1 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loops should be simplified before this analysis.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/BranchProbabilityInfo.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Metadata.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "branch-prob"
29 
30 INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
31                       "Branch Probability Analysis", false, true)
32 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
33 INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
34                     "Branch Probability Analysis", false, true)
35 
36 char BranchProbabilityInfo::ID = 0;
37 
38 // Weights are for internal use only. They are used by heuristics to help to
39 // estimate edges' probability. Example:
40 //
41 // Using "Loop Branch Heuristics" we predict weights of edges for the
42 // block BB2.
43 //         ...
44 //          |
45 //          V
46 //         BB1<-+
47 //          |   |
48 //          |   | (Weight = 124)
49 //          V   |
50 //         BB2--+
51 //          |
52 //          | (Weight = 4)
53 //          V
54 //         BB3
55 //
56 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
57 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
58 static const uint32_t LBH_TAKEN_WEIGHT = 124;
59 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
60 
61 /// \brief Unreachable-terminating branch taken weight.
62 ///
63 /// This is the weight for a branch being taken to a block that terminates
64 /// (eventually) in unreachable. These are predicted as unlikely as possible.
65 static const uint32_t UR_TAKEN_WEIGHT = 1;
66 
67 /// \brief Unreachable-terminating branch not-taken weight.
68 ///
69 /// This is the weight for a branch not being taken toward a block that
70 /// terminates (eventually) in unreachable. Such a branch is essentially never
71 /// taken. Set the weight to an absurdly high value so that nested loops don't
72 /// easily subsume it.
73 static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1;
74 
75 /// \brief Weight for a branch taken going into a cold block.
76 ///
77 /// This is the weight for a branch taken toward a block marked
78 /// cold.  A block is marked cold if it's postdominated by a
79 /// block containing a call to a cold function.  Cold functions
80 /// are those marked with attribute 'cold'.
81 static const uint32_t CC_TAKEN_WEIGHT = 4;
82 
83 /// \brief Weight for a branch not-taken into a cold block.
84 ///
85 /// This is the weight for a branch not taken toward a block marked
86 /// cold.
87 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
88 
89 static const uint32_t PH_TAKEN_WEIGHT = 20;
90 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
91 
92 static const uint32_t ZH_TAKEN_WEIGHT = 20;
93 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
94 
95 static const uint32_t FPH_TAKEN_WEIGHT = 20;
96 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
97 
98 /// \brief Invoke-terminating normal branch taken weight
99 ///
100 /// This is the weight for branching to the normal destination of an invoke
101 /// instruction. We expect this to happen most of the time. Set the weight to an
102 /// absurdly high value so that nested loops subsume it.
103 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
104 
105 /// \brief Invoke-terminating normal branch not-taken weight.
106 ///
107 /// This is the weight for branching to the unwind destination of an invoke
108 /// instruction. This is essentially never taken.
109 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
110 
111 // Standard weight value. Used when none of the heuristics set weight for
112 // the edge.
113 static const uint32_t NORMAL_WEIGHT = 16;
114 
115 // Minimum weight of an edge. Please note, that weight is NEVER 0.
116 static const uint32_t MIN_WEIGHT = 1;
117 
getMaxWeightFor(BasicBlock * BB)118 static uint32_t getMaxWeightFor(BasicBlock *BB) {
119   return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
120 }
121 
122 
123 /// \brief Calculate edge weights for successors lead to unreachable.
124 ///
125 /// Predict that a successor which leads necessarily to an
126 /// unreachable-terminated block as extremely unlikely.
calcUnreachableHeuristics(BasicBlock * BB)127 bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
128   TerminatorInst *TI = BB->getTerminator();
129   if (TI->getNumSuccessors() == 0) {
130     if (isa<UnreachableInst>(TI))
131       PostDominatedByUnreachable.insert(BB);
132     return false;
133   }
134 
135   SmallVector<unsigned, 4> UnreachableEdges;
136   SmallVector<unsigned, 4> ReachableEdges;
137 
138   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
139     if (PostDominatedByUnreachable.count(*I))
140       UnreachableEdges.push_back(I.getSuccessorIndex());
141     else
142       ReachableEdges.push_back(I.getSuccessorIndex());
143   }
144 
145   // If all successors are in the set of blocks post-dominated by unreachable,
146   // this block is too.
