1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include <cstring>
24 #include <limits.h>
25
26 using namespace llvm;
27
28 /// A macro used to combine two fcCategory enums into one key which can be used
29 /// in a switch statement to classify how the interaction of two APFloat's
30 /// categories affects an operation.
31 ///
32 /// TODO: If clang source code is ever allowed to use constexpr in its own
33 /// codebase, change this into a static inline function.
34 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
35
36 /* Assumed in hexadecimal significand parsing, and conversion to
37 hexadecimal strings. */
38 static_assert(integerPartWidth % 4 == 0, "Part width must be divisible by 4!");
39
40 namespace llvm {
41
42 /* Represents floating point arithmetic semantics. */
43 struct fltSemantics {
44 /* The largest E such that 2^E is representable; this matches the
45 definition of IEEE 754. */
46 APFloat::ExponentType maxExponent;
47
48 /* The smallest E such that 2^E is a normalized number; this
49 matches the definition of IEEE 754. */
50 APFloat::ExponentType minExponent;
51
52 /* Number of bits in the significand. This includes the integer
53 bit. */
54 unsigned int precision;
55 };
56
57 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 };
58 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 };
59 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 };
60 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 };
61 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 };
62 const fltSemantics APFloat::Bogus = { 0, 0, 0 };
63
64 /* The PowerPC format consists of two doubles. It does not map cleanly
65 onto the usual format above. It is approximated using twice the
66 mantissa bits. Note that for exponents near the double minimum,
67 we no longer can represent the full 106 mantissa bits, so those
68 will be treated as denormal numbers.
69
70 FIXME: While this approximation is equivalent to what GCC uses for
71 compile-time arithmetic on PPC double-double numbers, it is not able
72 to represent all possible values held by a PPC double-double number,
73 for example: (long double) 1.0 + (long double) 0x1p-106
74 Should this be replaced by a full emulation of PPC double-double? */
75 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 };
76
77 /* A tight upper bound on number of parts required to hold the value
78 pow(5, power) is
79
80 power * 815 / (351 * integerPartWidth) + 1
81
82 However, whilst the result may require only this many parts,
83 because we are multiplying two values to get it, the
84 multiplication may require an extra part with the excess part
85 being zero (consider the trivial case of 1 * 1, tcFullMultiply
86 requires two parts to hold the single-part result). So we add an
87 extra one to guarantee enough space whilst multiplying. */
88 const unsigned int maxExponent = 16383;
89 const unsigned int maxPrecision = 113;
90 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
91 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
92 / (351 * integerPartWidth));
93 }
94
95 /* A bunch of private, handy routines. */
96
97 static inline unsigned int
partCountForBits(unsigned int bits)98 partCountForBits(unsigned int bits)
99 {
100 return ((bits) + integerPartWidth - 1) / integerPartWidth;
101 }
102
103 /* Returns 0U-9U. Return values >= 10U are not digits. */
104 static inline unsigned int
decDigitValue(unsigned int c)105 decDigitValue(unsigned int c)
106 {
107 return c - '0';
108 }
109
110 /* Return the value of a decimal exponent of the form
111 [+-]ddddddd.
112
113 If the exponent overflows, returns a large exponent with the
114 appropriate sign. */
115 static int
readExponent(StringRef::iterator begin,StringRef::iterator end)116 readExponent(StringRef::iterator begin, StringRef::iterator end)
117 {
118 bool isNegative;
119 unsigned int absExponent;
120 const unsigned int overlargeExponent = 24000; /* FIXME. */
121 StringRef::iterator p = begin;
122
123 assert(p != end && "Exponent has no digits");
124
125 isNegative = (*p == '-');
126 if (*p == '-' || *p == '+') {
127 p++;
128 assert(p != end && "Exponent has no digits");
129 }
130
131 absExponent = decDigitValue(*p++);
132 assert(absExponent < 10U && "Invalid character in exponent");
133
134 for (; p != end; ++p) {
135 unsigned int value;
136
137 value = decDigitValue(*p);
138 assert(value < 10U && "Invalid character in exponent");
139
140 value += absExponent * 10;
141 if (absExponent >= overlargeExponent) {
142 absExponent = overlargeExponent;
143 p = end; /* outwit assert below */
144 break;
145 }
146 absExponent = value;
147 }
148
149 assert(p == end && "Invalid exponent in exponent");
150
151 if (isNegative)
152 return -(int) absExponent;
153 else
154 return (int) absExponent;
155 }
156
157 /* This is ugly and needs cleaning up, but I don't immediately see
158 how whilst remaining safe. */
159 static int
totalExponent(StringRef::iterator p,StringRef::iterator end,int exponentAdjustment)160 totalExponent(StringRef::iterator p, StringRef::iterator end,
161 int exponentAdjustment)
162 {
163 int unsignedExponent;
164 bool negative, overflow;
165 int exponent = 0;
166
167 assert(p != end && "Exponent has no digits");
168
169 negative = *p == '-';
170 if (*p == '-' || *p == '+') {
171 p++;
172 assert(p != end && "Exponent has no digits");
173 }
174
175 unsignedExponent = 0;
176 overflow = false;
177 for (; p != end; ++p) {
178 unsigned int value;
179
180 value = decDigitValue(*p);
181 assert(value < 10U && "Invalid character in exponent");
182
183 unsignedExponent = unsignedExponent * 10 + value;
184 if (unsignedExponent > 32767) {
185 overflow = true;
186 break;
187 }
188 }
189
190 if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
191 overflow = true;
192
193 if (!overflow) {
194 exponent = unsignedExponent;
195 if (negative)
196 exponent = -exponent;
197 exponent += exponentAdjustment;
198 if (exponent > 32767 || exponent < -32768)
199 overflow = true;
200 }
201
202 if (overflow)
203 exponent = negative ? -32768: 32767;
204
205 return exponent;
206 }
207
208 static StringRef::iterator
skipLeadingZeroesAndAnyDot(StringRef::iterator begin,StringRef::iterator end,StringRef::iterator * dot)209 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
210 StringRef::iterator *dot)
211 {
212 StringRef::iterator p = begin;
213 *dot = end;
214 while (p != end && *p == '0')
215 p++;
216
217 if (p != end && *p == '.') {
218 *dot = p++;
219
220 assert(end - begin != 1 && "Significand has no digits");
221
222 while (p != end && *p == '0')
223 p++;
224 }
225
226 return p;
227 }
228
229 /* Given a normal decimal floating point number of the form
230
231 dddd.dddd[eE][+-]ddd
232
233 where the decimal point and exponent are optional, fill out the
234 structure D. Exponent is appropriate if the significand is
235 treated as an integer, and normalizedExponent if the significand
236 is taken to have the decimal point after a single leading
237 non-zero digit.
238
239 If the value is zero, V->firstSigDigit points to a non-digit, and
240 the return exponent is zero.
241 */
242 struct decimalInfo {
243 const char *firstSigDigit;
244 const char *lastSigDigit;
245 int exponent;
246 int normalizedExponent;
247 };
248
249 static void
interpretDecimal(StringRef::iterator begin,StringRef::iterator end,decimalInfo * D)250 interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
251 decimalInfo *D)
252 {
253 StringRef::iterator dot = end;
254 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
255
256 D->firstSigDigit = p;
257 D->exponent = 0;
258 D->normalizedExponent = 0;
259
260 for (; p != end; ++p) {
261 if (*p == '.') {
262 assert(dot == end && "String contains multiple dots");
263 dot = p++;
264 if (p == end)
265 break;
266 }
267 if (decDigitValue(*p) >= 10U)
268 break;
269 }
270
271 if (p != end) {
272 assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
273 assert(p != begin && "Significand has no digits");
274 assert((dot == end || p - begin != 1) && "Significand has no digits");
275
276 /* p points to the first non-digit in the string */
277 D->exponent = readExponent(p + 1, end);
278
279 /* Implied decimal point? */
280 if (dot == end)
281 dot = p;
282 }
283
284 /* If number is all zeroes accept any exponent. */
285 if (p != D->firstSigDigit) {
286 /* Drop insignificant trailing zeroes. */
287 if (p != begin) {
288 do
289 do
290 p--;
291 while (p != begin && *p == '0');
292 while (p != begin && *p == '.');
293 }
294
295 /* Adjust the exponents for any decimal point. */
296 D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
297 D->normalizedExponent = (D->exponent +
298 static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
299 - (dot > D->firstSigDigit && dot < p)));
300 }
301
302 D->lastSigDigit = p;
303 }
304
305 /* Return the trailing fraction of a hexadecimal number.
306 DIGITVALUE is the first hex digit of the fraction, P points to
307 the next digit. */
308 static lostFraction
trailingHexadecimalFraction(StringRef::iterator p,StringRef::iterator end,unsigned int digitValue)309 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
310 unsigned int digitValue)
311 {
312 unsigned int hexDigit;
313
314 /* If the first trailing digit isn't 0 or 8 we can work out the
315 fraction immediately. */
316 if (digitValue > 8)
317 return lfMoreThanHalf;
318 else if (digitValue < 8 && digitValue > 0)
319 return lfLessThanHalf;
320
321 // Otherwise we need to find the first non-zero digit.
322 while (p != end && (*p == '0' || *p == '.'))
323 p++;
324
325 assert(p != end && "Invalid trailing hexadecimal fraction!");
326
327 hexDigit = hexDigitValue(*p);
328
329 /* If we ran off the end it is exactly zero or one-half, otherwise
330 a little more. */
331 if (hexDigit == -1U)
332 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
333 else
334 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
335 }
336
337 /* Return the fraction lost were a bignum truncated losing the least
338 significant BITS bits. */
339 static lostFraction
lostFractionThroughTruncation(const integerPart * parts,unsigned int partCount,unsigned int bits)340 lostFractionThroughTruncation(const integerPart *parts,
341 unsigned int partCount,
342 unsigned int bits)
343 {
344 unsigned int lsb;
345
346 lsb = APInt::tcLSB(parts, partCount);
347
348 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
349 if (bits <= lsb)
350 return lfExactlyZero;
351 if (bits == lsb + 1)
352 return lfExactlyHalf;
353 if (bits <= partCount * integerPartWidth &&
354 APInt::tcExtractBit(parts, bits - 1))
355 return lfMoreThanHalf;
356
357 return lfLessThanHalf;
358 }
359
360 /* Shift DST right BITS bits noting lost fraction. */
361 static lostFraction
shiftRight(integerPart * dst,unsigned int parts,unsigned int bits)362 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
363 {
364 lostFraction lost_fraction;
365
366 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
367
368 APInt::tcShiftRight(dst, parts, bits);
369
370 return lost_fraction;
371 }
372
373 /* Combine the effect of two lost fractions. */
374 static lostFraction
combineLostFractions(lostFraction moreSignificant,lostFraction lessSignificant)375 combineLostFractions(lostFraction moreSignificant,
376 lostFraction lessSignificant)
377 {
378 if (lessSignificant != lfExactlyZero) {
379 if (moreSignificant == lfExactlyZero)
380 moreSignificant = lfLessThanHalf;
381 else if (moreSignificant == lfExactlyHalf)
382 moreSignificant = lfMoreThanHalf;
383 }
384
385 return moreSignificant;
386 }
387
388 /* The error from the true value, in half-ulps, on multiplying two
389 floating point numbers, which differ from the value they
390 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
391 than the returned value.
392
393 See "How to Read Floating Point Numbers Accurately" by William D
394 Clinger. */
395 static unsigned int
HUerrBound(bool inexactMultiply,unsigned int HUerr1,unsigned int HUerr2)396 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
397 {
398 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
399
400 if (HUerr1 + HUerr2 == 0)
401 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
402 else
403 return inexactMultiply + 2 * (HUerr1 + HUerr2);
404 }
405
406 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
407 when the least significant BITS are truncated. BITS cannot be
408 zero. */
409 static integerPart
ulpsFromBoundary(const integerPart * parts,unsigned int bits,bool isNearest)410 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
411 {
412 unsigned int count, partBits;
413 integerPart part, boundary;
414
415 assert(bits != 0);
416
417 bits--;
418 count = bits / integerPartWidth;
419 partBits = bits % integerPartWidth + 1;
420
421 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
422
423 if (isNearest)
424 boundary = (integerPart) 1 << (partBits - 1);
425 else
426 boundary = 0;
427
428 if (count == 0) {
429 if (part - boundary <= boundary - part)
430 return part - boundary;
431 else
432 return boundary - part;
433 }
434
435 if (part == boundary) {
436 while (--count)
437 if (parts[count])
438 return ~(integerPart) 0; /* A lot. */
439
440 return parts[0];
441 } else if (part == boundary - 1) {
442 while (--count)
443 if (~parts[count])
444 return ~(integerPart) 0; /* A lot. */
445
446 return -parts[0];
447 }
448
449 return ~(integerPart) 0; /* A lot. */
450 }
451
452 /* Place pow(5, power) in DST, and return the number of parts used.
