1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 #include "llvm/Target/TargetSubtargetInfo.h"
43 using namespace llvm;
44
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48
setReg(unsigned Reg)49 void MachineOperand::setReg(unsigned Reg) {
50 if (getReg() == Reg) return; // No change.
51
52 // Otherwise, we have to change the register. If this operand is embedded
53 // into a machine function, we need to update the old and new register's
54 // use/def lists.
55 if (MachineInstr *MI = getParent())
56 if (MachineBasicBlock *MBB = MI->getParent())
57 if (MachineFunction *MF = MBB->getParent()) {
58 MachineRegisterInfo &MRI = MF->getRegInfo();
59 MRI.removeRegOperandFromUseList(this);
60 SmallContents.RegNo = Reg;
61 MRI.addRegOperandToUseList(this);
62 return;
63 }
64
65 // Otherwise, just change the register, no problem. :)
66 SmallContents.RegNo = Reg;
67 }
68
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
70 const TargetRegisterInfo &TRI) {
71 assert(TargetRegisterInfo::isVirtualRegister(Reg));
72 if (SubIdx && getSubReg())
73 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
74 setReg(Reg);
75 if (SubIdx)
76 setSubReg(SubIdx);
77 }
78
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
80 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
81 if (getSubReg()) {
82 Reg = TRI.getSubReg(Reg, getSubReg());
83 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
84 // That won't happen in legal code.
85 setSubReg(0);
86 }
87 setReg(Reg);
88 }
89
90 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)91 void MachineOperand::setIsDef(bool Val) {
92 assert(isReg() && "Wrong MachineOperand accessor");
93 assert((!Val || !isDebug()) && "Marking a debug operation as def");
94 if (IsDef == Val)
95 return;
96 // MRI may keep uses and defs in different list positions.
97 if (MachineInstr *MI = getParent())
98 if (MachineBasicBlock *MBB = MI->getParent())
99 if (MachineFunction *MF = MBB->getParent()) {
100 MachineRegisterInfo &MRI = MF->getRegInfo();
101 MRI.removeRegOperandFromUseList(this);
102 IsDef = Val;
103 MRI.addRegOperandToUseList(this);
104 return;
105 }
106 IsDef = Val;
107 }
108
109 // If this operand is currently a register operand, and if this is in a
110 // function, deregister the operand from the register's use/def list.
removeRegFromUses()111 void MachineOperand::removeRegFromUses() {
112 if (!isReg() || !isOnRegUseList())
113 return;
114
115 if (MachineInstr *MI = getParent()) {
116 if (MachineBasicBlock *MBB = MI->getParent()) {
117 if (MachineFunction *MF = MBB->getParent())
118 MF->getRegInfo().removeRegOperandFromUseList(this);
119 }
120 }
121 }
122
123 /// ChangeToImmediate - Replace this operand with a new immediate operand of
124 /// the specified value. If an operand is known to be an immediate already,
125 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)126 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
127 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
128
129 removeRegFromUses();
130
131 OpKind = MO_Immediate;
132 Contents.ImmVal = ImmVal;
133 }
134
ChangeToFPImmediate(const ConstantFP * FPImm)135 void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
136 assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
137
138 removeRegFromUses();
139
140 OpKind = MO_FPImmediate;
141 Contents.CFP = FPImm;
142 }
143
144 /// ChangeToRegister - Replace this operand with a new register operand of
145 /// the specified value. If an operand is known to be an register already,
146 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)147 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
148 bool isKill, bool isDead, bool isUndef,
149 bool isDebug) {
150 MachineRegisterInfo *RegInfo = nullptr;
151 if (MachineInstr *MI = getParent())
152 if (MachineBasicBlock *MBB = MI->getParent())
153 if (MachineFunction *MF = MBB->getParent())
154 RegInfo = &MF->getRegInfo();
155 // If this operand is already a register operand, remove it from the
156 // register's use/def lists.
157 bool WasReg = isReg();
158 if (RegInfo && WasReg)
159 RegInfo->removeRegOperandFromUseList(this);
160
161 // Change this to a register and set the reg#.
162 OpKind = MO_Register;
163 SmallContents.RegNo = Reg;
164 SubReg_TargetFlags = 0;
165 IsDef = isDef;
166 IsImp = isImp;
167 IsKill = isKill;
168 IsDead = isDead;
169 IsUndef = isUndef;
170 IsInternalRead = false;
171 IsEarlyClobber = false;
172 IsDebug = isDebug;
173 // Ensure isOnRegUseList() returns false.
174 Contents.Reg.Prev = nullptr;
175 // Preserve the tie when the operand was already a register.
176 if (!WasReg)
177 TiedTo = 0;
178
179 // If this operand is embedded in a function, add the operand to the
180 // register's use/def list.
181 if (RegInfo)
182 RegInfo->addRegOperandToUseList(this);
183 }
184
185 /// isIdenticalTo - Return true if this operand is identical to the specified
186 /// operand. Note that this should stay in sync with the hash_value overload
187 /// below.
isIdenticalTo(const MachineOperand & Other) const188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
189 if (getType() != Other.getType() ||
190 getTargetFlags() != Other.getTargetFlags())
191 return false;
192
193 switch (getType()) {
194 case MachineOperand::MO_Register:
195 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
196 getSubReg() == Other.getSubReg();
197 case MachineOperand::MO_Immediate:
198 return getImm() == Other.getImm();
199 case MachineOperand::MO_CImmediate:
200 return getCImm() == Other.getCImm();
201 case MachineOperand::MO_FPImmediate:
202 return getFPImm() == Other.getFPImm();
203 case MachineOperand::MO_MachineBasicBlock:
204 return getMBB() == Other.getMBB();
205 case MachineOperand::MO_FrameIndex:
206 return getIndex() == Other.getIndex();
207 case MachineOperand::MO_ConstantPoolIndex:
208 case MachineOperand::MO_TargetIndex:
209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210 case MachineOperand::MO_JumpTableIndex:
211 return getIndex() == Other.getIndex();
212 case MachineOperand::MO_GlobalAddress:
213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214 case MachineOperand::MO_ExternalSymbol:
215 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216 getOffset() == Other.getOffset();
217 case MachineOperand::MO_BlockAddress:
218 return getBlockAddress() == Other.getBlockAddress() &&
219 getOffset() == Other.getOffset();
220 case MachineOperand::MO_RegisterMask:
221 case MachineOperand::MO_RegisterLiveOut:
222 return getRegMask() == Other.getRegMask();
223 case MachineOperand::MO_MCSymbol:
224 return getMCSymbol() == Other.getMCSymbol();
225 case MachineOperand::MO_CFIIndex:
226 return getCFIIndex() == Other.getCFIIndex();
227 case MachineOperand::MO_Metadata:
228 return getMetadata() == Other.getMetadata();
229 }
230 llvm_unreachable("Invalid machine operand type");
231 }
232
233 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)234 hash_code llvm::hash_value(const MachineOperand &MO) {
235 switch (MO.getType()) {
236 case MachineOperand::MO_Register:
237 // Register operands don't have target flags.
238 return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
239 case MachineOperand::MO_Immediate:
240 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
241 case MachineOperand::MO_CImmediate:
242 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
243 case MachineOperand::MO_FPImmediate:
244 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
245 case MachineOperand::MO_MachineBasicBlock:
246 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
247 case MachineOperand::MO_FrameIndex:
248 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
249 case MachineOperand::MO_ConstantPoolIndex:
250 case MachineOperand::MO_TargetIndex:
251 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
252 MO.getOffset());
253 case MachineOperand::MO_JumpTableIndex:
254 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
255 case MachineOperand::MO_ExternalSymbol:
256 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
257 MO.getSymbolName());
258 case MachineOperand::MO_GlobalAddress:
259 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
260 MO.getOffset());
261 case MachineOperand::MO_BlockAddress:
262 return hash_combine(MO.getType(), MO.getTargetFlags(),
263 MO.getBlockAddress(), MO.getOffset());
264 case MachineOperand::MO_RegisterMask:
265 case MachineOperand::MO_RegisterLiveOut:
266 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
267 case MachineOperand::MO_Metadata:
268 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
269 case MachineOperand::MO_MCSymbol:
270 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
271 case MachineOperand::MO_CFIIndex:
272 return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
273 }
274 llvm_unreachable("Invalid machine operand type");
275 }
276
277 /// print - Print the specified machine operand.
