1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/CodeGen/ValueTypes.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/ManagedStatic.h"
28 #include "llvm/Support/RWMutex.h"
29 #include "llvm/Support/StringPool.h"
30 #include "llvm/Support/Threading.h"
31 using namespace llvm;
32
33 // Explicit instantiations of SymbolTableListTraits since some of the methods
34 // are not in the public header file...
35 template class llvm::SymbolTableListTraits<Argument, Function>;
36 template class llvm::SymbolTableListTraits<BasicBlock, Function>;
37
38 //===----------------------------------------------------------------------===//
39 // Argument Implementation
40 //===----------------------------------------------------------------------===//
41
anchor()42 void Argument::anchor() { }
43
Argument(Type * Ty,const Twine & Name,Function * Par)44 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
45 : Value(Ty, Value::ArgumentVal) {
46 Parent = nullptr;
47
48 if (Par)
49 Par->getArgumentList().push_back(this);
50 setName(Name);
51 }
52
setParent(Function * parent)53 void Argument::setParent(Function *parent) {
54 Parent = parent;
55 }
56
57 /// getArgNo - Return the index of this formal argument in its containing
58 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1.
getArgNo() const59 unsigned Argument::getArgNo() const {
60 const Function *F = getParent();
61 assert(F && "Argument is not in a function");
62
63 Function::const_arg_iterator AI = F->arg_begin();
64 unsigned ArgIdx = 0;
65 for (; &*AI != this; ++AI)
66 ++ArgIdx;
67
68 return ArgIdx;
69 }
70
71 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
72 /// it in its containing function. Also returns true if at least one byte is
73 /// known to be dereferenceable and the pointer is in addrspace(0).
hasNonNullAttr() const74 bool Argument::hasNonNullAttr() const {
75 if (!getType()->isPointerTy()) return false;
76 if (getParent()->getAttributes().
77 hasAttribute(getArgNo()+1, Attribute::NonNull))
78 return true;
79 else if (getDereferenceableBytes() > 0 &&
80 getType()->getPointerAddressSpace() == 0)
81 return true;
82 return false;
83 }
84
85 /// hasByValAttr - Return true if this argument has the byval attribute on it
86 /// in its containing function.
hasByValAttr() const87 bool Argument::hasByValAttr() const {
88 if (!getType()->isPointerTy()) return false;
89 return getParent()->getAttributes().
90 hasAttribute(getArgNo()+1, Attribute::ByVal);
91 }
92
93 /// \brief Return true if this argument has the inalloca attribute on it in
94 /// its containing function.
hasInAllocaAttr() const95 bool Argument::hasInAllocaAttr() const {
96 if (!getType()->isPointerTy()) return false;
97 return getParent()->getAttributes().
98 hasAttribute(getArgNo()+1, Attribute::InAlloca);
99 }
100
hasByValOrInAllocaAttr() const101 bool Argument::hasByValOrInAllocaAttr() const {
102 if (!getType()->isPointerTy()) return false;
103 AttributeSet Attrs = getParent()->getAttributes();
104 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
105 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
106 }
107
getParamAlignment() const108 unsigned Argument::getParamAlignment() const {
109 assert(getType()->isPointerTy() && "Only pointers have alignments");
110 return getParent()->getParamAlignment(getArgNo()+1);
111
112 }
113
getDereferenceableBytes() const114 uint64_t Argument::getDereferenceableBytes() const {
115 assert(getType()->isPointerTy() &&
116 "Only pointers have dereferenceable bytes");
117 return getParent()->getDereferenceableBytes(getArgNo()+1);
118 }
119
120 /// hasNestAttr - Return true if this argument has the nest attribute on
121 /// it in its containing function.
hasNestAttr() const122 bool Argument::hasNestAttr() const {
123 if (!getType()->isPointerTy()) return false;
124 return getParent()->getAttributes().
125 hasAttribute(getArgNo()+1, Attribute::Nest);
126 }
127
128 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
129 /// it in its containing function.
hasNoAliasAttr() const130 bool Argument::hasNoAliasAttr() const {
131 if (!getType()->isPointerTy()) return false;
132 return getParent()->getAttributes().
