F, 0.0F, or -1.0F, depending on the sign of x
1662      */
1663     public static float sign(final float x) {
1664         if (Float.isNaN(x)) {
1665             return Float.NaN;
1666         }
1667         return (x == 0.0F) ? 0.0F : (x > 0.0F) ? 1.0F : -1.0F;
1668     }
1669 
1670     /**
1671      * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
1672      * for int value <code>x</code>.
1673      * <p>
1674      * For an int value x, this method returns +1 if x > 0, 0 if x = 0, and -1
1675      * if x < 0.</p>
1676      *
1677      * @param x the value, an int
1678      * @return +1, 0, or -1, depending on the sign of x
1679      */
1680     public static int sign(final int x) {
1681         return (x == 0) ? 0 : (x > 0) ? 1 : -1;
1682     }
1683 
1684     /**
1685      * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
1686      * for long value <code>x</code>.
1687      * <p>
1688      * For a long value x, this method returns +1L if x > 0, 0L if x = 0, and
1689      * -1L if x < 0.</p>
1690      *
1691      * @param x the value, a long
1692      * @return +1L, 0L, or -1L, depending on the sign of x
1693      */
1694     public static long sign(final long x) {
1695         return (x == 0L) ? 0L : (x > 0L) ? 1L : -1L;
1696     }
1697 
1698     /**
1699      * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a>
1700      * for short value <code>x</code>.
1701      * <p>
1702      * For a short value x, this method returns (short)(+1) if x > 0, (short)(0)
1703      * if x = 0, and (short)(-1) if x < 0.</p>
1704      *
1705      * @param x the value, a short
1706      * @return (short)(+1), (short)(0), or (short)(-1), depending on the sign of
1707      *         x
1708      */
1709     public static short sign(final short x) {
1710         return (x == ZS) ? ZS : (x > ZS) ? PS : NS;
1711     }
1712 
1713     /**
1714      * Returns the <a href="http://mathworld.wolfram.com/HyperbolicSine.html">
1715      * hyperbolic sine</a> of x.
1716      *
1717      * @param x double value for which to find the hyperbolic sine
1718      * @return hyperbolic sine of x
1719      */
1720     public static double sinh(double x) {
1721         return (FastMath.exp(x) - FastMath.exp(-x)) / 2.0;
1722     }
1723 
1724     /**
1725      * Subtract two integers, checking for overflow.
1726      *
1727      * @param x the minuend
1728      * @param y the subtrahend
1729      * @return the difference <code>x-y</code>
1730      * @throws ArithmeticException if the result can not be represented as an
1731      *         int
1732      * @since 1.1
1733      */
1734     public static int subAndCheck(int x, int y) {
1735         long s = (long)x - (long)y;
1736         if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
1737             throw MathRuntimeException.createArithmeticException(LocalizedFormats.OVERFLOW_IN_SUBTRACTION, x, y);
1738         }
1739         return (int)s;
1740     }
1741 
1742     /**
1743      * Subtract two long integers, checking for overflow.
1744      *
1745      * @param a first value
1746      * @param b second value
1747      * @return the difference <code>a-b</code>
1748      * @throws ArithmeticException if the result can not be represented as an
1749      *         long
1750      * @since 1.2
1751      */
1752     public static long subAndCheck(long a, long b) {
1753         long ret;
1754         String msg = "overflow: subtract";
1755         if (b == Long.MIN_VALUE) {
1756             if (a < 0) {
1757                 ret = a - b;
1758             } else {
1759                 throw new ArithmeticException(msg);
1760             }
1761         } else {
1762             // use additive inverse
1763             ret = addAndCheck(a, -b, LocalizedFormats.OVERFLOW_IN_ADDITION);
1764         }
1765         return ret;
1766     }
1767 
1768     /**
1769      * Raise an int to an int power.