278 ///
print(raw_ostream & OS,const TargetRegisterInfo * TRI) const279 void MachineOperand::print(raw_ostream &OS,
280 const TargetRegisterInfo *TRI) const {
281 switch (getType()) {
282 case MachineOperand::MO_Register:
283 OS << PrintReg(getReg(), TRI, getSubReg());
284
285 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
286 isInternalRead() || isEarlyClobber() || isTied()) {
287 OS << '<';
288 bool NeedComma = false;
289 if (isDef()) {
290 if (NeedComma) OS << ',';
291 if (isEarlyClobber())
292 OS << "earlyclobber,";
293 if (isImplicit())
294 OS << "imp-";
295 OS << "def";
296 NeedComma = true;
297 // <def,read-undef> only makes sense when getSubReg() is set.
298 // Don't clutter the output otherwise.
299 if (isUndef() && getSubReg())
300 OS << ",read-undef";
301 } else if (isImplicit()) {
302 OS << "imp-use";
303 NeedComma = true;
304 }
305
306 if (isKill()) {
307 if (NeedComma) OS << ',';
308 OS << "kill";
309 NeedComma = true;
310 }
311 if (isDead()) {
312 if (NeedComma) OS << ',';
313 OS << "dead";
314 NeedComma = true;
315 }
316 if (isUndef() && isUse()) {
317 if (NeedComma) OS << ',';
318 OS << "undef";
319 NeedComma = true;
320 }
321 if (isInternalRead()) {
322 if (NeedComma) OS << ',';
323 OS << "internal";
324 NeedComma = true;
325 }
326 if (isTied()) {
327 if (NeedComma) OS << ',';
328 OS << "tied";
329 if (TiedTo != 15)
330 OS << unsigned(TiedTo - 1);
331 }
332 OS << '>';
333 }
334 break;
335 case MachineOperand::MO_Immediate:
336 OS << getImm();
337 break;
338 case MachineOperand::MO_CImmediate:
339 getCImm()->getValue().print(OS, false);
340 break;
341 case MachineOperand::MO_FPImmediate:
342 if (getFPImm()->getType()->isFloatTy())
343 OS << getFPImm()->getValueAPF().convertToFloat();
344 else
345 OS << getFPImm()->getValueAPF().convertToDouble();
346 break;
347 case MachineOperand::MO_MachineBasicBlock:
348 OS << "<BB#" << getMBB()->getNumber() << ">";
349 break;
350 case MachineOperand::MO_FrameIndex:
351 OS << "<fi#" << getIndex() << '>';
352 break;
353 case MachineOperand::MO_ConstantPoolIndex:
354 OS << "<cp#" << getIndex();
355 if (getOffset()) OS << "+" << getOffset();
356 OS << '>';
357 break;
358 case MachineOperand::MO_TargetIndex:
359 OS << "<ti#" << getIndex();
360 if (getOffset()) OS << "+" << getOffset();
361 OS << '>';
362 break;
363 case MachineOperand::MO_JumpTableIndex:
364 OS << "<jt#" << getIndex() << '>';
365 break;
366 case MachineOperand::MO_GlobalAddress:
367 OS << "<ga:";
368 getGlobal()->printAsOperand(OS, /*PrintType=*/false);
369 if (getOffset()) OS << "+" << getOffset();
370 OS << '>';
371 break;
372 case MachineOperand::MO_ExternalSymbol:
373 OS << "<es:" << getSymbolName();
374 if (getOffset()) OS << "+" << getOffset();
375 OS << '>';
376 break;
377 case MachineOperand::MO_BlockAddress:
378 OS << '<';
379 getBlockAddress()->printAsOperand(OS, /*PrintType=*/false);
380 if (getOffset()) OS << "+" << getOffset();
381 OS << '>';
382 break;
383 case MachineOperand::MO_RegisterMask:
384 OS << "<regmask>";
385 break;
386 case MachineOperand::MO_RegisterLiveOut:
387 OS << "<regliveout>";
388 break;
389 case MachineOperand::MO_Metadata:
390 OS << '<';
391 getMetadata()->printAsOperand(OS);
392 OS << '>';
393 break;
394 case MachineOperand::MO_MCSymbol:
395 OS << "<MCSym=" << *getMCSymbol() << '>';
396 break;
397 case MachineOperand::MO_CFIIndex:
398 OS << "<call frame instruction>";
399 break;
400 }
401
402 if (unsigned TF = getTargetFlags())
403 OS << "[TF=" << TF << ']';
404 }
405
406 //===----------------------------------------------------------------------===//
407 // MachineMemOperand Implementation
408 //===----------------------------------------------------------------------===//
409
410 /// getAddrSpace - Return the LLVM IR address space number that this pointer
411 /// points into.
getAddrSpace() const412 unsigned MachinePointerInfo::getAddrSpace() const {
413 if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
414 return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
415 }
416
417 /// getConstantPool - Return a MachinePointerInfo record that refers to the
418 /// constant pool.
getConstantPool()419 MachinePointerInfo MachinePointerInfo::getConstantPool() {
420 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
421 }
422
423 /// getFixedStack - Return a MachinePointerInfo record that refers to the
424 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)425 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
426 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
427 }
428
getJumpTable()429 MachinePointerInfo MachinePointerInfo::getJumpTable() {
430 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
431 }
432
getGOT()433 MachinePointerInfo MachinePointerInfo::getGOT() {
434 return MachinePointerInfo(PseudoSourceValue::getGOT());
435 }
436
getStack(int64_t Offset)437 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
438 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
439 }
440
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const AAMDNodes & AAInfo,const MDNode * Ranges)441 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
442 uint64_t s, unsigned int a,
443 const AAMDNodes &AAInfo,
444 const MDNode *Ranges)
445 : PtrInfo(ptrinfo), Size(s),
446 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
447 AAInfo(AAInfo), Ranges(Ranges) {
448 assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
449 isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
450 "invalid pointer value");
451 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
452 assert((isLoad() || isStore()) && "Not a load/store!");
453 }
454
455 /// Profile - Gather unique data for the object.
456 ///
Profile(FoldingSetNodeID & ID) const457 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
458 ID.AddInteger(getOffset());
459 ID.AddInteger(Size);
460 ID.AddPointer(getOpaqueValue());
461 ID.AddInteger(Flags);
462 }
463
refineAlignment(const MachineMemOperand * MMO)464 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
465 // The Value and Offset may differ due to CSE. But the flags and size
466 // should be the same.
467 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
468 assert(MMO->getSize() == getSize() && "Size mismatch!");
469
470 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
471 // Update the alignment value.
472 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
473 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
474 // Also update the base and offset, because the new alignment may
475 // not be applicable with the old ones.
476 PtrInfo = MMO->PtrInfo;
477 }
478 }
479
480 /// getAlignment - Return the minimum known alignment in bytes of the
481 /// actual memory reference.
getAlignment() const482 uint64_t MachineMemOperand::getAlignment() const {
483 return MinAlign(getBaseAlignment(), getOffset());
484 }
485
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)486 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
487 assert((MMO.isLoad() || MMO.isStore()) &&
488 "SV has to be a load, store or both.");
489
490 if (MMO.isVolatile())
491 OS << "Volatile ";
492
493 if (MMO.isLoad())
494 OS << "LD";
495 if (MMO.isStore())
496 OS << "ST";
497 OS << MMO.getSize();
498
499 // Print the address information.
500 OS << "[";
501 if (const Value *V = MMO.getValue())
502 V->printAsOperand(OS, /*PrintType=*/false);
503 else if (const PseudoSourceValue *PSV = MMO.getPseudoValue())
504 PSV->printCustom(OS);
505 else
506 OS << "<unknown>";
507
508 unsigned AS = MMO.getAddrSpace();
509 if (AS != 0)
510 OS << "(addrspace=" << AS << ')';
511
512 // If the alignment of the memory reference itself differs from the alignment
513 // of the base pointer, print the base alignment explicitly, next to the base
514 // pointer.