133 hasAttribute(getArgNo()+1, Attribute::NoAlias);
134 }
135
136 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
137 /// on it in its containing function.
hasNoCaptureAttr() const138 bool Argument::hasNoCaptureAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return getParent()->getAttributes().
141 hasAttribute(getArgNo()+1, Attribute::NoCapture);
142 }
143
144 /// hasSRetAttr - Return true if this argument has the sret attribute on
145 /// it in its containing function.
hasStructRetAttr() const146 bool Argument::hasStructRetAttr() const {
147 if (!getType()->isPointerTy()) return false;
148 if (this != getParent()->arg_begin())
149 return false; // StructRet param must be first param
150 return getParent()->getAttributes().
151 hasAttribute(1, Attribute::StructRet);
152 }
153
154 /// hasReturnedAttr - Return true if this argument has the returned attribute on
155 /// it in its containing function.
hasReturnedAttr() const156 bool Argument::hasReturnedAttr() const {
157 return getParent()->getAttributes().
158 hasAttribute(getArgNo()+1, Attribute::Returned);
159 }
160
161 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
162 /// its containing function.
hasZExtAttr() const163 bool Argument::hasZExtAttr() const {
164 return getParent()->getAttributes().
165 hasAttribute(getArgNo()+1, Attribute::ZExt);
166 }
167
168 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
169 /// containing function.
hasSExtAttr() const170 bool Argument::hasSExtAttr() const {
171 return getParent()->getAttributes().
172 hasAttribute(getArgNo()+1, Attribute::SExt);
173 }
174
175 /// Return true if this argument has the readonly or readnone attribute on it
176 /// in its containing function.
onlyReadsMemory() const177 bool Argument::onlyReadsMemory() const {
178 return getParent()->getAttributes().
179 hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
180 getParent()->getAttributes().
181 hasAttribute(getArgNo()+1, Attribute::ReadNone);
182 }
183
184 /// addAttr - Add attributes to an argument.
addAttr(AttributeSet AS)185 void Argument::addAttr(AttributeSet AS) {
186 assert(AS.getNumSlots() <= 1 &&
187 "Trying to add more than one attribute set to an argument!");
188 AttrBuilder B(AS, AS.getSlotIndex(0));
189 getParent()->addAttributes(getArgNo() + 1,
190 AttributeSet::get(Parent->getContext(),
191 getArgNo() + 1, B));
192 }
193
194 /// removeAttr - Remove attributes from an argument.
removeAttr(AttributeSet AS)195 void Argument::removeAttr(AttributeSet AS) {
196 assert(AS.getNumSlots() <= 1 &&
197 "Trying to remove more than one attribute set from an argument!");
198 AttrBuilder B(AS, AS.getSlotIndex(0));
199 getParent()->removeAttributes(getArgNo() + 1,
200 AttributeSet::get(Parent->getContext(),
201 getArgNo() + 1, B));
202 }
203
204 //===----------------------------------------------------------------------===//
205 // Helper Methods in Function
206 //===----------------------------------------------------------------------===//
207
isMaterializable() const208 bool Function::isMaterializable() const {
209 return getGlobalObjectSubClassData();
210 }
211
setIsMaterializable(bool V)212 void Function::setIsMaterializable(bool V) { setGlobalObjectSubClassData(V); }
213
getContext() const214 LLVMContext &Function::getContext() const {
215 return getType()->getContext();
216 }
217
getFunctionType() const218 FunctionType *Function::getFunctionType() const { return Ty; }
219
isVarArg() const220 bool Function::isVarArg() const {
221 return getFunctionType()->isVarArg();
222 }
223
getReturnType() const224 Type *Function::getReturnType() const {
225 return getFunctionType()->getReturnType();
226 }
227
removeFromParent()228 void Function::removeFromParent() {
229 getParent()->getFunctionList().remove(this);
230 }
231
eraseFromParent()232 void Function::eraseFromParent() {
233 getParent()->getFunctionList().erase(this);
234 }
235
236 //===----------------------------------------------------------------------===//
237 // Function Implementation
238 //===----------------------------------------------------------------------===//
239
Function(FunctionType * Ty,LinkageTypes Linkage,const Twine & name,Module * ParentModule)240 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
241 Module *ParentModule)
242 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0,
243 Linkage, name),
244 Ty(Ty) {
245 assert(FunctionType::isValidReturnType(getReturnType()) &&
246 "invalid return type");
247 setIsMaterializable(false);
248 SymTab = new ValueSymbolTable();
249
250 // If the function has arguments, mark them as lazily built.