453 DST must be at least one part larger than size of the answer. */
454 static unsigned int
powerOf5(integerPart * dst,unsigned int power)455 powerOf5(integerPart *dst, unsigned int power)
456 {
457 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
458 15625, 78125 };
459 integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
460 pow5s[0] = 78125 * 5;
461
462 unsigned int partsCount[16] = { 1 };
463 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
464 unsigned int result;
465 assert(power <= maxExponent);
466
467 p1 = dst;
468 p2 = scratch;
469
470 *p1 = firstEightPowers[power & 7];
471 power >>= 3;
472
473 result = 1;
474 pow5 = pow5s;
475
476 for (unsigned int n = 0; power; power >>= 1, n++) {
477 unsigned int pc;
478
479 pc = partsCount[n];
480
481 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
482 if (pc == 0) {
483 pc = partsCount[n - 1];
484 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
485 pc *= 2;
486 if (pow5[pc - 1] == 0)
487 pc--;
488 partsCount[n] = pc;
489 }
490
491 if (power & 1) {
492 integerPart *tmp;
493
494 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
495 result += pc;
496 if (p2[result - 1] == 0)
497 result--;
498
499 /* Now result is in p1 with partsCount parts and p2 is scratch
500 space. */
501 tmp = p1, p1 = p2, p2 = tmp;
502 }
503
504 pow5 += pc;
505 }
506
507 if (p1 != dst)
508 APInt::tcAssign(dst, p1, result);
509
510 return result;
511 }
512
513 /* Zero at the end to avoid modular arithmetic when adding one; used
514 when rounding up during hexadecimal output. */
515 static const char hexDigitsLower[] = "0123456789abcdef0";
516 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
517 static const char infinityL[] = "infinity";
518 static const char infinityU[] = "INFINITY";
519 static const char NaNL[] = "nan";
520 static const char NaNU[] = "NAN";
521
522 /* Write out an integerPart in hexadecimal, starting with the most
523 significant nibble. Write out exactly COUNT hexdigits, return
524 COUNT. */
525 static unsigned int
partAsHex(char * dst,integerPart part,unsigned int count,const char * hexDigitChars)526 partAsHex (char *dst, integerPart part, unsigned int count,
527 const char *hexDigitChars)
528 {
529 unsigned int result = count;
530
531 assert(count != 0 && count <= integerPartWidth / 4);
532
533 part >>= (integerPartWidth - 4 * count);
534 while (count--) {
535 dst[count] = hexDigitChars[part & 0xf];
536 part >>= 4;
537 }
538
539 return result;
540 }
541
542 /* Write out an unsigned decimal integer. */
543 static char *
writeUnsignedDecimal(char * dst,unsigned int n)544 writeUnsignedDecimal (char *dst, unsigned int n)
545 {
546 char buff[40], *p;
547
548 p = buff;
549 do
550 *p++ = '0' + n % 10;
551 while (n /= 10);
552
553 do
554 *dst++ = *--p;
555 while (p != buff);
556
557 return dst;
558 }
559
560 /* Write out a signed decimal integer. */
561 static char *
writeSignedDecimal(char * dst,int value)562 writeSignedDecimal (char *dst, int value)
563 {
564 if (value < 0) {
565 *dst++ = '-';
566 dst = writeUnsignedDecimal(dst, -(unsigned) value);
567 } else
568 dst = writeUnsignedDecimal(dst, value);
569
570 return dst;
571 }
572
573 /* Constructors. */
574 void
initialize(const fltSemantics * ourSemantics)575 APFloat::initialize(const fltSemantics *ourSemantics)
576 {
577 unsigned int count;
578
579 semantics = ourSemantics;
580 count = partCount();
581 if (count > 1)
582 significand.parts = new integerPart[count];
583 }
584
585 void
freeSignificand()586 APFloat::freeSignificand()
587 {
588 if (needsCleanup())
589 delete [] significand.parts;
590 }
591
592 void
assign(const APFloat & rhs)593 APFloat::assign(const APFloat &rhs)
594 {
595 assert(semantics == rhs.semantics);
596
597 sign = rhs.sign;
598 category = rhs.category;
599 exponent = rhs.exponent;
600 if (isFiniteNonZero() || category == fcNaN)
601 copySignificand(rhs);
602 }
603
604 void
copySignificand(const APFloat & rhs)605 APFloat::copySignificand(const APFloat &rhs)
606 {
607 assert(isFiniteNonZero() || category == fcNaN);
608 assert(rhs.partCount() >= partCount());
609
610 APInt::tcAssign(significandParts(), rhs.significandParts(),
611 partCount());
612 }
613
614 /* Make this number a NaN, with an arbitrary but deterministic value
615 for the significand. If double or longer, this is a signalling NaN,
616 which may not be ideal. If float, this is QNaN(0). */
makeNaN(bool SNaN,bool Negative,const APInt * fill)617 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
618 {
619 category = fcNaN;
620 sign = Negative;
621
622 integerPart *significand = significandParts();
623 unsigned numParts = partCount();
624
625 // Set the significand bits to the fill.
626 if (!fill || fill->getNumWords() < numParts)
627 APInt::tcSet(significand, 0, numParts);
628 if (fill) {
629 APInt::tcAssign(significand, fill->getRawData(),
630 std::min(fill->getNumWords(), numParts));
631
632 // Zero out the excess bits of the significand.
633 unsigned bitsToPreserve = semantics->precision - 1;
634 unsigned part = bitsToPreserve / 64;
635 bitsToPreserve %= 64;
636 significand[part] &= ((1ULL << bitsToPreserve) - 1);
637 for (part++; part != numParts; ++part)
638 significand[part] = 0;
639 }
640
641 unsigned QNaNBit = semantics->precision - 2;
642
643 if (SNaN) {
644 // We always have to clear the QNaN bit to make it an SNaN.
645 APInt::tcClearBit(significand, QNaNBit);
646
647 // If there are no bits set in the payload, we have to set
648 // *something* to make it a NaN instead of an infinity;
649 // conventionally, this is the next bit down from the QNaN bit.
650 if (APInt::tcIsZero(significand, numParts))
651 APInt::tcSetBit(significand, QNaNBit - 1);
652 } else {
653 // We always have to set the QNaN bit to make it a QNaN.
654 APInt::tcSetBit(significand, QNaNBit);
655 }
656
657 // For x87 extended precision, we want to make a NaN, not a
658 // pseudo-NaN. Maybe we should expose the ability to make
659 // pseudo-NaNs?
660 if (semantics == &APFloat::x87DoubleExtended)
661 APInt::tcSetBit(significand, QNaNBit + 1);
662 }
663
makeNaN(const fltSemantics & Sem,bool SNaN,bool Negative,const APInt * fill)664 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
665 const APInt *fill) {
666 APFloat value(Sem, uninitialized);
667 value.makeNaN(SNaN, Negative, fill);
668 return value;
669 }
670
671 APFloat &
operator =(const APFloat & rhs)672 APFloat::operator=(const APFloat &rhs)
673 {
674 if (this != &rhs) {
675 if (semantics != rhs.semantics) {
676 freeSignificand();
677 initialize(rhs.semantics);
678 }
679 assign(rhs);
680 }
681
682 return *this;
683 }
684
685 APFloat &
operator =(APFloat && rhs)686 APFloat::operator=(APFloat &&rhs) {
687 freeSignificand();
688
689 semantics = rhs.semantics;
690 significand = rhs.significand;
691 exponent = rhs.exponent;
692 category = rhs.category;
693 sign = rhs.sign;
694
695 rhs.semantics = &Bogus;
696 return *this;
697 }
698
699 bool
isDenormal() const700 APFloat::isDenormal() const {
701 return isFiniteNonZero() && (exponent == semantics->minExponent) &&
702 (APInt::tcExtractBit(significandParts(),
703 semantics->precision - 1) == 0);
704 }
705
706 bool
isSmallest() const707 APFloat::isSmallest() const {
708 // The smallest number by magnitude in our format will be the smallest
709 // denormal, i.e. the floating point number with exponent being minimum
710 // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
711 return isFiniteNonZero() && exponent == semantics->minExponent &&
712 significandMSB() == 0;
713 }
714
isSignificandAllOnes() const715 bool APFloat::isSignificandAllOnes() const {
716 // Test if the significand excluding the integral bit is all ones. This allows
717 // us to test for binade boundaries.
718 const integerPart *Parts = significandParts();
719 const unsigned PartCount = partCount();
720 for (unsigned i = 0; i < PartCount - 1; i++)
721 if (~Parts[i])
722 return false;
723
724 // Set the unused high bits to all ones when we compare.
725 const unsigned NumHighBits =
726 PartCount*integerPartWidth - semantics->precision + 1;
727 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
728 "fill than integerPartWidth");
729 const integerPart HighBitFill =
730 ~integerPart(0) << (integerPartWidth - NumHighBits);
731 if (~(Parts[PartCount - 1] | HighBitFill))
732 return false;
733
734 return true;
735 }
736
isSignificandAllZeros() const737 bool APFloat::isSignificandAllZeros() const {
738 // Test if the significand excluding the integral bit is all zeros. This
739 // allows us to test for binade boundaries.
740 const integerPart *Parts = significandParts();
741 const unsigned PartCount = partCount();
742
743 for (unsigned i = 0; i < PartCount - 1; i++)
744 if (Parts[i])
745 return false;
746
747 const unsigned NumHighBits =
748 PartCount*integerPartWidth - semantics->precision + 1;
749 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
750 "clear than integerPartWidth");
751 const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
752
753 if (Parts[PartCount - 1] & HighBitMask)
754 return false;
755
756 return true;
757 }
758
759 bool
isLargest() const760 APFloat::isLargest() const {
761 // The largest number by magnitude in our format will be the floating point
762 // number with maximum exponent and with significand that is all ones.
763 return isFiniteNonZero() && exponent == semantics->maxExponent
764 && isSignificandAllOnes();
765 }
766
767 bool
bitwiseIsEqual(const APFloat & rhs) const768 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
769 if (this == &rhs)
770 return true;
771 if (semantics != rhs.semantics ||
772 category != rhs.category ||
773 sign != rhs.sign)
774 return false;
775 if (category==fcZero || category==fcInfinity)
776 return true;
777 else if (isFiniteNonZero() && exponent!=rhs.exponent)
778 return false;
779 else {
780 int i= partCount();
781 const integerPart* p=significandParts();
782 const integerPart* q=rhs.significandParts();
783 for (; i>0; i--, p++, q++) {
784 if (*p != *q)
785 return false;
786 }
787 return true;
788 }
789 }
790
APFloat(const fltSemantics & ourSemantics,integerPart value)791 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
792 initialize(&ourSemantics);
793 sign = 0;
794 category = fcNormal;
795 zeroSignificand();
796 exponent = ourSemantics.precision - 1;
797 significandParts()[0] = value;
798 normalize(rmNearestTiesToEven, lfExactlyZero);
799 }
800
APFloat(const fltSemantics & ourSemantics)801 APFloat::APFloat(const fltSemantics &ourSemantics) {
802 initialize(&ourSemantics);
803 category = fcZero;
804 sign = false;
805 }
806
APFloat(const fltSemantics & ourSemantics,uninitializedTag tag)807 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
808 // Allocates storage if necessary but does not initialize it.
809 initialize(&ourSemantics);
810 }
811
APFloat(const fltSemantics & ourSemantics,StringRef text)812 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
813 initialize(&ourSemantics);
814 convertFromString(text, rmNearestTiesToEven);
815 }
816
APFloat(const APFloat & rhs)817 APFloat::APFloat(const APFloat &rhs) {
818 initialize(rhs.semantics);
819 assign(rhs);
820 }
821
APFloat(APFloat && rhs)822 APFloat::APFloat(APFloat &&rhs) : semantics(&Bogus) {
823 *this = std::move(rhs);
824 }
825
~APFloat()826 APFloat::~APFloat()
827 {
828 freeSignificand();
829 }
830
831 // Profile - This method 'profiles' an APFloat for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const832 void APFloat::Profile(FoldingSetNodeID& ID) const {
833 ID.Add(bitcastToAPInt());
834 }
835
836 unsigned int
partCount() const837 APFloat::partCount() const
838 {
839 return partCountForBits(semantics->precision + 1);
840 }
841
842 unsigned int
semanticsPrecision(const fltSemantics & semantics)843 APFloat::semanticsPrecision(const fltSemantics &semantics)
844 {
845 return semantics.precision;
846 }
847
848 const integerPart *
significandParts() const849 APFloat::significandParts() const
850 {
851 return const_cast<APFloat *>(this)->significandParts();
852 }
853
854 integerPart *
significandParts()855 APFloat::significandParts()
856 {
857 if (partCount() > 1)
858 return significand.parts;
859 else
860 return &significand.part;
861 }
862
863 void
zeroSignificand()864 APFloat::zeroSignificand()
865 {
866 APInt::tcSet(significandParts(), 0, partCount());
867 }
868
869 /* Increment an fcNormal floating point number's significand. */
870 void
incrementSignificand()871 APFloat::incrementSignificand()
872 {
873 integerPart carry;
874
875 carry = APInt::tcIncrement(significandParts(), partCount());
876
877 /* Our callers should never cause us to overflow. */
878 assert(carry == 0);
879 (void)carry;
880 }
881
882 /* Add the significand of the RHS. Returns the carry flag. */
883 integerPart
addSignificand(const APFloat & rhs)884 APFloat::addSignificand(const APFloat &rhs)
885 {
886 integerPart *parts;
887
888 parts = significandParts();
889
890 assert(semantics == rhs.semantics);
891 assert(exponent == rhs.exponent);
892
893 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
894 }
895
896 /* Subtract the significand of the RHS with a borrow flag. Returns
897 the borrow flag. */
898 integerPart
subtractSignificand(const APFloat & rhs,integerPart borrow)899 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
900 {
901 integerPart *parts;
902
903 parts = significandParts();
904
905 assert(semantics == rhs.semantics);
906 assert(exponent == rhs.exponent);
907
908 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
909 partCount());
910 }
911
912 /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
913 on to the full-precision result of the multiplication. Returns the
914 lost fraction. */
915 lostFraction
multiplySignificand(const APFloat & rhs,const APFloat * addend)916 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
917 {
918 unsigned int omsb; // One, not zero, based MSB.
