1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory 11 // accesses. Currently, it is an implementation of the approach described in 12 // 13 // Practical Dependence Testing 14 // Goff, Kennedy, Tseng 15 // PLDI 1991 16 // 17 // There's a single entry point that analyzes the dependence between a pair 18 // of memory references in a function, returning either NULL, for no dependence, 19 // or a more-or-less detailed description of the dependence between them. 20 // 21 // This pass exists to support the DependenceGraph pass. There are two separate 22 // passes because there's a useful separation of concerns. A dependence exists 23 // if two conditions are met: 24 // 25 // 1) Two instructions reference the same memory location, and 26 // 2) There is a flow of control leading from one instruction to the other. 27 // 28 // DependenceAnalysis attacks the first condition; DependenceGraph will attack 29 // the second (it's not yet ready). 30 // 31 // Please note that this is work in progress and the interface is subject to 32 // change. 33 // 34 // Plausible changes: 35 // Return a set of more precise dependences instead of just one dependence 36 // summarizing all. 37 // 38 //===----------------------------------------------------------------------===// 39 40 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H 41 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H 42 43 #include "llvm/ADT/SmallBitVector.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/Pass.h" 46 47 namespace llvm { 48 class AliasAnalysis; 49 class Loop; 50 class LoopInfo; 51 class ScalarEvolution; 52 class SCEV; 53 class SCEVConstant; 54 class raw_ostream; 55 56 /// Dependence - This class represents a dependence between two memory 57 /// memory references in a function. It contains minimal information and 58 /// is used in the very common situation where the compiler is unable to 59 /// determine anything beyond the existence of a dependence; that is, it 60 /// represents a confused dependence (see also FullDependence). In most 61 /// cases (for output, flow, and anti dependences), the dependence implies 62 /// an ordering, where the source must precede the destination; in contrast, 63 /// input dependences are unordered. 64 /// 65 /// When a dependence graph is built, each Dependence will be a member of 66 /// the set of predecessor edges for its destination instruction and a set 67 /// if successor edges for its source instruction. These sets are represented 68 /// as singly-linked lists, with the "next" fields stored in the dependence 69 /// itelf. 70 class Dependence { 71 public: Dependence(Instruction * Source,Instruction * Destination)72 Dependence(Instruction *Source, 73 Instruction *Destination) : 74 Src(Source), 75 Dst(Destination), 76 NextPredecessor(nullptr), 77 NextSuccessor(nullptr) {} ~Dependence()78 virtual ~Dependence() {} 79 80 /// Dependence::DVEntry - Each level in the distance/direction vector 81 /// has a direction (or perhaps a union of several directions), and 82 /// perhaps a distance. 83 struct DVEntry { 84 enum { NONE = 0, 85 LT = 1, 86 EQ = 2, 87 LE = 3, 88 GT = 4, 89 NE = 5, 90 GE = 6, 91 ALL = 7 }; 92 unsigned char Direction : 3; // Init to ALL, then refine. 93 bool Scalar : 1; // Init to true. 94 bool PeelFirst : 1; // Peeling the first iteration will break dependence. 95 bool PeelLast : 1; // Peeling the last iteration will break the dependence. 96 bool Splitable : 1; // Splitting the loop will break dependence. 97 const SCEV *Distance; // NULL implies no distance available. DVEntryDVEntry98 DVEntry() : Direction(ALL), Scalar(true), PeelFirst(false), 99 PeelLast(false), Splitable(false), Distance(nullptr) { } 100 }; 101 102 /// getSrc - Returns the source instruction for this dependence. 103 /// getSrc()104 Instruction *getSrc() const { return Src; } 105 106 /// getDst - Returns the destination instruction for this dependence. 107 /// getDst()108 Instruction *getDst() const { return Dst; } 109 110 /// isInput - Returns true if this is an input dependence. 111 /// 112 bool isInput() const; 113 114 /// isOutput - Returns true if this is an output dependence. 115 /// 116 bool isOutput() const; 117 118 /// isFlow - Returns true if this is a flow (aka true) dependence. 119 /// 120 bool isFlow() const; 121 122 /// isAnti - Returns true if this is an anti dependence. 