515 if (MMO.getBaseAlignment() != MMO.getAlignment())
516 OS << "(align=" << MMO.getBaseAlignment() << ")";
517
518 if (MMO.getOffset() != 0)
519 OS << "+" << MMO.getOffset();
520 OS << "]";
521
522 // Print the alignment of the reference.
523 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
524 MMO.getBaseAlignment() != MMO.getSize())
525 OS << "(align=" << MMO.getAlignment() << ")";
526
527 // Print TBAA info.
528 if (const MDNode *TBAAInfo = MMO.getAAInfo().TBAA) {
529 OS << "(tbaa=";
530 if (TBAAInfo->getNumOperands() > 0)
531 TBAAInfo->getOperand(0)->printAsOperand(OS);
532 else
533 OS << "<unknown>";
534 OS << ")";
535 }
536
537 // Print AA scope info.
538 if (const MDNode *ScopeInfo = MMO.getAAInfo().Scope) {
539 OS << "(alias.scope=";
540 if (ScopeInfo->getNumOperands() > 0)
541 for (unsigned i = 0, ie = ScopeInfo->getNumOperands(); i != ie; ++i) {
542 ScopeInfo->getOperand(i)->printAsOperand(OS);
543 if (i != ie-1)
544 OS << ",";
545 }
546 else
547 OS << "<unknown>";
548 OS << ")";
549 }
550
551 // Print AA noalias scope info.
552 if (const MDNode *NoAliasInfo = MMO.getAAInfo().NoAlias) {
553 OS << "(noalias=";
554 if (NoAliasInfo->getNumOperands() > 0)
555 for (unsigned i = 0, ie = NoAliasInfo->getNumOperands(); i != ie; ++i) {
556 NoAliasInfo->getOperand(i)->printAsOperand(OS);
557 if (i != ie-1)
558 OS << ",";
559 }
560 else
561 OS << "<unknown>";
562 OS << ")";
563 }
564
565 // Print nontemporal info.
566 if (MMO.isNonTemporal())
567 OS << "(nontemporal)";
568
569 return OS;
570 }
571
572 //===----------------------------------------------------------------------===//
573 // MachineInstr Implementation
574 //===----------------------------------------------------------------------===//
575
addImplicitDefUseOperands(MachineFunction & MF)576 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
577 if (MCID->ImplicitDefs)
578 for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
579 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
580 if (MCID->ImplicitUses)
581 for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
582 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
583 }
584
585 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
586 /// implicit operands. It reserves space for the number of operands specified by
587 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,DebugLoc dl,bool NoImp)588 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
589 DebugLoc dl, bool NoImp)
590 : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0), Flags(0),
591 AsmPrinterFlags(0), NumMemRefs(0), MemRefs(nullptr),
592 debugLoc(std::move(dl)) {
593 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
594
595 // Reserve space for the expected number of operands.
596 if (unsigned NumOps = MCID->getNumOperands() +
597 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
598 CapOperands = OperandCapacity::get(NumOps);
599 Operands = MF.allocateOperandArray(CapOperands);
600 }
601
602 if (!NoImp)
603 addImplicitDefUseOperands(MF);
604 }
605
606 /// MachineInstr ctor - Copies MachineInstr arg exactly
607 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)608 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
609 : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
610 Flags(0), AsmPrinterFlags(0),
611 NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
612 debugLoc(MI.getDebugLoc()) {
613 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
614
615 CapOperands = OperandCapacity::get(MI.getNumOperands());
616 Operands = MF.allocateOperandArray(CapOperands);
617
618 // Copy operands.
619 for (const MachineOperand &MO : MI.operands())
620 addOperand(MF, MO);
621
622 // Copy all the sensible flags.
623 setFlags(MI.Flags);
624 }
625
626 /// getRegInfo - If this instruction is embedded into a MachineFunction,
627 /// return the MachineRegisterInfo object for the current function, otherwise
628 /// return null.
getRegInfo()629 MachineRegisterInfo *MachineInstr::getRegInfo() {
630 if (MachineBasicBlock *MBB = getParent())
631 return &MBB->getParent()->getRegInfo();
632 return nullptr;
633 }
634
635 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
636 /// this instruction from their respective use lists. This requires that the
637 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)638 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
639 for (MachineOperand &MO : operands())
640 if (MO.isReg())
641 MRI.removeRegOperandFromUseList(&MO);
642 }
643
644 /// AddRegOperandsToUseLists - Add all of the register operands in
645 /// this instruction from their respective use lists. This requires that the
646 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)647 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
648 for (MachineOperand &MO : operands())
649 if (MO.isReg())
650 MRI.addRegOperandToUseList(&MO);
651 }
652
addOperand(const MachineOperand & Op)653 void MachineInstr::addOperand(const MachineOperand &Op) {
654 MachineBasicBlock *MBB = getParent();
655 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
656 MachineFunction *MF = MBB->getParent();
657 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
658 addOperand(*MF, Op);
659 }
660
661 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
662 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)663 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
664 unsigned NumOps, MachineRegisterInfo *MRI) {
665 if (MRI)
666 return MRI->moveOperands(Dst, Src, NumOps);
667
668 // MachineOperand is a trivially copyable type so we can just use memmove.
669 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
670 }
671
672 /// addOperand - Add the specified operand to the instruction. If it is an
673 /// implicit operand, it is added to the end of the operand list. If it is
674 /// an explicit operand it is added at the end of the explicit operand list
675 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)676 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
677 assert(MCID && "Cannot add operands before providing an instr descriptor");
678
679 // Check if we're adding one of our existing operands.
680 if (&Op >= Operands && &Op < Operands + NumOperands) {
681 // This is unusual: MI->addOperand(MI->getOperand(i)).
682 // If adding Op requires reallocating or moving existing operands around,
683 // the Op reference could go stale. Support it by copying Op.
684 MachineOperand CopyOp(Op);
685 return addOperand(MF, CopyOp);
686 }
687
688 // Find the insert location for the new operand. Implicit registers go at
689 // the end, everything else goes before the implicit regs.
690 //
691 // FIXME: Allow mixed explicit and implicit operands on inline asm.
692 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
693 // implicit-defs, but they must not be moved around. See the FIXME in
694 // InstrEmitter.cpp.
695 unsigned OpNo = getNumOperands();
696 bool isImpReg = Op.isReg() && Op.isImplicit();
697 if (!isImpReg && !isInlineAsm()) {
698 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
699 --OpNo;
700 assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
701 }
702 }
703
704 #ifndef NDEBUG
705 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
706 // OpNo now points as the desired insertion point. Unless this is a variadic
707 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
708 // RegMask operands go between the explicit and implicit operands.
709 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
710 OpNo < MCID->getNumOperands() || isMetaDataOp) &&
711 "Trying to add an operand to a machine instr that is already done!");
712 #endif
713
714 MachineRegisterInfo *MRI = getRegInfo();
715
716 // Determine if the Operands array needs to be reallocated.
717 // Save the old capacity and operand array.
718 OperandCapacity OldCap = CapOperands;
719 MachineOperand *OldOperands = Operands;
720 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
721 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
722 Operands = MF.allocateOperandArray(CapOperands);
723 // Move the operands before the insertion point.
724 if (OpNo)
725 moveOperands(Operands, OldOperands, OpNo, MRI);
726 }
727
728 // Move the operands following the insertion point.
729 if (OpNo != NumOperands)
730 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
731 MRI);
732 ++NumOperands;
733
734 // Deallocate the old operand array.
735 if (OldOperands != Operands && OldOperands)
736 MF.deallocateOperandArray(OldCap, OldOperands);
737
738 // Copy Op into place. It still needs to be inserted into the MRI use lists.
739 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
740 NewMO->ParentMI = this;
741
742 // When adding a register operand, tell MRI about it.
743 if (NewMO->isReg()) {
744 // Ensure isOnRegUseList() returns false, regardless of Op's status.
745 NewMO->Contents.Reg.Prev = nullptr;
746 // Ignore existing ties. This is not a property that can be copied.
747 NewMO->TiedTo = 0;
748 // Add the new operand to MRI, but only for instructions in an MBB.