919 unsigned int partsCount, newPartsCount, precision;
920 integerPart *lhsSignificand;
921 integerPart scratch[4];
922 integerPart *fullSignificand;
923 lostFraction lost_fraction;
924 bool ignored;
925
926 assert(semantics == rhs.semantics);
927
928 precision = semantics->precision;
929
930 // Allocate space for twice as many bits as the original significand, plus one
931 // extra bit for the addition to overflow into.
932 newPartsCount = partCountForBits(precision * 2 + 1);
933
934 if (newPartsCount > 4)
935 fullSignificand = new integerPart[newPartsCount];
936 else
937 fullSignificand = scratch;
938
939 lhsSignificand = significandParts();
940 partsCount = partCount();
941
942 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
943 rhs.significandParts(), partsCount, partsCount);
944
945 lost_fraction = lfExactlyZero;
946 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
947 exponent += rhs.exponent;
948
949 // Assume the operands involved in the multiplication are single-precision
950 // FP, and the two multiplicants are:
951 // *this = a23 . a22 ... a0 * 2^e1
952 // rhs = b23 . b22 ... b0 * 2^e2
953 // the result of multiplication is:
954 // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
955 // Note that there are three significant bits at the left-hand side of the
956 // radix point: two for the multiplication, and an overflow bit for the
957 // addition (that will always be zero at this point). Move the radix point
958 // toward left by two bits, and adjust exponent accordingly.
959 exponent += 2;
960
961 if (addend && addend->isNonZero()) {
962 // The intermediate result of the multiplication has "2 * precision"
963 // signicant bit; adjust the addend to be consistent with mul result.
964 //
965 Significand savedSignificand = significand;
966 const fltSemantics *savedSemantics = semantics;
967 fltSemantics extendedSemantics;
968 opStatus status;
969 unsigned int extendedPrecision;
970
971 // Normalize our MSB to one below the top bit to allow for overflow.
972 extendedPrecision = 2 * precision + 1;
973 if (omsb != extendedPrecision - 1) {
974 assert(extendedPrecision > omsb);
975 APInt::tcShiftLeft(fullSignificand, newPartsCount,
976 (extendedPrecision - 1) - omsb);
977 exponent -= (extendedPrecision - 1) - omsb;
978 }
979
980 /* Create new semantics. */
981 extendedSemantics = *semantics;
982 extendedSemantics.precision = extendedPrecision;
983
984 if (newPartsCount == 1)
985 significand.part = fullSignificand[0];
986 else
987 significand.parts = fullSignificand;
988 semantics = &extendedSemantics;
989
990 APFloat extendedAddend(*addend);
991 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
992 assert(status == opOK);
993 (void)status;
994
995 // Shift the significand of the addend right by one bit. This guarantees
996 // that the high bit of the significand is zero (same as fullSignificand),
997 // so the addition will overflow (if it does overflow at all) into the top bit.
998 lost_fraction = extendedAddend.shiftSignificandRight(1);
999 assert(lost_fraction == lfExactlyZero &&
1000 "Lost precision while shifting addend for fused-multiply-add.");
1001
1002 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
1003
1004 /* Restore our state. */
1005 if (newPartsCount == 1)
1006 fullSignificand[0] = significand.part;
1007 significand = savedSignificand;
1008 semantics = savedSemantics;
1009
1010 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1011 }
1012
1013 // Convert the result having "2 * precision" significant-bits back to the one
1014 // having "precision" significant-bits. First, move the radix point from
1015 // poision "2*precision - 1" to "precision - 1". The exponent need to be
1016 // adjusted by "2*precision - 1" - "precision - 1" = "precision".
1017 exponent -= precision + 1;
1018
1019 // In case MSB resides at the left-hand side of radix point, shift the
1020 // mantissa right by some amount to make sure the MSB reside right before
1021 // the radix point (i.e. "MSB . rest-significant-bits").
1022 //
1023 // Note that the result is not normalized when "omsb < precision". So, the
1024 // caller needs to call APFloat::normalize() if normalized value is expected.
1025 if (omsb > precision) {
1026 unsigned int bits, significantParts;
1027 lostFraction lf;
1028
1029 bits = omsb - precision;
1030 significantParts = partCountForBits(omsb);
1031 lf = shiftRight(fullSignificand, significantParts, bits);
1032 lost_fraction = combineLostFractions(lf, lost_fraction);
1033 exponent += bits;
1034 }
1035
1036 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
1037
1038 if (newPartsCount > 4)
1039 delete [] fullSignificand;
1040
1041 return lost_fraction;
1042 }
1043
1044 /* Multiply the significands of LHS and RHS to DST. */
1045 lostFraction
divideSignificand(const APFloat & rhs)1046 APFloat::divideSignificand(const APFloat &rhs)
1047 {
1048 unsigned int bit, i, partsCount;
1049 const integerPart *rhsSignificand;
1050 integerPart *lhsSignificand, *dividend, *divisor;
1051 integerPart scratch[4];
1052 lostFraction lost_fraction;
1053
1054 assert(semantics == rhs.semantics);
1055
1056 lhsSignificand = significandParts();
1057 rhsSignificand = rhs.significandParts();
1058 partsCount = partCount();
1059
1060 if (partsCount > 2)
1061 dividend = new integerPart[partsCount * 2];
1062 else
1063 dividend = scratch;
1064
1065 divisor = dividend + partsCount;
1066
1067 /* Copy the dividend and divisor as they will be modified in-place. */
1068 for (i = 0; i < partsCount; i++) {
1069 dividend[i] = lhsSignificand[i];
1070 divisor[i] = rhsSignificand[i];
1071 lhsSignificand[i] = 0;
1072 }
1073
1074 exponent -= rhs.exponent;
1075
1076 unsigned int precision = semantics->precision;
1077
1078 /* Normalize the divisor. */
1079 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
1080 if (bit) {
1081 exponent += bit;
1082 APInt::tcShiftLeft(divisor, partsCount, bit);
1083 }
1084
1085 /* Normalize the dividend. */
1086 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1087 if (bit) {
1088 exponent -= bit;
1089 APInt::tcShiftLeft(dividend, partsCount, bit);
1090 }
1091
1092 /* Ensure the dividend >= divisor initially for the loop below.
1093 Incidentally, this means that the division loop below is
1094 guaranteed to set the integer bit to one. */
1095 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1096 exponent--;
1097 APInt::tcShiftLeft(dividend, partsCount, 1);
1098 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1099 }
1100
1101 /* Long division. */
1102 for (bit = precision; bit; bit -= 1) {
1103 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1104 APInt::tcSubtract(dividend, divisor, 0, partsCount);
1105 APInt::tcSetBit(lhsSignificand, bit - 1);
1106 }
1107
1108 APInt::tcShiftLeft(dividend, partsCount, 1);
1109 }
1110
1111 /* Figure out the lost fraction. */
1112 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1113
1114 if (cmp > 0)
1115 lost_fraction = lfMoreThanHalf;
1116 else if (cmp == 0)
1117 lost_fraction = lfExactlyHalf;
1118 else if (APInt::tcIsZero(dividend, partsCount))
1119 lost_fraction = lfExactlyZero;
1120 else
1121 lost_fraction = lfLessThanHalf;
1122
1123 if (partsCount > 2)
1124 delete [] dividend;
1125
1126 return lost_fraction;
1127 }
1128
1129 unsigned int
significandMSB() const1130 APFloat::significandMSB() const
1131 {
1132 return APInt::tcMSB(significandParts(), partCount());
1133 }
1134
1135 unsigned int
significandLSB() const1136 APFloat::significandLSB() const
1137 {
1138 return APInt::tcLSB(significandParts(), partCount());
1139 }
1140
1141 /* Note that a zero result is NOT normalized to fcZero. */
1142 lostFraction
shiftSignificandRight(unsigned int bits)1143 APFloat::shiftSignificandRight(unsigned int bits)
1144 {
1145 /* Our exponent should not overflow. */
1146 assert((ExponentType) (exponent + bits) >= exponent);
1147
1148 exponent += bits;
1149
1150 return shiftRight(significandParts(), partCount(), bits);
1151 }
1152
1153 /* Shift the significand left BITS bits, subtract BITS from its exponent. */
1154 void
shiftSignificandLeft(unsigned int bits)1155 APFloat::shiftSignificandLeft(unsigned int bits)
1156 {
1157 assert(bits < semantics->precision);
1158
1159 if (bits) {
1160 unsigned int partsCount = partCount();
1161
1162 APInt::tcShiftLeft(significandParts(), partsCount, bits);
1163 exponent -= bits;
1164
1165 assert(!APInt::tcIsZero(significandParts(), partsCount));
1166 }
1167 }
1168
1169 APFloat::cmpResult
compareAbsoluteValue(const APFloat & rhs) const1170 APFloat::compareAbsoluteValue(const APFloat &rhs) const
1171 {
1172 int compare;
1173
1174 assert(semantics == rhs.semantics);
1175 assert(isFiniteNonZero());
1176 assert(rhs.isFiniteNonZero());
1177
1178 compare = exponent - rhs.exponent;
1179
1180 /* If exponents are equal, do an unsigned bignum comparison of the
1181 significands. */
1182 if (compare == 0)
1183 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1184 partCount());
1185
1186 if (compare > 0)
1187 return cmpGreaterThan;
1188 else if (compare < 0)
1189 return cmpLessThan;
1190 else
1191 return cmpEqual;
1192 }
1193
1194 /* Handle overflow. Sign is preserved. We either become infinity or
1195 the largest finite number. */
1196 APFloat::opStatus
handleOverflow(roundingMode rounding_mode)1197 APFloat::handleOverflow(roundingMode rounding_mode)
1198 {
1199 /* Infinity? */
1200 if (rounding_mode == rmNearestTiesToEven ||
1201 rounding_mode == rmNearestTiesToAway ||
1202 (rounding_mode == rmTowardPositive && !sign) ||
1203 (rounding_mode == rmTowardNegative && sign)) {
1204 category = fcInfinity;
1205 return (opStatus) (opOverflow | opInexact);
1206 }
1207
1208 /* Otherwise we become the largest finite number. */
1209 category = fcNormal;
1210 exponent = semantics->maxExponent;
1211 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
1212 semantics->precision);
1213
1214 return opInexact;
1215 }
1216
1217 /* Returns TRUE if, when truncating the current number, with BIT the
1218 new LSB, with the given lost fraction and rounding mode, the result
1219 would need to be rounded away from zero (i.e., by increasing the
1220 signficand). This routine must work for fcZero of both signs, and
1221 fcNormal numbers. */
1222 bool
roundAwayFromZero(roundingMode rounding_mode,lostFraction lost_fraction,unsigned int bit) const1223 APFloat::roundAwayFromZero(roundingMode rounding_mode,
1224 lostFraction lost_fraction,
1225 unsigned int bit) const
1226 {
1227 /* NaNs and infinities should not have lost fractions. */
1228 assert(isFiniteNonZero() || category == fcZero);
1229
1230 /* Current callers never pass this so we don't handle it. */
1231 assert(lost_fraction != lfExactlyZero);
1232
1233 switch (rounding_mode) {
1234 case rmNearestTiesToAway:
1235 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1236
1237 case rmNearestTiesToEven:
1238 if (lost_fraction == lfMoreThanHalf)
1239 return true;
1240
1241 /* Our zeroes don't have a significand to test. */
1242 if (lost_fraction == lfExactlyHalf && category != fcZero)
1243 return APInt::tcExtractBit(significandParts(), bit);
1244
1245 return false;
1246
1247 case rmTowardZero:
1248 return false;
1249
1250 case rmTowardPositive:
1251 return !sign;
1252
1253 case rmTowardNegative:
1254 return sign;
1255 }
1256 llvm_unreachable("Invalid rounding mode found");
1257 }
1258
1259 APFloat::opStatus
normalize(roundingMode rounding_mode,lostFraction lost_fraction)1260 APFloat::normalize(roundingMode rounding_mode,
1261 lostFraction lost_fraction)
1262 {
1263 unsigned int omsb; /* One, not zero, based MSB. */
1264 int exponentChange;
1265
1266 if (!isFiniteNonZero())
1267 return opOK;
1268
1269 /* Before rounding normalize the exponent of fcNormal numbers. */
1270 omsb = significandMSB() + 1;
1271
1272 if (omsb) {
1273 /* OMSB is numbered from 1. We want to place it in the integer
1274 bit numbered PRECISION if possible, with a compensating change in
1275 the exponent. */
1276 exponentChange = omsb - semantics->precision;
1277
1278 /* If the resulting exponent is too high, overflow according to
1279 the rounding mode. */
1280 if (exponent + exponentChange > semantics->maxExponent)
1281 return handleOverflow(rounding_mode);
1282
1283 /* Subnormal numbers have exponent minExponent, and their MSB
1284 is forced based on that. */
1285 if (exponent + exponentChange < semantics->minExponent)
1286 exponentChange = semantics->minExponent - exponent;
1287
1288 /* Shifting left is easy as we don't lose precision. */
1289 if (exponentChange < 0) {
1290 assert(lost_fraction == lfExactlyZero);
1291
1292 shiftSignificandLeft(-exponentChange);
1293
1294 return opOK;
1295 }
1296
1297 if (exponentChange > 0) {
1298 lostFraction lf;
1299
1300 /* Shift right and capture any new lost fraction. */
1301 lf = shiftSignificandRight(exponentChange);
1302
1303 lost_fraction = combineLostFractions(lf, lost_fraction);
1304
1305 /* Keep OMSB up-to-date. */
1306 if (omsb > (unsigned) exponentChange)
1307 omsb -= exponentChange;
1308 else
1309 omsb = 0;
1310 }
1311 }
1312
1313 /* Now round the number according to rounding_mode given the lost
1314 fraction. */
1315
1316 /* As specified in IEEE 754, since we do not trap we do not report
1317 underflow for exact results. */
1318 if (lost_fraction == lfExactlyZero) {
1319 /* Canonicalize zeroes. */
1320 if (omsb == 0)
1321 category = fcZero;
1322