147   if (UnreachableEdges.size() == TI->getNumSuccessors())
148     PostDominatedByUnreachable.insert(BB);
149 
150   // Skip probabilities if this block has a single successor or if all were
151   // reachable.
152   if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
153     return false;
154 
155   uint32_t UnreachableWeight =
156     std::max(UR_TAKEN_WEIGHT / (unsigned)UnreachableEdges.size(), MIN_WEIGHT);
157   for (SmallVectorImpl<unsigned>::iterator I = UnreachableEdges.begin(),
158                                            E = UnreachableEdges.end();
159        I != E; ++I)
160     setEdgeWeight(BB, *I, UnreachableWeight);
161 
162   if (ReachableEdges.empty())
163     return true;
164   uint32_t ReachableWeight =
165     std::max(UR_NONTAKEN_WEIGHT / (unsigned)ReachableEdges.size(),
166              NORMAL_WEIGHT);
167   for (SmallVectorImpl<unsigned>::iterator I = ReachableEdges.begin(),
168                                            E = ReachableEdges.end();
169        I != E; ++I)
170     setEdgeWeight(BB, *I, ReachableWeight);
171 
172   return true;
173 }
174 
175 // Propagate existing explicit probabilities from either profile data or
176 // 'expect' intrinsic processing.
calcMetadataWeights(BasicBlock * BB)177 bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) {
178   TerminatorInst *TI = BB->getTerminator();
179   if (TI->getNumSuccessors() == 1)
180     return false;
181   if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
182     return false;
183 
184   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
185   if (!WeightsNode)
186     return false;
187 
188   // Ensure there are weights for all of the successors. Note that the first
189   // operand to the metadata node is a name, not a weight.
190   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
191     return false;
192 
193   // Build up the final weights that will be used in a temporary buffer, but
194   // don't add them until all weihts are present. Each weight value is clamped
195   // to [1, getMaxWeightFor(BB)].
196   uint32_t WeightLimit = getMaxWeightFor(BB);
197   SmallVector<uint32_t, 2> Weights;
198   Weights.reserve(TI->getNumSuccessors());
199   for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
200     ConstantInt *Weight =
201         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
202     if (!Weight)
203       return false;
204     Weights.push_back(
205       std::max<uint32_t>(1, Weight->getLimitedValue(WeightLimit)));
206   }
207   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
208   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
209     setEdgeWeight(BB, i, Weights[i]);
210 
211   return true;
212 }
213 
214 /// \brief Calculate edge weights for edges leading to cold blocks.
215 ///
216 /// A cold block is one post-dominated by  a block with a call to a
217 /// cold function.  Those edges are unlikely to be taken, so we give
218 /// them relatively low weight.
219 ///
220 /// Return true if we could compute the weights for cold edges.
221 /// Return false, otherwise.
calcColdCallHeuristics(BasicBlock * BB)222 bool BranchProbabilityInfo::calcColdCallHeuristics(BasicBlock *BB) {
223   TerminatorInst *TI = BB->getTerminator();
224   if (TI->getNumSuccessors() == 0)
225     return false;
226 
227   // Determine which successors are post-dominated by a cold block.
228   SmallVector<unsigned, 4> ColdEdges;
229   SmallVector<unsigned, 4> NormalEdges;
230   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
231     if (PostDominatedByColdCall.count(*I))
232       ColdEdges.push_back(I.getSuccessorIndex());
233     else
234       NormalEdges.push_back(I.getSuccessorIndex());
235 
236   // If all successors are in the set of blocks post-dominated by cold calls,
237   // this block is in the set post-dominated by cold calls.