749 if (MRI)
750 MRI->addRegOperandToUseList(NewMO);
751 // The MCID operand information isn't accurate until we start adding
752 // explicit operands. The implicit operands are added first, then the
753 // explicits are inserted before them.
754 if (!isImpReg) {
755 // Tie uses to defs as indicated in MCInstrDesc.
756 if (NewMO->isUse()) {
757 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
758 if (DefIdx != -1)
759 tieOperands(DefIdx, OpNo);
760 }
761 // If the register operand is flagged as early, mark the operand as such.
762 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
763 NewMO->setIsEarlyClobber(true);
764 }
765 }
766 }
767
768 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
769 /// fewer operand than it started with.
770 ///
RemoveOperand(unsigned OpNo)771 void MachineInstr::RemoveOperand(unsigned OpNo) {
772 assert(OpNo < getNumOperands() && "Invalid operand number");
773 untieRegOperand(OpNo);
774
775 #ifndef NDEBUG
776 // Moving tied operands would break the ties.
777 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
778 if (Operands[i].isReg())
779 assert(!Operands[i].isTied() && "Cannot move tied operands");
780 #endif
781
782 MachineRegisterInfo *MRI = getRegInfo();
783 if (MRI && Operands[OpNo].isReg())
784 MRI->removeRegOperandFromUseList(Operands + OpNo);
785
786 // Don't call the MachineOperand destructor. A lot of this code depends on
787 // MachineOperand having a trivial destructor anyway, and adding a call here
788 // wouldn't make it 'destructor-correct'.
789
790 if (unsigned N = NumOperands - 1 - OpNo)
791 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
792 --NumOperands;
793 }
794
795 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
796 /// This function should be used only occasionally. The setMemRefs function
797 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)798 void MachineInstr::addMemOperand(MachineFunction &MF,
799 MachineMemOperand *MO) {
800 mmo_iterator OldMemRefs = MemRefs;
801 unsigned OldNumMemRefs = NumMemRefs;
802
803 unsigned NewNum = NumMemRefs + 1;
804 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
805
806 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
807 NewMemRefs[NewNum - 1] = MO;
808 setMemRefs(NewMemRefs, NewMemRefs + NewNum);
809 }
810
hasPropertyInBundle(unsigned Mask,QueryType Type) const811 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
812 assert(!isBundledWithPred() && "Must be called on bundle header");
813 for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) {
814 if (MII->getDesc().getFlags() & Mask) {
815 if (Type == AnyInBundle)
816 return true;
817 } else {
818 if (Type == AllInBundle && !MII->isBundle())
819 return false;
820 }
821 // This was the last instruction in the bundle.
822 if (!MII->isBundledWithSucc())
823 return Type == AllInBundle;
824 }
825 }
826
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const827 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
828 MICheckType Check) const {
829 // If opcodes or number of operands are not the same then the two
830 // instructions are obviously not identical.
831 if (Other->getOpcode() != getOpcode() ||
832 Other->getNumOperands() != getNumOperands())
833 return false;
834
835 if (isBundle()) {
836 // Both instructions are bundles, compare MIs inside the bundle.
837 MachineBasicBlock::const_instr_iterator I1 = *this;
838 MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
839 MachineBasicBlock::const_instr_iterator I2 = *Other;
840 MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
841 while (++I1 != E1 && I1->isInsideBundle()) {
842 ++I2;
843 if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
844 return false;
845 }
846 }
847
848 // Check operands to make sure they match.
849 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
850 const MachineOperand &MO = getOperand(i);
851 const MachineOperand &OMO = Other->getOperand(i);
852 if (!MO.isReg()) {
853 if (!MO.isIdenticalTo(OMO))
854 return false;
855 continue;
856 }
857
858 // Clients may or may not want to ignore defs when testing for equality.
859 // For example, machine CSE pass only cares about finding common
860 // subexpressions, so it's safe to ignore virtual register defs.
861 if (MO.isDef()) {
862 if (Check == IgnoreDefs)
863 continue;
864 else if (Check == IgnoreVRegDefs) {
865 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
866 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
867 if (MO.getReg() != OMO.getReg())
868 return false;
869 } else {
870 if (!MO.isIdenticalTo(OMO))
871 return false;
872 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
873 return false;
874 }
875 } else {
876 if (!MO.isIdenticalTo(OMO))
877 return false;
878 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
879 return false;
880 }
881 }
882 // If DebugLoc does not match then two dbg.values are not identical.
883 if (isDebugValue())
884 if (getDebugLoc() && Other->getDebugLoc() &&
885 getDebugLoc() != Other->getDebugLoc())
886 return false;
887 return true;
888 }
889
removeFromParent()890 MachineInstr *MachineInstr::removeFromParent() {
891 assert(getParent() && "Not embedded in a basic block!");
892 return getParent()->remove(this);
893 }
894
removeFromBundle()895 MachineInstr *MachineInstr::removeFromBundle() {
896 assert(getParent() && "Not embedded in a basic block!");
897 return getParent()->remove_instr(this);
898 }
899
eraseFromParent()900 void MachineInstr::eraseFromParent() {
901 assert(getParent() && "Not embedded in a basic block!");
902 getParent()->erase(this);
903 }
904
eraseFromParentAndMarkDBGValuesForRemoval()905 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
906 assert(getParent() && "Not embedded in a basic block!");
907 MachineBasicBlock *MBB = getParent();
908 MachineFunction *MF = MBB->getParent();
909 assert(MF && "Not embedded in a function!");
910
911 MachineInstr *MI = (MachineInstr *)this;
912 MachineRegisterInfo &MRI = MF->getRegInfo();
913
914 for (const MachineOperand &MO : MI->operands()) {
915 if (!MO.isReg() || !MO.isDef())
916 continue;
917 unsigned Reg = MO.getReg();
918 if (!TargetRegisterInfo::isVirtualRegister(Reg))
919 continue;
920 MRI.markUsesInDebugValueAsUndef(Reg);
921 }
922 MI->eraseFromParent();
923 }
924
eraseFromBundle()925 void MachineInstr::eraseFromBundle() {
926 assert(getParent() && "Not embedded in a basic block!");
927 getParent()->erase_instr(this);
928 }
929
930 /// getNumExplicitOperands - Returns the number of non-implicit operands.
931 ///
getNumExplicitOperands() const932 unsigned MachineInstr::getNumExplicitOperands() const {
933 unsigned NumOperands = MCID->getNumOperands();
934 if (!MCID->isVariadic())
935 return NumOperands;
936
937 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
938 const MachineOperand &MO = getOperand(i);
939 if (!MO.isReg() || !MO.isImplicit())
940 NumOperands++;
941 }
942 return NumOperands;
943 }
944
bundleWithPred()945 void MachineInstr::bundleWithPred() {
946 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
947 setFlag(BundledPred);
948 MachineBasicBlock::instr_iterator Pred = this;
949 --Pred;
950 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
951 Pred->setFlag(BundledSucc);
952 }
953
bundleWithSucc()954 void MachineInstr::bundleWithSucc() {
955 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
956 setFlag(BundledSucc);
957 MachineBasicBlock::instr_iterator Succ = this;
958 ++Succ;
959 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
960 Succ->setFlag(BundledPred);
961 }
962
unbundleFromPred()963 void MachineInstr::unbundleFromPred() {
964 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
965 clearFlag(BundledPred);
966 MachineBasicBlock::instr_iterator Pred = this;
967 --Pred;
968 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
969 Pred->clearFlag(BundledSucc);
970 }
971
unbundleFromSucc()972 void MachineInstr::unbundleFromSucc() {
973 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
974 clearFlag(BundledSucc);
975 MachineBasicBlock::instr_iterator Succ = this;
976 ++Succ;
977 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
978 Succ->clearFlag(BundledPred);
979 }
980
isStackAligningInlineAsm() const981 bool MachineInstr::isStackAligningInlineAsm() const {
982 if (isInlineAsm()) {
983 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
984 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
985 return true;
986 }
987 return false;
988 }
989
getInlineAsmDialect() const990 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
991 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
992 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
993 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
994 }
995
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const996 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
997 unsigned *GroupNo) const {
998 assert(isInlineAsm() && "Expected an inline asm instruction");
999 assert(OpIdx < getNumOperands() && "OpIdx out of range");
1000
1001 // Ignore queries about the initial operands.