1770      * @param k number to raise
1771      * @param e exponent (must be positive or null)
1772      * @return k<sup>e</sup>
1773      * @exception IllegalArgumentException if e is negative
1774      */
1775     public static int pow(final int k, int e)
1776         throws IllegalArgumentException {
1777 
1778         if (e < 0) {
1779             throw MathRuntimeException.createIllegalArgumentException(
1780                 LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
1781                 k, e);
1782         }
1783 
1784         int result = 1;
1785         int k2p    = k;
1786         while (e != 0) {
1787             if ((e & 0x1) != 0) {
1788                 result *= k2p;
1789             }
1790             k2p *= k2p;
1791             e = e >> 1;
1792         }
1793 
1794         return result;
1795 
1796     }
1797 
1798     /**
1799      * Raise an int to a long power.
1800      * @param k number to raise
1801      * @param e exponent (must be positive or null)
1802      * @return k<sup>e</sup>
1803      * @exception IllegalArgumentException if e is negative
1804      */
1805     public static int pow(final int k, long e)
1806         throws IllegalArgumentException {
1807 
1808         if (e < 0) {
1809             throw MathRuntimeException.createIllegalArgumentException(
1810                 LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
1811                 k, e);
1812         }
1813 
1814         int result = 1;
1815         int k2p    = k;
1816         while (e != 0) {
1817             if ((e & 0x1) != 0) {
1818                 result *= k2p;
1819             }
1820             k2p *= k2p;
1821             e = e >> 1;
1822         }
1823 
1824         return result;
1825 
1826     }
1827 
1828     /**
1829      * Raise a long to an int power.
1830      * @param k number to raise
1831      * @param e exponent (must be positive or null)
1832      * @return k<sup>e</sup>
1833      * @exception IllegalArgumentException if e is negative
1834      */
1835     public static long pow(final long k, int e)
1836         throws IllegalArgumentException {
1837 
1838         if (e < 0) {
1839             throw MathRuntimeException.createIllegalArgumentException(
1840                 LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
1841                 k, e);
1842         }
1843 
1844         long result = 1l;
1845         long k2p    = k;
1846         while (e != 0) {
1847             if ((e & 0x1) != 0) {
1848                 result *= k2p;
1849             }
1850             k2p *= k2p;
1851             e = e >> 1;
1852         }
1853 
1854         return result;
1855 
1856     }
1857 
1858     /**
1859      * Raise a long to a long power.
1860      * @param k number to raise
1861      * @param e exponent (must be positive or null)
1862      * @return k<sup>e</sup>
1863      * @exception IllegalArgumentException if e is negative
1864      */
1865     public static long pow(final long k, long e)
1866         throws IllegalArgumentException {
1867 
1868         if (e < 0) {
1869             throw MathRuntimeException.createIllegalArgumentException(
1870                 LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
1871                 k, e);
1872         }
1873 
1874         long result = 1l;
1875         long k2p    = k;
1876         while (e != 0) {
1877             if ((e & 0x1) != 0) {
1878                 result *= k2p;
1879             }
1880             k2p *= k2p;
1881             e = e >> 1;
1882         }
1883 
1884         return result;
1885 
1886     }
1887 
1888     /**
1889      * Raise a BigInteger to an int power.
1890      * @param k number to raise
1891      * @param e exponent (must be positive or null)
1892      * @return k<sup>e</sup>
1893      * @exception IllegalArgumentException if e is negative
1894      */
1895     public static BigInteger pow(final BigInteger k, int e)
1896         throws IllegalArgumentException {
1897 
1898         if (e < 0) {
1899             throw MathRuntimeException.createIllegalArgumentException(
1900                 LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
1901                 k, e);
1902         }
1903 
1904         return k.pow(e);
1905 
1906     }
1907 
1908     /**
1909      * Raise a BigInteger to a long power.