238   if (ColdEdges.size() == TI->getNumSuccessors())
239     PostDominatedByColdCall.insert(BB);
240   else {
241     // Otherwise, if the block itself contains a cold function, add it to the
242     // set of blocks postdominated by a cold call.
243     assert(!PostDominatedByColdCall.count(BB));
244     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
245       if (CallInst *CI = dyn_cast<CallInst>(I))
246         if (CI->hasFnAttr(Attribute::Cold)) {
247           PostDominatedByColdCall.insert(BB);
248           break;
249         }
250   }
251 
252   // Skip probabilities if this block has a single successor.
253   if (TI->getNumSuccessors() == 1 || ColdEdges.empty())
254     return false;
255 
256   uint32_t ColdWeight =
257       std::max(CC_TAKEN_WEIGHT / (unsigned) ColdEdges.size(), MIN_WEIGHT);
258   for (SmallVectorImpl<unsigned>::iterator I = ColdEdges.begin(),
259                                            E = ColdEdges.end();
260        I != E; ++I)
261     setEdgeWeight(BB, *I, ColdWeight);
262 
263   if (NormalEdges.empty())
264     return true;
265   uint32_t NormalWeight = std::max(
266       CC_NONTAKEN_WEIGHT / (unsigned) NormalEdges.size(), NORMAL_WEIGHT);
267   for (SmallVectorImpl<unsigned>::iterator I = NormalEdges.begin(),
268                                            E = NormalEdges.end();
269        I != E; ++I)
270     setEdgeWeight(BB, *I, NormalWeight);
271 
272   return true;
273 }
274 
275 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
276 // between two pointer or pointer and NULL will fail.
calcPointerHeuristics(BasicBlock * BB)277 bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) {
278   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
279   if (!BI || !BI->isConditional())
280     return false;
281 
282   Value *Cond = BI->getCondition();
283   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
284   if (!CI || !CI->isEquality())
285     return false;
286 
287   Value *LHS = CI->getOperand(0);
288 
289   if (!LHS->getType()->isPointerTy())
290     return false;
291 
292   assert(CI->getOperand(1)->getType()->isPointerTy());
293 
294   // p != 0   ->   isProb = true
295   // p == 0   ->   isProb = false
296   // p != q   ->   isProb = true
297   // p == q   ->   isProb = false;
298   unsigned TakenIdx = 0, NonTakenIdx = 1;
299   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
300   if (!isProb)
301     std::swap(TakenIdx, NonTakenIdx);
302 
303   setEdgeWeight(BB, TakenIdx, PH_TAKEN_WEIGHT);
304   setEdgeWeight(BB, NonTakenIdx, PH_NONTAKEN_WEIGHT);
305   return true;
306 }
307 
308 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
309 // as taken, exiting edges as not-taken.
