1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "LiveRangeCalc.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/BlockFrequency.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 #include <cmath>
42 #include <limits>
43 using namespace llvm;
44
45 #define DEBUG_TYPE "regalloc"
46
47 char LiveIntervals::ID = 0;
48 char &llvm::LiveIntervalsID = LiveIntervals::ID;
49 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
50 "Live Interval Analysis", false, false)
51 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
52 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
53 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
54 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
55 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
56 "Live Interval Analysis", false, false)
57
58 #ifndef NDEBUG
59 static cl::opt<bool> EnablePrecomputePhysRegs(
60 "precompute-phys-liveness", cl::Hidden,
61 cl::desc("Eagerly compute live intervals for all physreg units."));
62 #else
63 static bool EnablePrecomputePhysRegs = false;
64 #endif // NDEBUG
65
66 static cl::opt<bool> EnableSubRegLiveness(
67 "enable-subreg-liveness", cl::Hidden, cl::init(true),
68 cl::desc("Enable subregister liveness tracking."));
69
70 namespace llvm {
71 cl::opt<bool> UseSegmentSetForPhysRegs(
72 "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
73 cl::desc(
74 "Use segment set for the computation of the live ranges of physregs."));
75 }
76
getAnalysisUsage(AnalysisUsage & AU) const77 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.setPreservesCFG();
79 AU.addRequired<AliasAnalysis>();
80 AU.addPreserved<AliasAnalysis>();
81 // LiveVariables isn't really required by this analysis, it is only required
82 // here to make sure it is live during TwoAddressInstructionPass and
83 // PHIElimination. This is temporary.
84 AU.addRequired<LiveVariables>();
85 AU.addPreserved<LiveVariables>();
86 AU.addPreservedID(MachineLoopInfoID);
87 AU.addRequiredTransitiveID(MachineDominatorsID);
88 AU.addPreservedID(MachineDominatorsID);
89 AU.addPreserved<SlotIndexes>();
90 AU.addRequiredTransitive<SlotIndexes>();
91 MachineFunctionPass::getAnalysisUsage(AU);
92 }
93
LiveIntervals()94 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
95 DomTree(nullptr), LRCalc(nullptr) {
96 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
97 }
98
~LiveIntervals()99 LiveIntervals::~LiveIntervals() {
100 delete LRCalc;
101 }
102
releaseMemory()103 void LiveIntervals::releaseMemory() {
104 // Free the live intervals themselves.
105 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
106 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
107 VirtRegIntervals.clear();
108 RegMaskSlots.clear();
109 RegMaskBits.clear();
110 RegMaskBlocks.clear();
111
112 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
113 delete RegUnitRanges[i];
114 RegUnitRanges.clear();
115
116 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117 VNInfoAllocator.Reset();
118 }
119
120 /// runOnMachineFunction - calculates LiveIntervals
121 ///
runOnMachineFunction(MachineFunction & fn)122 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
123 MF = &fn;
124 MRI = &MF->getRegInfo();
125 TRI = MF->getSubtarget().getRegisterInfo();
126 TII = MF->getSubtarget().getInstrInfo();
127 AA = &getAnalysis<AliasAnalysis>();
128 Indexes = &getAnalysis<SlotIndexes>();
129 DomTree = &getAnalysis<MachineDominatorTree>();
130
131 if (EnableSubRegLiveness && MF->getSubtarget().enableSubRegLiveness())
132 MRI->enableSubRegLiveness(true);
133
134 if (!LRCalc)
135 LRCalc = new LiveRangeCalc();
136
137 // Allocate space for all virtual registers.
138 VirtRegIntervals.resize(MRI->getNumVirtRegs());
139
140 computeVirtRegs();
141 computeRegMasks();
142 computeLiveInRegUnits();
143
144 if (EnablePrecomputePhysRegs) {
145 // For stress testing, precompute live ranges of all physical register
146 // units, including reserved registers.
147 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148 getRegUnit(i);
149 }
150 DEBUG(dump());
151 return true;
152 }
153
154 /// print - Implement the dump method.
print(raw_ostream & OS,const Module *) const155 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
156 OS << "********** INTERVALS **********\n";
157
158 // Dump the regunits.
159 for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
160 if (LiveRange *LR = RegUnitRanges[i])
161 OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
162
163 // Dump the virtregs.
164 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
165 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
166 if (hasInterval(Reg))
167 OS << getInterval(Reg) << '\n';
168 }
169
170 OS << "RegMasks:";
171 for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
172 OS << ' ' << RegMaskSlots[i];
173 OS << '\n';
174
175 printInstrs(OS);
176 }
177
printInstrs(raw_ostream & OS) const178 void LiveIntervals::printInstrs(raw_ostream &OS) const {
179 OS << "********** MACHINEINSTRS **********\n";
180 MF->print(OS, Indexes);
181 }
182
183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpInstrs() const184 void LiveIntervals::dumpInstrs() const {
185 printInstrs(dbgs());
186 }
187 #endif
188
createInterval(unsigned reg)189 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
190 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
191 llvm::huge_valf : 0.0F;
192 return new LiveInterval(reg, Weight);
193 }
194
195
196 /// computeVirtRegInterval - Compute the live interval of a virtual register,
197 /// based on defs and uses.
computeVirtRegInterval(LiveInterval & LI)198 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
199 assert(LRCalc && "LRCalc not initialized.");
200 assert(LI.empty() && "Should only compute empty intervals.");
201 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
202 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
203 computeDeadValues(LI, nullptr);
204 }
205
computeVirtRegs()206 void LiveIntervals::computeVirtRegs() {
207 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
208 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
209 if (MRI->reg_nodbg_empty(Reg))
210 continue;
211 createAndComputeVirtRegInterval(Reg);
212 }
213 }
214
computeRegMasks()215 void LiveIntervals::computeRegMasks() {
216 RegMaskBlocks.resize(MF->getNumBlockIDs());
217
218 // Find all instructions with regmask operands.
