1 /* Unaligned memory access functionality.
2 Copyright (C) 2000-2014 Red Hat, Inc.
3 This file is part of elfutils.
4 Written by Ulrich Drepper <drepper@redhat.com>, 2001.
5
6 This file is free software; you can redistribute it and/or modify
7 it under the terms of either
8
9 * the GNU Lesser General Public License as published by the Free
10 Software Foundation; either version 3 of the License, or (at
11 your option) any later version
12
13 or
14
15 * the GNU General Public License as published by the Free
16 Software Foundation; either version 2 of the License, or (at
17 your option) any later version
18
19 or both in parallel, as here.
20
21 elfutils is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received copies of the GNU General Public License and
27 the GNU Lesser General Public License along with this program. If
28 not, see <http://www.gnu.org/licenses/>. */
29
30 #ifndef _MEMORY_ACCESS_H
31 #define _MEMORY_ACCESS_H 1
32
33 #include <byteswap.h>
34 #include <limits.h>
35 #include <stdint.h>
36
37
38 /* Number decoding macros. See 7.6 Variable Length Data. */
39
40 #define len_leb128(var) ((8 * sizeof (var) + 6) / 7)
41
42 static inline size_t
__libdw_max_len_leb128(const unsigned char * addr,const unsigned char * end)43 __libdw_max_len_leb128 (const unsigned char *addr, const unsigned char *end)
44 {
45 const size_t type_len = len_leb128 (uint64_t);
46 const size_t pointer_len = likely (addr < end) ? end - addr : 0;
47 return likely (type_len <= pointer_len) ? type_len : pointer_len;
48 }
49
50 #define get_uleb128_step(var, addr, nth) \
51 do { \
52 unsigned char __b = *(addr)++; \
53 (var) |= (typeof (var)) (__b & 0x7f) << ((nth) * 7); \
54 if (likely ((__b & 0x80) == 0)) \
55 return (var); \
56 } while (0)
57
58 static inline uint64_t
__libdw_get_uleb128(const unsigned char ** addrp,const unsigned char * end)59 __libdw_get_uleb128 (const unsigned char **addrp, const unsigned char *end)
60 {
61 uint64_t acc = 0;
62
63 /* Unroll the first step to help the compiler optimize
64 for the common single-byte case. */
65 get_uleb128_step (acc, *addrp, 0);
66
67 const size_t max = __libdw_max_len_leb128 (*addrp - 1, end);
68 for (size_t i = 1; i < max; ++i)
69 get_uleb128_step (acc, *addrp, i);
70 /* Other implementations set VALUE to UINT_MAX in this
71 case. So we better do this as well. */
72 return UINT64_MAX;
73 }
74
75 /* Note, addr needs to me smaller than end. */
76 #define get_uleb128(var, addr, end) ((var) = __libdw_get_uleb128 (&(addr), end))
77
78 /* The signed case is similar, but we sign-extend the result. */
79
80 #define get_sleb128_step(var, addr, nth) \
81 do { \
82 unsigned char __b = *(addr)++; \
83 if (likely ((__b & 0x80) == 0)) \
84 { \
85 struct { signed int i:7; } __s = { .i = __b }; \
86 (var) |= (typeof (var)) __s.i * ((typeof (var)) 1 << ((nth) * 7)); \
87 return (var); \
88 } \
89 (var) |= (typeof (var)) (__b & 0x7f) << ((nth) * 7); \
90 } while (0)
91
92 static inline int64_t
__libdw_get_sleb128(const unsigned char ** addrp,const unsigned char * end)93 __libdw_get_sleb128 (const unsigned char **addrp, const unsigned char *end)
94 {
95 int64_t acc = 0;
96
97 /* Unroll the first step to help the compiler optimize
98 for the common single-byte case. */
99 get_sleb128_step (acc, *addrp, 0);
100
101 const size_t max = __libdw_max_len_leb128 (*addrp - 1, end);
102 for (size_t i = 1; i < max; ++i)
103 get_sleb128_step (acc, *addrp, i);
104 /* Other implementations set VALUE to INT_MAX in this
105 case. So we better do this as well. */
106 return INT64_MAX;
107 }
108
109 #define get_sleb128(var, addr, end) ((var) = __libdw_get_sleb128 (&(addr), end))
110
111
112 /* We use simple memory access functions in case the hardware allows it.