calcLoopBranchHeuristics(BasicBlock * BB)310 bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) {
311   Loop *L = LI->getLoopFor(BB);
312   if (!L)
313     return false;
314 
315   SmallVector<unsigned, 8> BackEdges;
316   SmallVector<unsigned, 8> ExitingEdges;
317   SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
318 
319   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
320     if (!L->contains(*I))
321       ExitingEdges.push_back(I.getSuccessorIndex());
322     else if (L->getHeader() == *I)
323       BackEdges.push_back(I.getSuccessorIndex());
324     else
325       InEdges.push_back(I.getSuccessorIndex());
326   }
327 
328   if (BackEdges.empty() && ExitingEdges.empty())
329     return false;
330 
331   if (uint32_t numBackEdges = BackEdges.size()) {
332     uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
333     if (backWeight < NORMAL_WEIGHT)
334       backWeight = NORMAL_WEIGHT;
335 
336     for (SmallVectorImpl<unsigned>::iterator EI = BackEdges.begin(),
337          EE = BackEdges.end(); EI != EE; ++EI) {
338       setEdgeWeight(BB, *EI, backWeight);
339     }
340   }
341 
342   if (uint32_t numInEdges = InEdges.size()) {
343     uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
344     if (inWeight < NORMAL_WEIGHT)
345       inWeight = NORMAL_WEIGHT;
346 
347     for (SmallVectorImpl<unsigned>::iterator EI = InEdges.begin(),
348          EE = InEdges.end(); EI != EE; ++EI) {
349       setEdgeWeight(BB, *EI, inWeight);
350     }
351   }
352 
353   if (uint32_t numExitingEdges = ExitingEdges.size()) {
354     uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges;
355     if (exitWeight < MIN_WEIGHT)
356       exitWeight = MIN_WEIGHT;
357 
358     for (SmallVectorImpl<unsigned>::iterator EI = ExitingEdges.begin(),
359          EE = ExitingEdges.end(); EI != EE; ++EI) {
360       setEdgeWeight(BB, *EI, exitWeight);
361     }
362   }
363 
364   return true;
365 }
366 
calcZeroHeuristics(BasicBlock * BB)367 bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) {
368   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
369   if (!BI || !BI->isConditional())
370     return false;
371 
372   Value *Cond = BI->getCondition();
373   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
374   if (!CI)
375     return false;
376 
377   Value *RHS = CI->getOperand(1);
378   ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
379   if (!CV)
380     return false;
381 
382   // If the LHS is the result of AND'ing a value with a single bit bitmask,
383   // we don't have information about probabilities.
384   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
385     if (LHS->getOpcode() == Instruction::And)
386       if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
387         if (AndRHS->getUniqueInteger().isPowerOf2())
388           return false;
389 
390   bool isProb;
391   if (CV->isZero()) {
392     switch (CI->getPredicate()) {
393     case CmpInst::ICMP_EQ:
394       // X == 0   ->  Unlikely
395       isProb = false;
396       break;
397     case CmpInst::ICMP_NE:
398       // X != 0   ->  Likely
399       isProb = true;
400       break;
401     case CmpInst::ICMP_SLT:
402       // X < 0   ->  Unlikely
403       isProb = false;
404       break;
405     case CmpInst::ICMP_SGT:
406       // X > 0   ->  Likely
407       isProb = true;
408       break;
409     default:
410       return false;
411     }
412   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
413     // InstCombine canonicalizes X <= 0 into X < 1.
414     // X <= 0   ->  Unlikely
415     isProb = false;
416   } else if (CV->isAllOnesValue()) {
417     switch (CI->getPredicate()) {
418     case CmpInst::ICMP_EQ:
419       // X == -1  ->  Unlikely
420       isProb = false;
421       break;
422     case CmpInst::ICMP_NE:
423       // X != -1  ->  Likely
424       isProb = true;
425       break;
426     case CmpInst::ICMP_SGT:
427       // InstCombine canonicalizes X >= 0 into X > -1.