219 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
220 MBBI != E; ++MBBI) {
221 MachineBasicBlock *MBB = MBBI;
222 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
223 RMB.first = RegMaskSlots.size();
224 for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
225 MI != ME; ++MI)
226 for (MIOperands MO(MI); MO.isValid(); ++MO) {
227 if (!MO->isRegMask())
228 continue;
229 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
230 RegMaskBits.push_back(MO->getRegMask());
231 }
232 // Compute the number of register mask instructions in this block.
233 RMB.second = RegMaskSlots.size() - RMB.first;
234 }
235 }
236
237 //===----------------------------------------------------------------------===//
238 // Register Unit Liveness
239 //===----------------------------------------------------------------------===//
240 //
241 // Fixed interference typically comes from ABI boundaries: Function arguments
242 // and return values are passed in fixed registers, and so are exception
243 // pointers entering landing pads. Certain instructions require values to be
244 // present in specific registers. That is also represented through fixed
245 // interference.
246 //
247
248 /// computeRegUnitInterval - Compute the live range of a register unit, based
249 /// on the uses and defs of aliasing registers. The range should be empty,
250 /// or contain only dead phi-defs from ABI blocks.
computeRegUnitRange(LiveRange & LR,unsigned Unit)251 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
252 assert(LRCalc && "LRCalc not initialized.");
253 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
254
255 // The physregs aliasing Unit are the roots and their super-registers.
256 // Create all values as dead defs before extending to uses. Note that roots
257 // may share super-registers. That's OK because createDeadDefs() is
258 // idempotent. It is very rare for a register unit to have multiple roots, so
259 // uniquing super-registers is probably not worthwhile.
260 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
261 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
262 Supers.isValid(); ++Supers) {
263 if (!MRI->reg_empty(*Supers))
264 LRCalc->createDeadDefs(LR, *Supers);
265 }
266 }
267
268 // Now extend LR to reach all uses.
269 // Ignore uses of reserved registers. We only track defs of those.
270 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
271 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
272 Supers.isValid(); ++Supers) {
273 unsigned Reg = *Supers;
274 if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
275 LRCalc->extendToUses(LR, Reg);
276 }
277 }
278
279 // Flush the segment set to the segment vector.
280 if (UseSegmentSetForPhysRegs)
281 LR.flushSegmentSet();
282 }
283
284
285 /// computeLiveInRegUnits - Precompute the live ranges of any register units
286 /// that are live-in to an ABI block somewhere. Register values can appear
287 /// without a corresponding def when entering the entry block or a landing pad.
288 ///
computeLiveInRegUnits()289 void LiveIntervals::computeLiveInRegUnits() {
290 RegUnitRanges.resize(TRI->getNumRegUnits());
291 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
292
293 // Keep track of the live range sets allocated.
294 SmallVector<unsigned, 8> NewRanges;
295
296 // Check all basic blocks for live-ins.
297 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
298 MFI != MFE; ++MFI) {
299 const MachineBasicBlock *MBB = MFI;
300
301 // We only care about ABI blocks: Entry + landing pads.
302 if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
303 continue;
304
305 // Create phi-defs at Begin for all live-in registers.
306 SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
307 DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
308 for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
309 LIE = MBB->livein_end(); LII != LIE; ++LII) {
310 for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
311 unsigned Unit = *Units;
312 LiveRange *LR = RegUnitRanges[Unit];
313 if (!LR) {
314 // Use segment set to speed-up initial computation of the live range.
315 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
316 NewRanges.push_back(Unit);
317 }
318 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
319 (void)VNI;
320 DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
321 }
322 }
323 DEBUG(dbgs() << '\n');
324 }
325 DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
326
327 // Compute the 'normal' part of the ranges.
328 for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
329 unsigned Unit = NewRanges[i];
330 computeRegUnitRange(*RegUnitRanges[Unit], Unit);
331 }
332 }
333
334
createSegmentsForValues(LiveRange & LR,iterator_range<LiveInterval::vni_iterator> VNIs)335 static void createSegmentsForValues(LiveRange &LR,
336 iterator_range<LiveInterval::vni_iterator> VNIs) {
337 for (auto VNI : VNIs) {
338 if (VNI->isUnused())
339 continue;
340 SlotIndex Def = VNI->def;
341 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
342 }
343 }
344
345 typedef SmallVector<std::pair<SlotIndex, VNInfo*>, 16> ShrinkToUsesWorkList;
346
extendSegmentsToUses(LiveRange & LR,const SlotIndexes & Indexes,ShrinkToUsesWorkList & WorkList,const LiveRange & OldRange)347 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes,
348 ShrinkToUsesWorkList &WorkList,
349 const LiveRange &OldRange) {
350 // Keep track of the PHIs that are in use.
351 SmallPtrSet<VNInfo*, 8> UsedPHIs;
352 // Blocks that have already been added to WorkList as live-out.
353 SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
354
355 // Extend intervals to reach all uses in WorkList.
356 while (!WorkList.empty()) {
357 SlotIndex Idx = WorkList.back().first;
358 VNInfo *VNI = WorkList.back().second;
359 WorkList.pop_back();
360 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot());
361 SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB);
362
363 // Extend the live range for VNI to be live at Idx.
364 if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) {
365 assert(ExtVNI == VNI && "Unexpected existing value number");
366 (void)ExtVNI;
367 // Is this a PHIDef we haven't seen before?
368 if (!VNI->isPHIDef() || VNI->def != BlockStart ||
369 !UsedPHIs.insert(VNI).second)
370 continue;
371 // The PHI is live, make sure the predecessors are live-out.
372 for (auto &Pred : MBB->predecessors()) {
373 if (!LiveOut.insert(Pred).second)
374 continue;
375 SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
376 // A predecessor is not required to have a live-out value for a PHI.
377 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
378 WorkList.push_back(std::make_pair(Stop, PVNI));
379 }
380 continue;
381 }
382
383 // VNI is live-in to MBB.
384 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
385 LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
386
387 // Make sure VNI is live-out from the predecessors.