1910      * @param k number to raise
1911      * @param e exponent (must be positive or null)
1912      * @return k<sup>e</sup>
1913      * @exception IllegalArgumentException if e is negative
1914      */
1915     public static BigInteger pow(final BigInteger k, long e)
1916         throws IllegalArgumentException {
1917 
1918         if (e < 0) {
1919             throw MathRuntimeException.createIllegalArgumentException(
1920                 LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
1921                 k, e);
1922         }
1923 
1924         BigInteger result = BigInteger.ONE;
1925         BigInteger k2p    = k;
1926         while (e != 0) {
1927             if ((e & 0x1) != 0) {
1928                 result = result.multiply(k2p);
1929             }
1930             k2p = k2p.multiply(k2p);
1931             e = e >> 1;
1932         }
1933 
1934         return result;
1935 
1936     }
1937 
1938     /**
1939      * Raise a BigInteger to a BigInteger power.
1940      * @param k number to raise
1941      * @param e exponent (must be positive or null)
1942      * @return k<sup>e</sup>
1943      * @exception IllegalArgumentException if e is negative
1944      */
1945     public static BigInteger pow(final BigInteger k, BigInteger e)
1946         throws IllegalArgumentException {
1947 
1948         if (e.compareTo(BigInteger.ZERO) < 0) {
1949             throw MathRuntimeException.createIllegalArgumentException(
1950                 LocalizedFormats.POWER_NEGATIVE_PARAMETERS,
1951                 k, e);
1952         }
1953 
1954         BigInteger result = BigInteger.ONE;
1955         BigInteger k2p    = k;
1956         while (!BigInteger.ZERO.equals(e)) {
1957             if (e.testBit(0)) {
1958                 result = result.multiply(k2p);
1959             }
1960             k2p = k2p.multiply(k2p);
1961             e = e.shiftRight(1);
1962         }
1963 
1964         return result;
1965 
1966     }
1967 
1968     /**
1969      * Calculates the L<sub>1</sub> (sum of abs) distance between two points.
1970      *
1971      * @param p1 the first point
1972      * @param p2 the second point
1973      * @return the L<sub>1</sub> distance between the two points
1974      */
1975     public static double distance1(double[] p1, double[] p2) {
1976         double sum = 0;
1977         for (int i = 0; i < p1.length; i++) {
1978             sum += FastMath.abs(p1[i] - p2[i]);
1979         }
1980         return sum;
1981     }
1982 
1983     /**
1984      * Calculates the L<sub>1</sub> (sum of abs) distance between two points.
1985      *
1986      * @param p1 the first point
1987      * @param p2 the second point
1988      * @return the L<sub>1</sub> distance between the two points
1989      */
1990     public static int distance1(int[] p1, int[] p2) {
1991       int sum = 0;
1992       for (int i = 0; i < p1.length; i++) {
1993           sum += FastMath.abs(p1[i] - p2[i]);
1994       }
1995       return sum;
1996     }
1997 
1998     /**
1999      * Calculates the L<sub>2</sub> (Euclidean) distance between two points.
2000      *
2001      * @param p1 the first point
2002      * @param p2 the second point
2003      * @return the L<sub>2</sub> distance between the two points
2004      */
2005     public static double distance(double[] p1, double[] p2) {
2006         double sum = 0;
2007         for (int i = 0; i < p1.length; i++) {
2008             final double dp = p1[i] - p2[i];
2009             sum += dp * dp;
2010         }
2011         return FastMath.sqrt(sum);
2012     }
2013 
2014     /**
2015      * Calculates the L<sub>2</sub> (Euclidean) distance between two points.
2016      *
2017      * @param p1 the first point
2018      * @param p2 the second point
2019      * @return the L<sub>2</sub> distance between the two points
2020      */
2021     public static double distance(int[] p1, int[] p2) {
2022       double sum = 0;
2023       for (int i = 0; i < p1.length; i++) {
2024           final double dp = p1[i] - p2[i];
2025           sum += dp * dp;
2026       }
2027       return FastMath.sqrt(sum);
2028     }
2029 
2030     /**
2031      * Calculates the L<sub>&infin;</sub> (max of abs) distance between two points.