1002 if (OpIdx < InlineAsm::MIOp_FirstOperand)
1003 return -1;
1004
1005 unsigned Group = 0;
1006 unsigned NumOps;
1007 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1008 i += NumOps) {
1009 const MachineOperand &FlagMO = getOperand(i);
1010 // If we reach the implicit register operands, stop looking.
1011 if (!FlagMO.isImm())
1012 return -1;
1013 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1014 if (i + NumOps > OpIdx) {
1015 if (GroupNo)
1016 *GroupNo = Group;
1017 return i;
1018 }
1019 ++Group;
1020 }
1021 return -1;
1022 }
1023
1024 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1025 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1026 const TargetInstrInfo *TII,
1027 const TargetRegisterInfo *TRI) const {
1028 assert(getParent() && "Can't have an MBB reference here!");
1029 assert(getParent()->getParent() && "Can't have an MF reference here!");
1030 const MachineFunction &MF = *getParent()->getParent();
1031
1032 // Most opcodes have fixed constraints in their MCInstrDesc.
1033 if (!isInlineAsm())
1034 return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1035
1036 if (!getOperand(OpIdx).isReg())
1037 return nullptr;
1038
1039 // For tied uses on inline asm, get the constraint from the def.
1040 unsigned DefIdx;
1041 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1042 OpIdx = DefIdx;
1043
1044 // Inline asm stores register class constraints in the flag word.
1045 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1046 if (FlagIdx < 0)
1047 return nullptr;
1048
1049 unsigned Flag = getOperand(FlagIdx).getImm();
1050 unsigned RCID;
1051 if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1052 return TRI->getRegClass(RCID);
1053
1054 // Assume that all registers in a memory operand are pointers.
1055 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1056 return TRI->getPointerRegClass(MF);
1057
1058 return nullptr;
1059 }
1060
getRegClassConstraintEffectForVReg(unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const1061 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1062 unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1063 const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1064 // Check every operands inside the bundle if we have
1065 // been asked to.
1066 if (ExploreBundle)
1067 for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
1068 ++OpndIt)
1069 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1070 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1071 else
1072 // Otherwise, just check the current operands.
1073 for (ConstMIOperands OpndIt(this); OpndIt.isValid() && CurRC; ++OpndIt)
1074 CurRC = getRegClassConstraintEffectForVRegImpl(OpndIt.getOperandNo(), Reg,
1075 CurRC, TII, TRI);
1076 return CurRC;
1077 }
1078
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1079 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1080 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1081 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1082 assert(CurRC && "Invalid initial register class");
1083 // Check if Reg is constrained by some of its use/def from MI.
1084 const MachineOperand &MO = getOperand(OpIdx);
1085 if (!MO.isReg() || MO.getReg() != Reg)
1086 return CurRC;
1087 // If yes, accumulate the constraints through the operand.
1088 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1089 }
1090
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1091 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1092 unsigned OpIdx, const TargetRegisterClass *CurRC,
1093 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1094 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1095 const MachineOperand &MO = getOperand(OpIdx);
1096 assert(MO.isReg() &&
1097 "Cannot get register constraints for non-register operand");
1098 assert(CurRC && "Invalid initial register class");
1099 if (unsigned SubIdx = MO.getSubReg()) {
1100 if (OpRC)
1101 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1102 else
1103 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1104 } else if (OpRC)
1105 CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1106 return CurRC;
1107 }
1108
1109 /// Return the number of instructions inside the MI bundle, not counting the
1110 /// header instruction.
getBundleSize() const1111 unsigned MachineInstr::getBundleSize() const {
1112 MachineBasicBlock::const_instr_iterator I = this;
1113 unsigned Size = 0;
1114 while (I->isBundledWithSucc())
1115 ++Size, ++I;
1116 return Size;
1117 }
1118
1119 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1120 /// the specific register or -1 if it is not found. It further tightens
1121 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const1122 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1123 const TargetRegisterInfo *TRI) const {
1124 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1125 const MachineOperand &MO = getOperand(i);
1126 if (!MO.isReg() || !MO.isUse())
1127 continue;
1128 unsigned MOReg = MO.getReg();
1129 if (!MOReg)
1130 continue;
1131 if (MOReg == Reg ||
1132 (TRI &&
1133 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1134 TargetRegisterInfo::isPhysicalRegister(Reg) &&
1135 TRI->isSubRegister(MOReg, Reg)))
1136 if (!isKill || MO.isKill())
1137 return i;
1138 }
1139 return -1;
1140 }
1141
1142 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1143 /// indicating if this instruction reads or writes Reg. This also considers
1144 /// partial defines.
1145 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1146 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1147 SmallVectorImpl<unsigned> *Ops) const {
1148 bool PartDef = false; // Partial redefine.
1149 bool FullDef = false; // Full define.
1150 bool Use = false;
1151
1152 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1153 const MachineOperand &MO = getOperand(i);
1154 if (!MO.isReg() || MO.getReg() != Reg)
1155 continue;
1156 if (Ops)
1157 Ops->push_back(i);
1158 if (MO.isUse())
1159 Use |= !MO.isUndef();
1160 else if (MO.getSubReg() && !MO.isUndef())
1161 // A partial <def,undef> doesn't count as reading the register.
1162 PartDef = true;
1163 else
1164 FullDef = true;
1165 }
1166 // A partial redefine uses Reg unless there is also a full define.
1167 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1168 }
1169
1170 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1171 /// the specified register or -1 if it is not found. If isDead is true, defs
1172 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1173 /// also checks if there is a def of a super-register.
1174 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1175 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1176 const TargetRegisterInfo *TRI) const {
1177 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1178 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1179 const MachineOperand &MO = getOperand(i);
1180 // Accept regmask operands when Overlap is set.
1181 // Ignore them when looking for a specific def operand (Overlap == false).
1182 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1183 return i;
1184 if (!MO.isReg() || !MO.isDef())
1185 continue;
1186 unsigned MOReg = MO.getReg();
1187 bool Found = (MOReg == Reg);
1188 if (!Found && TRI && isPhys &&
1189 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1190 if (Overlap)
1191 Found = TRI->regsOverlap(MOReg, Reg);
1192 else
1193 Found = TRI->isSubRegister(MOReg, Reg);
1194 }
1195 if (Found && (!isDead || MO.isDead()))
1196 return i;
1197 }
1198 return -1;
1199 }
1200
1201 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1202 /// operand list that is used to represent the predicate. It returns -1 if
1203 /// none is found.
findFirstPredOperandIdx() const1204 int MachineInstr::findFirstPredOperandIdx() const {
1205 // Don't call MCID.findFirstPredOperandIdx() because this variant
1206 // is sometimes called on an instruction that's not yet complete, and
1207 // so the number of operands is less than the MCID indicates. In
1208 // particular, the PTX target does this.
1209 const MCInstrDesc &MCID = getDesc();
1210 if (MCID.isPredicable()) {
1211 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1212 if (MCID.OpInfo[i].isPredicate())
1213 return i;
1214 }
1215
1216 return -1;
1217 }
1218
1219 // MachineOperand::TiedTo is 4 bits wide.
1220 const unsigned TiedMax = 15;
1221
1222 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1223 ///
1224 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1225 /// field. TiedTo can have these values:
1226 ///
1227 /// 0: Operand is not tied to anything.
1228 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1229 /// TiedMax: Tied to an operand >= TiedMax-1.
1230 ///
1231 /// The tied def must be one of the first TiedMax operands on a normal
1232 /// instruction. INLINEASM instructions allow more tied defs.
1233 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1234 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1235 MachineOperand &DefMO = getOperand(DefIdx);
1236 MachineOperand &UseMO = getOperand(UseIdx);
1237 assert(DefMO.isDef() && "DefIdx must be a def operand");
1238 assert(UseMO.isUse() && "UseIdx must be a use operand");
1239 assert(!DefMO.isTied() && "Def is already tied to another use");
1240 assert(!UseMO.isTied() && "Use is already tied to another def");
1241
1242 if (DefIdx < TiedMax)
1243 UseMO.TiedTo = DefIdx + 1;
1244 else {
1245 // Inline asm can use the group descriptors to find tied operands, but on
1246 // normal instruction, the tied def must be within the first TiedMax
1247 // operands.