251 if (Ty->getNumParams())
252 setValueSubclassData(1); // Set the "has lazy arguments" bit.
253
254 if (ParentModule)
255 ParentModule->getFunctionList().push_back(this);
256
257 // Ensure intrinsics have the right parameter attributes.
258 if (unsigned IID = getIntrinsicID())
259 setAttributes(Intrinsic::getAttributes(getContext(), Intrinsic::ID(IID)));
260
261 }
262
~Function()263 Function::~Function() {
264 dropAllReferences(); // After this it is safe to delete instructions.
265
266 // Delete all of the method arguments and unlink from symbol table...
267 ArgumentList.clear();
268 delete SymTab;
269
270 // Remove the function from the on-the-side GC table.
271 clearGC();
272
273 // Remove the intrinsicID from the Cache.
274 if (getValueName() && isIntrinsic())
275 getContext().pImpl->IntrinsicIDCache.erase(this);
276 }
277
BuildLazyArguments() const278 void Function::BuildLazyArguments() const {
279 // Create the arguments vector, all arguments start out unnamed.
280 FunctionType *FT = getFunctionType();
281 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
282 assert(!FT->getParamType(i)->isVoidTy() &&
283 "Cannot have void typed arguments!");
284 ArgumentList.push_back(new Argument(FT->getParamType(i)));
285 }
286
287 // Clear the lazy arguments bit.
288 unsigned SDC = getSubclassDataFromValue();
289 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
290 }
291
arg_size() const292 size_t Function::arg_size() const {
293 return getFunctionType()->getNumParams();
294 }
arg_empty() const295 bool Function::arg_empty() const {
296 return getFunctionType()->getNumParams() == 0;
297 }
298
setParent(Module * parent)299 void Function::setParent(Module *parent) {
300 Parent = parent;
301 }
302
303 // dropAllReferences() - This function causes all the subinstructions to "let
304 // go" of all references that they are maintaining. This allows one to
305 // 'delete' a whole class at a time, even though there may be circular
306 // references... first all references are dropped, and all use counts go to
307 // zero. Then everything is deleted for real. Note that no operations are
308 // valid on an object that has "dropped all references", except operator
309 // delete.
310 //
dropAllReferences()311 void Function::dropAllReferences() {
312 setIsMaterializable(false);
313
314 for (iterator I = begin(), E = end(); I != E; ++I)
315 I->dropAllReferences();
316
317 // Delete all basic blocks. They are now unused, except possibly by
318 // blockaddresses, but BasicBlock's destructor takes care of those.
319 while (!BasicBlocks.empty())
320 BasicBlocks.begin()->eraseFromParent();
321
322 // Prefix and prologue data are stored in a side table.
323 setPrefixData(nullptr);
324 setPrologueData(nullptr);
325 }
326
addAttribute(unsigned i,Attribute::AttrKind attr)327 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) {
328 AttributeSet PAL = getAttributes();
329 PAL = PAL.addAttribute(getContext(), i, attr);
330 setAttributes(PAL);
331 }
332
addAttributes(unsigned i,AttributeSet attrs)333 void Function::addAttributes(unsigned i, AttributeSet attrs) {
334 AttributeSet PAL = getAttributes();
335 PAL = PAL.addAttributes(getContext(), i, attrs);
336 setAttributes(PAL);
337 }
338
removeAttributes(unsigned i,AttributeSet attrs)339 void Function::removeAttributes(unsigned i, AttributeSet attrs) {
340 AttributeSet PAL = getAttributes();
341 PAL = PAL.removeAttributes(getContext(), i, attrs);
342 setAttributes(PAL);
343 }
344
addDereferenceableAttr(unsigned i,uint64_t Bytes)345 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
346 AttributeSet PAL = getAttributes();
347 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
348 setAttributes(PAL);
349 }
350
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)351 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
352 AttributeSet PAL = getAttributes();
353 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
354 setAttributes(PAL);
355 }
356
357 // Maintain the GC name for each function in an on-the-side table. This saves
358 // allocating an additional word in Function for programs which do not use GC
359 // (i.e., most programs) at the cost of increased overhead for clients which do
360 // use GC.