388 for (auto &Pred : MBB->predecessors()) {
389 if (!LiveOut.insert(Pred).second)
390 continue;
391 SlotIndex Stop = Indexes.getMBBEndIdx(Pred);
392 assert(OldRange.getVNInfoBefore(Stop) == VNI &&
393 "Wrong value out of predecessor");
394 WorkList.push_back(std::make_pair(Stop, VNI));
395 }
396 }
397 }
398
399 /// shrinkToUses - After removing some uses of a register, shrink its live
400 /// range to just the remaining uses. This method does not compute reaching
401 /// defs for new uses, and it doesn't remove dead defs.
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)402 bool LiveIntervals::shrinkToUses(LiveInterval *li,
403 SmallVectorImpl<MachineInstr*> *dead) {
404 DEBUG(dbgs() << "Shrink: " << *li << '\n');
405 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
406 && "Can only shrink virtual registers");
407
408 // Shrink subregister live ranges.
409 for (LiveInterval::SubRange &S : li->subranges()) {
410 shrinkToUses(S, li->reg);
411 }
412
413 // Find all the values used, including PHI kills.
414 ShrinkToUsesWorkList WorkList;
415
416 // Visit all instructions reading li->reg.
417 for (MachineRegisterInfo::reg_instr_iterator
418 I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
419 I != E; ) {
420 MachineInstr *UseMI = &*(I++);
421 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
422 continue;
423 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
424 LiveQueryResult LRQ = li->Query(Idx);
425 VNInfo *VNI = LRQ.valueIn();
426 if (!VNI) {
427 // This shouldn't happen: readsVirtualRegister returns true, but there is
428 // no live value. It is likely caused by a target getting <undef> flags
429 // wrong.
430 DEBUG(dbgs() << Idx << '\t' << *UseMI
431 << "Warning: Instr claims to read non-existent value in "
432 << *li << '\n');
433 continue;
434 }
435 // Special case: An early-clobber tied operand reads and writes the
436 // register one slot early.
437 if (VNInfo *DefVNI = LRQ.valueDefined())
438 Idx = DefVNI->def;
439
440 WorkList.push_back(std::make_pair(Idx, VNI));
441 }
442
443 // Create new live ranges with only minimal live segments per def.
444 LiveRange NewLR;
445 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
446 extendSegmentsToUses(NewLR, *Indexes, WorkList, *li);
447
448 // Move the trimmed segments back.
449 li->segments.swap(NewLR.segments);
450
451 // Handle dead values.
452 bool CanSeparate = computeDeadValues(*li, dead);
453 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
454 return CanSeparate;
455 }
456
computeDeadValues(LiveInterval & LI,SmallVectorImpl<MachineInstr * > * dead)457 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
458 SmallVectorImpl<MachineInstr*> *dead) {
459 bool PHIRemoved = false;
460 for (auto VNI : LI.valnos) {
461 if (VNI->isUnused())
462 continue;
463 SlotIndex Def = VNI->def;
464 LiveRange::iterator I = LI.FindSegmentContaining(Def);
465 assert(I != LI.end() && "Missing segment for VNI");
466
467 // Is the register live before? Otherwise we may have to add a read-undef
468 // flag for subregister defs.
469 if (MRI->shouldTrackSubRegLiveness(LI.reg)) {
470 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
471 MachineInstr *MI = getInstructionFromIndex(Def);
472 MI->addRegisterDefReadUndef(LI.reg);
473 }
474 }
475
476 if (I->end != Def.getDeadSlot())
477 continue;
478 if (VNI->isPHIDef()) {
479 // This is a dead PHI. Remove it.
480 VNI->markUnused();
481 LI.removeSegment(I);
482 DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
483 PHIRemoved = true;
484 } else {
485 // This is a dead def. Make sure the instruction knows.
486 MachineInstr *MI = getInstructionFromIndex(Def);
487 assert(MI && "No instruction defining live value");
488 MI->addRegisterDead(LI.reg, TRI);
489 if (dead && MI->allDefsAreDead()) {
490 DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
491 dead->push_back(MI);
492 }
493 }
494 }
495 return PHIRemoved;
496 }
497
shrinkToUses(LiveInterval::SubRange & SR,unsigned Reg)498 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg)
499 {
500 DEBUG(dbgs() << "Shrink: " << SR << '\n');
501 assert(TargetRegisterInfo::isVirtualRegister(Reg)
502 && "Can only shrink virtual registers");
503 // Find all the values used, including PHI kills.
504 ShrinkToUsesWorkList WorkList;
505
506 // Visit all instructions reading Reg.
507 SlotIndex LastIdx;
508 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
509 MachineInstr *UseMI = MO.getParent();
510 if (UseMI->isDebugValue())
511 continue;
512 // Maybe the operand is for a subregister we don't care about.
513 unsigned SubReg = MO.getSubReg();
514 if (SubReg != 0) {
515 unsigned SubRegMask = TRI->getSubRegIndexLaneMask(SubReg);
516 if ((SubRegMask & SR.LaneMask) == 0)
517 continue;
518 }
519 // We only need to visit each instruction once.
520 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
521 if (Idx == LastIdx)
522 continue;
523 LastIdx = Idx;
524
525 LiveQueryResult LRQ = SR.Query(Idx);
526 VNInfo *VNI = LRQ.valueIn();
527 // For Subranges it is possible that only undef values are left in that
528 // part of the subregister, so there is no real liverange at the use
529 if (!VNI)
530 continue;
531
532 // Special case: An early-clobber tied operand reads and writes the
533 // register one slot early.
534 if (VNInfo *DefVNI = LRQ.valueDefined())
535 Idx = DefVNI->def;
536
537 WorkList.push_back(std::make_pair(Idx, VNI));
538 }
539
540 // Create a new live ranges with only minimal live segments per def.
541 LiveRange NewLR;
542 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
543 extendSegmentsToUses(NewLR, *Indexes, WorkList, SR);
544
545 // Move the trimmed ranges back.
546 SR.segments.swap(NewLR.segments);
547
548 // Remove dead PHI value numbers
549 for (auto VNI : SR.valnos) {
550 if (VNI->isUnused())
551 continue;
552 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
553 assert(Segment != nullptr && "Missing segment for VNI");
554 if (Segment->end != VNI->def.getDeadSlot())
555 continue;
556 if (VNI->isPHIDef()) {
557 // This is a dead PHI. Remove it.