1323 return opOK;
1324 }
1325
1326 /* Increment the significand if we're rounding away from zero. */
1327 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1328 if (omsb == 0)
1329 exponent = semantics->minExponent;
1330
1331 incrementSignificand();
1332 omsb = significandMSB() + 1;
1333
1334 /* Did the significand increment overflow? */
1335 if (omsb == (unsigned) semantics->precision + 1) {
1336 /* Renormalize by incrementing the exponent and shifting our
1337 significand right one. However if we already have the
1338 maximum exponent we overflow to infinity. */
1339 if (exponent == semantics->maxExponent) {
1340 category = fcInfinity;
1341
1342 return (opStatus) (opOverflow | opInexact);
1343 }
1344
1345 shiftSignificandRight(1);
1346
1347 return opInexact;
1348 }
1349 }
1350
1351 /* The normal case - we were and are not denormal, and any
1352 significand increment above didn't overflow. */
1353 if (omsb == semantics->precision)
1354 return opInexact;
1355
1356 /* We have a non-zero denormal. */
1357 assert(omsb < semantics->precision);
1358
1359 /* Canonicalize zeroes. */
1360 if (omsb == 0)
1361 category = fcZero;
1362
1363 /* The fcZero case is a denormal that underflowed to zero. */
1364 return (opStatus) (opUnderflow | opInexact);
1365 }
1366
1367 APFloat::opStatus
addOrSubtractSpecials(const APFloat & rhs,bool subtract)1368 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1369 {
1370 switch (PackCategoriesIntoKey(category, rhs.category)) {
1371 default:
1372 llvm_unreachable(nullptr);
1373
1374 case PackCategoriesIntoKey(fcNaN, fcZero):
1375 case PackCategoriesIntoKey(fcNaN, fcNormal):
1376 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1377 case PackCategoriesIntoKey(fcNaN, fcNaN):
1378 case PackCategoriesIntoKey(fcNormal, fcZero):
1379 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1380 case PackCategoriesIntoKey(fcInfinity, fcZero):
1381 return opOK;
1382
1383 case PackCategoriesIntoKey(fcZero, fcNaN):
1384 case PackCategoriesIntoKey(fcNormal, fcNaN):
1385 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1386 // We need to be sure to flip the sign here for subtraction because we
1387 // don't have a separate negate operation so -NaN becomes 0 - NaN here.
1388 sign = rhs.sign ^ subtract;
1389 category = fcNaN;
1390 copySignificand(rhs);
1391 return opOK;
1392
1393 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1394 case PackCategoriesIntoKey(fcZero, fcInfinity):
1395 category = fcInfinity;
1396 sign = rhs.sign ^ subtract;
1397 return opOK;
1398
1399 case PackCategoriesIntoKey(fcZero, fcNormal):
1400 assign(rhs);
1401 sign = rhs.sign ^ subtract;
1402 return opOK;
1403
1404 case PackCategoriesIntoKey(fcZero, fcZero):
1405 /* Sign depends on rounding mode; handled by caller. */
1406 return opOK;
1407
1408 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1409 /* Differently signed infinities can only be validly
1410 subtracted. */
1411 if (((sign ^ rhs.sign)!=0) != subtract) {
1412 makeNaN();
1413 return opInvalidOp;
1414 }
1415
1416 return opOK;
1417
1418 case PackCategoriesIntoKey(fcNormal, fcNormal):
1419 return opDivByZero;
1420 }
1421 }
1422
1423 /* Add or subtract two normal numbers. */
1424 lostFraction
addOrSubtractSignificand(const APFloat & rhs,bool subtract)1425 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1426 {
1427 integerPart carry;
1428 lostFraction lost_fraction;
1429 int bits;
1430
1431 /* Determine if the operation on the absolute values is effectively
1432 an addition or subtraction. */
1433 subtract ^= static_cast<bool>(sign ^ rhs.sign);
1434
1435 /* Are we bigger exponent-wise than the RHS? */
1436 bits = exponent - rhs.exponent;
1437
1438 /* Subtraction is more subtle than one might naively expect. */
1439 if (subtract) {
1440 APFloat temp_rhs(rhs);
1441 bool reverse;
1442
1443 if (bits == 0) {
1444 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1445 lost_fraction = lfExactlyZero;
1446 } else if (bits > 0) {
1447 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1448 shiftSignificandLeft(1);
1449 reverse = false;
1450 } else {
1451 lost_fraction = shiftSignificandRight(-bits - 1);
1452 temp_rhs.shiftSignificandLeft(1);
1453 reverse = true;
1454 }
1455
1456 if (reverse) {
1457 carry = temp_rhs.subtractSignificand
1458 (*this, lost_fraction != lfExactlyZero);
1459 copySignificand(temp_rhs);
1460 sign = !sign;
1461 } else {
1462 carry = subtractSignificand
1463 (temp_rhs, lost_fraction != lfExactlyZero);
1464 }
1465
1466 /* Invert the lost fraction - it was on the RHS and
1467 subtracted. */
1468 if (lost_fraction == lfLessThanHalf)
1469 lost_fraction = lfMoreThanHalf;
1470 else if (lost_fraction == lfMoreThanHalf)
1471 lost_fraction = lfLessThanHalf;
1472
1473 /* The code above is intended to ensure that no borrow is
1474 necessary. */
1475 assert(!carry);
1476 (void)carry;
1477 } else {
1478 if (bits > 0) {
1479 APFloat temp_rhs(rhs);
1480
1481 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1482 carry = addSignificand(temp_rhs);
1483 } else {
1484 lost_fraction = shiftSignificandRight(-bits);
1485 carry = addSignificand(rhs);
1486 }
1487
1488 /* We have a guard bit; generating a carry cannot happen. */
1489 assert(!carry);
1490 (void)carry;
1491 }
1492
1493 return lost_fraction;
1494 }
1495
1496 APFloat::opStatus
multiplySpecials(const APFloat & rhs)1497 APFloat::multiplySpecials(const APFloat &rhs)
1498 {
1499 switch (PackCategoriesIntoKey(category, rhs.category)) {
1500 default:
1501 llvm_unreachable(nullptr);
1502
1503 case PackCategoriesIntoKey(fcNaN, fcZero):
1504 case PackCategoriesIntoKey(fcNaN, fcNormal):
1505 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1506 case PackCategoriesIntoKey(fcNaN, fcNaN):
1507 sign = false;
1508 return opOK;
1509
1510 case PackCategoriesIntoKey(fcZero, fcNaN):
1511 case PackCategoriesIntoKey(fcNormal, fcNaN):
1512 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1513 sign = false;
1514 category = fcNaN;
1515 copySignificand(rhs);
1516 return opOK;
1517
1518 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1519 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1520 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1521 category = fcInfinity;
1522 return opOK;
1523
1524 case PackCategoriesIntoKey(fcZero, fcNormal):
1525 case PackCategoriesIntoKey(fcNormal, fcZero):
1526 case PackCategoriesIntoKey(fcZero, fcZero):
1527 category = fcZero;
1528 return opOK;
1529
1530 case PackCategoriesIntoKey(fcZero, fcInfinity):
1531 case PackCategoriesIntoKey(fcInfinity, fcZero):
1532 makeNaN();
1533 return opInvalidOp;
1534
1535 case PackCategoriesIntoKey(fcNormal, fcNormal):
1536 return opOK;
1537 }
1538 }
1539
1540 APFloat::opStatus
divideSpecials(const APFloat & rhs)1541 APFloat::divideSpecials(const APFloat &rhs)
1542 {
1543 switch (PackCategoriesIntoKey(category, rhs.category)) {
1544 default:
1545 llvm_unreachable(nullptr);
1546
1547 case PackCategoriesIntoKey(fcZero, fcNaN):
1548 case PackCategoriesIntoKey(fcNormal, fcNaN):
1549 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1550 category = fcNaN;
1551 copySignificand(rhs);
1552 case PackCategoriesIntoKey(fcNaN, fcZero):
1553 case PackCategoriesIntoKey(fcNaN, fcNormal):
1554 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1555 case PackCategoriesIntoKey(fcNaN, fcNaN):
1556 sign = false;
1557 case PackCategoriesIntoKey(fcInfinity, fcZero):
1558 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1559 case PackCategoriesIntoKey(fcZero, fcInfinity):
1560 case PackCategoriesIntoKey(fcZero, fcNormal):
1561 return opOK;
1562
1563 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1564 category = fcZero;
1565 return opOK;
1566
1567 case PackCategoriesIntoKey(fcNormal, fcZero):
1568 category = fcInfinity;
1569 return opDivByZero;
1570
1571 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1572 case PackCategoriesIntoKey(fcZero, fcZero):
1573 makeNaN();
1574 return opInvalidOp;
1575
1576 case PackCategoriesIntoKey(fcNormal, fcNormal):
1577 return opOK;
1578 }
1579 }
1580
1581 APFloat::opStatus
modSpecials(const APFloat & rhs)1582 APFloat::modSpecials(const APFloat &rhs)
1583 {
1584 switch (PackCategoriesIntoKey(category, rhs.category)) {
1585 default:
1586 llvm_unreachable(nullptr);
1587
1588 case PackCategoriesIntoKey(fcNaN, fcZero):
1589 case PackCategoriesIntoKey(fcNaN, fcNormal):
1590 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1591 case PackCategoriesIntoKey(fcNaN, fcNaN):
1592 case PackCategoriesIntoKey(fcZero, fcInfinity):
1593 case PackCategoriesIntoKey(fcZero, fcNormal):
1594 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1595 return opOK;
1596
1597 case PackCategoriesIntoKey(fcZero, fcNaN):
1598 case PackCategoriesIntoKey(fcNormal, fcNaN):
1599 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1600 sign = false;
1601 category = fcNaN;
1602 copySignificand(rhs);
1603 return opOK;
1604
1605 case PackCategoriesIntoKey(fcNormal, fcZero):
1606 case PackCategoriesIntoKey(fcInfinity, fcZero):
1607 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1608 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1609 case PackCategoriesIntoKey(fcZero, fcZero):
1610 makeNaN();
1611 return opInvalidOp;
1612
1613 case PackCategoriesIntoKey(fcNormal, fcNormal):
1614 return opOK;
1615 }
1616 }
1617
1618 /* Change sign. */
1619 void
changeSign()1620 APFloat::changeSign()
1621 {
1622 /* Look mummy, this one's easy. */
1623 sign = !sign;
1624 }
1625
1626 void
clearSign()1627 APFloat::clearSign()
1628 {
1629 /* So is this one. */
1630 sign = 0;
1631 }
1632
1633 void
copySign(const APFloat & rhs)1634 APFloat::copySign(const APFloat &rhs)
1635 {
1636 /* And this one. */
1637 sign = rhs.sign;
1638 }
1639
1640 /* Normalized addition or subtraction. */
1641 APFloat::opStatus
addOrSubtract(const APFloat & rhs,roundingMode rounding_mode,bool subtract)1642 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1643 bool subtract)
1644 {
1645 opStatus fs;
1646
1647 fs = addOrSubtractSpecials(rhs, subtract);
1648
1649 /* This return code means it was not a simple case. */
1650 if (fs == opDivByZero) {
1651 lostFraction lost_fraction;
1652
1653 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1654 fs = normalize(rounding_mode, lost_fraction);
1655
1656 /* Can only be zero if we lost no fraction. */
1657 assert(category != fcZero || lost_fraction == lfExactlyZero);
1658 }
1659
1660 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1661 positive zero unless rounding to minus infinity, except that
1662 adding two like-signed zeroes gives that zero. */
1663 if (category == fcZero) {
1664 if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1665 sign = (rounding_mode == rmTowardNegative);
1666 }
1667
1668 return fs;
1669 }
1670
1671 /* Normalized addition. */
1672 APFloat::opStatus
add(const APFloat & rhs,roundingMode rounding_mode)1673 APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1674 {
1675 return addOrSubtract(rhs, rounding_mode, false);
1676 }
1677
1678 /* Normalized subtraction. */
1679 APFloat::opStatus
subtract(const APFloat & rhs,roundingMode rounding_mode)1680 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1681 {
1682 return addOrSubtract(rhs, rounding_mode, true);
1683 }
1684
1685 /* Normalized multiply. */
1686 APFloat::opStatus
multiply(const APFloat & rhs,roundingMode rounding_mode)1687 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1688 {
1689 opStatus fs;
1690
1691 sign ^= rhs.sign;
1692 fs = multiplySpecials(rhs);
1693
1694 if (isFiniteNonZero()) {
1695 lostFraction lost_fraction = multiplySignificand(rhs, nullptr);
1696 fs = normalize(rounding_mode, lost_fraction);
1697 if (lost_fraction != lfExactlyZero)
1698 fs = (opStatus) (fs | opInexact);
1699 }
1700
1701 return fs;
1702 }
1703
1704 /* Normalized divide. */
1705 APFloat::opStatus
divide(const APFloat & rhs,roundingMode rounding_mode)1706 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1707 {
1708 opStatus fs;
1709
1710 sign ^= rhs.sign;
1711 fs = divideSpecials(rhs);
1712
1713 if (isFiniteNonZero()) {
1714 lostFraction lost_fraction = divideSignificand(rhs);
1715 fs = normalize(rounding_mode, lost_fraction);
1716 if (lost_fraction != lfExactlyZero)
1717 fs = (opStatus) (fs | opInexact);
1718 }
1719
1720 return fs;
1721 }
1722
1723 /* Normalized remainder. This is not currently correct in all cases. */
1724 APFloat::opStatus
remainder(const APFloat & rhs)1725 APFloat::remainder(const APFloat &rhs)
1726 {
1727 opStatus fs;
1728 APFloat V = *this;
1729 unsigned int origSign = sign;
1730
1731 fs = V.divide(rhs, rmNearestTiesToEven);
1732 if (fs == opDivByZero)
1733 return fs;
1734
1735 int parts = partCount();
1736 integerPart *x = new integerPart[parts];
1737 bool ignored;
1738 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1739 rmNearestTiesToEven, &ignored);
1740 if (fs==opInvalidOp)
1741 return fs;
1742
1743 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1744 rmNearestTiesToEven);
1745 assert(fs==opOK); // should always work
1746
1747 fs = V.multiply(rhs, rmNearestTiesToEven);
1748 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1749
1750 fs = subtract(V, rmNearestTiesToEven);
1751 assert(fs==opOK || fs==opInexact); // likewise
1752
1753 if (isZero())
1754 sign = origSign; // IEEE754 requires this
1755 delete[] x;
1756 return fs;
1757 }
1758
1759 /* Normalized llvm frem (C fmod).