2032      *
2033      * @param p1 the first point
2034      * @param p2 the second point
2035      * @return the L<sub>&infin;</sub> distance between the two points
2036      */
2037     public static double distanceInf(double[] p1, double[] p2) {
2038         double max = 0;
2039         for (int i = 0; i < p1.length; i++) {
2040             max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
2041         }
2042         return max;
2043     }
2044 
2045     /**
2046      * Calculates the L<sub>&infin;</sub> (max of abs) distance between two points.
2047      *
2048      * @param p1 the first point
2049      * @param p2 the second point
2050      * @return the L<sub>&infin;</sub> distance between the two points
2051      */
2052     public static int distanceInf(int[] p1, int[] p2) {
2053         int max = 0;
2054         for (int i = 0; i < p1.length; i++) {
2055             max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
2056         }
2057         return max;
2058     }
2059 
2060     /**
2061      * Specification of ordering direction.
2062      */
2063     public static enum OrderDirection {
2064         /** Constant for increasing direction. */
2065         INCREASING,
2066         /** Constant for decreasing direction. */
2067         DECREASING
2068     }
2069 
2070     /**
2071      * Checks that the given array is sorted.
2072      *
2073      * @param val Values.
2074      * @param dir Ordering direction.
2075      * @param strict Whether the order should be strict.
2076      * @throws NonMonotonousSequenceException if the array is not sorted.
2077      * @since 2.2
2078      */
2079     public static void checkOrder(double[] val, OrderDirection dir, boolean strict) {
2080         double previous = val[0];
2081         boolean ok = true;
2082 
2083         int max = val.length;
2084         for (int i = 1; i < max; i++) {
2085             switch (dir) {
2086             case INCREASING:
2087                 if (strict) {
2088                     if (val[i] <= previous) {
2089                         ok = false;
2090                     }
2091                 } else {
2092                     if (val[i] < previous) {
2093                         ok = false;
2094                     }
2095                 }
2096                 break;
2097             case DECREASING:
2098                 if (strict) {
2099                     if (val[i] >= previous) {
2100                         ok = false;
2101                     }
2102                 } else {
2103                     if (val[i] > previous) {
2104                         ok = false;
2105                     }
2106                 }
2107                 break;
2108             default:
2109                 // Should never happen.
2110                 throw new IllegalArgumentException();
2111             }
2112 
2113             if (!ok) {
2114                 throw new NonMonotonousSequenceException(val[i], previous, i, dir, strict);
2115             }
2116             previous = val[i];
2117         }
2118     }
2119 
2120     /**
2121      * Checks that the given array is sorted in strictly increasing order.
2122      *
2123      * @param val Values.
2124      * @throws NonMonotonousSequenceException if the array is not sorted.
2125      * @since 2.2
2126      */
2127     public static void checkOrder(double[] val) {
2128         checkOrder(val, OrderDirection.INCREASING, true);
2129     }
2130 
2131     /**
2132      * Checks that the given array is sorted.
2133      *
2134      * @param val Values
2135      * @param dir Order direction (-1 for decreasing, 1 for increasing)
2136      * @param strict Whether the order should be strict
2137      * @throws NonMonotonousSequenceException if the array is not sorted.
2138      * @deprecated as of 2.2 (please use the new {@link #checkOrder(double[],OrderDirection,boolean)
2139      * checkOrder} method). To be removed in 3.0.
2140      */
2141     @Deprecated
2142     public static void checkOrder(double[] val, int dir, boolean strict) {
2143         if (dir > 0) {
2144             checkOrder(val, OrderDirection.INCREASING, strict);
2145         } else {
2146             checkOrder(val, OrderDirection.DECREASING, strict);
2147         }
2148     }
2149 
2150     /**
2151      * Returns the Cartesian norm (2-norm), handling both overflow and underflow.
2152      * Translation of the minpack enorm subroutine.