558 VNI->markUnused();
559 SR.removeSegment(*Segment);
560 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
561 }
562 }
563
564 DEBUG(dbgs() << "Shrunk: " << SR << '\n');
565 }
566
extendToIndices(LiveRange & LR,ArrayRef<SlotIndex> Indices)567 void LiveIntervals::extendToIndices(LiveRange &LR,
568 ArrayRef<SlotIndex> Indices) {
569 assert(LRCalc && "LRCalc not initialized.");
570 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
571 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
572 LRCalc->extend(LR, Indices[i]);
573 }
574
pruneValue(LiveRange & LR,SlotIndex Kill,SmallVectorImpl<SlotIndex> * EndPoints)575 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
576 SmallVectorImpl<SlotIndex> *EndPoints) {
577 LiveQueryResult LRQ = LR.Query(Kill);
578 VNInfo *VNI = LRQ.valueOutOrDead();
579 if (!VNI)
580 return;
581
582 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
583 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
584
585 // If VNI isn't live out from KillMBB, the value is trivially pruned.
586 if (LRQ.endPoint() < MBBEnd) {
587 LR.removeSegment(Kill, LRQ.endPoint());
588 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
589 return;
590 }
591
592 // VNI is live out of KillMBB.
593 LR.removeSegment(Kill, MBBEnd);
594 if (EndPoints) EndPoints->push_back(MBBEnd);
595
596 // Find all blocks that are reachable from KillMBB without leaving VNI's live
597 // range. It is possible that KillMBB itself is reachable, so start a DFS
598 // from each successor.
599 typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
600 VisitedTy Visited;
601 for (MachineBasicBlock::succ_iterator
602 SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
603 SuccI != SuccE; ++SuccI) {
604 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
605 I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
606 I != E;) {
607 MachineBasicBlock *MBB = *I;
608
609 // Check if VNI is live in to MBB.
610 SlotIndex MBBStart, MBBEnd;
611 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
612 LiveQueryResult LRQ = LR.Query(MBBStart);
613 if (LRQ.valueIn() != VNI) {
614 // This block isn't part of the VNI segment. Prune the search.
615 I.skipChildren();
616 continue;
617 }
618
619 // Prune the search if VNI is killed in MBB.
620 if (LRQ.endPoint() < MBBEnd) {
621 LR.removeSegment(MBBStart, LRQ.endPoint());
622 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
623 I.skipChildren();
624 continue;
625 }
626
627 // VNI is live through MBB.
628 LR.removeSegment(MBBStart, MBBEnd);
629 if (EndPoints) EndPoints->push_back(MBBEnd);
630 ++I;
631 }
632 }
633 }
634
635 //===----------------------------------------------------------------------===//
636 // Register allocator hooks.
637 //
638
addKillFlags(const VirtRegMap * VRM)639 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
640 // Keep track of regunit ranges.
641 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
642 // Keep track of subregister ranges.
643 SmallVector<std::pair<const LiveInterval::SubRange*,
644 LiveRange::const_iterator>, 4> SRs;
645
646 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
647 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
648 if (MRI->reg_nodbg_empty(Reg))
649 continue;
650 const LiveInterval &LI = getInterval(Reg);
651 if (LI.empty())
652 continue;
653
654 // Find the regunit intervals for the assigned register. They may overlap
655 // the virtual register live range, cancelling any kills.
656 RU.clear();
657 for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
658 ++Units) {
659 const LiveRange &RURange = getRegUnit(*Units);
660 if (RURange.empty())
661 continue;
662 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
663 }
664
665 if (MRI->subRegLivenessEnabled()) {
666 SRs.clear();
667 for (const LiveInterval::SubRange &SR : LI.subranges()) {
668 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
669 }
670 }
671
672 // Every instruction that kills Reg corresponds to a segment range end
673 // point.
674 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
675 ++RI) {
676 // A block index indicates an MBB edge.
677 if (RI->end.isBlock())
678 continue;
679 MachineInstr *MI = getInstructionFromIndex(RI->end);
680 if (!MI)
681 continue;
682
683 // Check if any of the regunits are live beyond the end of RI. That could
684 // happen when a physreg is defined as a copy of a virtreg:
685 //
686 // %EAX = COPY %vreg5
687 // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
688 // BAR %EAX<kill>
689 //
690 // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
691 for (auto &RUP : RU) {
692 const LiveRange &RURange = *RUP.first;
693 LiveRange::const_iterator &I = RUP.second;
694 if (I == RURange.end())
695 continue;
696 I = RURange.advanceTo(I, RI->end);
697 if (I == RURange.end() || I->start >= RI->end)
698 continue;
699 // I is overlapping RI.
700 goto CancelKill;
701 }
702
703 if (MRI->subRegLivenessEnabled()) {
704 // When reading a partial undefined value we must not add a kill flag.
705 // The regalloc might have used the undef lane for something else.
706 // Example:
707 // %vreg1 = ... ; R32: %vreg1
708 // %vreg2:high16 = ... ; R64: %vreg2
709 // = read %vreg2<kill> ; R64: %vreg2
710 // = read %vreg1 ; R32: %vreg1
711 // The <kill> flag is correct for %vreg2, but the register allocator may
712 // assign R0L to %vreg1, and R0 to %vreg2 because the low 32bits of R0
713 // are actually never written by %vreg2. After assignment the <kill>
714 // flag at the read instruction is invalid.
715 unsigned DefinedLanesMask;
716 if (!SRs.empty()) {
717 // Compute a mask of lanes that are defined.
718 DefinedLanesMask = 0;
719 for (auto &SRP : SRs) {
720 const LiveInterval::SubRange &SR = *SRP.first;
721 LiveRange::const_iterator &I = SRP.second;
722 if (I == SR.end())
723 continue;
724 I = SR.advanceTo(I, RI->end);
725 if (I == SR.end() || I->start >= RI->end)
726 continue;
727 // I is overlapping RI
728 DefinedLanesMask |= SR.LaneMask;
729 }
730 } else
731 DefinedLanesMask = ~0u;
732
733 bool IsFullWrite = false;
734 for (const MachineOperand &MO : MI->operands()) {
735 if (!MO.isReg() || MO.getReg() != Reg)
736 continue;
737 if (MO.isUse()) {
738 // Reading any undefined lanes?