123 /// 124 bool isAnti() const; 125 126 /// isOrdered - Returns true if dependence is Output, Flow, or Anti 127 /// isOrdered()128 bool isOrdered() const { return isOutput() || isFlow() || isAnti(); } 129 130 /// isUnordered - Returns true if dependence is Input 131 /// isUnordered()132 bool isUnordered() const { return isInput(); } 133 134 /// isLoopIndependent - Returns true if this is a loop-independent 135 /// dependence. isLoopIndependent()136 virtual bool isLoopIndependent() const { return true; } 137 138 /// isConfused - Returns true if this dependence is confused 139 /// (the compiler understands nothing and makes worst-case 140 /// assumptions). isConfused()141 virtual bool isConfused() const { return true; } 142 143 /// isConsistent - Returns true if this dependence is consistent 144 /// (occurs every time the source and destination are executed). isConsistent()145 virtual bool isConsistent() const { return false; } 146 147 /// getLevels - Returns the number of common loops surrounding the 148 /// source and destination of the dependence. getLevels()149 virtual unsigned getLevels() const { return 0; } 150 151 /// getDirection - Returns the direction associated with a particular 152 /// level. getDirection(unsigned Level)153 virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; } 154 155 /// getDistance - Returns the distance (or NULL) associated with a 156 /// particular level. getDistance(unsigned Level)157 virtual const SCEV *getDistance(unsigned Level) const { return nullptr; } 158 159 /// isPeelFirst - Returns true if peeling the first iteration from 160 /// this loop will break this dependence. isPeelFirst(unsigned Level)161 virtual bool isPeelFirst(unsigned Level) const { return false; } 162 163 /// isPeelLast - Returns true if peeling the last iteration from 164 /// this loop will break this dependence. isPeelLast(unsigned Level)165 virtual bool isPeelLast(unsigned Level) const { return false; } 166 167 /// isSplitable - Returns true if splitting this loop will break 168 /// the dependence. isSplitable(unsigned Level)169 virtual bool isSplitable(unsigned Level) const { return false; } 170 171 /// isScalar - Returns true if a particular level is scalar; that is, 172 /// if no subscript in the source or destination mention the induction 173 /// variable associated with the loop at this level. 174 virtual bool isScalar(unsigned Level) const; 175 176 /// getNextPredecessor - Returns the value of the NextPredecessor 177 /// field. getNextPredecessor()178 const Dependence *getNextPredecessor() const { 179 return NextPredecessor; 180 } 181 182 /// getNextSuccessor - Returns the value of the NextSuccessor 183 /// field. getNextSuccessor()184 const Dependence *getNextSuccessor() const { 185 return NextSuccessor; 186 } 187 188 /// setNextPredecessor - Sets the value of the NextPredecessor 189 /// field. setNextPredecessor(const Dependence * pred)190 void setNextPredecessor(const Dependence *pred) { 191 NextPredecessor = pred; 192 } 193 194 /// setNextSuccessor - Sets the value of the NextSuccessor 195 /// field. setNextSuccessor(const Dependence * succ)196 void setNextSuccessor(const Dependence *succ) { 197 NextSuccessor = succ; 198 } 199 200 /// dump - For debugging purposes, dumps a dependence to OS. 201 /// 202 void dump(raw_ostream &OS) const; 203 private: 204 Instruction *Src, *Dst; 205 const Dependence *NextPredecessor, *NextSuccessor; 206 friend class DependenceAnalysis; 207 }; 208 209 210 /// FullDependence - This class represents a dependence between two memory 211 /// references in a function. It contains detailed information about the 212 /// dependence (direction vectors, etc.) and is used when the compiler is 213 /// able to accurately analyze the interaction of the references; that is, 214 /// it is not a confused dependence (see Dependence). In most cases 215 /// (for output, flow, and anti dependences), the dependence implies an 216 /// ordering, where the source must precede the destination; in contrast, 217 /// input dependences are unordered. 218 class FullDependence : public Dependence { 219 public: 220 FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent, 221 unsigned Levels); ~FullDependence()222 ~FullDependence() override { delete[] DV; } 223 224 /// isLoopIndependent - Returns true if this is a loop-independent 225 /// dependence. isLoopIndependent()226 bool isLoopIndependent() const override { return LoopIndependent; } 227 228 /// isConfused - Returns true if this dependence is confused 229 /// (the compiler understands nothing and makes worst-case 230 /// assumptions). isConfused()231 bool isConfused() const override { return false; } 232 233 /// isConsistent - Returns true if this dependence is consistent 234 /// (occurs every time the source and destination are executed). isConsistent()235 bool isConsistent() const override { return Consistent; } 236 237 /// getLevels - Returns the number of common loops surrounding the 238 /// source and destination of the dependence. getLevels()239 unsigned getLevels() const override { return Levels; } 240 241 /// getDirection - Returns the direction associated with a particular 242 /// level. 