1760 This is not currently correct in all cases. */
1761 APFloat::opStatus
mod(const APFloat & rhs,roundingMode rounding_mode)1762 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1763 {
1764 opStatus fs;
1765 fs = modSpecials(rhs);
1766
1767 if (isFiniteNonZero() && rhs.isFiniteNonZero()) {
1768 APFloat V = *this;
1769 unsigned int origSign = sign;
1770
1771 fs = V.divide(rhs, rmNearestTiesToEven);
1772 if (fs == opDivByZero)
1773 return fs;
1774
1775 int parts = partCount();
1776 integerPart *x = new integerPart[parts];
1777 bool ignored;
1778 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1779 rmTowardZero, &ignored);
1780 if (fs==opInvalidOp)
1781 return fs;
1782
1783 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1784 rmNearestTiesToEven);
1785 assert(fs==opOK); // should always work
1786
1787 fs = V.multiply(rhs, rounding_mode);
1788 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1789
1790 fs = subtract(V, rounding_mode);
1791 assert(fs==opOK || fs==opInexact); // likewise
1792
1793 if (isZero())
1794 sign = origSign; // IEEE754 requires this
1795 delete[] x;
1796 }
1797 return fs;
1798 }
1799
1800 /* Normalized fused-multiply-add. */
1801 APFloat::opStatus
fusedMultiplyAdd(const APFloat & multiplicand,const APFloat & addend,roundingMode rounding_mode)1802 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1803 const APFloat &addend,
1804 roundingMode rounding_mode)
1805 {
1806 opStatus fs;
1807
1808 /* Post-multiplication sign, before addition. */
1809 sign ^= multiplicand.sign;
1810
1811 /* If and only if all arguments are normal do we need to do an
1812 extended-precision calculation. */
1813 if (isFiniteNonZero() &&
1814 multiplicand.isFiniteNonZero() &&
1815 addend.isFinite()) {
1816 lostFraction lost_fraction;
1817
1818 lost_fraction = multiplySignificand(multiplicand, &addend);
1819 fs = normalize(rounding_mode, lost_fraction);
1820 if (lost_fraction != lfExactlyZero)
1821 fs = (opStatus) (fs | opInexact);
1822
1823 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1824 positive zero unless rounding to minus infinity, except that
1825 adding two like-signed zeroes gives that zero. */
1826 if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
1827 sign = (rounding_mode == rmTowardNegative);
1828 } else {
1829 fs = multiplySpecials(multiplicand);
1830
1831 /* FS can only be opOK or opInvalidOp. There is no more work
1832 to do in the latter case. The IEEE-754R standard says it is
1833 implementation-defined in this case whether, if ADDEND is a
1834 quiet NaN, we raise invalid op; this implementation does so.
1835
1836 If we need to do the addition we can do so with normal
1837 precision. */
1838 if (fs == opOK)
1839 fs = addOrSubtract(addend, rounding_mode, false);
1840 }
1841
1842 return fs;
1843 }
1844
1845 /* Rounding-mode corrrect round to integral value. */
roundToIntegral(roundingMode rounding_mode)1846 APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
1847 opStatus fs;
1848
1849 // If the exponent is large enough, we know that this value is already
1850 // integral, and the arithmetic below would potentially cause it to saturate
1851 // to +/-Inf. Bail out early instead.
1852 if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
1853 return opOK;
1854
1855 // The algorithm here is quite simple: we add 2^(p-1), where p is the
1856 // precision of our format, and then subtract it back off again. The choice
1857 // of rounding modes for the addition/subtraction determines the rounding mode
1858 // for our integral rounding as well.
1859 // NOTE: When the input value is negative, we do subtraction followed by
1860 // addition instead.
1861 APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
1862 IntegerConstant <<= semanticsPrecision(*semantics)-1;
1863 APFloat MagicConstant(*semantics);
1864 fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
1865 rmNearestTiesToEven);
1866 MagicConstant.copySign(*this);
1867
1868 if (fs != opOK)
1869 return fs;
1870
1871 // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
1872 bool inputSign = isNegative();
1873
1874 fs = add(MagicConstant, rounding_mode);
1875 if (fs != opOK && fs != opInexact)
1876 return fs;
1877
1878 fs = subtract(MagicConstant, rounding_mode);
1879
1880 // Restore the input sign.
1881 if (inputSign != isNegative())
1882 changeSign();
1883
1884 return fs;
1885 }
1886
1887
1888 /* Comparison requires normalized numbers. */
1889 APFloat::cmpResult
compare(const APFloat & rhs) const1890 APFloat::compare(const APFloat &rhs) const
1891 {
1892 cmpResult result;
1893
1894 assert(semantics == rhs.semantics);
1895
1896 switch (PackCategoriesIntoKey(category, rhs.category)) {
1897 default:
1898 llvm_unreachable(nullptr);
1899
1900 case PackCategoriesIntoKey(fcNaN, fcZero):
1901 case PackCategoriesIntoKey(fcNaN, fcNormal):
1902 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1903 case PackCategoriesIntoKey(fcNaN, fcNaN):
1904 case PackCategoriesIntoKey(fcZero, fcNaN):
1905 case PackCategoriesIntoKey(fcNormal, fcNaN):
1906 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1907 return cmpUnordered;
1908
1909 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1910 case PackCategoriesIntoKey(fcInfinity, fcZero):
1911 case PackCategoriesIntoKey(fcNormal, fcZero):
1912 if (sign)
1913 return cmpLessThan;
1914 else
1915 return cmpGreaterThan;
1916
1917 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1918 case PackCategoriesIntoKey(fcZero, fcInfinity):
1919 case PackCategoriesIntoKey(fcZero, fcNormal):
1920 if (rhs.sign)
1921 return cmpGreaterThan;
1922 else
1923 return cmpLessThan;
1924
1925 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1926 if (sign == rhs.sign)
1927 return cmpEqual;
1928 else if (sign)
1929 return cmpLessThan;
1930 else
1931 return cmpGreaterThan;
1932
1933 case PackCategoriesIntoKey(fcZero, fcZero):
1934 return cmpEqual;
1935
1936 case PackCategoriesIntoKey(fcNormal, fcNormal):
1937 break;
1938 }
1939
1940 /* Two normal numbers. Do they have the same sign? */
1941 if (sign != rhs.sign) {
1942 if (sign)
1943 result = cmpLessThan;
1944 else
1945 result = cmpGreaterThan;
1946 } else {
1947 /* Compare absolute values; invert result if negative. */
1948 result = compareAbsoluteValue(rhs);
1949
1950 if (sign) {
1951 if (result == cmpLessThan)
1952 result = cmpGreaterThan;
1953 else if (result == cmpGreaterThan)
1954 result = cmpLessThan;
1955 }
1956 }
1957
1958 return result;
1959 }
1960
1961 /// APFloat::convert - convert a value of one floating point type to another.
1962 /// The return value corresponds to the IEEE754 exceptions. *losesInfo
1963 /// records whether the transformation lost information, i.e. whether
1964 /// converting the result back to the original type will produce the
1965 /// original value (this is almost the same as return value==fsOK, but there
1966 /// are edge cases where this is not so).
1967
1968 APFloat::opStatus
convert(const fltSemantics & toSemantics,roundingMode rounding_mode,bool * losesInfo)1969 APFloat::convert(const fltSemantics &toSemantics,
1970 roundingMode rounding_mode, bool *losesInfo)
1971 {
1972 lostFraction lostFraction;
1973 unsigned int newPartCount, oldPartCount;
1974 opStatus fs;
1975 int shift;
1976 const fltSemantics &fromSemantics = *semantics;
1977
1978 lostFraction = lfExactlyZero;
1979 newPartCount = partCountForBits(toSemantics.precision + 1);
1980 oldPartCount = partCount();
1981 shift = toSemantics.precision - fromSemantics.precision;
1982
1983 bool X86SpecialNan = false;
1984 if (&fromSemantics == &APFloat::x87DoubleExtended &&
1985 &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
1986 (!(*significandParts() & 0x8000000000000000ULL) ||
1987 !(*significandParts() & 0x4000000000000000ULL))) {
1988 // x86 has some unusual NaNs which cannot be represented in any other
1989 // format; note them here.
1990 X86SpecialNan = true;
1991 }
1992
1993 // If this is a truncation of a denormal number, and the target semantics
1994 // has larger exponent range than the source semantics (this can happen
1995 // when truncating from PowerPC double-double to double format), the
1996 // right shift could lose result mantissa bits. Adjust exponent instead
1997 // of performing excessive shift.
1998 if (shift < 0 && isFiniteNonZero()) {
1999 int exponentChange = significandMSB() + 1 - fromSemantics.precision;
2000 if (exponent + exponentChange < toSemantics.minExponent)
2001 exponentChange = toSemantics.minExponent - exponent;
2002 if (exponentChange < shift)
2003 exponentChange = shift;
2004 if (exponentChange < 0) {
2005 shift -= exponentChange;
2006 exponent += exponentChange;
2007 }
2008 }
2009
2010 // If this is a truncation, perform the shift before we narrow the storage.
2011 if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
2012 lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
2013
2014 // Fix the storage so it can hold to new value.
2015 if (newPartCount > oldPartCount) {
2016 // The new type requires more storage; make it available.
2017 integerPart *newParts;
2018 newParts = new integerPart[newPartCount];
2019 APInt::tcSet(newParts, 0, newPartCount);
2020 if (isFiniteNonZero() || category==fcNaN)
2021 APInt::tcAssign(newParts, significandParts(), oldPartCount);
2022 freeSignificand();
2023 significand.parts = newParts;
2024 } else if (newPartCount == 1 && oldPartCount != 1) {
2025 // Switch to built-in storage for a single part.