739 unsigned UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
740 if ((UseMask & ~DefinedLanesMask) != 0)
741 goto CancelKill;
742 } else if (MO.getSubReg() == 0) {
743 // Writing to the full register?
744 assert(MO.isDef());
745 IsFullWrite = true;
746 }
747 }
748
749 // If an instruction writes to a subregister, a new segment starts in
750 // the LiveInterval. But as this is only overriding part of the register
751 // adding kill-flags is not correct here after registers have been
752 // assigned.
753 if (!IsFullWrite) {
754 // Next segment has to be adjacent in the subregister write case.
755 LiveRange::const_iterator N = std::next(RI);
756 if (N != LI.end() && N->start == RI->end)
757 goto CancelKill;
758 }
759 }
760
761 MI->addRegisterKilled(Reg, nullptr);
762 continue;
763 CancelKill:
764 MI->clearRegisterKills(Reg, nullptr);
765 }
766 }
767 }
768
769 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const770 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
771 // A local live range must be fully contained inside the block, meaning it is
772 // defined and killed at instructions, not at block boundaries. It is not
773 // live in or or out of any block.
774 //
775 // It is technically possible to have a PHI-defined live range identical to a
776 // single block, but we are going to return false in that case.
777
778 SlotIndex Start = LI.beginIndex();
779 if (Start.isBlock())
780 return nullptr;
781
782 SlotIndex Stop = LI.endIndex();
783 if (Stop.isBlock())
784 return nullptr;
785
786 // getMBBFromIndex doesn't need to search the MBB table when both indexes
787 // belong to proper instructions.
788 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
789 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
790 return MBB1 == MBB2 ? MBB1 : nullptr;
791 }
792
793 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const794 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
795 for (const VNInfo *PHI : LI.valnos) {
796 if (PHI->isUnused() || !PHI->isPHIDef())
797 continue;
798 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
799 // Conservatively return true instead of scanning huge predecessor lists.
800 if (PHIMBB->pred_size() > 100)
801 return true;
802 for (MachineBasicBlock::const_pred_iterator
803 PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
804 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
805 return true;
806 }
807 return false;
808 }
809
810 float
getSpillWeight(bool isDef,bool isUse,const MachineBlockFrequencyInfo * MBFI,const MachineInstr * MI)811 LiveIntervals::getSpillWeight(bool isDef, bool isUse,
812 const MachineBlockFrequencyInfo *MBFI,
813 const MachineInstr *MI) {
814 BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
815 const float Scale = 1.0f / MBFI->getEntryFreq();
816 return (isDef + isUse) * (Freq.getFrequency() * Scale);
817 }
818
819 LiveRange::Segment
addSegmentToEndOfBlock(unsigned reg,MachineInstr * startInst)820 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
821 LiveInterval& Interval = createEmptyInterval(reg);
822 VNInfo* VN = Interval.getNextValue(
823 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
824 getVNInfoAllocator());
825 LiveRange::Segment S(
826 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
827 getMBBEndIdx(startInst->getParent()), VN);
828 Interval.addSegment(S);
829
830 return S;
831 }
832
833
834 //===----------------------------------------------------------------------===//
835 // Register mask functions
836 //===----------------------------------------------------------------------===//
837
checkRegMaskInterference(LiveInterval & LI,BitVector & UsableRegs)838 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
839 BitVector &UsableRegs) {
840 if (LI.empty())
841 return false;
842 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
843
844 // Use a smaller arrays for local live ranges.
845 ArrayRef<SlotIndex> Slots;
846 ArrayRef<const uint32_t*> Bits;
847 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
848 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
849 Bits = getRegMaskBitsInBlock(MBB->getNumber());
850 } else {
851 Slots = getRegMaskSlots();
852 Bits = getRegMaskBits();
853 }
854
855 // We are going to enumerate all the register mask slots contained in LI.
856 // Start with a binary search of RegMaskSlots to find a starting point.
857 ArrayRef<SlotIndex>::iterator SlotI =
858 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
859 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
860
861 // No slots in range, LI begins after the last call.
862 if (SlotI == SlotE)
863 return false;
864
865 bool Found = false;
866 for (;;) {
867 assert(*SlotI >= LiveI->start);
868 // Loop over all slots overlapping this segment.
869 while (*SlotI < LiveI->end) {
870 // *SlotI overlaps LI. Collect mask bits.
871 if (!Found) {
872 // This is the first overlap. Initialize UsableRegs to all ones.
873 UsableRegs.clear();
874 UsableRegs.resize(TRI->getNumRegs(), true);
875 Found = true;
876 }
877 // Remove usable registers clobbered by this mask.
878 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
879 if (++SlotI == SlotE)
880 return Found;
881 }
882 // *SlotI is beyond the current LI segment.
883 LiveI = LI.advanceTo(LiveI, *SlotI);
884 if (LiveI == LiveE)
885 return Found;
886 // Advance SlotI until it overlaps.
887 while (*SlotI < LiveI->start)
888 if (++SlotI == SlotE)
889 return Found;
890 }
891 }
892
893 //===----------------------------------------------------------------------===//
894 // IntervalUpdate class.