243 unsigned getDirection(unsigned Level) const override; 244 245 /// getDistance - Returns the distance (or NULL) associated with a 246 /// particular level. 247 const SCEV *getDistance(unsigned Level) const override; 248 249 /// isPeelFirst - Returns true if peeling the first iteration from 250 /// this loop will break this dependence. 251 bool isPeelFirst(unsigned Level) const override; 252 253 /// isPeelLast - Returns true if peeling the last iteration from 254 /// this loop will break this dependence. 255 bool isPeelLast(unsigned Level) const override; 256 257 /// isSplitable - Returns true if splitting the loop will break 258 /// the dependence. 259 bool isSplitable(unsigned Level) const override; 260 261 /// isScalar - Returns true if a particular level is scalar; that is, 262 /// if no subscript in the source or destination mention the induction 263 /// variable associated with the loop at this level. 264 bool isScalar(unsigned Level) const override; 265 266 private: 267 unsigned short Levels; 268 bool LoopIndependent; 269 bool Consistent; // Init to true, then refine. 270 DVEntry *DV; 271 friend class DependenceAnalysis; 272 }; 273 274 275 /// DependenceAnalysis - This class is the main dependence-analysis driver. 276 /// 277 class DependenceAnalysis : public FunctionPass { 278 void operator=(const DependenceAnalysis &) = delete; 279 DependenceAnalysis(const DependenceAnalysis &) = delete; 280 public: 281 /// depends - Tests for a dependence between the Src and Dst instructions. 282 /// Returns NULL if no dependence; otherwise, returns a Dependence (or a 283 /// FullDependence) with as much information as can be gleaned. 284 /// The flag PossiblyLoopIndependent should be set by the caller 285 /// if it appears that control flow can reach from Src to Dst 286 /// without traversing a loop back edge. 287 std::unique_ptr<Dependence> depends(Instruction *Src, 288 Instruction *Dst, 289 bool PossiblyLoopIndependent); 290 291 /// getSplitIteration - Give a dependence that's splittable at some 292 /// particular level, return the iteration that should be used to split 293 /// the loop. 294 /// 295 /// Generally, the dependence analyzer will be used to build 296 /// a dependence graph for a function (basically a map from instructions 297 /// to dependences). Looking for cycles in the graph shows us loops 298 /// that cannot be trivially vectorized/parallelized. 299 /// 300 /// We can try to improve the situation by examining all the dependences 301 /// that make up the cycle, looking for ones we can break. 302 /// Sometimes, peeling the first or last iteration of a loop will break 303 /// dependences, and there are flags for those possibilities. 304 /// Sometimes, splitting a loop at some other iteration will do the trick, 305 /// and we've got a flag for that case. Rather than waste the space to 306 /// record the exact iteration (since we rarely know), we provide 307 /// a method that calculates the iteration. It's a drag that it must work 308 /// from scratch, but wonderful in that it's possible. 309 /// 310 /// Here's an example: 311 /// 312 /// for (i = 0; i < 10; i++) 313 /// A[i] = ... 314 /// ... = A[11 - i] 315 /// 316 /// There's a loop-carried flow dependence from the store to the load, 317 /// found by the weak-crossing SIV test. The dependence will have a flag, 318 /// indicating that the dependence can be broken by splitting the loop. 319 /// Calling getSplitIteration will return 5. 320 /// Splitting the loop breaks the dependence, like so: 321 /// 322 /// for (i = 0; i <= 5; i++) 323 /// A[i] = ... 324 /// ... = A[11 - i] 325 /// for (i = 6; i < 10; i++) 326 /// A[i] = ... 327 /// ... = A[11 - i] 328 /// 329 /// breaks the dependence and allows us to vectorize/parallelize 330 /// both loops. 331 const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level); 332 333 private: 334 AliasAnalysis *AA; 335 ScalarEvolution *SE; 336 LoopInfo *LI; 337 Function *F; 338 339 /// Subscript - This private struct represents a pair of subscripts from 340 /// a pair of potentially multi-dimensional array references. We use a 341 /// vector of them to guide subscript partitioning. 