1 //===----------- ReductionRules.h - Reduction Rules -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Reduction Rules.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
15 #define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
16 
17 #include "Graph.h"
18 #include "Math.h"
19 #include "Solution.h"
20 
21 namespace llvm {
22 namespace PBQP {
23 
24   /// \brief Reduce a node of degree one.
25   ///
26   /// Propagate costs from the given node, which must be of degree one, to its
27   /// neighbor. Notify the problem domain.
28   template <typename GraphT>
applyR1(GraphT & G,typename GraphT::NodeId NId)29   void applyR1(GraphT &G, typename GraphT::NodeId NId) {
30     typedef typename GraphT::NodeId NodeId;
31     typedef typename GraphT::EdgeId EdgeId;
32     typedef typename GraphT::Vector Vector;
33     typedef typename GraphT::Matrix Matrix;
34     typedef typename GraphT::RawVector RawVector;
35 
36     assert(G.getNodeDegree(NId) == 1 &&
37            "R1 applied to node with degree != 1.");
38 
39     EdgeId EId = *G.adjEdgeIds(NId).begin();
40     NodeId MId = G.getEdgeOtherNodeId(EId, NId);
41 
42     const Matrix &ECosts = G.getEdgeCosts(EId);
43     const Vector &XCosts = G.getNodeCosts(NId);
44     RawVector YCosts = G.getNodeCosts(MId);
45 
46     // Duplicate a little to avoid transposing matrices.
47     if (NId == G.getEdgeNode1Id(EId)) {
48       for (unsigned j = 0; j < YCosts.getLength(); ++j) {
49         PBQPNum Min = ECosts[0][j] + XCosts[0];
50         for (unsigned i = 1; i < XCosts.getLength(); ++i) {
51           PBQPNum C = ECosts[i][j] + XCosts[i];
52           if (C < Min)
53             Min = C;
54         }
55         YCosts[j] += Min;
56       }
57     } else {
58       for (unsigned i = 0; i < YCosts.getLength(); ++i) {
59         PBQPNum Min = ECosts[i][0] + XCosts[0];
60         for (unsigned j = 1; j < XCosts.getLength(); ++j) {
61           PBQPNum C = ECosts[i][j] + XCosts[j];
62           if (C < Min)
63             Min = C;
64         }
65         YCosts[i] += Min;
66       }
67     }
68     G.setNodeCosts(MId, YCosts);
69     G.disconnectEdge(EId, MId);
70   }
71 
72   template <typename GraphT>
applyR2(GraphT & G,typename GraphT::NodeId NId)73   void applyR2(GraphT &G, typename GraphT::NodeId NId) {
74     typedef typename GraphT::NodeId NodeId;
75     typedef typename GraphT::EdgeId EdgeId;
76     typedef typename GraphT::Vector Vector;
77     typedef typename GraphT::Matrix Matrix;
78     typedef typename GraphT::RawMatrix RawMatrix;
79 
80     assert(G.getNodeDegree(NId) == 2 &&
81            "R2 applied to node with degree != 2.");
82 
83     const Vector &XCosts = G.getNodeCosts(NId);
84 
85     typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
86     EdgeId YXEId = *AEItr,
87            ZXEId = *(++AEItr);
88 
89     NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
90            ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
91 
92     bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
93          FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
94 
95     const Matrix *YXECosts = FlipEdge1 ?
96       new Matrix(G.getEdgeCosts(YXEId).transpose()) :
97       &G.getEdgeCosts(YXEId);
98 
99     const Matrix *ZXECosts = FlipEdge2 ?