1248 assert(isInlineAsm() && "DefIdx out of range");
1249 UseMO.TiedTo = TiedMax;
1250 }
1251
1252 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1253 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1254 }
1255
1256 /// Given the index of a tied register operand, find the operand it is tied to.
1257 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1258 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1259 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1260 const MachineOperand &MO = getOperand(OpIdx);
1261 assert(MO.isTied() && "Operand isn't tied");
1262
1263 // Normally TiedTo is in range.
1264 if (MO.TiedTo < TiedMax)
1265 return MO.TiedTo - 1;
1266
1267 // Uses on normal instructions can be out of range.
1268 if (!isInlineAsm()) {
1269 // Normal tied defs must be in the 0..TiedMax-1 range.
1270 if (MO.isUse())
1271 return TiedMax - 1;
1272 // MO is a def. Search for the tied use.
1273 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1274 const MachineOperand &UseMO = getOperand(i);
1275 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1276 return i;
1277 }
1278 llvm_unreachable("Can't find tied use");
1279 }
1280
1281 // Now deal with inline asm by parsing the operand group descriptor flags.
1282 // Find the beginning of each operand group.
1283 SmallVector<unsigned, 8> GroupIdx;
1284 unsigned OpIdxGroup = ~0u;
1285 unsigned NumOps;
1286 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1287 i += NumOps) {
1288 const MachineOperand &FlagMO = getOperand(i);
1289 assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1290 unsigned CurGroup = GroupIdx.size();
1291 GroupIdx.push_back(i);
1292 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1293 // OpIdx belongs to this operand group.
1294 if (OpIdx > i && OpIdx < i + NumOps)
1295 OpIdxGroup = CurGroup;
1296 unsigned TiedGroup;
1297 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1298 continue;
1299 // Operands in this group are tied to operands in TiedGroup which must be
1300 // earlier. Find the number of operands between the two groups.
1301 unsigned Delta = i - GroupIdx[TiedGroup];
1302
1303 // OpIdx is a use tied to TiedGroup.
1304 if (OpIdxGroup == CurGroup)
1305 return OpIdx - Delta;
1306
1307 // OpIdx is a def tied to this use group.
1308 if (OpIdxGroup == TiedGroup)
1309 return OpIdx + Delta;
1310 }
1311 llvm_unreachable("Invalid tied operand on inline asm");
1312 }
1313
1314 /// clearKillInfo - Clears kill flags on all operands.
1315 ///
clearKillInfo()1316 void MachineInstr::clearKillInfo() {
1317 for (MachineOperand &MO : operands()) {
1318 if (MO.isReg() && MO.isUse())
1319 MO.setIsKill(false);
1320 }
1321 }
1322
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1323 void MachineInstr::substituteRegister(unsigned FromReg,
1324 unsigned ToReg,
1325 unsigned SubIdx,
1326 const TargetRegisterInfo &RegInfo) {
1327 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1328 if (SubIdx)
1329 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1330 for (MachineOperand &MO : operands()) {
1331 if (!MO.isReg() || MO.getReg() != FromReg)
1332 continue;
1333 MO.substPhysReg(ToReg, RegInfo);
1334 }
1335 } else {
1336 for (MachineOperand &MO : operands()) {
1337 if (!MO.isReg() || MO.getReg() != FromReg)
1338 continue;
1339 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1340 }
1341 }
1342 }
1343
1344 /// isSafeToMove - Return true if it is safe to move this instruction. If
1345 /// SawStore is set to true, it means that there is a store (or call) between
1346 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1347 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1348 AliasAnalysis *AA,
1349 bool &SawStore) const {
1350 // Ignore stuff that we obviously can't move.
1351 //
1352 // Treat volatile loads as stores. This is not strictly necessary for
1353 // volatiles, but it is required for atomic loads. It is not allowed to move
1354 // a load across an atomic load with Ordering > Monotonic.
1355 if (mayStore() || isCall() ||
1356 (mayLoad() && hasOrderedMemoryRef())) {
1357 SawStore = true;
1358 return false;
1359 }
1360
1361 if (isPosition() || isDebugValue() || isTerminator() ||
1362 hasUnmodeledSideEffects())
1363 return false;
1364
1365 // See if this instruction does a load. If so, we have to guarantee that the
1366 // loaded value doesn't change between the load and the its intended
1367 // destination. The check for isInvariantLoad gives the targe the chance to
1368 // classify the load as always returning a constant, e.g. a constant pool
1369 // load.
1370 if (mayLoad() && !isInvariantLoad(AA))
1371 // Otherwise, this is a real load. If there is a store between the load and
1372 // end of block, we can't move it.
1373 return !SawStore;
1374
1375 return true;
1376 }
1377
1378 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1379 /// or volatile memory reference, or if the information describing the memory
1380 /// reference is not available. Return false if it is known to have no ordered
1381 /// memory references.
hasOrderedMemoryRef() const1382 bool MachineInstr::hasOrderedMemoryRef() const {
1383 // An instruction known never to access memory won't have a volatile access.
1384 if (!mayStore() &&
1385 !mayLoad() &&
1386 !isCall() &&
1387 !hasUnmodeledSideEffects())
1388 return false;
1389
1390 // Otherwise, if the instruction has no memory reference information,
1391 // conservatively assume it wasn't preserved.
1392 if (memoperands_empty())
1393 return true;
1394
1395 // Check the memory reference information for ordered references.
1396 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1397 if (!(*I)->isUnordered())
1398 return true;
1399
1400 return false;
1401 }
1402
1403 /// isInvariantLoad - Return true if this instruction is loading from a
1404 /// location whose value is invariant across the function. For example,
1405 /// loading a value from the constant pool or from the argument area
1406 /// of a function if it does not change. This should only return true of
1407 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1408 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1409 // If the instruction doesn't load at all, it isn't an invariant load.
1410 if (!mayLoad())
1411 return false;
1412
1413 // If the instruction has lost its memoperands, conservatively assume that
1414 // it may not be an invariant load.
1415 if (memoperands_empty())
1416 return false;
1417
1418 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1419
1420 for (mmo_iterator I = memoperands_begin(),
1421 E = memoperands_end(); I != E; ++I) {
1422 if ((*I)->isVolatile()) return false;
1423 if ((*I)->isStore()) return false;
1424 if ((*I)->isInvariant()) return true;
1425
1426
1427 // A load from a constant PseudoSourceValue is invariant.
1428 if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
1429 if (PSV->isConstant(MFI))
1430 continue;
1431
1432 if (const Value *V = (*I)->getValue()) {
1433 // If we have an AliasAnalysis, ask it whether the memory is constant.
1434 if (AA && AA->pointsToConstantMemory(
1435 AliasAnalysis::Location(V, (*I)->getSize(),
1436 (*I)->getAAInfo())))
1437 continue;
1438 }
1439
1440 // Otherwise assume conservatively.
1441 return false;
1442 }
1443
1444 // Everything checks out.