342 struct Subscript { 343 const SCEV *Src; 344 const SCEV *Dst; 345 enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification; 346 SmallBitVector Loops; 347 SmallBitVector GroupLoops; 348 SmallBitVector Group; 349 }; 350 351 struct CoefficientInfo { 352 const SCEV *Coeff; 353 const SCEV *PosPart; 354 const SCEV *NegPart; 355 const SCEV *Iterations; 356 }; 357 358 struct BoundInfo { 359 const SCEV *Iterations; 360 const SCEV *Upper[8]; 361 const SCEV *Lower[8]; 362 unsigned char Direction; 363 unsigned char DirSet; 364 }; 365 366 /// Constraint - This private class represents a constraint, as defined 367 /// in the paper 368 /// 369 /// Practical Dependence Testing 370 /// Goff, Kennedy, Tseng 371 /// PLDI 1991 372 /// 373 /// There are 5 kinds of constraint, in a hierarchy. 374 /// 1) Any - indicates no constraint, any dependence is possible. 375 /// 2) Line - A line ax + by = c, where a, b, and c are parameters, 376 /// representing the dependence equation. 377 /// 3) Distance - The value d of the dependence distance; 378 /// 4) Point - A point <x, y> representing the dependence from 379 /// iteration x to iteration y. 380 /// 5) Empty - No dependence is possible. 381 class Constraint { 382 private: 383 enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind; 384 ScalarEvolution *SE; 385 const SCEV *A; 386 const SCEV *B; 387 const SCEV *C; 388 const Loop *AssociatedLoop; 389 public: 390 /// isEmpty - Return true if the constraint is of kind Empty. isEmpty()391 bool isEmpty() const { return Kind == Empty; } 392 393 /// isPoint - Return true if the constraint is of kind Point. isPoint()394 bool isPoint() const { return Kind == Point; } 395 396 /// isDistance - Return true if the constraint is of kind Distance. isDistance()397 bool isDistance() const { return Kind == Distance; } 398 399 /// isLine - Return true if the constraint is of kind Line. 400 /// Since Distance's can also be represented as Lines, we also return 401 /// true if the constraint is of kind Distance. isLine()402 bool isLine() const { return Kind == Line || Kind == Distance; } 403 404 /// isAny - Return true if the constraint is of kind Any; isAny()405 bool isAny() const { return Kind == Any; } 406 407 /// getX - If constraint is a point <X, Y>, returns X. 408 /// Otherwise assert. 409 const SCEV *getX() const; 410 411 /// getY - If constraint is a point <X, Y>, returns Y. 412 /// Otherwise assert. 413 const SCEV *getY() const; 414 415 /// getA - If constraint is a line AX + BY = C, returns A. 416 /// Otherwise assert. 417 const SCEV *getA() const; 418 419 /// getB - If constraint is a line AX + BY = C, returns B. 420 /// Otherwise assert. 421 const SCEV *getB() const; 422 423 /// getC - If constraint is a line AX + BY = C, returns C. 424 /// Otherwise assert. 425 const SCEV *getC() const; 426 427 /// getD - If constraint is a distance, returns D. 428 /// Otherwise assert. 429 const SCEV *getD() const; 430 431 /// getAssociatedLoop - Returns the loop associated with this constraint. 432 const Loop *getAssociatedLoop() const; 433 434 /// setPoint - Change a constraint to Point. 435 void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop); 436 437 /// setLine - Change a constraint to Line. 438 void setLine(const SCEV *A, const SCEV *B, 439 const SCEV *C, const Loop *CurrentLoop); 440 441 /// setDistance - Change a constraint to Distance. 442 void setDistance(const SCEV *D, const Loop *CurrentLoop); 443 444 /// setEmpty - Change a constraint to Empty. 445 void setEmpty(); 446 447 /// setAny - Change a constraint to Any. 448 void setAny(ScalarEvolution *SE); 449 450 /// dump - For debugging purposes. Dumps the constraint 451 /// out to OS. 452 void dump(raw_ostream &OS) const; 453 }; 454 455 456 /// establishNestingLevels - Examines the loop nesting of the Src and Dst 457 /// instructions and establishes their shared loops. Sets the variables 458 /// CommonLevels, SrcLevels, and MaxLevels. 459 /// The source and destination instructions needn't be contained in the same 460 /// loop. The routine establishNestingLevels finds the level of most deeply 461 /// nested loop that contains them both, CommonLevels. An instruction that's 462 /// not contained in a loop is at level = 0. MaxLevels is equal to the level 463 /// of the source plus the level of the destination, minus CommonLevels. 464 /// This lets us allocate vectors MaxLevels in length, with room for every 465 /// distinct loop referenced in both the source and destination subscripts. 466 /// The variable SrcLevels is the nesting depth of the source instruction. 467 /// It's used to help calculate distinct loops referenced by the destination. 