361 static DenseMap<const Function*,PooledStringPtr> *GCNames;
362 static StringPool *GCNamePool;
363 static ManagedStatic<sys::SmartRWMutex<true> > GCLock;
364
hasGC() const365 bool Function::hasGC() const {
366 sys::SmartScopedReader<true> Reader(*GCLock);
367 return GCNames && GCNames->count(this);
368 }
369
getGC() const370 const char *Function::getGC() const {
371 assert(hasGC() && "Function has no collector");
372 sys::SmartScopedReader<true> Reader(*GCLock);
373 return *(*GCNames)[this];
374 }
375
setGC(const char * Str)376 void Function::setGC(const char *Str) {
377 sys::SmartScopedWriter<true> Writer(*GCLock);
378 if (!GCNamePool)
379 GCNamePool = new StringPool();
380 if (!GCNames)
381 GCNames = new DenseMap<const Function*,PooledStringPtr>();
382 (*GCNames)[this] = GCNamePool->intern(Str);
383 }
384
clearGC()385 void Function::clearGC() {
386 sys::SmartScopedWriter<true> Writer(*GCLock);
387 if (GCNames) {
388 GCNames->erase(this);
389 if (GCNames->empty()) {
390 delete GCNames;
391 GCNames = nullptr;
392 if (GCNamePool->empty()) {
393 delete GCNamePool;
394 GCNamePool = nullptr;
395 }
396 }
397 }
398 }
399
400 /// copyAttributesFrom - copy all additional attributes (those not needed to
401 /// create a Function) from the Function Src to this one.
copyAttributesFrom(const GlobalValue * Src)402 void Function::copyAttributesFrom(const GlobalValue *Src) {
403 assert(isa<Function>(Src) && "Expected a Function!");
404 GlobalObject::copyAttributesFrom(Src);
405 const Function *SrcF = cast<Function>(Src);
406 setCallingConv(SrcF->getCallingConv());
407 setAttributes(SrcF->getAttributes());
408 if (SrcF->hasGC())
409 setGC(SrcF->getGC());
410 else
411 clearGC();
412 if (SrcF->hasPrefixData())
413 setPrefixData(SrcF->getPrefixData());
414 else
415 setPrefixData(nullptr);
416 if (SrcF->hasPrologueData())
417 setPrologueData(SrcF->getPrologueData());
418 else
419 setPrologueData(nullptr);
420 }
421
422 /// getIntrinsicID - This method returns the ID number of the specified
423 /// function, or Intrinsic::not_intrinsic if the function is not an
424 /// intrinsic, or if the pointer is null. This value is always defined to be
425 /// zero to allow easy checking for whether a function is intrinsic or not. The
426 /// particular intrinsic functions which correspond to this value are defined in
427 /// llvm/Intrinsics.h. Results are cached in the LLVM context, subsequent
428 /// requests for the same ID return results much faster from the cache.
429 ///
getIntrinsicID() const430 unsigned Function::getIntrinsicID() const {
431 const ValueName *ValName = this->getValueName();
432 if (!ValName || !isIntrinsic())
433 return 0;
434
435 LLVMContextImpl::IntrinsicIDCacheTy &IntrinsicIDCache =
436 getContext().pImpl->IntrinsicIDCache;
437 if (!IntrinsicIDCache.count(this)) {
438 unsigned Id = lookupIntrinsicID();
439 IntrinsicIDCache[this]=Id;
440 return Id;
441 }
442 return IntrinsicIDCache[this];
443 }
444
445 /// This private method does the actual lookup of an intrinsic ID when the query
446 /// could not be answered from the cache.