895 //===----------------------------------------------------------------------===//
896
897 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
898 class LiveIntervals::HMEditor {
899 private:
900 LiveIntervals& LIS;
901 const MachineRegisterInfo& MRI;
902 const TargetRegisterInfo& TRI;
903 SlotIndex OldIdx;
904 SlotIndex NewIdx;
905 SmallPtrSet<LiveRange*, 8> Updated;
906 bool UpdateFlags;
907
908 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex OldIdx,SlotIndex NewIdx,bool UpdateFlags)909 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
910 const TargetRegisterInfo& TRI,
911 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
912 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
913 UpdateFlags(UpdateFlags) {}
914
915 // FIXME: UpdateFlags is a workaround that creates live intervals for all
916 // physregs, even those that aren't needed for regalloc, in order to update
917 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
918 // flags, and postRA passes will use a live register utility instead.
getRegUnitLI(unsigned Unit)919 LiveRange *getRegUnitLI(unsigned Unit) {
920 if (UpdateFlags)
921 return &LIS.getRegUnit(Unit);
922 return LIS.getCachedRegUnit(Unit);
923 }
924
925 /// Update all live ranges touched by MI, assuming a move from OldIdx to
926 /// NewIdx.
updateAllRanges(MachineInstr * MI)927 void updateAllRanges(MachineInstr *MI) {
928 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
929 bool hasRegMask = false;
930 for (MIOperands MO(MI); MO.isValid(); ++MO) {
931 if (MO->isRegMask())
932 hasRegMask = true;
933 if (!MO->isReg())
934 continue;
935 // Aggressively clear all kill flags.
936 // They are reinserted by VirtRegRewriter.
937 if (MO->isUse())
938 MO->setIsKill(false);
939
940 unsigned Reg = MO->getReg();
941 if (!Reg)
942 continue;
943 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
944 LiveInterval &LI = LIS.getInterval(Reg);
945 if (LI.hasSubRanges()) {
946 unsigned SubReg = MO->getSubReg();
947 unsigned LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
948 for (LiveInterval::SubRange &S : LI.subranges()) {
949 if ((S.LaneMask & LaneMask) == 0)
950 continue;
951 updateRange(S, Reg, S.LaneMask);
952 }
953 }
954 updateRange(LI, Reg, 0);
955 continue;
956 }
957
958 // For physregs, only update the regunits that actually have a
959 // precomputed live range.
960 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
961 if (LiveRange *LR = getRegUnitLI(*Units))
962 updateRange(*LR, *Units, 0);
963 }
964 if (hasRegMask)
965 updateRegMaskSlots();
966 }
967
968 private:
969 /// Update a single live range, assuming an instruction has been moved from
970 /// OldIdx to NewIdx.
updateRange(LiveRange & LR,unsigned Reg,unsigned LaneMask)971 void updateRange(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
972 if (!Updated.insert(&LR).second)
973 return;
974 DEBUG({
975 dbgs() << " ";
976 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
977 dbgs() << PrintReg(Reg);
978 if (LaneMask != 0)
979 dbgs() << format(" L%04X", LaneMask);
980 } else {
981 dbgs() << PrintRegUnit(Reg, &TRI);
982 }
983 dbgs() << ":\t" << LR << '\n';
984 });
985 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
986 handleMoveDown(LR);
987 else
988 handleMoveUp(LR, Reg, LaneMask);
989 DEBUG(dbgs() << " -->\t" << LR << '\n');
990 LR.verify();
991 }
992
993 /// Update LR to reflect an instruction has been moved downwards from OldIdx
994 /// to NewIdx.
995 ///
996 /// 1. Live def at OldIdx:
997 /// Move def to NewIdx, assert endpoint after NewIdx.
998 ///
999 /// 2. Live def at OldIdx, killed at NewIdx:
1000 /// Change to dead def at NewIdx.
1001 /// (Happens when bundling def+kill together).
1002 ///
1003 /// 3. Dead def at OldIdx:
1004 /// Move def to NewIdx, possibly across another live value.
1005 ///
1006 /// 4. Def at OldIdx AND at NewIdx:
1007 /// Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
1008 /// (Happens when bundling multiple defs together).
1009 ///
1010 /// 5. Value read at OldIdx, killed before NewIdx:
1011 /// Extend kill to NewIdx.
1012 ///
handleMoveDown(LiveRange & LR)1013 void handleMoveDown(LiveRange &LR) {
1014 // First look for a kill at OldIdx.
1015 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1016 LiveRange::iterator E = LR.end();
1017 // Is LR even live at OldIdx?
1018 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1019 return;
1020
1021 // Handle a live-in value.
1022 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1023 bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
1024 // If the live-in value already extends to NewIdx, there is nothing to do.
1025 if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
1026 return;
1027 // Aggressively remove all kill flags from the old kill point.
1028 // Kill flags shouldn't be used while live intervals exist, they will be
1029 // reinserted by VirtRegRewriter.
1030 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
1031 for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
1032 if (MO->isReg() && MO->isUse())
1033 MO->setIsKill(false);
1034 // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
1035 // overlapping ranges. Case 5 above.
1036 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1037 // If this was a kill, there may also be a def. Otherwise we're done.
1038 if (!isKill)
1039 return;
1040 ++I;
1041 }
1042
1043 // Check for a def at OldIdx.
1044 if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
1045 return;
1046 // We have a def at OldIdx.
1047 VNInfo *DefVNI = I->valno;
1048 assert(DefVNI->def == I->start && "Inconsistent def");
1049 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1050 // If the defined value extends beyond NewIdx, just move the def down.
1051 // This is case 1 above.
1052 if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
1053 I->start = DefVNI->def;
1054 return;
1055 }
1056 // The remaining possibilities are now:
1057 // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
1058 // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
1059 // In either case, it is possible that there is an existing def at NewIdx.
1060 assert((I->end == OldIdx.getDeadSlot() ||
1061 SlotIndex::isSameInstr(I->end, NewIdx)) &&
1062 "Cannot move def below kill");
1063 LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
1064 if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1065 // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
1066 // coalesced into that value.
1067 assert(NewI->valno != DefVNI && "Multiple defs of value?");
1068 LR.removeValNo(DefVNI);
1069 return;
1070 }
1071 // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
1072 // If the def at OldIdx was dead, we allow it to be moved across other LR
1073 // values. The new range should be placed immediately before NewI, move any
1074 // intermediate ranges up.
1075 assert(NewI != I && "Inconsistent iterators");
1076 std::copy(std::next(I), NewI, I);
1077 *std::prev(NewI)
1078 = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1079 }
1080
1081 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1082 /// to NewIdx.