468 /// Here's the map from loops to levels: 469 /// 0 - unused 470 /// 1 - outermost common loop 471 /// ... - other common loops 472 /// CommonLevels - innermost common loop 473 /// ... - loops containing Src but not Dst 474 /// SrcLevels - innermost loop containing Src but not Dst 475 /// ... - loops containing Dst but not Src 476 /// MaxLevels - innermost loop containing Dst but not Src 477 /// Consider the follow code fragment: 478 /// for (a = ...) { 479 /// for (b = ...) { 480 /// for (c = ...) { 481 /// for (d = ...) { 482 /// A[] = ...; 483 /// } 484 /// } 485 /// for (e = ...) { 486 /// for (f = ...) { 487 /// for (g = ...) { 488 /// ... = A[]; 489 /// } 490 /// } 491 /// } 492 /// } 493 /// } 494 /// If we're looking at the possibility of a dependence between the store 495 /// to A (the Src) and the load from A (the Dst), we'll note that they 496 /// have 2 loops in common, so CommonLevels will equal 2 and the direction 497 /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. 498 /// A map from loop names to level indices would look like 499 /// a - 1 500 /// b - 2 = CommonLevels 501 /// c - 3 502 /// d - 4 = SrcLevels 503 /// e - 5 504 /// f - 6 505 /// g - 7 = MaxLevels 506 void establishNestingLevels(const Instruction *Src, 507 const Instruction *Dst); 508 509 unsigned CommonLevels, SrcLevels, MaxLevels; 510 511 /// mapSrcLoop - Given one of the loops containing the source, return 512 /// its level index in our numbering scheme. 513 unsigned mapSrcLoop(const Loop *SrcLoop) const; 514 515 /// mapDstLoop - Given one of the loops containing the destination, 516 /// return its level index in our numbering scheme. 517 unsigned mapDstLoop(const Loop *DstLoop) const; 518 519 /// isLoopInvariant - Returns true if Expression is loop invariant 520 /// in LoopNest. 521 bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const; 522 523 /// Makes sure both subscripts (i.e. Pair->Src and Pair->Dst) share the same 524 /// integer type by sign-extending one of them when necessary. 525 /// Sign-extending a subscript is safe because getelementptr assumes the 526 /// array subscripts are signed. 527 void unifySubscriptType(Subscript *Pair); 528 529 /// removeMatchingExtensions - Examines a subscript pair. 530 /// If the source and destination are identically sign (or zero) 531 /// extended, it strips off the extension in an effort to 532 /// simplify the actual analysis. 533 void removeMatchingExtensions(Subscript *Pair); 534 535 /// collectCommonLoops - Finds the set of loops from the LoopNest that 536 /// have a level <= CommonLevels and are referred to by the SCEV Expression. 537 void collectCommonLoops(const SCEV *Expression, 538 const Loop *LoopNest, 539 SmallBitVector &Loops) const; 540 541 /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's 542 /// linear. Collect the set of loops mentioned by Src. 543 bool checkSrcSubscript(const SCEV *Src, 544 const Loop *LoopNest, 545 SmallBitVector &Loops); 546 547 /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's 548 /// linear. Collect the set of loops mentioned by Dst. 549 bool checkDstSubscript(const SCEV *Dst, 550 const Loop *LoopNest, 551 SmallBitVector &Loops); 552 553 /// isKnownPredicate - Compare X and Y using the predicate Pred. 554 /// Basically a wrapper for SCEV::isKnownPredicate, 555 /// but tries harder, especially in the presence of sign and zero 556 /// extensions and symbolics. 557 bool isKnownPredicate(ICmpInst::Predicate Pred, 558 const SCEV *X, 559 const SCEV *Y) const; 560 561 /// collectUpperBound - All subscripts are the same type (on my machine, 562 /// an i64). The loop bound may be a smaller type. collectUpperBound 563 /// find the bound, if available, and zero extends it to the Type T. 564 /// (I zero extend since the bound should always be >= 0.) 565 /// If no upper bound is available, return NULL. 566 const SCEV *collectUpperBound(const Loop *l, Type *T) const; 567 568 /// collectConstantUpperBound - Calls collectUpperBound(), then 569 /// attempts to cast it to SCEVConstant. If the cast fails, 570 /// returns NULL. 571 const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const; 572 573 /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs) 574 /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. 575 /// Collects the associated loops in a set. 576 Subscript::ClassificationKind classifyPair(const SCEV *Src, 577 const Loop *SrcLoopNest, 578 const SCEV *Dst, 579 const Loop *DstLoopNest, 580 SmallBitVector &Loops); 581 582 /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence. 583 /// Returns true if any possible dependence is disproved. 584 /// If there might be a dependence, returns false. 585 /// If the dependence isn't proven to exist, 586 /// marks the Result as inconsistent. 