1445 return true;
1446 }
1447
1448 /// isConstantValuePHI - If the specified instruction is a PHI that always
1449 /// merges together the same virtual register, return the register, otherwise
1450 /// return 0.
isConstantValuePHI() const1451 unsigned MachineInstr::isConstantValuePHI() const {
1452 if (!isPHI())
1453 return 0;
1454 assert(getNumOperands() >= 3 &&
1455 "It's illegal to have a PHI without source operands");
1456
1457 unsigned Reg = getOperand(1).getReg();
1458 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1459 if (getOperand(i).getReg() != Reg)
1460 return 0;
1461 return Reg;
1462 }
1463
hasUnmodeledSideEffects() const1464 bool MachineInstr::hasUnmodeledSideEffects() const {
1465 if (hasProperty(MCID::UnmodeledSideEffects))
1466 return true;
1467 if (isInlineAsm()) {
1468 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1469 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1470 return true;
1471 }
1472
1473 return false;
1474 }
1475
1476 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1477 ///
allDefsAreDead() const1478 bool MachineInstr::allDefsAreDead() const {
1479 for (const MachineOperand &MO : operands()) {
1480 if (!MO.isReg() || MO.isUse())
1481 continue;
1482 if (!MO.isDead())
1483 return false;
1484 }
1485 return true;
1486 }
1487
1488 /// copyImplicitOps - Copy implicit register operands from specified
1489 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr * MI)1490 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1491 const MachineInstr *MI) {
1492 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1493 i != e; ++i) {
1494 const MachineOperand &MO = MI->getOperand(i);
1495 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1496 addOperand(MF, MO);
1497 }
1498 }
1499
dump() const1500 void MachineInstr::dump() const {
1501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1502 dbgs() << " " << *this;
1503 #endif
1504 }
1505
print(raw_ostream & OS,bool SkipOpers) const1506 void MachineInstr::print(raw_ostream &OS, bool SkipOpers) const {
1507 // We can be a bit tidier if we know the MachineFunction.
1508 const MachineFunction *MF = nullptr;
1509 const TargetRegisterInfo *TRI = nullptr;
1510 const MachineRegisterInfo *MRI = nullptr;
1511 const TargetInstrInfo *TII = nullptr;
1512 if (const MachineBasicBlock *MBB = getParent()) {
1513 MF = MBB->getParent();
1514 if (MF) {
1515 MRI = &MF->getRegInfo();
1516 TRI = MF->getSubtarget().getRegisterInfo();
1517 TII = MF->getSubtarget().getInstrInfo();
1518 }
1519 }
1520
1521 // Save a list of virtual registers.
1522 SmallVector<unsigned, 8> VirtRegs;
1523
1524 // Print explicitly defined operands on the left of an assignment syntax.
1525 unsigned StartOp = 0, e = getNumOperands();
1526 for (; StartOp < e && getOperand(StartOp).isReg() &&
1527 getOperand(StartOp).isDef() &&
1528 !getOperand(StartOp).isImplicit();
1529 ++StartOp) {
1530 if (StartOp != 0) OS << ", ";
1531 getOperand(StartOp).print(OS, TRI);
1532 unsigned Reg = getOperand(StartOp).getReg();
1533 if (TargetRegisterInfo::isVirtualRegister(Reg))
1534 VirtRegs.push_back(Reg);
1535 }
1536
1537 if (StartOp != 0)
1538 OS << " = ";
1539
1540 // Print the opcode name.
1541 if (TII)
1542 OS << TII->getName(getOpcode());
1543 else
1544 OS << "UNKNOWN";
1545
1546 if (SkipOpers)
1547 return;
1548
1549 // Print the rest of the operands.
1550 bool OmittedAnyCallClobbers = false;
1551 bool FirstOp = true;
1552 unsigned AsmDescOp = ~0u;
1553 unsigned AsmOpCount = 0;
1554
1555 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1556 // Print asm string.
1557 OS << " ";
1558 getOperand(InlineAsm::MIOp_AsmString).print(OS, TRI);
1559
1560 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1561 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1562 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1563 OS << " [sideeffect]";
1564 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1565 OS << " [mayload]";
1566 if (ExtraInfo & InlineAsm::Extra_MayStore)
1567 OS << " [maystore]";
1568 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1569 OS << " [alignstack]";
1570 if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1571 OS << " [attdialect]";
1572 if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1573 OS << " [inteldialect]";
1574
1575 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1576 FirstOp = false;
1577 }
1578
1579
1580 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1581 const MachineOperand &MO = getOperand(i);
1582
1583 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1584 VirtRegs.push_back(MO.getReg());
1585
1586 // Omit call-clobbered registers which aren't used anywhere. This makes
1587 // call instructions much less noisy on targets where calls clobber lots
1588 // of registers. Don't rely on MO.isDead() because we may be called before
1589 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1590 if (MRI && isCall() &&
1591 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1592 unsigned Reg = MO.getReg();
1593 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1594 if (MRI->use_empty(Reg)) {
1595 bool HasAliasLive = false;
1596 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
1597 unsigned AliasReg = *AI;
1598 if (!MRI->use_empty(AliasReg)) {
1599 HasAliasLive = true;
1600 break;
1601 }
1602 }
1603 if (!HasAliasLive) {
1604 OmittedAnyCallClobbers = true;
1605 continue;
1606 }
1607 }
1608 }
1609 }
1610
1611 if (FirstOp) FirstOp = false; else OS << ",";
1612 OS << " ";
1613 if (i < getDesc().NumOperands) {
1614 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1615 if (MCOI.isPredicate())
1616 OS << "pred:";
1617 if (MCOI.isOptionalDef())
1618 OS << "opt:";
1619 }
1620 if (isDebugValue() && MO.isMetadata()) {
1621 // Pretty print DBG_VALUE instructions.
1622 DIVariable DIV = dyn_cast<MDLocalVariable>(MO.getMetadata());
1623 if (DIV && !DIV->getName().empty())
1624 OS << "!\"" << DIV->getName() << '\"';
1625 else
1626 MO.print(OS, TRI);
1627 } else if (TRI && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1628 OS << TRI->getSubRegIndexName(MO.getImm());
1629 } else if (i == AsmDescOp && MO.isImm()) {
1630 // Pretty print the inline asm operand descriptor.
1631 OS << '$' << AsmOpCount++;
1632 unsigned Flag = MO.getImm();
1633 switch (InlineAsm::getKind(Flag)) {
1634 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1635 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1636 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1637 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1638 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1639 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1640 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1641 }
1642
1643 unsigned RCID = 0;
1644 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1645 if (TRI) {
1646 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1647 } else
1648 OS << ":RC" << RCID;
1649 }
1650
1651 unsigned TiedTo = 0;
1652 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1653 OS << " tiedto:$" << TiedTo;
1654
1655 OS << ']';
1656
1657 // Compute the index of the next operand descriptor.
1658 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1659 } else
1660 MO.print(OS, TRI);
1661 }
1662
1663 // Briefly indicate whether any call clobbers were omitted.
1664 if (OmittedAnyCallClobbers) {
1665 if (!FirstOp) OS << ",";
1666 OS << " ...";
1667 }
1668
1669 bool HaveSemi = false;
1670 const unsigned PrintableFlags = FrameSetup;
1671 if (Flags & PrintableFlags) {
1672 if (!HaveSemi) OS << ";"; HaveSemi = true;
1673 OS << " flags: ";
1674
1675 if (Flags & FrameSetup)
1676 OS << "FrameSetup";
1677 }
1678
1679 if (!memoperands_empty()) {
1680 if (!HaveSemi) OS << ";"; HaveSemi = true;
1681
1682 OS << " mem:";
1683 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1684 i != e; ++i) {
1685 OS << **i;
1686 if (std::next(i) != e)
1687 OS << " ";
1688 }
1689 }
1690
1691 // Print the regclass of any virtual registers encountered.
1692 if (MRI && !VirtRegs.empty()) {
1693 if (!HaveSemi) OS << ";"; HaveSemi = true;
1694 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1695 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1696 OS << " " << TRI->getRegClassName(RC)
1697 << ':' << PrintReg(VirtRegs[i]);
1698 for (unsigned j = i+1; j != VirtRegs.size();) {
1699 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1700 ++j;
1701 continue;
1702 }
1703 if (VirtRegs[i] != VirtRegs[j])
1704 OS << "," << PrintReg(VirtRegs[j]);
1705 VirtRegs.erase(VirtRegs.begin()+j);
1706 }
1707 }
1708 }
1709
1710 // Print debug location information.