lookupIntrinsicID() const447 unsigned Function::lookupIntrinsicID() const {
448 const ValueName *ValName = this->getValueName();
449 unsigned Len = ValName->getKeyLength();
450 const char *Name = ValName->getKeyData();
451
452 #define GET_FUNCTION_RECOGNIZER
453 #include "llvm/IR/Intrinsics.gen"
454 #undef GET_FUNCTION_RECOGNIZER
455
456 return 0;
457 }
458
459 /// Returns a stable mangling for the type specified for use in the name
460 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
461 /// of named types is simply their name. Manglings for unnamed types consist
462 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
463 /// combined with the mangling of their component types. A vararg function
464 /// type will have a suffix of 'vararg'. Since function types can contain
465 /// other function types, we close a function type mangling with suffix 'f'
466 /// which can't be confused with it's prefix. This ensures we don't have
467 /// collisions between two unrelated function types. Otherwise, you might
468 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
469 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
470 /// cases) fall back to the MVT codepath, where they could be mangled to
471 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
472 /// everything.
getMangledTypeStr(Type * Ty)473 static std::string getMangledTypeStr(Type* Ty) {
474 std::string Result;
475 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
476 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
477 getMangledTypeStr(PTyp->getElementType());
478 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
479 Result += "a" + llvm::utostr(ATyp->getNumElements()) +
480 getMangledTypeStr(ATyp->getElementType());
481 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
482 if (!STyp->isLiteral())
483 Result += STyp->getName();
484 else
485 llvm_unreachable("TODO: implement literal types");
486 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
487 Result += "f_" + getMangledTypeStr(FT->getReturnType());
488 for (size_t i = 0; i < FT->getNumParams(); i++)
489 Result += getMangledTypeStr(FT->getParamType(i));
490 if (FT->isVarArg())
491 Result += "vararg";
492 // Ensure nested function types are distinguishable.
493 Result += "f";
494 } else if (Ty)
495 Result += EVT::getEVT(Ty).getEVTString();
496 return Result;
497 }
498
getName(ID id,ArrayRef<Type * > Tys)499 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
500 assert(id < num_intrinsics && "Invalid intrinsic ID!");
501 static const char * const Table[] = {
502 "not_intrinsic",
503 #define GET_INTRINSIC_NAME_TABLE
504 #include "llvm/IR/Intrinsics.gen"
505 #undef GET_INTRINSIC_NAME_TABLE
506 };
507 if (Tys.empty())
508 return Table[id];
509 std::string Result(Table[id]);
510 for (unsigned i = 0; i < Tys.size(); ++i) {
511 Result += "." + getMangledTypeStr(Tys[i]);
512 }
513 return Result;
514 }
515
516
517 /// IIT_Info - These are enumerators that describe the entries returned by the
518 /// getIntrinsicInfoTableEntries function.
519 ///
520 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
521 enum IIT_Info {
522 // Common values should be encoded with 0-15.
523 IIT_Done = 0,
524 IIT_I1 = 1,
525 IIT_I8 = 2,
526 IIT_I16 = 3,
527 IIT_I32 = 4,
528 IIT_I64 = 5,
529 IIT_F16 = 6,
530 IIT_F32 = 7,
531 IIT_F64 = 8,
532 IIT_V2 = 9,
533 IIT_V4 = 10,
534 IIT_V8 = 11,
535 IIT_V16 = 12,
536 IIT_V32 = 13,
537 IIT_PTR = 14,
538 IIT_ARG = 15,
539
540 // Values from 16+ are only encodable with the inefficient encoding.