587 bool testZIV(const SCEV *Src, 588 const SCEV *Dst, 589 FullDependence &Result) const; 590 591 /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence. 592 /// Things of the form [c1 + a1*i] and [c2 + a2*j], where 593 /// i and j are induction variables, c1 and c2 are loop invariant, 594 /// and a1 and a2 are constant. 595 /// Returns true if any possible dependence is disproved. 596 /// If there might be a dependence, returns false. 597 /// Sets appropriate direction vector entry and, when possible, 598 /// the distance vector entry. 599 /// If the dependence isn't proven to exist, 600 /// marks the Result as inconsistent. 601 bool testSIV(const SCEV *Src, 602 const SCEV *Dst, 603 unsigned &Level, 604 FullDependence &Result, 605 Constraint &NewConstraint, 606 const SCEV *&SplitIter) const; 607 608 /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence. 609 /// Things of the form [c1 + a1*i] and [c2 + a2*j] 610 /// where i and j are induction variables, c1 and c2 are loop invariant, 611 /// and a1 and a2 are constant. 612 /// With minor algebra, this test can also be used for things like 613 /// [c1 + a1*i + a2*j][c2]. 614 /// Returns true if any possible dependence is disproved. 615 /// If there might be a dependence, returns false. 616 /// Marks the Result as inconsistent. 617 bool testRDIV(const SCEV *Src, 618 const SCEV *Dst, 619 FullDependence &Result) const; 620 621 /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence. 622 /// Returns true if dependence disproved. 623 /// Can sometimes refine direction vectors. 624 bool testMIV(const SCEV *Src, 625 const SCEV *Dst, 626 const SmallBitVector &Loops, 627 FullDependence &Result) const; 628 629 /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst) 630 /// for dependence. 631 /// Things of the form [c1 + a*i] and [c2 + a*i], 632 /// where i is an induction variable, c1 and c2 are loop invariant, 633 /// and a is a constant 634 /// Returns true if any possible dependence is disproved. 635 /// If there might be a dependence, returns false. 636 /// Sets appropriate direction and distance. 637 bool strongSIVtest(const SCEV *Coeff, 638 const SCEV *SrcConst, 639 const SCEV *DstConst, 640 const Loop *CurrentLoop, 641 unsigned Level, 642 FullDependence &Result, 643 Constraint &NewConstraint) const; 644 645 /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair 646 /// (Src and Dst) for dependence. 647 /// Things of the form [c1 + a*i] and [c2 - a*i], 648 /// where i is an induction variable, c1 and c2 are loop invariant, 649 /// and a is a constant. 650 /// Returns true if any possible dependence is disproved. 651 /// If there might be a dependence, returns false. 652 /// Sets appropriate direction entry. 653 /// Set consistent to false. 654 /// Marks the dependence as splitable. 655 bool weakCrossingSIVtest(const SCEV *SrcCoeff, 656 const SCEV *SrcConst, 657 const SCEV *DstConst, 658 const Loop *CurrentLoop, 659 unsigned Level, 660 FullDependence &Result, 661 Constraint &NewConstraint, 662 const SCEV *&SplitIter) const; 663 664 /// ExactSIVtest - Tests the SIV subscript pair 665 /// (Src and Dst) for dependence. 666 /// Things of the form [c1 + a1*i] and [c2 + a2*i], 667 /// where i is an induction variable, c1 and c2 are loop invariant, 668 /// and a1 and a2 are constant. 669 /// Returns true if any possible dependence is disproved. 670 /// If there might be a dependence, returns false. 671 /// Sets appropriate direction entry. 672 /// Set consistent to false. 673 bool exactSIVtest(const SCEV *SrcCoeff, 674 const SCEV *DstCoeff, 675 const SCEV *SrcConst, 676 const SCEV *DstConst, 677 const Loop *CurrentLoop, 678 unsigned Level, 679 FullDependence &Result, 680 Constraint &NewConstraint) const; 681 682 /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair 683 /// (Src and Dst) for dependence. 684 /// Things of the form [c1] and [c2 + a*i], 685 /// where i is an induction variable, c1 and c2 are loop invariant, 686 /// and a is a constant. See also weakZeroDstSIVtest. 687 /// Returns true if any possible dependence is disproved. 688 /// If there might be a dependence, returns false. 689 /// Sets appropriate direction entry. 690 /// Set consistent to false. 691 /// If loop peeling will break the dependence, mark appropriately. 692 bool weakZeroSrcSIVtest(const SCEV *DstCoeff, 693 const SCEV *SrcConst, 694 const SCEV *DstConst, 695 const Loop *CurrentLoop, 696 unsigned Level, 697 FullDependence &Result, 698 Constraint &NewConstraint) const; 699 700 /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair 701 /// (Src and Dst) for dependence. 