1083 ///
1084 /// 1. Live def at OldIdx:
1085 /// Hoist def to NewIdx.
1086 ///
1087 /// 2. Dead def at OldIdx:
1088 /// Hoist def+end to NewIdx, possibly move across other values.
1089 ///
1090 /// 3. Dead def at OldIdx AND existing def at NewIdx:
1091 /// Remove value defined at OldIdx, coalescing it with existing value.
1092 ///
1093 /// 4. Live def at OldIdx AND existing def at NewIdx:
1094 /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
1095 /// (Happens when bundling multiple defs together).
1096 ///
1097 /// 5. Value killed at OldIdx:
1098 /// Hoist kill to NewIdx, then scan for last kill between NewIdx and
1099 /// OldIdx.
1100 ///
handleMoveUp(LiveRange & LR,unsigned Reg,unsigned LaneMask)1101 void handleMoveUp(LiveRange &LR, unsigned Reg, unsigned LaneMask) {
1102 // First look for a kill at OldIdx.
1103 LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
1104 LiveRange::iterator E = LR.end();
1105 // Is LR even live at OldIdx?
1106 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
1107 return;
1108
1109 // Handle a live-in value.
1110 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
1111 // If the live-in value isn't killed here, there is nothing to do.
1112 if (!SlotIndex::isSameInstr(OldIdx, I->end))
1113 return;
1114 // Adjust I->end to end at NewIdx. If we are hoisting a kill above
1115 // another use, we need to search for that use. Case 5 above.
1116 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
1117 ++I;
1118 // If OldIdx also defines a value, there couldn't have been another use.
1119 if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
1120 // No def, search for the new kill.
1121 // This can never be an early clobber kill since there is no def.
1122 std::prev(I)->end = findLastUseBefore(Reg, LaneMask).getRegSlot();
1123 return;
1124 }
1125 }
1126
1127 // Now deal with the def at OldIdx.
1128 assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
1129 VNInfo *DefVNI = I->valno;
1130 assert(DefVNI->def == I->start && "Inconsistent def");
1131 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
1132
1133 // Check for an existing def at NewIdx.
1134 LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
1135 if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
1136 assert(NewI->valno != DefVNI && "Same value defined more than once?");
1137 // There is an existing def at NewIdx.
1138 if (I->end.isDead()) {
1139 // Case 3: Remove the dead def at OldIdx.
1140 LR.removeValNo(DefVNI);
1141 return;
1142 }
1143 // Case 4: Replace def at NewIdx with live def at OldIdx.
1144 I->start = DefVNI->def;
1145 LR.removeValNo(NewI->valno);
1146 return;
1147 }
1148
1149 // There is no existing def at NewIdx. Hoist DefVNI.
1150 if (!I->end.isDead()) {
1151 // Leave the end point of a live def.
1152 I->start = DefVNI->def;
1153 return;
1154 }
1155
1156 // DefVNI is a dead def. It may have been moved across other values in LR,
1157 // so move I up to NewI. Slide [NewI;I) down one position.
1158 std::copy_backward(NewI, I, std::next(I));
1159 *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
1160 }
1161
updateRegMaskSlots()1162 void updateRegMaskSlots() {
1163 SmallVectorImpl<SlotIndex>::iterator RI =
1164 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1165 OldIdx);
1166 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1167 "No RegMask at OldIdx.");
1168 *RI = NewIdx.getRegSlot();
1169 assert((RI == LIS.RegMaskSlots.begin() ||
1170 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1171 "Cannot move regmask instruction above another call");
1172 assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1173 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1174 "Cannot move regmask instruction below another call");
1175 }
1176
1177 // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(unsigned Reg,unsigned LaneMask)1178 SlotIndex findLastUseBefore(unsigned Reg, unsigned LaneMask) {
1179
1180 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1181 SlotIndex LastUse = NewIdx;
1182 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1183 unsigned SubReg = MO.getSubReg();
1184 if (SubReg != 0 && LaneMask != 0
1185 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask) == 0)
1186 continue;
1187
1188 const MachineInstr *MI = MO.getParent();
1189 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1190 if (InstSlot > LastUse && InstSlot < OldIdx)
1191 LastUse = InstSlot;
1192 }
1193 return LastUse;
1194 }
1195
1196 // This is a regunit interval, so scanning the use list could be very
1197 // expensive. Scan upwards from OldIdx instead.
1198 assert(NewIdx < OldIdx && "Expected upwards move");
1199 SlotIndexes *Indexes = LIS.getSlotIndexes();
1200 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
1201
1202 // OldIdx may not correspond to an instruction any longer, so set MII to
1203 // point to the next instruction after OldIdx, or MBB->end().
1204 MachineBasicBlock::iterator MII = MBB->end();
1205 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1206 Indexes->getNextNonNullIndex(OldIdx)))
1207 if (MI->getParent() == MBB)
1208 MII = MI;
1209
1210 MachineBasicBlock::iterator Begin = MBB->begin();
1211 while (MII != Begin) {
1212 if ((--MII)->isDebugValue())
1213 continue;
1214 SlotIndex Idx = Indexes->getInstructionIndex(MII);
1215
1216 // Stop searching when NewIdx is reached.
1217 if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1218 return NewIdx;
1219
1220 // Check if MII uses Reg.
1221 for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1222 if (MO->isReg() &&
1223 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1224 TRI.hasRegUnit(MO->getReg(), Reg))
1225 return Idx;
1226 }
1227 // Didn't reach NewIdx. It must be the first instruction in the block.