113 The caller has to make sure we don't have alias problems. */
114 #if ALLOW_UNALIGNED
115
116 # define read_2ubyte_unaligned(Dbg, Addr) \
117 (unlikely ((Dbg)->other_byte_order) \
118 ? bswap_16 (*((const uint16_t *) (Addr))) \
119 : *((const uint16_t *) (Addr)))
120 # define read_2sbyte_unaligned(Dbg, Addr) \
121 (unlikely ((Dbg)->other_byte_order) \
122 ? (int16_t) bswap_16 (*((const int16_t *) (Addr))) \
123 : *((const int16_t *) (Addr)))
124
125 # define read_4ubyte_unaligned_noncvt(Addr) \
126 *((const uint32_t *) (Addr))
127 # define read_4ubyte_unaligned(Dbg, Addr) \
128 (unlikely ((Dbg)->other_byte_order) \
129 ? bswap_32 (*((const uint32_t *) (Addr))) \
130 : *((const uint32_t *) (Addr)))
131 # define read_4sbyte_unaligned(Dbg, Addr) \
132 (unlikely ((Dbg)->other_byte_order) \
133 ? (int32_t) bswap_32 (*((const int32_t *) (Addr))) \
134 : *((const int32_t *) (Addr)))
135
136 # define read_8ubyte_unaligned_noncvt(Addr) \
137 *((const uint64_t *) (Addr))
138 # define read_8ubyte_unaligned(Dbg, Addr) \
139 (unlikely ((Dbg)->other_byte_order) \
140 ? bswap_64 (*((const uint64_t *) (Addr))) \
141 : *((const uint64_t *) (Addr)))
142 # define read_8sbyte_unaligned(Dbg, Addr) \
143 (unlikely ((Dbg)->other_byte_order) \
144 ? (int64_t) bswap_64 (*((const int64_t *) (Addr))) \
145 : *((const int64_t *) (Addr)))
146
147 #else
148
149 union unaligned
150 {
151 void *p;
152 uint16_t u2;
153 uint32_t u4;
154 uint64_t u8;
155 int16_t s2;
156 int32_t s4;
157 int64_t s8;
158 } __attribute__ ((packed));
159
160 # define read_2ubyte_unaligned(Dbg, Addr) \
161 read_2ubyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
162 # define read_2sbyte_unaligned(Dbg, Addr) \
163 read_2sbyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
164 # define read_4ubyte_unaligned(Dbg, Addr) \
165 read_4ubyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
166 # define read_4sbyte_unaligned(Dbg, Addr) \
167 read_4sbyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
168 # define read_8ubyte_unaligned(Dbg, Addr) \
169 read_8ubyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
170 # define read_8sbyte_unaligned(Dbg, Addr) \
171 read_8sbyte_unaligned_1 ((Dbg)->other_byte_order, (Addr))
172
173 static inline uint16_t
read_2ubyte_unaligned_1(bool other_byte_order,const void * p)174 read_2ubyte_unaligned_1 (bool other_byte_order, const void *p)
175 {
176 const union unaligned *up = p;
177 if (unlikely (other_byte_order))
178 return bswap_16 (up->u2);
179 return up->u2;
180 }
181 static inline int16_t
read_2sbyte_unaligned_1(bool other_byte_order,const void * p)182 read_2sbyte_unaligned_1 (bool other_byte_order, const void *p)
183 {
184 const union unaligned *up = p;
185 if (unlikely (other_byte_order))
186 return (int16_t) bswap_16 (up->u2);
187 return up->s2;
188 }
189
190 static inline uint32_t
read_4ubyte_unaligned_noncvt(const void * p)191 read_4ubyte_unaligned_noncvt (const void *p)
192 {
193 const union unaligned *up = p;
194 return up->u4;
195 }
196 static inline uint32_t
read_4ubyte_unaligned_1(bool other_byte_order,const void * p)197 read_4ubyte_unaligned_1 (bool other_byte_order, const void *p)
198 {
199 const union unaligned *up = p;
200 if (unlikely (other_byte_order))
201 return bswap_32 (up->u4);
202 return up->u4;
203 }
204 static inline int32_t
read_4sbyte_unaligned_1(bool other_byte_order,const void * p)205 read_4sbyte_unaligned_1 (bool other_byte_order, const void *p)
206 {
207 const union unaligned *up = p;
208 if (unlikely (other_byte_order))
209 return (int32_t) bswap_32 (up->u4);
210 return up->s4;
211 }
212
213 static inline uint64_t
read_8ubyte_unaligned_noncvt(const void * p)214 read_8ubyte_unaligned_noncvt (const void *p)
215 {
216 const union unaligned *up = p;
217 return up->u8;
218 }
219 static inline uint64_t
read_8ubyte_unaligned_1(bool other_byte_order,const void * p)220 read_8ubyte_unaligned_1 (bool other_byte_order, const void *p)
221 {
222 const union unaligned *up = p;
223 if (unlikely (other_byte_order))
224 return bswap_64 (up->u8);
225 return up->u8;
226 }
227 static inline int64_t
read_8sbyte_unaligned_1(bool other_byte_order,const void * p)228 read_8sbyte_unaligned_1 (bool other_byte_order, const void *p)
229 {
230 const union unaligned *up = p;
231 if (unlikely (other_byte_order))
232 return (int64_t) bswap_64 (up->u8);
233 return up->s8;
234 }
235
236 #endif /* allow unaligned */
237
238
239 #define read_2ubyte_unaligned_inc(Dbg, Addr) \
240 ({ uint16_t t_ = read_2ubyte_unaligned (Dbg, Addr); \
241 Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 2); \
242 t_; })
243 #define read_2sbyte_unaligned_inc(Dbg, Addr) \
244 ({ int16_t t_ = read_2sbyte_unaligned (Dbg, Addr); \
245 Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 2); \
246 t_; })
247
248 #define read_4ubyte_unaligned_inc(Dbg, Addr) \
249 ({ uint32_t t_ = read_4ubyte_unaligned (Dbg, Addr); \
250 Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 4); \
251 t_; })
252 #define read_4sbyte_unaligned_inc(Dbg, Addr) \
253 ({ int32_t t_ = read_4sbyte_unaligned (Dbg, Addr); \
254 Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 4); \
255 t_; })
256
257 #define read_8ubyte_unaligned_inc(Dbg, Addr) \
258 ({ uint64_t t_ = read_8ubyte_unaligned (Dbg, Addr); \
259 Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 8); \
260 t_; })
261 #define read_8sbyte_unaligned_inc(Dbg, Addr) \
262 ({ int64_t t_ = read_8sbyte_unaligned (Dbg, Addr); \
263 Addr = (__typeof (Addr)) (((uintptr_t) (Addr)) + 8); \
264 t_; })
265
266
267 #define read_addr_unaligned_inc(Nbytes, Dbg, Addr) \
268 (assert ((Nbytes) == 4 || (Nbytes) == 8), \
269 ((Nbytes) == 4 ? read_4ubyte_unaligned_inc (Dbg, Addr) \
270 : read_8ubyte_unaligned_inc (Dbg, Addr)))
271
272 #endif /* memory-access.h */
273