428       // X >= 0   ->  Likely
429       isProb = true;
430       break;
431     default:
432       return false;
433     }
434   } else {
435     return false;
436   }
437 
438   unsigned TakenIdx = 0, NonTakenIdx = 1;
439 
440   if (!isProb)
441     std::swap(TakenIdx, NonTakenIdx);
442 
443   setEdgeWeight(BB, TakenIdx, ZH_TAKEN_WEIGHT);
444   setEdgeWeight(BB, NonTakenIdx, ZH_NONTAKEN_WEIGHT);
445 
446   return true;
447 }
448 
calcFloatingPointHeuristics(BasicBlock * BB)449 bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) {
450   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
451   if (!BI || !BI->isConditional())
452     return false;
453 
454   Value *Cond = BI->getCondition();
455   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
456   if (!FCmp)
457     return false;
458 
459   bool isProb;
460   if (FCmp->isEquality()) {
461     // f1 == f2 -> Unlikely
462     // f1 != f2 -> Likely
463     isProb = !FCmp->isTrueWhenEqual();
464   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
465     // !isnan -> Likely
466     isProb = true;
467   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
468     // isnan -> Unlikely
469     isProb = false;
470   } else {
471     return false;
472   }
473 
474   unsigned TakenIdx = 0, NonTakenIdx = 1;
475 
476   if (!isProb)
477     std::swap(TakenIdx, NonTakenIdx);
478 
479   setEdgeWeight(BB, TakenIdx, FPH_TAKEN_WEIGHT);
480   setEdgeWeight(BB, NonTakenIdx, FPH_NONTAKEN_WEIGHT);
481 
482   return true;
483 }
484 
calcInvokeHeuristics(BasicBlock * BB)485 bool BranchProbabilityInfo::calcInvokeHeuristics(BasicBlock *BB) {
486   InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
487   if (!II)
488     return false;
489 
490   setEdgeWeight(BB, 0/*Index for Normal*/, IH_TAKEN_WEIGHT);
491   setEdgeWeight(BB, 1/*Index for Unwind*/, IH_NONTAKEN_WEIGHT);
492   return true;
493 }
494 
getAnalysisUsage(AnalysisUsage & AU) const495 void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
496   AU.addRequired<LoopInfoWrapperPass>();
497   AU.setPreservesAll();
498 }
499 
runOnFunction(Function & F)500 bool BranchProbabilityInfo::runOnFunction(Function &F) {
501   DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
502                << " ----\n\n");
503   LastF = &F; // Store the last function we ran on for printing.
504   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
505   assert(PostDominatedByUnreachable.empty());
506   assert(PostDominatedByColdCall.empty());
507 
508   // Walk the basic blocks in post-order so that we can build up state about
509   // the successors of a block iteratively.
510   for (auto BB : post_order(&F.getEntryBlock())) {
511     DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
512     if (calcUnreachableHeuristics(BB))
513       continue;
514     if (calcMetadataWeights(BB))
515       continue;
516     if (calcColdCallHeuristics(BB))
517       continue;
518     if (calcLoopBranchHeuristics(BB))
519       continue;
520     if (calcPointerHeuristics(BB))
521       continue;
522     if (calcZeroHeuristics(BB))
523       continue;
524     if (calcFloatingPointHeuristics(BB))
525       continue;
526     calcInvokeHeuristics(BB);
527   }
528 
529   PostDominatedByUnreachable.clear();
530   PostDominatedByColdCall.clear();
531   return false;
532 }
533 
print(raw_ostream & OS,const Module *) const534 void BranchProbabilityInfo::print(raw_ostream &OS, const Module *) const {
535   OS << "---- Branch Probabilities ----\n";
536   // We print the probabilities from the last function the analysis ran over,
537   // or the function it is currently running over.
538   assert(LastF && "Cannot print prior to running over a function");
539   for (Function::const_iterator BI = LastF->begin(), BE = LastF->end();
540        BI != BE; ++BI) {
541     for (succ_const_iterator SI = succ_begin(BI), SE = succ_end(BI);
542          SI != SE; ++SI) {
543       printEdgeProbability(OS << "  ", BI, *SI);
544     }
545   }
546 }
547 
getSumForBlock(const BasicBlock * BB) const548 uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
549   uint32_t Sum = 0;
550 
551   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
552     uint32_t Weight = getEdgeWeight(BB, I.getSuccessorIndex());
553     uint32_t PrevSum = Sum;
554 
555     Sum += Weight;
556     assert(Sum > PrevSum); (void) PrevSum;
557   }
558 
559   return Sum;
560 }
561 
562 bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock * Src,const BasicBlock * Dst) const563 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
564   // Hot probability is at least 4/5 = 80%
565   // FIXME: Compare against a static "hot" BranchProbability.