100       new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
101       &G.getEdgeCosts(ZXEId);
102 
103     unsigned XLen = XCosts.getLength(),
104       YLen = YXECosts->getRows(),
105       ZLen = ZXECosts->getRows();
106 
107     RawMatrix Delta(YLen, ZLen);
108 
109     for (unsigned i = 0; i < YLen; ++i) {
110       for (unsigned j = 0; j < ZLen; ++j) {
111         PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
112         for (unsigned k = 1; k < XLen; ++k) {
113           PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
114           if (C < Min) {
115             Min = C;
116           }
117         }
118         Delta[i][j] = Min;
119       }
120     }
121 
122     if (FlipEdge1)
123       delete YXECosts;
124 
125     if (FlipEdge2)
126       delete ZXECosts;
127 
128     EdgeId YZEId = G.findEdge(YNId, ZNId);
129 
130     if (YZEId == G.invalidEdgeId()) {
131       YZEId = G.addEdge(YNId, ZNId, Delta);
132     } else {
133       const Matrix &YZECosts = G.getEdgeCosts(YZEId);
134       if (YNId == G.getEdgeNode1Id(YZEId)) {
135         G.updateEdgeCosts(YZEId, Delta + YZECosts);
136       } else {
137         G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
138       }
139     }
140 
141     G.disconnectEdge(YXEId, YNId);
142     G.disconnectEdge(ZXEId, ZNId);
143 
144     // TODO: Try to normalize newly added/modified edge.
145   }
146 
147 #ifndef NDEBUG
148   // Does this Cost vector have any register options ?
149   template <typename VectorT>
hasRegisterOptions(const VectorT & V)150   bool hasRegisterOptions(const VectorT &V) {
151     unsigned VL = V.getLength();
152 
153     // An empty or spill only cost vector does not provide any register option.
154     if (VL <= 1)
155       return false;
156 
157     // If there are registers in the cost vector, but all of them have infinite
158     // costs, then ... there is no available register.
159     for (unsigned i = 1; i < VL; ++i)
160       if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
161         return true;
162 
163     return false;
164   }
165 #endif
166 
167   // \brief Find a solution to a fully reduced graph by backpropagation.
168   //
169   // Given a graph and a reduction order, pop each node from the reduction
170   // order and greedily compute a minimum solution based on the node costs, and
171   // the dependent costs due to previously solved nodes.
172   //
173   // Note - This does not return the graph to its original (pre-reduction)
174   //        state: the existing solvers destructively alter the node and edge
175   //        costs. Given that, the backpropagate function doesn't attempt to
176   //        replace the edges either, but leaves the graph in its reduced
177   //        state.
178   template <typename GraphT, typename StackT>
backpropagate(GraphT & G,StackT stack)179   Solution backpropagate(GraphT& G, StackT stack) {
180     typedef GraphBase::NodeId NodeId;
181     typedef typename GraphT::Matrix Matrix;
182     typedef typename GraphT::RawVector RawVector;
183 
184     Solution s;
185 
186     while (!stack.empty()) {
187       NodeId NId = stack.back();
188       stack.pop_back();
189 
190       RawVector v = G.getNodeCosts(NId);
191 
192 #ifndef NDEBUG
193       // Although a conservatively allocatable node can be allocated to a register,
194       // spilling it may provide a lower cost solution. Assert here that spilling
195       // is done by choice, not because there were no register available.
196       if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
197         assert(hasRegisterOptions(v) && "A conservatively allocatable node "
198                                         "must have available register options");
199 #endif
200 
201       for (auto EId : G.adjEdgeIds(NId)) {
202         const Matrix& edgeCosts = G.getEdgeCosts(EId);
203         if (NId == G.getEdgeNode1Id(EId)) {
204           NodeId mId = G.getEdgeNode2Id(EId);
205           v += edgeCosts.getColAsVector(s.getSelection(mId));
206         } else {
207           NodeId mId = G.getEdgeNode1Id(EId);
208           v += edgeCosts.getRowAsVector(s.getSelection(mId));
209         }
210       }
211 
212       s.setSelection(NId, v.minIndex());
213     }
214 
215     return s;
216   }
217 
218 } // namespace PBQP
219 } // namespace llvm
220 
221 #endif
222