541 IIT_V64 = 16,
542 IIT_MMX = 17,
543 IIT_METADATA = 18,
544 IIT_EMPTYSTRUCT = 19,
545 IIT_STRUCT2 = 20,
546 IIT_STRUCT3 = 21,
547 IIT_STRUCT4 = 22,
548 IIT_STRUCT5 = 23,
549 IIT_EXTEND_ARG = 24,
550 IIT_TRUNC_ARG = 25,
551 IIT_ANYPTR = 26,
552 IIT_V1 = 27,
553 IIT_VARARG = 28,
554 IIT_HALF_VEC_ARG = 29,
555 IIT_SAME_VEC_WIDTH_ARG = 30,
556 IIT_PTR_TO_ARG = 31,
557 IIT_VEC_OF_PTRS_TO_ELT = 32
558 };
559
560
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)561 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
562 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
563 IIT_Info Info = IIT_Info(Infos[NextElt++]);
564 unsigned StructElts = 2;
565 using namespace Intrinsic;
566
567 switch (Info) {
568 case IIT_Done:
569 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
570 return;
571 case IIT_VARARG:
572 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
573 return;
574 case IIT_MMX:
575 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
576 return;
577 case IIT_METADATA:
578 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
579 return;
580 case IIT_F16:
581 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
582 return;
583 case IIT_F32:
584 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
585 return;
586 case IIT_F64:
587 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
588 return;
589 case IIT_I1:
590 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
591 return;
592 case IIT_I8:
593 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
594 return;
595 case IIT_I16:
596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
597 return;
598 case IIT_I32:
599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
600 return;
601 case IIT_I64:
602 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
603 return;
604 case IIT_V1:
605 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
606 DecodeIITType(NextElt, Infos, OutputTable);
607 return;
608 case IIT_V2:
609 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
610 DecodeIITType(NextElt, Infos, OutputTable);
611 return;
612 case IIT_V4:
613 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
614 DecodeIITType(NextElt, Infos, OutputTable);
615 return;
616 case IIT_V8:
617 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
618 DecodeIITType(NextElt, Infos, OutputTable);
619 return;
620 case IIT_V16:
621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
622 DecodeIITType(NextElt, Infos, OutputTable);
623 return;
624 case IIT_V32:
625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
626 DecodeIITType(NextElt, Infos, OutputTable);
627 return;
628 case IIT_V64:
629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
630 DecodeIITType(NextElt, Infos, OutputTable);
631 return;
632 case IIT_PTR:
633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
634 DecodeIITType(NextElt, Infos, OutputTable);
635 return;
636 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
638 Infos[NextElt++]));
639 DecodeIITType(NextElt, Infos, OutputTable);
640 return;
641 }
642 case IIT_ARG: {
643 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
645 return;
646 }
647 case IIT_EXTEND_ARG: {
648 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
650 ArgInfo));
651 return;
652 }
653 case IIT_TRUNC_ARG: {
654 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
655 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
656 ArgInfo));
657 return;
658 }
659 case IIT_HALF_VEC_ARG: {
660 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
661 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
662 ArgInfo));
663 return;
664 }
665 case IIT_SAME_VEC_WIDTH_ARG: {
666 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
667 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
668 ArgInfo));
669 return;
670 }
671 case IIT_PTR_TO_ARG: {
672 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
674 ArgInfo));
675 return;
676 }
677 case IIT_VEC_OF_PTRS_TO_ELT: {
678 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
679 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
680 ArgInfo));
681 return;
682 }
683 case IIT_EMPTYSTRUCT:
684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
685 return;
686 case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
687 case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
688 case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
689 case IIT_STRUCT2: {
690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
691
692 for (unsigned i = 0; i != StructElts; ++i)
693 DecodeIITType(NextElt, Infos, OutputTable);
694 return;
695 }
696 }
697 llvm_unreachable("unhandled");
698 }
699
700
701 #define GET_INTRINSIC_GENERATOR_GLOBAL
702 #include "llvm/IR/Intrinsics.gen"
703 #undef GET_INTRINSIC_GENERATOR_GLOBAL
704
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)705 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
706 SmallVectorImpl<IITDescriptor> &T){
707 // Check to see if the intrinsic's type was expressible by the table.
708 unsigned TableVal = IIT_Table[id-1];
709
710 // Decode the TableVal into an array of IITValues.
711 SmallVector<unsigned char, 8> IITValues;
712 ArrayRef<unsigned char> IITEntries;
713 unsigned NextElt = 0;
714 if ((TableVal >> 31) != 0) {
715 // This is an offset into the IIT_LongEncodingTable.
716 IITEntries = IIT_LongEncodingTable;
717
718 // Strip sentinel bit.
719 NextElt = (TableVal << 1) >> 1;
720 } else {
721 // Decode the TableVal into an array of IITValues. If the entry was encoded
722 // into a single word in the table itself, decode it now.
723 do {
724 IITValues.push_back(TableVal & 0xF);
725 TableVal >>= 4;
726 } while (TableVal);
727
728 IITEntries = IITValues;
729 NextElt = 0;
730 }
731
732 // Okay, decode the table into the output vector of IITDescriptors.