702 /// Things of the form [c1 + a*i] and [c2], 703 /// where i is an induction variable, c1 and c2 are loop invariant, 704 /// and a is a constant. See also weakZeroSrcSIVtest. 705 /// Returns true if any possible dependence is disproved. 706 /// If there might be a dependence, returns false. 707 /// Sets appropriate direction entry. 708 /// Set consistent to false. 709 /// If loop peeling will break the dependence, mark appropriately. 710 bool weakZeroDstSIVtest(const SCEV *SrcCoeff, 711 const SCEV *SrcConst, 712 const SCEV *DstConst, 713 const Loop *CurrentLoop, 714 unsigned Level, 715 FullDependence &Result, 716 Constraint &NewConstraint) const; 717 718 /// exactRDIVtest - Tests the RDIV subscript pair for dependence. 719 /// Things of the form [c1 + a*i] and [c2 + b*j], 720 /// where i and j are induction variable, c1 and c2 are loop invariant, 721 /// and a and b are constants. 722 /// Returns true if any possible dependence is disproved. 723 /// Marks the result as inconsistent. 724 /// Works in some cases that symbolicRDIVtest doesn't, 725 /// and vice versa. 726 bool exactRDIVtest(const SCEV *SrcCoeff, 727 const SCEV *DstCoeff, 728 const SCEV *SrcConst, 729 const SCEV *DstConst, 730 const Loop *SrcLoop, 731 const Loop *DstLoop, 732 FullDependence &Result) const; 733 734 /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence. 735 /// Things of the form [c1 + a*i] and [c2 + b*j], 736 /// where i and j are induction variable, c1 and c2 are loop invariant, 737 /// and a and b are constants. 738 /// Returns true if any possible dependence is disproved. 739 /// Marks the result as inconsistent. 740 /// Works in some cases that exactRDIVtest doesn't, 741 /// and vice versa. Can also be used as a backup for 742 /// ordinary SIV tests. 743 bool symbolicRDIVtest(const SCEV *SrcCoeff, 744 const SCEV *DstCoeff, 745 const SCEV *SrcConst, 746 const SCEV *DstConst, 747 const Loop *SrcLoop, 748 const Loop *DstLoop) const; 749 750 /// gcdMIVtest - Tests an MIV subscript pair for dependence. 751 /// Returns true if any possible dependence is disproved. 752 /// Marks the result as inconsistent. 753 /// Can sometimes disprove the equal direction for 1 or more loops. 754 // Can handle some symbolics that even the SIV tests don't get, 755 /// so we use it as a backup for everything. 756 bool gcdMIVtest(const SCEV *Src, 757 const SCEV *Dst, 758 FullDependence &Result) const; 759 760 /// banerjeeMIVtest - Tests an MIV subscript pair for dependence. 761 /// Returns true if any possible dependence is disproved. 762 /// Marks the result as inconsistent. 763 /// Computes directions. 764 bool banerjeeMIVtest(const SCEV *Src, 765 const SCEV *Dst, 766 const SmallBitVector &Loops, 767 FullDependence &Result) const; 768 769 /// collectCoefficientInfo - Walks through the subscript, 770 /// collecting each coefficient, the associated loop bounds, 771 /// and recording its positive and negative parts for later use. 772 CoefficientInfo *collectCoeffInfo(const SCEV *Subscript, 773 bool SrcFlag, 774 const SCEV *&Constant) const; 775 776 /// getPositivePart - X^+ = max(X, 0). 777 /// 778 const SCEV *getPositivePart(const SCEV *X) const; 779 780 /// getNegativePart - X^- = min(X, 0). 781 /// 782 const SCEV *getNegativePart(const SCEV *X) const; 783 784 /// getLowerBound - Looks through all the bounds info and 785 /// computes the lower bound given the current direction settings 786 /// at each level. 787 const SCEV *getLowerBound(BoundInfo *Bound) const; 788 789 /// getUpperBound - Looks through all the bounds info and 790 /// computes the upper bound given the current direction settings 791 /// at each level. 792 const SCEV *getUpperBound(BoundInfo *Bound) const; 793 794 /// exploreDirections - Hierarchically expands the direction vector 795 /// search space, combining the directions of discovered dependences 796 /// in the DirSet field of Bound. Returns the number of distinct 797 /// dependences discovered. If the dependence is disproved, 798 /// it will return 0. 799 unsigned exploreDirections(unsigned Level, 800 CoefficientInfo *A, 801 CoefficientInfo *B, 802 BoundInfo *Bound, 803 const SmallBitVector &Loops, 804 unsigned &DepthExpanded, 805 const SCEV *Delta) const; 806 807 /// testBounds - Returns true iff the current bounds are plausible. 808 /// 809 bool testBounds(unsigned char DirKind, 810 unsigned Level, 811 BoundInfo *Bound, 812 const SCEV *Delta) const; 813 814 /// findBoundsALL - Computes the upper and lower bounds for level K 815 /// using the * direction. Records them in Bound. 816 void findBoundsALL(CoefficientInfo *A, 817 CoefficientInfo *B, 818 BoundInfo *Bound, 819 unsigned K) const; 820 821 /// findBoundsLT - Computes the upper and lower bounds for level K 822 /// using the < direction. Records them in Bound. 