2026 integerPart newPart = 0;
2027 if (isFiniteNonZero() || category==fcNaN)
2028 newPart = significandParts()[0];
2029 freeSignificand();
2030 significand.part = newPart;
2031 }
2032
2033 // Now that we have the right storage, switch the semantics.
2034 semantics = &toSemantics;
2035
2036 // If this is an extension, perform the shift now that the storage is
2037 // available.
2038 if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
2039 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
2040
2041 if (isFiniteNonZero()) {
2042 fs = normalize(rounding_mode, lostFraction);
2043 *losesInfo = (fs != opOK);
2044 } else if (category == fcNaN) {
2045 *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
2046
2047 // For x87 extended precision, we want to make a NaN, not a special NaN if
2048 // the input wasn't special either.
2049 if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended)
2050 APInt::tcSetBit(significandParts(), semantics->precision - 1);
2051
2052 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
2053 // does not give you back the same bits. This is dubious, and we
2054 // don't currently do it. You're really supposed to get
2055 // an invalid operation signal at runtime, but nobody does that.
2056 fs = opOK;
2057 } else {
2058 *losesInfo = false;
2059 fs = opOK;
2060 }
2061
2062 return fs;
2063 }
2064
2065 /* Convert a floating point number to an integer according to the
2066 rounding mode. If the rounded integer value is out of range this
2067 returns an invalid operation exception and the contents of the
2068 destination parts are unspecified. If the rounded value is in
2069 range but the floating point number is not the exact integer, the C
2070 standard doesn't require an inexact exception to be raised. IEEE
2071 854 does require it so we do that.
2072
2073 Note that for conversions to integer type the C standard requires
2074 round-to-zero to always be used. */
2075 APFloat::opStatus
convertToSignExtendedInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2076 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
2077 bool isSigned,
2078 roundingMode rounding_mode,
2079 bool *isExact) const
2080 {
2081 lostFraction lost_fraction;
2082 const integerPart *src;
2083 unsigned int dstPartsCount, truncatedBits;
2084
2085 *isExact = false;
2086
2087 /* Handle the three special cases first. */
2088 if (category == fcInfinity || category == fcNaN)
2089 return opInvalidOp;
2090
2091 dstPartsCount = partCountForBits(width);
2092
2093 if (category == fcZero) {
2094 APInt::tcSet(parts, 0, dstPartsCount);
2095 // Negative zero can't be represented as an int.
2096 *isExact = !sign;
2097 return opOK;
2098 }
2099
2100 src = significandParts();
2101
2102 /* Step 1: place our absolute value, with any fraction truncated, in
2103 the destination. */
2104 if (exponent < 0) {
2105 /* Our absolute value is less than one; truncate everything. */
2106 APInt::tcSet(parts, 0, dstPartsCount);
2107 /* For exponent -1 the integer bit represents .5, look at that.
2108 For smaller exponents leftmost truncated bit is 0. */
2109 truncatedBits = semantics->precision -1U - exponent;
2110 } else {
2111 /* We want the most significant (exponent + 1) bits; the rest are
2112 truncated. */
2113 unsigned int bits = exponent + 1U;
2114
2115 /* Hopelessly large in magnitude? */
2116 if (bits > width)
2117 return opInvalidOp;
2118
2119 if (bits < semantics->precision) {
2120 /* We truncate (semantics->precision - bits) bits. */
2121 truncatedBits = semantics->precision - bits;
2122 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
2123 } else {
2124 /* We want at least as many bits as are available. */
2125 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
2126 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
2127 truncatedBits = 0;
2128 }
2129 }
2130
2131 /* Step 2: work out any lost fraction, and increment the absolute
2132 value if we would round away from zero. */
2133 if (truncatedBits) {
2134 lost_fraction = lostFractionThroughTruncation(src, partCount(),
2135 truncatedBits);
2136 if (lost_fraction != lfExactlyZero &&
2137 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2138 if (APInt::tcIncrement(parts, dstPartsCount))
2139 return opInvalidOp; /* Overflow. */
2140 }
2141 } else {
2142 lost_fraction = lfExactlyZero;
2143 }
2144
2145 /* Step 3: check if we fit in the destination. */
2146 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2147
2148 if (sign) {
2149 if (!isSigned) {
2150 /* Negative numbers cannot be represented as unsigned. */
2151 if (omsb != 0)
2152 return opInvalidOp;
2153 } else {
2154 /* It takes omsb bits to represent the unsigned integer value.
2155 We lose a bit for the sign, but care is needed as the
2156 maximally negative integer is a special case. */
2157 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2158 return opInvalidOp;
2159
2160 /* This case can happen because of rounding. */
2161 if (omsb > width)
2162 return opInvalidOp;
2163 }
2164
2165 APInt::tcNegate (parts, dstPartsCount);
2166 } else {
2167 if (omsb >= width + !isSigned)
2168 return opInvalidOp;
2169 }
2170
2171 if (lost_fraction == lfExactlyZero) {
2172 *isExact = true;
2173 return opOK;
2174 } else
2175 return opInexact;
2176 }
2177
2178 /* Same as convertToSignExtendedInteger, except we provide
2179 deterministic values in case of an invalid operation exception,
2180 namely zero for NaNs and the minimal or maximal value respectively
2181 for underflow or overflow.
2182 The *isExact output tells whether the result is exact, in the sense
2183 that converting it back to the original floating point type produces
2184 the original value. This is almost equivalent to result==opOK,
2185 except for negative zeroes.
2186 */
2187 APFloat::opStatus
convertToInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2188 APFloat::convertToInteger(integerPart *parts, unsigned int width,
2189 bool isSigned,
2190 roundingMode rounding_mode, bool *isExact) const
2191 {
2192 opStatus fs;
2193
2194 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2195 isExact);
2196
2197 if (fs == opInvalidOp) {
2198 unsigned int bits, dstPartsCount;
2199
2200 dstPartsCount = partCountForBits(width);
2201
2202 if (category == fcNaN)
2203 bits = 0;
2204 else if (sign)
2205 bits = isSigned;
2206 else
2207 bits = width - isSigned;
2208
2209 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2210 if (sign && isSigned)
2211 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
2212 }
2213
2214 return fs;
2215 }
2216
2217 /* Same as convertToInteger(integerPart*, ...), except the result is returned in
2218 an APSInt, whose initial bit-width and signed-ness are used to determine the
2219 precision of the conversion.
2220 */
2221 APFloat::opStatus
convertToInteger(APSInt & result,roundingMode rounding_mode,bool * isExact) const2222 APFloat::convertToInteger(APSInt &result,
2223 roundingMode rounding_mode, bool *isExact) const
2224 {
2225 unsigned bitWidth = result.getBitWidth();
2226 SmallVector<uint64_t, 4> parts(result.getNumWords());
2227 opStatus status = convertToInteger(
2228 parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
2229 // Keeps the original signed-ness.
2230 result = APInt(bitWidth, parts);
2231 return status;
2232 }
2233
2234 /* Convert an unsigned integer SRC to a floating point number,
2235 rounding according to ROUNDING_MODE. The sign of the floating
2236 point number is not modified. */
2237 APFloat::opStatus
convertFromUnsignedParts(const integerPart * src,unsigned int srcCount,roundingMode rounding_mode)2238 APFloat::convertFromUnsignedParts(const integerPart *src,
2239 unsigned int srcCount,
2240 roundingMode rounding_mode)
2241 {
2242 unsigned int omsb, precision, dstCount;
2243 integerPart *dst;
2244 lostFraction lost_fraction;
2245
2246 category = fcNormal;
2247 omsb = APInt::tcMSB(src, srcCount) + 1;
2248 dst = significandParts();
2249 dstCount = partCount();
2250 precision = semantics->precision;
2251
2252 /* We want the most significant PRECISION bits of SRC. There may not
2253 be that many; extract what we can. */
2254 if (precision <= omsb) {
2255 exponent = omsb - 1;
2256 lost_fraction = lostFractionThroughTruncation(src, srcCount,
2257 omsb - precision);
2258 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2259 } else {
2260 exponent = precision - 1;
2261 lost_fraction = lfExactlyZero;
2262 APInt::tcExtract(dst, dstCount, src, omsb, 0);
2263 }
2264
2265 return normalize(rounding_mode, lost_fraction);
2266 }
2267
2268 APFloat::opStatus
convertFromAPInt(const APInt & Val,bool isSigned,roundingMode rounding_mode)2269 APFloat::convertFromAPInt(const APInt &Val,
2270 bool isSigned,
2271 roundingMode rounding_mode)
2272 {
2273 unsigned int partCount = Val.getNumWords();
2274 APInt api = Val;
2275
2276 sign = false;
2277 if (isSigned && api.isNegative()) {
2278 sign = true;
2279 api = -api;
2280 }
2281
2282 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2283 }
2284
2285 /* Convert a two's complement integer SRC to a floating point number,
2286 rounding according to ROUNDING_MODE. ISSIGNED is true if the
2287 integer is signed, in which case it must be sign-extended. */
2288 APFloat::opStatus
convertFromSignExtendedInteger(const integerPart * src,unsigned int srcCount,bool isSigned,roundingMode rounding_mode)2289 APFloat::convertFromSignExtendedInteger(const integerPart *src,
2290 unsigned int srcCount,
2291 bool isSigned,
2292 roundingMode rounding_mode)
2293 {
2294 opStatus status;
2295
2296 if (isSigned &&
2297 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2298 integerPart *copy;
2299
2300 /* If we're signed and negative negate a copy. */
2301 sign = true;
2302 copy = new integerPart[srcCount];
2303 APInt::tcAssign(copy, src, srcCount);
2304 APInt::tcNegate(copy, srcCount);
2305 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2306 delete [] copy;
2307 } else {
2308 sign = false;
2309 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2310 }
2311
2312 return status;
2313 }
2314
2315 /* FIXME: should this just take a const APInt reference? */
2316 APFloat::opStatus
convertFromZeroExtendedInteger(const integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode)2317 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2318 unsigned int width, bool isSigned,
2319 roundingMode rounding_mode)
2320 {
2321 unsigned int partCount = partCountForBits(width);
2322 APInt api = APInt(width, makeArrayRef(parts, partCount));
2323
2324 sign = false;
2325 if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2326 sign = true;
2327 api = -api;
2328 }
2329
2330 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2331 }
2332
2333 APFloat::opStatus
convertFromHexadecimalString(StringRef s,roundingMode rounding_mode)2334 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
2335 {
2336 lostFraction lost_fraction = lfExactlyZero;
2337
2338 category = fcNormal;
2339 zeroSignificand();
2340 exponent = 0;
2341
2342 integerPart *significand = significandParts();
2343 unsigned partsCount = partCount();
2344 unsigned bitPos = partsCount * integerPartWidth;
2345 bool computedTrailingFraction = false;
2346
2347 // Skip leading zeroes and any (hexa)decimal point.
2348 StringRef::iterator begin = s.begin();
2349 StringRef::iterator end = s.end();
2350 StringRef::iterator dot;
2351 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2352 StringRef::iterator firstSignificantDigit = p;
2353
2354 while (p != end) {
2355 integerPart hex_value;
2356
2357 if (*p == '.') {
2358 assert(dot == end && "String contains multiple dots");
2359 dot = p++;
2360 continue;
2361 }
2362
2363 hex_value = hexDigitValue(*p);
2364 if (hex_value == -1U)
2365 break;
2366
2367 p++;
2368
2369 // Store the number while we have space.