733 DecodeIITType(NextElt, IITEntries, T);
734 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
735 DecodeIITType(NextElt, IITEntries, T);
736 }
737
738
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)739 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
740 ArrayRef<Type*> Tys, LLVMContext &Context) {
741 using namespace Intrinsic;
742 IITDescriptor D = Infos.front();
743 Infos = Infos.slice(1);
744
745 switch (D.Kind) {
746 case IITDescriptor::Void: return Type::getVoidTy(Context);
747 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
748 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
749 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
750 case IITDescriptor::Half: return Type::getHalfTy(Context);
751 case IITDescriptor::Float: return Type::getFloatTy(Context);
752 case IITDescriptor::Double: return Type::getDoubleTy(Context);
753
754 case IITDescriptor::Integer:
755 return IntegerType::get(Context, D.Integer_Width);
756 case IITDescriptor::Vector:
757 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
758 case IITDescriptor::Pointer:
759 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
760 D.Pointer_AddressSpace);
761 case IITDescriptor::Struct: {
762 Type *Elts[5];
763 assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
764 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
765 Elts[i] = DecodeFixedType(Infos, Tys, Context);
766 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
767 }
768
769 case IITDescriptor::Argument:
770 return Tys[D.getArgumentNumber()];
771 case IITDescriptor::ExtendArgument: {
772 Type *Ty = Tys[D.getArgumentNumber()];
773 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
774 return VectorType::getExtendedElementVectorType(VTy);
775
776 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
777 }
778 case IITDescriptor::TruncArgument: {
779 Type *Ty = Tys[D.getArgumentNumber()];
780 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
781 return VectorType::getTruncatedElementVectorType(VTy);
782
783 IntegerType *ITy = cast<IntegerType>(Ty);
784 assert(ITy->getBitWidth() % 2 == 0);
785 return IntegerType::get(Context, ITy->getBitWidth() / 2);
786 }
787 case IITDescriptor::HalfVecArgument:
788 return VectorType::getHalfElementsVectorType(cast<VectorType>(
789 Tys[D.getArgumentNumber()]));
790 case IITDescriptor::SameVecWidthArgument: {
791 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
792 Type *Ty = Tys[D.getArgumentNumber()];
793 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
794 return VectorType::get(EltTy, VTy->getNumElements());
795 }
796 llvm_unreachable("unhandled");
797 }
798 case IITDescriptor::PtrToArgument: {
799 Type *Ty = Tys[D.getArgumentNumber()];
800 return PointerType::getUnqual(Ty);
801 }
802 case IITDescriptor::VecOfPtrsToElt: {
803 Type *Ty = Tys[D.getArgumentNumber()];
804 VectorType *VTy = dyn_cast<VectorType>(Ty);
805 if (!VTy)
806 llvm_unreachable("Expected an argument of Vector Type");
807 Type *EltTy = VTy->getVectorElementType();
808 return VectorType::get(PointerType::getUnqual(EltTy),
809 VTy->getNumElements());
810 }
811 }
812 llvm_unreachable("unhandled");
813 }
814
815
816
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)817 FunctionType *Intrinsic::getType(LLVMContext &Context,
818 ID id, ArrayRef<Type*> Tys) {
819 SmallVector<IITDescriptor, 8> Table;
820 getIntrinsicInfoTableEntries(id, Table);
821
822 ArrayRef<IITDescriptor> TableRef = Table;
823 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
824
825 SmallVector<Type*, 8> ArgTys;
826 while (!TableRef.empty())
827 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
828
829 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
830 // If we see void type as the type of the last argument, it is vararg intrinsic
831 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
832 ArgTys.pop_back();
833 return FunctionType::get(ResultTy, ArgTys, true);
834 }
835 return FunctionType::get(ResultTy, ArgTys, false);
836 }
837
isOverloaded(ID id)838 bool Intrinsic::isOverloaded(ID id) {
839 #define GET_INTRINSIC_OVERLOAD_TABLE
840 #include "llvm/IR/Intrinsics.gen"
841 #undef GET_INTRINSIC_OVERLOAD_TABLE
842 }
843
844 /// This defines the "Intrinsic::getAttributes(ID id)" method.