566   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
567 }
568 
getHotSucc(BasicBlock * BB) const569 BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
570   uint32_t Sum = 0;
571   uint32_t MaxWeight = 0;
572   BasicBlock *MaxSucc = nullptr;
573 
574   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
575     BasicBlock *Succ = *I;
576     uint32_t Weight = getEdgeWeight(BB, Succ);
577     uint32_t PrevSum = Sum;
578 
579     Sum += Weight;
580     assert(Sum > PrevSum); (void) PrevSum;
581 
582     if (Weight > MaxWeight) {
583       MaxWeight = Weight;
584       MaxSucc = Succ;
585     }
586   }
587 
588   // Hot probability is at least 4/5 = 80%
589   if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5))
590     return MaxSucc;
591 
592   return nullptr;
593 }
594 
595 /// Get the raw edge weight for the edge. If can't find it, return
596 /// DEFAULT_WEIGHT value. Here an edge is specified using PredBlock and an index
597 /// to the successors.
598 uint32_t BranchProbabilityInfo::
getEdgeWeight(const BasicBlock * Src,unsigned IndexInSuccessors) const599 getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const {
600   DenseMap<Edge, uint32_t>::const_iterator I =
601       Weights.find(std::make_pair(Src, IndexInSuccessors));
602 
603   if (I != Weights.end())
604     return I->second;
605 
606   return DEFAULT_WEIGHT;
607 }
608 
getEdgeWeight(const BasicBlock * Src,succ_const_iterator Dst) const609 uint32_t BranchProbabilityInfo::getEdgeWeight(const BasicBlock *Src,
610                                               succ_const_iterator Dst) const {
611   return getEdgeWeight(Src, Dst.getSuccessorIndex());
612 }
613 
614 /// Get the raw edge weight calculated for the block pair. This returns the sum
615 /// of all raw edge weights from Src to Dst.
616 uint32_t BranchProbabilityInfo::
getEdgeWeight(const BasicBlock * Src,const BasicBlock * Dst) const617 getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const {
618   uint32_t Weight = 0;
619   DenseMap<Edge, uint32_t>::const_iterator MapI;
620   for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
621     if (*I == Dst) {
622       MapI = Weights.find(std::make_pair(Src, I.getSuccessorIndex()));
623       if (MapI != Weights.end())
624         Weight += MapI->second;
625     }
626   return (Weight == 0) ? DEFAULT_WEIGHT : Weight;
627 }
628 
629 /// Set the edge weight for a given edge specified by PredBlock and an index
630 /// to the successors.
631 void BranchProbabilityInfo::
setEdgeWeight(const BasicBlock * Src,unsigned IndexInSuccessors,uint32_t Weight)632 setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors,
633               uint32_t Weight) {
634   Weights[std::make_pair(Src, IndexInSuccessors)] = Weight;
635   DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
636                << IndexInSuccessors << " successor weight to "
637                << Weight << "\n");
638 }
639 
640 /// Get an edge's probability, relative to other out-edges from Src.
641 BranchProbability BranchProbabilityInfo::
getEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors) const642 getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const {
643   uint32_t N = getEdgeWeight(Src, IndexInSuccessors);
644   uint32_t D = getSumForBlock(Src);
645 
646   return BranchProbability(N, D);
647 }
648 
649 /// Get the probability of going from Src to Dst. It returns the sum of all
650 /// probabilities for edges from Src to Dst.
651 BranchProbability BranchProbabilityInfo::
getEdgeProbability(const BasicBlock * Src,const BasicBlock * Dst) const652 getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const {
653 
654   uint32_t N = getEdgeWeight(Src, Dst);
655   uint32_t D = getSumForBlock(Src);
656 
657   return BranchProbability(N, D);
658 }
659 
660 raw_ostream &
printEdgeProbability(raw_ostream & OS,const BasicBlock * Src,const BasicBlock * Dst) const661 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
662                                             const BasicBlock *Src,
663                                             const BasicBlock *Dst) const {
664 
665   const BranchProbability Prob = getEdgeProbability(Src, Dst);
666   OS << "edge " << Src->getName() << " -> " << Dst->getName()
667      << " probability is " << Prob
668      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
669 
670   return OS;
671 }
672