• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  //===-- lib/divtf3.c - Quad-precision division --------------------*- C -*-===//
2  //
3  //                     The LLVM Compiler Infrastructure
4  //
5  // This file is dual licensed under the MIT and the University of Illinois Open
6  // Source Licenses. See LICENSE.TXT for details.
7  //
8  //===----------------------------------------------------------------------===//
9  //
10  // This file implements quad-precision soft-float division
11  // with the IEEE-754 default rounding (to nearest, ties to even).
12  //
13  // For simplicity, this implementation currently flushes denormals to zero.
14  // It should be a fairly straightforward exercise to implement gradual
15  // underflow with correct rounding.
16  //
17  //===----------------------------------------------------------------------===//
18  
19  #define QUAD_PRECISION
20  #include "fp_lib.h"
21  
22  #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
__divtf3(fp_t a,fp_t b)23  COMPILER_RT_ABI fp_t __divtf3(fp_t a, fp_t b) {
24  
25      const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
26      const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
27      const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
28  
29      rep_t aSignificand = toRep(a) & significandMask;
30      rep_t bSignificand = toRep(b) & significandMask;
31      int scale = 0;
32  
33      // Detect if a or b is zero, denormal, infinity, or NaN.
34      if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
35  
36          const rep_t aAbs = toRep(a) & absMask;
37          const rep_t bAbs = toRep(b) & absMask;
38  
39          // NaN / anything = qNaN
40          if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
41          // anything / NaN = qNaN
42          if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
43  
44          if (aAbs == infRep) {
45              // infinity / infinity = NaN
46              if (bAbs == infRep) return fromRep(qnanRep);
47              // infinity / anything else = +/- infinity
48              else return fromRep(aAbs | quotientSign);
49          }
50  
51          // anything else / infinity = +/- 0
52          if (bAbs == infRep) return fromRep(quotientSign);
53  
54          if (!aAbs) {
55              // zero / zero = NaN
56              if (!bAbs) return fromRep(qnanRep);
57              // zero / anything else = +/- zero
58              else return fromRep(quotientSign);
59          }
60          // anything else / zero = +/- infinity
61          if (!bAbs) return fromRep(infRep | quotientSign);
62  
63          // one or both of a or b is denormal, the other (if applicable) is a
64          // normal number.  Renormalize one or both of a and b, and set scale to
65          // include the necessary exponent adjustment.
66          if (aAbs < implicitBit) scale += normalize(&aSignificand);
67          if (bAbs < implicitBit) scale -= normalize(&bSignificand);
68      }
69  
70      // Or in the implicit significand bit.  (If we fell through from the
71      // denormal path it was already set by normalize( ), but setting it twice
72      // won't hurt anything.)
73      aSignificand |= implicitBit;
74      bSignificand |= implicitBit;
75      int quotientExponent = aExponent - bExponent + scale;
76  
77      // Align the significand of b as a Q63 fixed-point number in the range
78      // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
79      // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
80      // is accurate to about 3.5 binary digits.
81      const uint64_t q63b = bSignificand >> 49;
82      uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b;
83      // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
84  
85      // Now refine the reciprocal estimate using a Newton-Raphson iteration:
86      //
87      //     x1 = x0 * (2 - x0 * b)
88      //
89      // This doubles the number of correct binary digits in the approximation
90      // with each iteration.
91      uint64_t correction64;
92      correction64 = -((rep_t)recip64 * q63b >> 64);
93      recip64 = (rep_t)recip64 * correction64 >> 63;
94      correction64 = -((rep_t)recip64 * q63b >> 64);
95      recip64 = (rep_t)recip64 * correction64 >> 63;
96      correction64 = -((rep_t)recip64 * q63b >> 64);
97      recip64 = (rep_t)recip64 * correction64 >> 63;
98      correction64 = -((rep_t)recip64 * q63b >> 64);
99      recip64 = (rep_t)recip64 * correction64 >> 63;
100      correction64 = -((rep_t)recip64 * q63b >> 64);
101      recip64 = (rep_t)recip64 * correction64 >> 63;
102  
103      // recip64 might have overflowed to exactly zero in the preceeding
104      // computation if the high word of b is exactly 1.0.  This would sabotage
105      // the full-width final stage of the computation that follows, so we adjust
106      // recip64 downward by one bit.
107      recip64--;
108  
109      // We need to perform one more iteration to get us to 112 binary digits;
110      // The last iteration needs to happen with extra precision.
111      const uint64_t q127blo = bSignificand << 15;
112      rep_t correction, reciprocal;
113  
114      // NOTE: This operation is equivalent to __multi3, which is not implemented
115      //       in some architechure
116      rep_t r64q63, r64q127, r64cH, r64cL, dummy;
117      wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63);
118      wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127);
119  
120      correction = -(r64q63 + (r64q127 >> 64));
121  
122      uint64_t cHi = correction >> 64;
123      uint64_t cLo = correction;
124  
125      wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH);
126      wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL);
127  
128      reciprocal = r64cH + (r64cL >> 64);
129  
130      // We already adjusted the 64-bit estimate, now we need to adjust the final
131      // 128-bit reciprocal estimate downward to ensure that it is strictly smaller
132      // than the infinitely precise exact reciprocal.  Because the computation
133      // of the Newton-Raphson step is truncating at every step, this adjustment
134      // is small; most of the work is already done.
135      reciprocal -= 2;
136  
137      // The numerical reciprocal is accurate to within 2^-112, lies in the
138      // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
139      // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
140      // in Q127 with the following properties:
141      //
142      //    1. q < a/b
143      //    2. q is in the interval [0.5, 2.0)
144      //    3. the error in q is bounded away from 2^-113 (actually, we have a
145      //       couple of bits to spare, but this is all we need).
146  
147      // We need a 128 x 128 multiply high to compute q, which isn't a basic
148      // operation in C, so we need to be a little bit fussy.
149      rep_t quotient, quotientLo;
150      wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
151  
152      // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
153      // In either case, we are going to compute a residual of the form
154      //
155      //     r = a - q*b
156      //
157      // We know from the construction of q that r satisfies:
158      //
159      //     0 <= r < ulp(q)*b
160      //
161      // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
162      // already have the correct result.  The exact halfway case cannot occur.
163      // We also take this time to right shift quotient if it falls in the [1,2)
164      // range and adjust the exponent accordingly.
165      rep_t residual;
166      rep_t qb;
167  
168      if (quotient < (implicitBit << 1)) {
169          wideMultiply(quotient, bSignificand, &dummy, &qb);
170          residual = (aSignificand << 113) - qb;
171          quotientExponent--;
172      } else {
173          quotient >>= 1;
174          wideMultiply(quotient, bSignificand, &dummy, &qb);
175          residual = (aSignificand << 112) - qb;
176      }
177  
178      const int writtenExponent = quotientExponent + exponentBias;
179  
180      if (writtenExponent >= maxExponent) {
181          // If we have overflowed the exponent, return infinity.
182          return fromRep(infRep | quotientSign);
183      }
184      else if (writtenExponent < 1) {
185          // Flush denormals to zero.  In the future, it would be nice to add
186          // code to round them correctly.
187          return fromRep(quotientSign);
188      }
189      else {
190          const bool round = (residual << 1) >= bSignificand;
191          // Clear the implicit bit
192          rep_t absResult = quotient & significandMask;
193          // Insert the exponent
194          absResult |= (rep_t)writtenExponent << significandBits;
195          // Round
196          absResult += round;
197          // Insert the sign and return
198          const long double result = fromRep(absResult | quotientSign);
199          return result;
200      }
201  }
202  
203  #endif
204