2153      *
2154      * The redistribution policy for MINPACK is available <a
2155      * href="http://www.netlib.org/minpack/disclaimer">here</a>, for convenience, it
2156      * is reproduced below.</p>
2157      *
2158      * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0">
2159      * <tr><td>
2160      *    Minpack Copyright Notice (1999) University of Chicago.
2161      *    All rights reserved
2162      * </td></tr>
2163      * <tr><td>
2164      * Redistribution and use in source and binary forms, with or without
2165      * modification, are permitted provided that the following conditions
2166      * are met:
2167      * <ol>
2168      *  <li>Redistributions of source code must retain the above copyright
2169      *      notice, this list of conditions and the following disclaimer.</li>
2170      * <li>Redistributions in binary form must reproduce the above
2171      *     copyright notice, this list of conditions and the following
2172      *     disclaimer in the documentation and/or other materials provided
2173      *     with the distribution.</li>
2174      * <li>The end-user documentation included with the redistribution, if any,
2175      *     must include the following acknowledgment:
2176      *     <code>This product includes software developed by the University of
2177      *           Chicago, as Operator of Argonne National Laboratory.</code>
2178      *     Alternately, this acknowledgment may appear in the software itself,
2179      *     if and wherever such third-party acknowledgments normally appear.</li>
2180      * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
2181      *     WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
2182      *     UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
2183      *     THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
2184      *     IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
2185      *     OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
2186      *     OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
2187      *     OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
2188      *     USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
2189      *     THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
2190      *     DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
2191      *     UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
2192      *     BE CORRECTED.</strong></li>
2193      * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
2194      *     HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
2195      *     ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
2196      *     INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
2197      *     ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
2198      *     PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
2199      *     SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
2200      *     (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
2201      *     EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
2202      *     POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li>
2203      * <ol></td></tr>
2204      * </table>
2205      *
2206      * @param v vector of doubles
2207      * @return the 2-norm of the vector
2208      * @since 2.2
2209      */
2210     public static double safeNorm(double[] v) {
2211     double rdwarf = 3.834e-20;
2212     double rgiant = 1.304e+19;
2213     double s1=0.0;
2214     double s2=0.0;
2215     double s3=0.0;
2216     double x1max = 0.0;
2217     double x3max = 0.0;
2218     double floatn = (double)v.length;
2219     double agiant = rgiant/floatn;
2220     for (int i=0;i<v.length;i++) {
2221         double xabs = Math.abs(v[i]);
2222         if (xabs<rdwarf || xabs>agiant) {
2223             if (xabs>rdwarf) {
2224                 if (xabs>x1max) {
2225                     double r=x1max/xabs;
2226                     s1=1.0+s1*r*r;
2227                     x1max=xabs;
2228                 } else {
2229                     double r=xabs/x1max;
2230                     s1+=r*r;
2231                 }
2232             } else {
2233                 if (xabs>x3max) {
2234                  double r=x3max/xabs;
2235                  s3=1.0+s3*r*r;
2236                  x3max=xabs;
2237                 } else {
2238                     if (xabs!=0.0) {
2239                         double r=xabs/x3max;
2240                         s3+=r*r;
2241                     }
2242                 }
2243             }
2244         } else {
2245          s2+=xabs*xabs;
2246         }
2247     }
2248     double norm;
2249     if (s1!=0.0) {
2250         norm = x1max*Math.sqrt(s1+(s2/x1max)/x1max);
2251     } else {
2252         if (s2==0.0) {
2253             norm = x3max*Math.sqrt(s3);
2254         } else {
2255             if (s2>=x3max) {
2256                 norm = Math.sqrt(s2*(1.0+(x3max/s2)*(x3max*s3)));
2257             } else {
2258                 norm = Math.sqrt(x3max*((s2/x3max)+(x3max*s3)));
2259             }
2260         }
2261     }
2262     return norm;
2263 }
2264 
2265 }
2266