2370 if (bitPos) {
2371 bitPos -= 4;
2372 hex_value <<= bitPos % integerPartWidth;
2373 significand[bitPos / integerPartWidth] |= hex_value;
2374 } else if (!computedTrailingFraction) {
2375 lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
2376 computedTrailingFraction = true;
2377 }
2378 }
2379
2380 /* Hex floats require an exponent but not a hexadecimal point. */
2381 assert(p != end && "Hex strings require an exponent");
2382 assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2383 assert(p != begin && "Significand has no digits");
2384 assert((dot == end || p - begin != 1) && "Significand has no digits");
2385
2386 /* Ignore the exponent if we are zero. */
2387 if (p != firstSignificantDigit) {
2388 int expAdjustment;
2389
2390 /* Implicit hexadecimal point? */
2391 if (dot == end)
2392 dot = p;
2393
2394 /* Calculate the exponent adjustment implicit in the number of
2395 significant digits. */
2396 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2397 if (expAdjustment < 0)
2398 expAdjustment++;
2399 expAdjustment = expAdjustment * 4 - 1;
2400
2401 /* Adjust for writing the significand starting at the most
2402 significant nibble. */
2403 expAdjustment += semantics->precision;
2404 expAdjustment -= partsCount * integerPartWidth;
2405
2406 /* Adjust for the given exponent. */
2407 exponent = totalExponent(p + 1, end, expAdjustment);
2408 }
2409
2410 return normalize(rounding_mode, lost_fraction);
2411 }
2412
2413 APFloat::opStatus
roundSignificandWithExponent(const integerPart * decSigParts,unsigned sigPartCount,int exp,roundingMode rounding_mode)2414 APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2415 unsigned sigPartCount, int exp,
2416 roundingMode rounding_mode)
2417 {
2418 unsigned int parts, pow5PartCount;
2419 fltSemantics calcSemantics = { 32767, -32767, 0 };
2420 integerPart pow5Parts[maxPowerOfFiveParts];
2421 bool isNearest;
2422
2423 isNearest = (rounding_mode == rmNearestTiesToEven ||
2424 rounding_mode == rmNearestTiesToAway);
2425
2426 parts = partCountForBits(semantics->precision + 11);
2427
2428 /* Calculate pow(5, abs(exp)). */
2429 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2430
2431 for (;; parts *= 2) {
2432 opStatus sigStatus, powStatus;
2433 unsigned int excessPrecision, truncatedBits;
2434
2435 calcSemantics.precision = parts * integerPartWidth - 1;
2436 excessPrecision = calcSemantics.precision - semantics->precision;
2437 truncatedBits = excessPrecision;
2438
2439 APFloat decSig = APFloat::getZero(calcSemantics, sign);
2440 APFloat pow5(calcSemantics);
2441
2442 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2443 rmNearestTiesToEven);
2444 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2445 rmNearestTiesToEven);
2446 /* Add exp, as 10^n = 5^n * 2^n. */
2447 decSig.exponent += exp;
2448
2449 lostFraction calcLostFraction;
2450 integerPart HUerr, HUdistance;
2451 unsigned int powHUerr;
2452
2453 if (exp >= 0) {
2454 /* multiplySignificand leaves the precision-th bit set to 1. */
2455 calcLostFraction = decSig.multiplySignificand(pow5, nullptr);
2456 powHUerr = powStatus != opOK;
2457 } else {
2458 calcLostFraction = decSig.divideSignificand(pow5);
2459 /* Denormal numbers have less precision. */
2460 if (decSig.exponent < semantics->minExponent) {
2461 excessPrecision += (semantics->minExponent - decSig.exponent);
2462 truncatedBits = excessPrecision;
2463 if (excessPrecision > calcSemantics.precision)
2464 excessPrecision = calcSemantics.precision;
2465 }
2466 /* Extra half-ulp lost in reciprocal of exponent. */
2467 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2468 }
2469
2470 /* Both multiplySignificand and divideSignificand return the
2471 result with the integer bit set. */
2472 assert(APInt::tcExtractBit
2473 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2474
2475 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2476 powHUerr);
2477 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2478 excessPrecision, isNearest);
2479
2480 /* Are we guaranteed to round correctly if we truncate? */
2481 if (HUdistance >= HUerr) {
2482 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2483 calcSemantics.precision - excessPrecision,
2484 excessPrecision);
2485 /* Take the exponent of decSig. If we tcExtract-ed less bits
2486 above we must adjust our exponent to compensate for the
2487 implicit right shift. */
2488 exponent = (decSig.exponent + semantics->precision
2489 - (calcSemantics.precision - excessPrecision));
2490 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2491 decSig.partCount(),
2492 truncatedBits);
2493 return normalize(rounding_mode, calcLostFraction);
2494 }
2495 }
2496 }
2497
2498 APFloat::opStatus
convertFromDecimalString(StringRef str,roundingMode rounding_mode)2499 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
2500 {
2501 decimalInfo D;
2502 opStatus fs;
2503
2504 /* Scan the text. */
2505 StringRef::iterator p = str.begin();
2506 interpretDecimal(p, str.end(), &D);
2507
2508 /* Handle the quick cases. First the case of no significant digits,
2509 i.e. zero, and then exponents that are obviously too large or too
2510 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2511 definitely overflows if
2512
2513 (exp - 1) * L >= maxExponent
2514
2515 and definitely underflows to zero where
2516
2517 (exp + 1) * L <= minExponent - precision
2518
2519 With integer arithmetic the tightest bounds for L are
2520
2521 93/28 < L < 196/59 [ numerator <= 256 ]
2522 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2523 */
2524
2525 // Test if we have a zero number allowing for strings with no null terminators
2526 // and zero decimals with non-zero exponents.
2527 //
2528 // We computed firstSigDigit by ignoring all zeros and dots. Thus if
2529 // D->firstSigDigit equals str.end(), every digit must be a zero and there can
2530 // be at most one dot. On the other hand, if we have a zero with a non-zero
2531 // exponent, then we know that D.firstSigDigit will be non-numeric.
2532 if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
2533 category = fcZero;
2534 fs = opOK;
2535
2536 /* Check whether the normalized exponent is high enough to overflow
2537 max during the log-rebasing in the max-exponent check below. */
2538 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2539 fs = handleOverflow(rounding_mode);
2540
2541 /* If it wasn't, then it also wasn't high enough to overflow max
2542 during the log-rebasing in the min-exponent check. Check that it
2543 won't overflow min in either check, then perform the min-exponent
2544 check. */
2545 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2546 (D.normalizedExponent + 1) * 28738 <=
2547 8651 * (semantics->minExponent - (int) semantics->precision)) {
2548 /* Underflow to zero and round. */
2549 category = fcNormal;
2550 zeroSignificand();
2551 fs = normalize(rounding_mode, lfLessThanHalf);
2552
2553 /* We can finally safely perform the max-exponent check. */
2554 } else if ((D.normalizedExponent - 1) * 42039
2555 >= 12655 * semantics->maxExponent) {
2556 /* Overflow and round. */
2557 fs = handleOverflow(rounding_mode);
2558 } else {
2559 integerPart *decSignificand;
2560 unsigned int partCount;
2561
2562 /* A tight upper bound on number of bits required to hold an
2563 N-digit decimal integer is N * 196 / 59. Allocate enough space
2564 to hold the full significand, and an extra part required by
2565 tcMultiplyPart. */
2566 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2567 partCount = partCountForBits(1 + 196 * partCount / 59);
2568 decSignificand = new integerPart[partCount + 1];
2569 partCount = 0;
2570
2571 /* Convert to binary efficiently - we do almost all multiplication
2572 in an integerPart. When this would overflow do we do a single
2573 bignum multiplication, and then revert again to multiplication
2574 in an integerPart. */
2575 do {
2576 integerPart decValue, val, multiplier;
2577
2578 val = 0;
2579 multiplier = 1;
2580
2581 do {
2582 if (*p == '.') {
2583 p++;
2584 if (p == str.end()) {
2585 break;
2586 }
2587 }
2588 decValue = decDigitValue(*p++);
2589 assert(decValue < 10U && "Invalid character in significand");
2590 multiplier *= 10;
2591 val = val * 10 + decValue;
2592 /* The maximum number that can be multiplied by ten with any
2593 digit added without overflowing an integerPart. */
2594 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2595
2596 /* Multiply out the current part. */
2597 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2598 partCount, partCount + 1, false);
2599
2600 /* If we used another part (likely but not guaranteed), increase
2601 the count. */
2602 if (decSignificand[partCount])
2603 partCount++;
2604 } while (p <= D.lastSigDigit);
2605
2606 category = fcNormal;
2607 fs = roundSignificandWithExponent(decSignificand, partCount,
2608 D.exponent, rounding_mode);
2609
2610 delete [] decSignificand;
2611 }
2612
2613 return fs;
2614 }
2615
2616 bool
convertFromStringSpecials(StringRef str)2617 APFloat::convertFromStringSpecials(StringRef str) {
2618 if (str.equals("inf") || str.equals("INFINITY")) {
2619 makeInf(false);
2620 return true;
2621 }
2622
2623 if (str.equals("-inf") || str.equals("-INFINITY")) {
2624 makeInf(true);
2625 return true;
2626 }
2627
2628 if (str.equals("nan") || str.equals("NaN")) {
2629 makeNaN(false, false);
2630 return true;
2631 }
2632
2633 if (str.equals("-nan") || str.equals("-NaN")) {
2634 makeNaN(false, true);
2635 return true;
2636 }
2637
2638 return false;
2639 }
2640
2641 APFloat::opStatus
convertFromString(StringRef str,roundingMode rounding_mode)2642 APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
2643 {
2644 assert(!str.empty() && "Invalid string length");
2645
2646 // Handle special cases.
2647 if (convertFromStringSpecials(str))
2648 return opOK;
2649
2650 /* Handle a leading minus sign. */
2651 StringRef::iterator p = str.begin();
2652 size_t slen = str.size();
2653 sign = *p == '-' ? 1 : 0;
2654 if (*p == '-' || *p == '+') {
2655 p++;
2656 slen--;
2657 assert(slen && "String has no digits");
2658 }
2659
2660 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2661 assert(slen - 2 && "Invalid string");
2662 return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2663 rounding_mode);
2664 }
2665
2666 return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2667 }
2668
2669 /* Write out a hexadecimal representation of the floating point value
2670 to DST, which must be of sufficient size, in the C99 form
2671 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2672 excluding the terminating NUL.
2673
2674 If UPPERCASE, the output is in upper case, otherwise in lower case.
2675
2676 HEXDIGITS digits appear altogether, rounding the value if
2677 necessary. If HEXDIGITS is 0, the minimal precision to display the
2678 number precisely is used instead. If nothing would appear after
2679 the decimal point it is suppressed.
2680
2681 The decimal exponent is always printed and has at least one digit.
2682 Zero values display an exponent of zero. Infinities and NaNs
2683 appear as "infinity" or "nan" respectively.
2684
2685 The above rules are as specified by C99. There is ambiguity about
2686 what the leading hexadecimal digit should be. This implementation
2687 uses whatever is necessary so that the exponent is displayed as
2688 stored. This implies the exponent will fall within the IEEE format
2689 range, and the leading hexadecimal digit will be 0 (for denormals),
2690 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2691 any other digits zero).
2692 */
2693 unsigned int
convertToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2694 APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2695 bool upperCase, roundingMode rounding_mode) const
2696 {
2697 char *p;
2698
2699 p = dst;
2700 if (sign)
2701 *dst++ = '-';
2702
2703 switch (category) {
2704 case fcInfinity:
2705 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2706 dst += sizeof infinityL - 1;
2707 break;
2708
2709 case fcNaN:
2710 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2711 dst += sizeof NaNU - 1;
2712 break;
2713
2714 case fcZero:
2715 *dst++ = '0';
2716 *dst++ = upperCase ? 'X': 'x';
2717 *dst++ = '0';
2718 if (hexDigits > 1) {
2719 *dst++ = '.';
2720 memset (dst, '0', hexDigits - 1);
2721 dst += hexDigits - 1;
2722 }
2723 *dst++ = upperCase ? 'P': 'p';
2724 *dst++ = '0';
2725 break;
2726
2727 case fcNormal:
2728 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2729 break;
2730 }
2731
2732 *dst = 0;
2733
2734 return static_cast<unsigned int>(dst - p);
2735 }
2736
2737 /* Does the hard work of outputting the correctly rounded hexadecimal
2738 form of a normal floating point number with the specified number of
2739 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2740 digits necessary to print the value precisely is output. */
2741 char *
convertNormalToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2742 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2743 bool upperCase,
2744 roundingMode rounding_mode) const
2745 {
2746 unsigned int count, valueBits, shift, partsCount, outputDigits;
2747 const char *hexDigitChars;
2748 const integerPart *significand;
2749 char *p;
2750 bool roundUp;
2751
2752 *dst++ = '0';
2753 *dst++ = upperCase ? 'X': 'x';
2754
2755 roundUp = false;
2756 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2757
2758 significand = significandParts();
2759 partsCount = partCount();
2760
2761 /* +3 because the first digit only uses the single integer bit, so
2762 we have 3 virtual zero most-significant-bits. */
2763 valueBits = semantics->precision + 3;
2764 shift = integerPartWidth - valueBits % integerPartWidth;
2765
2766 /* The natural number of digits required ignoring trailing
2767 insignificant zeroes. */
2768 outputDigits = (valueBits - significandLSB () + 3) / 4;
2769
2770 /* hexDigits of zero means use the required number for the
2771 precision. Otherwise, see if we are truncating. If we are,
2772 find out if we need to round away from zero. */
2773 if (hexDigits) {
2774 if (hexDigits < outputDigits) {
2775 /* We are dropping non-zero bits, so need to check how to round.