845 #define GET_INTRINSIC_ATTRIBUTES
846 #include "llvm/IR/Intrinsics.gen"
847 #undef GET_INTRINSIC_ATTRIBUTES
848
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)849 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
850 // There can never be multiple globals with the same name of different types,
851 // because intrinsics must be a specific type.
852 return
853 cast<Function>(M->getOrInsertFunction(getName(id, Tys),
854 getType(M->getContext(), id, Tys)));
855 }
856
857 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
858 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
859 #include "llvm/IR/Intrinsics.gen"
860 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
861
862 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
863 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
864 #include "llvm/IR/Intrinsics.gen"
865 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
866
867 /// hasAddressTaken - returns true if there are any uses of this function
868 /// other than direct calls or invokes to it.
hasAddressTaken(const User ** PutOffender) const869 bool Function::hasAddressTaken(const User* *PutOffender) const {
870 for (const Use &U : uses()) {
871 const User *FU = U.getUser();
872 if (isa<BlockAddress>(FU))
873 continue;
874 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU))
875 return PutOffender ? (*PutOffender = FU, true) : true;
876 ImmutableCallSite CS(cast<Instruction>(FU));
877 if (!CS.isCallee(&U))
878 return PutOffender ? (*PutOffender = FU, true) : true;
879 }
880 return false;
881 }
882
isDefTriviallyDead() const883 bool Function::isDefTriviallyDead() const {
884 // Check the linkage
885 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
886 !hasAvailableExternallyLinkage())
887 return false;
888
889 // Check if the function is used by anything other than a blockaddress.
890 for (const User *U : users())
891 if (!isa<BlockAddress>(U))
892 return false;
893
894 return true;
895 }
896
897 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
898 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const899 bool Function::callsFunctionThatReturnsTwice() const {
900 for (const_inst_iterator
901 I = inst_begin(this), E = inst_end(this); I != E; ++I) {
902 ImmutableCallSite CS(&*I);
903 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
904 return true;
905 }
906
907 return false;
908 }
909
getPrefixData() const910 Constant *Function::getPrefixData() const {
911 assert(hasPrefixData());
912 const LLVMContextImpl::PrefixDataMapTy &PDMap =
913 getContext().pImpl->PrefixDataMap;
914 assert(PDMap.find(this) != PDMap.end());
915 return cast<Constant>(PDMap.find(this)->second->getReturnValue());
916 }
917
setPrefixData(Constant * PrefixData)918 void Function::setPrefixData(Constant *PrefixData) {
919 if (!PrefixData && !hasPrefixData())
920 return;
921
922 unsigned SCData = getSubclassDataFromValue();
923 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap;
924 ReturnInst *&PDHolder = PDMap[this];
925 if (PrefixData) {
926 if (PDHolder)
927 PDHolder->setOperand(0, PrefixData);
928 else
929 PDHolder = ReturnInst::Create(getContext(), PrefixData);
930 SCData |= (1<<1);
931 } else {
932 delete PDHolder;
933 PDMap.erase(this);
934 SCData &= ~(1<<1);
935 }
936 setValueSubclassData(SCData);
937 }
938
getPrologueData() const939 Constant *Function::getPrologueData() const {
940 assert(hasPrologueData());
941 const LLVMContextImpl::PrologueDataMapTy &SOMap =
942 getContext().pImpl->PrologueDataMap;
943 assert(SOMap.find(this) != SOMap.end());
944 return cast<Constant>(SOMap.find(this)->second->getReturnValue());
945 }
946
setPrologueData(Constant * PrologueData)947 void Function::setPrologueData(Constant *PrologueData) {
948 if (!PrologueData && !hasPrologueData())
949 return;
950
951 unsigned PDData = getSubclassDataFromValue();
952 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap;
953 ReturnInst *&PDHolder = PDMap[this];
954 if (PrologueData) {
955 if (PDHolder)
956 PDHolder->setOperand(0, PrologueData);
957 else
958 PDHolder = ReturnInst::Create(getContext(), PrologueData);
959 PDData |= (1<<2);
960 } else {
961 delete PDHolder;
962 PDMap.erase(this);
963 PDData &= ~(1<<2);
964 }
965 setValueSubclassData(PDData);
966 }
967