1711 if (isDebugValue() && getOperand(e - 2).isMetadata()) {
1712 if (!HaveSemi) OS << ";";
1713 DIVariable DV = cast<MDLocalVariable>(getOperand(e - 2).getMetadata());
1714 OS << " line no:" << DV->getLine();
1715 if (auto *InlinedAt = debugLoc->getInlinedAt()) {
1716 DebugLoc InlinedAtDL(InlinedAt);
1717 if (InlinedAtDL && MF) {
1718 OS << " inlined @[ ";
1719 InlinedAtDL.print(OS);
1720 OS << " ]";
1721 }
1722 }
1723 if (isIndirectDebugValue())
1724 OS << " indirect";
1725 } else if (debugLoc && MF) {
1726 if (!HaveSemi) OS << ";";
1727 OS << " dbg:";
1728 debugLoc.print(OS);
1729 }
1730
1731 OS << '\n';
1732 }
1733
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1734 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1735 const TargetRegisterInfo *RegInfo,
1736 bool AddIfNotFound) {
1737 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1738 bool hasAliases = isPhysReg &&
1739 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1740 bool Found = false;
1741 SmallVector<unsigned,4> DeadOps;
1742 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1743 MachineOperand &MO = getOperand(i);
1744 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1745 continue;
1746 unsigned Reg = MO.getReg();
1747 if (!Reg)
1748 continue;
1749
1750 if (Reg == IncomingReg) {
1751 if (!Found) {
1752 if (MO.isKill())
1753 // The register is already marked kill.
1754 return true;
1755 if (isPhysReg && isRegTiedToDefOperand(i))
1756 // Two-address uses of physregs must not be marked kill.
1757 return true;
1758 MO.setIsKill();
1759 Found = true;
1760 }
1761 } else if (hasAliases && MO.isKill() &&
1762 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1763 // A super-register kill already exists.
1764 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1765 return true;
1766 if (RegInfo->isSubRegister(IncomingReg, Reg))
1767 DeadOps.push_back(i);
1768 }
1769 }
1770
1771 // Trim unneeded kill operands.
1772 while (!DeadOps.empty()) {
1773 unsigned OpIdx = DeadOps.back();
1774 if (getOperand(OpIdx).isImplicit())
1775 RemoveOperand(OpIdx);
1776 else
1777 getOperand(OpIdx).setIsKill(false);
1778 DeadOps.pop_back();
1779 }
1780
1781 // If not found, this means an alias of one of the operands is killed. Add a
1782 // new implicit operand if required.
1783 if (!Found && AddIfNotFound) {
1784 addOperand(MachineOperand::CreateReg(IncomingReg,
1785 false /*IsDef*/,
1786 true /*IsImp*/,
1787 true /*IsKill*/));
1788 return true;
1789 }
1790 return Found;
1791 }
1792
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1793 void MachineInstr::clearRegisterKills(unsigned Reg,
1794 const TargetRegisterInfo *RegInfo) {
1795 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1796 RegInfo = nullptr;
1797 for (MachineOperand &MO : operands()) {
1798 if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1799 continue;
1800 unsigned OpReg = MO.getReg();
1801 if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1802 MO.setIsKill(false);
1803 }
1804 }
1805
addRegisterDead(unsigned Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1806 bool MachineInstr::addRegisterDead(unsigned Reg,
1807 const TargetRegisterInfo *RegInfo,
1808 bool AddIfNotFound) {
1809 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1810 bool hasAliases = isPhysReg &&
1811 MCRegAliasIterator(Reg, RegInfo, false).isValid();
1812 bool Found = false;
1813 SmallVector<unsigned,4> DeadOps;
1814 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1815 MachineOperand &MO = getOperand(i);
1816 if (!MO.isReg() || !MO.isDef())
1817 continue;
1818 unsigned MOReg = MO.getReg();
1819 if (!MOReg)
1820 continue;
1821
1822 if (MOReg == Reg) {
1823 MO.setIsDead();
1824 Found = true;
1825 } else if (hasAliases && MO.isDead() &&
1826 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1827 // There exists a super-register that's marked dead.
1828 if (RegInfo->isSuperRegister(Reg, MOReg))
1829 return true;
1830 if (RegInfo->isSubRegister(Reg, MOReg))
1831 DeadOps.push_back(i);
1832 }
1833 }
1834
1835 // Trim unneeded dead operands.
1836 while (!DeadOps.empty()) {
1837 unsigned OpIdx = DeadOps.back();
1838 if (getOperand(OpIdx).isImplicit())
1839 RemoveOperand(OpIdx);
1840 else
1841 getOperand(OpIdx).setIsDead(false);
1842 DeadOps.pop_back();
1843 }
1844
1845 // If not found, this means an alias of one of the operands is dead. Add a
1846 // new implicit operand if required.
1847 if (Found || !AddIfNotFound)
1848 return Found;
1849
1850 addOperand(MachineOperand::CreateReg(Reg,
1851 true /*IsDef*/,
1852 true /*IsImp*/,
1853 false /*IsKill*/,
1854 true /*IsDead*/));
1855 return true;
1856 }
1857
clearRegisterDeads(unsigned Reg)1858 void MachineInstr::clearRegisterDeads(unsigned Reg) {
1859 for (MachineOperand &MO : operands()) {
1860 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
1861 continue;
1862 MO.setIsDead(false);
1863 }
1864 }
1865
addRegisterDefReadUndef(unsigned Reg)1866 void MachineInstr::addRegisterDefReadUndef(unsigned Reg) {
1867 for (MachineOperand &MO : operands()) {
1868 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
1869 continue;
1870 MO.setIsUndef();
1871 }
1872 }
1873
addRegisterDefined(unsigned Reg,const TargetRegisterInfo * RegInfo)1874 void MachineInstr::addRegisterDefined(unsigned Reg,
1875 const TargetRegisterInfo *RegInfo) {
1876 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1877 MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1878 if (MO)
1879 return;
1880 } else {
1881 for (const MachineOperand &MO : operands()) {
1882 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1883 MO.getSubReg() == 0)
1884 return;
1885 }
1886 }
1887 addOperand(MachineOperand::CreateReg(Reg,
1888 true /*IsDef*/,
1889 true /*IsImp*/));
1890 }
1891
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1892 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1893 const TargetRegisterInfo &TRI) {
1894 bool HasRegMask = false;
1895 for (MachineOperand &MO : operands()) {
1896 if (MO.isRegMask()) {
1897 HasRegMask = true;
1898 continue;
1899 }
1900 if (!MO.isReg() || !MO.isDef()) continue;
1901 unsigned Reg = MO.getReg();
1902 if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1903 // If there are no uses, including partial uses, the def is dead.
1904 if (std::none_of(UsedRegs.begin(), UsedRegs.end(),
1905 [&](unsigned Use) { return TRI.regsOverlap(Use, Reg); }))
1906 MO.setIsDead();
1907 }
1908
1909 // This is a call with a register mask operand.
1910 // Mask clobbers are always dead, so add defs for the non-dead defines.
1911 if (HasRegMask)
1912 for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1913 I != E; ++I)
1914 addRegisterDefined(*I, &TRI);
1915 }
1916
1917 unsigned
getHashValue(const MachineInstr * const & MI)1918 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1919 // Build up a buffer of hash code components.
1920 SmallVector<size_t, 8> HashComponents;
1921 HashComponents.reserve(MI->getNumOperands() + 1);
1922 HashComponents.push_back(MI->getOpcode());
1923 for (const MachineOperand &MO : MI->operands()) {
1924 if (MO.isReg() && MO.isDef() &&
1925 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1926 continue; // Skip virtual register defs.
1927
1928 HashComponents.push_back(hash_value(MO));
1929 }
1930 return hash_combine_range(HashComponents.begin(), HashComponents.end());
1931 }
1932
emitError(StringRef Msg) const1933 void MachineInstr::emitError(StringRef Msg) const {
1934 // Find the source location cookie.
1935 unsigned LocCookie = 0;
1936 const MDNode *LocMD = nullptr;
1937 for (unsigned i = getNumOperands(); i != 0; --i) {
1938 if (getOperand(i-1).isMetadata() &&
1939 (LocMD = getOperand(i-1).getMetadata()) &&
1940 LocMD->getNumOperands() != 0) {
1941 if (const ConstantInt *CI =
1942 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
1943 LocCookie = CI->getZExtValue();
1944 break;
1945 }
1946 }
1947 }
1948
1949 if (const MachineBasicBlock *MBB = getParent())
1950 if (const MachineFunction *MF = MBB->getParent())
1951 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1952 report_fatal_error(Msg);
1953 }
1954