1228 return NewIdx;
1229 }
1230 };
1231
handleMove(MachineInstr * MI,bool UpdateFlags)1232 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1233 assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1234 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1235 Indexes->removeMachineInstrFromMaps(MI);
1236 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1237 assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1238 OldIndex < getMBBEndIdx(MI->getParent()) &&
1239 "Cannot handle moves across basic block boundaries.");
1240
1241 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1242 HME.updateAllRanges(MI);
1243 }
1244
handleMoveIntoBundle(MachineInstr * MI,MachineInstr * BundleStart,bool UpdateFlags)1245 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1246 MachineInstr* BundleStart,
1247 bool UpdateFlags) {
1248 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1249 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1250 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1251 HME.updateAllRanges(MI);
1252 }
1253
repairOldRegInRange(const MachineBasicBlock::iterator Begin,const MachineBasicBlock::iterator End,const SlotIndex endIdx,LiveRange & LR,const unsigned Reg,const unsigned LaneMask)1254 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1255 const MachineBasicBlock::iterator End,
1256 const SlotIndex endIdx,
1257 LiveRange &LR, const unsigned Reg,
1258 const unsigned LaneMask) {
1259 LiveInterval::iterator LII = LR.find(endIdx);
1260 SlotIndex lastUseIdx;
1261 if (LII != LR.end() && LII->start < endIdx)
1262 lastUseIdx = LII->end;
1263 else
1264 --LII;
1265
1266 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1267 --I;
1268 MachineInstr *MI = I;
1269 if (MI->isDebugValue())
1270 continue;
1271
1272 SlotIndex instrIdx = getInstructionIndex(MI);
1273 bool isStartValid = getInstructionFromIndex(LII->start);
1274 bool isEndValid = getInstructionFromIndex(LII->end);
1275
1276 // FIXME: This doesn't currently handle early-clobber or multiple removed
1277 // defs inside of the region to repair.
1278 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1279 OE = MI->operands_end(); OI != OE; ++OI) {
1280 const MachineOperand &MO = *OI;
1281 if (!MO.isReg() || MO.getReg() != Reg)
1282 continue;
1283
1284 unsigned SubReg = MO.getSubReg();
1285 unsigned Mask = TRI->getSubRegIndexLaneMask(SubReg);
1286 if ((Mask & LaneMask) == 0)
1287 continue;
1288
1289 if (MO.isDef()) {
1290 if (!isStartValid) {
1291 if (LII->end.isDead()) {
1292 SlotIndex prevStart;
1293 if (LII != LR.begin())
1294 prevStart = std::prev(LII)->start;
1295
1296 // FIXME: This could be more efficient if there was a
1297 // removeSegment method that returned an iterator.
1298 LR.removeSegment(*LII, true);
1299 if (prevStart.isValid())
1300 LII = LR.find(prevStart);
1301 else
1302 LII = LR.begin();
1303 } else {
1304 LII->start = instrIdx.getRegSlot();
1305 LII->valno->def = instrIdx.getRegSlot();
1306 if (MO.getSubReg() && !MO.isUndef())
1307 lastUseIdx = instrIdx.getRegSlot();
1308 else
1309 lastUseIdx = SlotIndex();
1310 continue;
1311 }
1312 }
1313
1314 if (!lastUseIdx.isValid()) {
1315 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1316 LiveRange::Segment S(instrIdx.getRegSlot(),
1317 instrIdx.getDeadSlot(), VNI);
1318 LII = LR.addSegment(S);
1319 } else if (LII->start != instrIdx.getRegSlot()) {
1320 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1321 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1322 LII = LR.addSegment(S);
1323 }
1324
1325 if (MO.getSubReg() && !MO.isUndef())
1326 lastUseIdx = instrIdx.getRegSlot();
1327 else
1328 lastUseIdx = SlotIndex();
1329 } else if (MO.isUse()) {
1330 // FIXME: This should probably be handled outside of this branch,
1331 // either as part of the def case (for defs inside of the region) or
1332 // after the loop over the region.
1333 if (!isEndValid && !LII->end.isBlock())
1334 LII->end = instrIdx.getRegSlot();
1335 if (!lastUseIdx.isValid())
1336 lastUseIdx = instrIdx.getRegSlot();
1337 }
1338 }
1339 }
1340 }
1341
1342 void
repairIntervalsInRange(MachineBasicBlock * MBB,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,ArrayRef<unsigned> OrigRegs)1343 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1344 MachineBasicBlock::iterator Begin,
1345 MachineBasicBlock::iterator End,
1346 ArrayRef<unsigned> OrigRegs) {
1347 // Find anchor points, which are at the beginning/end of blocks or at
1348 // instructions that already have indexes.
1349 while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1350 --Begin;
1351 while (End != MBB->end() && !Indexes->hasIndex(End))
1352 ++End;
1353
1354 SlotIndex endIdx;
1355 if (End == MBB->end())
1356 endIdx = getMBBEndIdx(MBB).getPrevSlot();
1357 else
1358 endIdx = getInstructionIndex(End);
1359
1360 Indexes->repairIndexesInRange(MBB, Begin, End);
1361
1362 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1363 --I;
1364 MachineInstr *MI = I;
1365 if (MI->isDebugValue())
1366 continue;
1367 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1368 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1369 if (MOI->isReg() &&
1370 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1371 !hasInterval(MOI->getReg())) {
1372 createAndComputeVirtRegInterval(MOI->getReg());
1373 }
1374 }
1375 }
1376
1377 for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1378 unsigned Reg = OrigRegs[i];
1379 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1380 continue;
1381
1382 LiveInterval &LI = getInterval(Reg);
1383 // FIXME: Should we support undefs that gain defs?
1384 if (!LI.hasAtLeastOneValue())
1385 continue;
1386
1387 for (LiveInterval::SubRange &S : LI.subranges()) {
1388 repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1389 }
1390 repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1391 }
1392 }
1393
removePhysRegDefAt(unsigned Reg,SlotIndex Pos)1394 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1395 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1396 if (LiveRange *LR = getCachedRegUnit(*Units))
1397 if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1398 LR->removeValNo(VNI);
1399 }
1400 }
1401
removeVRegDefAt(LiveInterval & LI,SlotIndex Pos)1402 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1403 VNInfo *VNI = LI.getVNInfoAt(Pos);
1404 if (VNI == nullptr)
1405 return;
1406 LI.removeValNo(VNI);
1407
1408 // Also remove the value in subranges.
1409 for (LiveInterval::SubRange &S : LI.subranges()) {
1410 if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1411 S.removeValNo(SVNI);
1412 }
1413 LI.removeEmptySubRanges();
1414 }
1415