823 void findBoundsLT(CoefficientInfo *A, 824 CoefficientInfo *B, 825 BoundInfo *Bound, 826 unsigned K) const; 827 828 /// findBoundsGT - Computes the upper and lower bounds for level K 829 /// using the > direction. Records them in Bound. 830 void findBoundsGT(CoefficientInfo *A, 831 CoefficientInfo *B, 832 BoundInfo *Bound, 833 unsigned K) const; 834 835 /// findBoundsEQ - Computes the upper and lower bounds for level K 836 /// using the = direction. Records them in Bound. 837 void findBoundsEQ(CoefficientInfo *A, 838 CoefficientInfo *B, 839 BoundInfo *Bound, 840 unsigned K) const; 841 842 /// intersectConstraints - Updates X with the intersection 843 /// of the Constraints X and Y. Returns true if X has changed. 844 bool intersectConstraints(Constraint *X, 845 const Constraint *Y); 846 847 /// propagate - Review the constraints, looking for opportunities 848 /// to simplify a subscript pair (Src and Dst). 849 /// Return true if some simplification occurs. 850 /// If the simplification isn't exact (that is, if it is conservative 851 /// in terms of dependence), set consistent to false. 852 bool propagate(const SCEV *&Src, 853 const SCEV *&Dst, 854 SmallBitVector &Loops, 855 SmallVectorImpl<Constraint> &Constraints, 856 bool &Consistent); 857 858 /// propagateDistance - Attempt to propagate a distance 859 /// constraint into a subscript pair (Src and Dst). 860 /// Return true if some simplification occurs. 861 /// If the simplification isn't exact (that is, if it is conservative 862 /// in terms of dependence), set consistent to false. 863 bool propagateDistance(const SCEV *&Src, 864 const SCEV *&Dst, 865 Constraint &CurConstraint, 866 bool &Consistent); 867 868 /// propagatePoint - Attempt to propagate a point 869 /// constraint into a subscript pair (Src and Dst). 870 /// Return true if some simplification occurs. 871 bool propagatePoint(const SCEV *&Src, 872 const SCEV *&Dst, 873 Constraint &CurConstraint); 874 875 /// propagateLine - Attempt to propagate a line 876 /// constraint into a subscript pair (Src and Dst). 877 /// Return true if some simplification occurs. 878 /// If the simplification isn't exact (that is, if it is conservative 879 /// in terms of dependence), set consistent to false. 880 bool propagateLine(const SCEV *&Src, 881 const SCEV *&Dst, 882 Constraint &CurConstraint, 883 bool &Consistent); 884 885 /// findCoefficient - Given a linear SCEV, 886 /// return the coefficient corresponding to specified loop. 887 /// If there isn't one, return the SCEV constant 0. 888 /// For example, given a*i + b*j + c*k, returning the coefficient 889 /// corresponding to the j loop would yield b. 890 const SCEV *findCoefficient(const SCEV *Expr, 891 const Loop *TargetLoop) const; 892 893 /// zeroCoefficient - Given a linear SCEV, 894 /// return the SCEV given by zeroing out the coefficient 895 /// corresponding to the specified loop. 896 /// For example, given a*i + b*j + c*k, zeroing the coefficient 897 /// corresponding to the j loop would yield a*i + c*k. 898 const SCEV *zeroCoefficient(const SCEV *Expr, 899 const Loop *TargetLoop) const; 900 901 /// addToCoefficient - Given a linear SCEV Expr, 902 /// return the SCEV given by adding some Value to the 903 /// coefficient corresponding to the specified TargetLoop. 904 /// For example, given a*i + b*j + c*k, adding 1 to the coefficient 905 /// corresponding to the j loop would yield a*i + (b+1)*j + c*k. 906 const SCEV *addToCoefficient(const SCEV *Expr, 907 const Loop *TargetLoop, 908 const SCEV *Value) const; 909 910 /// updateDirection - Update direction vector entry 911 /// based on the current constraint. 912 void updateDirection(Dependence::DVEntry &Level, 913 const Constraint &CurConstraint) const; 914 915 bool tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV, 916 SmallVectorImpl<Subscript> &Pair, 917 const SCEV *ElementSize); 918 919 public: 920 static char ID; // Class identification, replacement for typeinfo DependenceAnalysis()921 DependenceAnalysis() : FunctionPass(ID) { 922 initializeDependenceAnalysisPass(*PassRegistry::getPassRegistry()); 923 } 924 925 bool runOnFunction(Function &F) override; 926 void releaseMemory() override; 927 void getAnalysisUsage(AnalysisUsage &) const override; 928 void print(raw_ostream &, const Module * = nullptr) const override; 929 }; // class DependenceAnalysis 930 931 /// createDependenceAnalysisPass - This creates an instance of the 932 /// DependenceAnalysis pass. 933 FunctionPass *createDependenceAnalysisPass(); 934 935 } // namespace llvm 936 937 #endif 938