2776 "bits" is the number of dropped bits. */
2777 unsigned int bits;
2778 lostFraction fraction;
2779
2780 bits = valueBits - hexDigits * 4;
2781 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2782 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2783 }
2784 outputDigits = hexDigits;
2785 }
2786
2787 /* Write the digits consecutively, and start writing in the location
2788 of the hexadecimal point. We move the most significant digit
2789 left and add the hexadecimal point later. */
2790 p = ++dst;
2791
2792 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2793
2794 while (outputDigits && count) {
2795 integerPart part;
2796
2797 /* Put the most significant integerPartWidth bits in "part". */
2798 if (--count == partsCount)
2799 part = 0; /* An imaginary higher zero part. */
2800 else
2801 part = significand[count] << shift;
2802
2803 if (count && shift)
2804 part |= significand[count - 1] >> (integerPartWidth - shift);
2805
2806 /* Convert as much of "part" to hexdigits as we can. */
2807 unsigned int curDigits = integerPartWidth / 4;
2808
2809 if (curDigits > outputDigits)
2810 curDigits = outputDigits;
2811 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2812 outputDigits -= curDigits;
2813 }
2814
2815 if (roundUp) {
2816 char *q = dst;
2817
2818 /* Note that hexDigitChars has a trailing '0'. */
2819 do {
2820 q--;
2821 *q = hexDigitChars[hexDigitValue (*q) + 1];
2822 } while (*q == '0');
2823 assert(q >= p);
2824 } else {
2825 /* Add trailing zeroes. */
2826 memset (dst, '0', outputDigits);
2827 dst += outputDigits;
2828 }
2829
2830 /* Move the most significant digit to before the point, and if there
2831 is something after the decimal point add it. This must come
2832 after rounding above. */
2833 p[-1] = p[0];
2834 if (dst -1 == p)
2835 dst--;
2836 else
2837 p[0] = '.';
2838
2839 /* Finally output the exponent. */
2840 *dst++ = upperCase ? 'P': 'p';
2841
2842 return writeSignedDecimal (dst, exponent);
2843 }
2844
hash_value(const APFloat & Arg)2845 hash_code llvm::hash_value(const APFloat &Arg) {
2846 if (!Arg.isFiniteNonZero())
2847 return hash_combine((uint8_t)Arg.category,
2848 // NaN has no sign, fix it at zero.
2849 Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
2850 Arg.semantics->precision);
2851
2852 // Normal floats need their exponent and significand hashed.
2853 return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
2854 Arg.semantics->precision, Arg.exponent,
2855 hash_combine_range(
2856 Arg.significandParts(),
2857 Arg.significandParts() + Arg.partCount()));
2858 }
2859
2860 // Conversion from APFloat to/from host float/double. It may eventually be
2861 // possible to eliminate these and have everybody deal with APFloats, but that
2862 // will take a while. This approach will not easily extend to long double.
2863 // Current implementation requires integerPartWidth==64, which is correct at
2864 // the moment but could be made more general.
2865
2866 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
2867 // the actual IEEE respresentations. We compensate for that here.
2868
2869 APInt
convertF80LongDoubleAPFloatToAPInt() const2870 APFloat::convertF80LongDoubleAPFloatToAPInt() const
2871 {
2872 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
2873 assert(partCount()==2);
2874
2875 uint64_t myexponent, mysignificand;
2876
2877 if (isFiniteNonZero()) {
2878 myexponent = exponent+16383; //bias
2879 mysignificand = significandParts()[0];
2880 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2881 myexponent = 0; // denormal
2882 } else if (category==fcZero) {
2883 myexponent = 0;
2884 mysignificand = 0;
2885 } else if (category==fcInfinity) {
2886 myexponent = 0x7fff;
2887 mysignificand = 0x8000000000000000ULL;
2888 } else {
2889 assert(category == fcNaN && "Unknown category");
2890 myexponent = 0x7fff;
2891 mysignificand = significandParts()[0];
2892 }
2893
2894 uint64_t words[2];
2895 words[0] = mysignificand;
2896 words[1] = ((uint64_t)(sign & 1) << 15) |
2897 (myexponent & 0x7fffLL);
2898 return APInt(80, words);
2899 }
2900
2901 APInt
convertPPCDoubleDoubleAPFloatToAPInt() const2902 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2903 {
2904 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
2905 assert(partCount()==2);
2906
2907 uint64_t words[2];
2908 opStatus fs;
2909 bool losesInfo;
2910
2911 // Convert number to double. To avoid spurious underflows, we re-
2912 // normalize against the "double" minExponent first, and only *then*
2913 // truncate the mantissa. The result of that second conversion
2914 // may be inexact, but should never underflow.
2915 // Declare fltSemantics before APFloat that uses it (and
2916 // saves pointer to it) to ensure correct destruction order.
2917 fltSemantics extendedSemantics = *semantics;
2918 extendedSemantics.minExponent = IEEEdouble.minExponent;
2919 APFloat extended(*this);
2920 fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2921 assert(fs == opOK && !losesInfo);
2922 (void)fs;
2923
2924 APFloat u(extended);
2925 fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2926 assert(fs == opOK || fs == opInexact);
2927 (void)fs;
2928 words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
2929
2930 // If conversion was exact or resulted in a special case, we're done;
2931 // just set the second double to zero. Otherwise, re-convert back to
2932 // the extended format and compute the difference. This now should
2933 // convert exactly to double.
2934 if (u.isFiniteNonZero() && losesInfo) {
2935 fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2936 assert(fs == opOK && !losesInfo);
2937 (void)fs;
2938
2939 APFloat v(extended);
2940 v.subtract(u, rmNearestTiesToEven);
2941 fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2942 assert(fs == opOK && !losesInfo);
2943 (void)fs;
2944 words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
2945 } else {
2946 words[1] = 0;
2947 }
2948
2949 return APInt(128, words);
2950 }
2951
2952 APInt
convertQuadrupleAPFloatToAPInt() const2953 APFloat::convertQuadrupleAPFloatToAPInt() const
2954 {
2955 assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
2956 assert(partCount()==2);
2957
2958 uint64_t myexponent, mysignificand, mysignificand2;
2959
2960 if (isFiniteNonZero()) {
2961 myexponent = exponent+16383; //bias
2962 mysignificand = significandParts()[0];
2963 mysignificand2 = significandParts()[1];
2964 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2965 myexponent = 0; // denormal
2966 } else if (category==fcZero) {
2967 myexponent = 0;
2968 mysignificand = mysignificand2 = 0;
2969 } else if (category==fcInfinity) {
2970 myexponent = 0x7fff;
2971 mysignificand = mysignificand2 = 0;
2972 } else {
2973 assert(category == fcNaN && "Unknown category!");
2974 myexponent = 0x7fff;
2975 mysignificand = significandParts()[0];
2976 mysignificand2 = significandParts()[1];
2977 }
2978
2979 uint64_t words[2];
2980 words[0] = mysignificand;
2981 words[1] = ((uint64_t)(sign & 1) << 63) |
2982 ((myexponent & 0x7fff) << 48) |
2983 (mysignificand2 & 0xffffffffffffLL);
2984
2985 return APInt(128, words);
2986 }
2987
2988 APInt
convertDoubleAPFloatToAPInt() const2989 APFloat::convertDoubleAPFloatToAPInt() const
2990 {
2991 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
2992 assert(partCount()==1);
2993
2994 uint64_t myexponent, mysignificand;
2995
2996 if (isFiniteNonZero()) {
2997 myexponent = exponent+1023; //bias
2998 mysignificand = *significandParts();
2999 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
3000 myexponent = 0; // denormal
3001 } else if (category==fcZero) {
3002 myexponent = 0;
3003 mysignificand = 0;
3004 } else if (category==fcInfinity) {
3005 myexponent = 0x7ff;
3006 mysignificand = 0;
3007 } else {
3008 assert(category == fcNaN && "Unknown category!");
3009 myexponent = 0x7ff;
3010 mysignificand = *significandParts();
3011 }
3012
3013 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
3014 ((myexponent & 0x7ff) << 52) |
3015 (mysignificand & 0xfffffffffffffLL))));
3016 }
3017
3018 APInt
convertFloatAPFloatToAPInt() const3019 APFloat::convertFloatAPFloatToAPInt() const
3020 {
3021 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
3022 assert(partCount()==1);
3023
3024 uint32_t myexponent, mysignificand;
3025
3026 if (isFiniteNonZero()) {
3027 myexponent = exponent+127; //bias
3028 mysignificand = (uint32_t)*significandParts();
3029 if (myexponent == 1 && !(mysignificand & 0x800000))
3030 myexponent = 0; // denormal
3031 } else if (category==fcZero) {
3032 myexponent = 0;
3033 mysignificand = 0;
3034 } else if (category==fcInfinity) {
3035 myexponent = 0xff;
3036 mysignificand = 0;
3037 } else {
3038 assert(category == fcNaN && "Unknown category!");
3039 myexponent = 0xff;
3040 mysignificand = (uint32_t)*significandParts();
3041 }
3042
3043 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
3044 (mysignificand & 0x7fffff)));
3045 }
3046
3047 APInt
convertHalfAPFloatToAPInt() const3048 APFloat::convertHalfAPFloatToAPInt() const
3049 {
3050 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
3051 assert(partCount()==1);
3052
3053 uint32_t myexponent, mysignificand;
3054
3055 if (isFiniteNonZero()) {
3056 myexponent = exponent+15; //bias
3057 mysignificand = (uint32_t)*significandParts();
3058 if (myexponent == 1 && !(mysignificand & 0x400))
3059 myexponent = 0; // denormal
3060 } else if (category==fcZero) {
3061 myexponent = 0;
3062 mysignificand = 0;
3063 } else if (category==fcInfinity) {
3064 myexponent = 0x1f;
3065 mysignificand = 0;
3066 } else {
3067 assert(category == fcNaN && "Unknown category!");
3068 myexponent = 0x1f;
3069 mysignificand = (uint32_t)*significandParts();
3070 }
3071
3072 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
3073 (mysignificand & 0x3ff)));
3074 }
3075
3076 // This function creates an APInt that is just a bit map of the floating
3077 // point constant as it would appear in memory. It is not a conversion,
3078 // and treating the result as a normal integer is unlikely to be useful.
3079
3080 APInt
bitcastToAPInt() const3081 APFloat::bitcastToAPInt() const
3082 {
3083 if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
3084 return convertHalfAPFloatToAPInt();
3085
3086 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
3087 return convertFloatAPFloatToAPInt();
3088
3089 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
3090 return convertDoubleAPFloatToAPInt();
3091
3092 if (semantics == (const llvm::fltSemantics*)&IEEEquad)
3093 return convertQuadrupleAPFloatToAPInt();
3094
3095 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
3096 return convertPPCDoubleDoubleAPFloatToAPInt();
3097
3098 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
3099 "unknown format!");
3100 return convertF80LongDoubleAPFloatToAPInt();
3101 }
3102
3103 float
convertToFloat() const3104 APFloat::convertToFloat() const
3105 {
3106 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
3107 "Float semantics are not IEEEsingle");
3108 APInt api = bitcastToAPInt();
3109 return api.bitsToFloat();
3110 }
3111
3112 double
convertToDouble() const3113 APFloat::convertToDouble() const
3114 {
3115 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
3116 "Float semantics are not IEEEdouble");
3117 APInt api = bitcastToAPInt();
3118 return api.bitsToDouble();
3119 }
3120
3121 /// Integer bit is explicit in this format. Intel hardware (387 and later)
3122 /// does not support these bit patterns:
3123 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
3124 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
3125 /// exponent = 0, integer bit 1 ("pseudodenormal")
3126 /// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
3127 /// At the moment, the first two are treated as NaNs, the second two as Normal.
3128 void
initFromF80LongDoubleAPInt(const APInt & api)3129 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
3130 {
3131 assert(api.getBitWidth()==80);
3132 uint64_t i1 = api.getRawData()[0];
3133 uint64_t i2 = api.getRawData()[1];
3134 uint64_t myexponent = (i2 & 0x7fff);
3135 uint64_t mysignificand = i1;
3136
3137 initialize(&APFloat::x87DoubleExtended);
3138 assert(partCount()==2);
3139
3140 sign = static_cast<unsigned int>(i2>>15);
3141 if (myexponent==0 && mysignificand==0) {
3142 // exponent, significand meaningless
3143 category = fcZero;
3144 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
3145 // exponent, significand meaningless
3146 category = fcInfinity;
3147 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
3148 // exponent meaningless
3149 category = fcNaN;
3150 significandParts()[0] = mysignificand;
3151 significandParts()[1] = 0;
3152 } else {
3153 category = fcNormal;
3154 exponent = myexponent - 16383;
3155 significandParts()[0] = mysignificand;
3156 significandParts()[1] = 0;
3157 if (myexponent==0) // denormal
3158 exponent = -16382;
3159 }
3160 }
3161
3162 void
initFromPPCDoubleDoubleAPInt(const APInt & api)3163 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
3164 {
3165 assert(api.getBitWidth()==128);
3166 uint64_t i1 = api.getRawData()[0];
3167 uint64_t i2 = api.getRawData()[1];
3168 opStatus fs;
3169 bool losesInfo;
3170
3171 // Get the first double and convert to our format.
3172 initFromDoubleAPInt(APInt(64, i1));
3173 fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3174 assert(fs == opOK && !losesInfo);
3175 (void)fs;
3176
3177 // Unless we have a special case, add in second double.
3178 if (isFiniteNonZero()) {
3179 APFloat v(IEEEdouble, APInt(64, i2));
3180 fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3181 assert(fs == opOK && !losesInfo);
3182 (void)fs;
3183
3184 add(v, rmNearestTiesToEven);
3185 }
3186 }
3187
3188 void
initFromQuadrupleAPInt(const APInt & api)3189 APFloat::initFromQuadrupleAPInt(const APInt &api)
3190 {
3191 assert(api.getBitWidth()==128);
3192 uint64_t i1 = api.getRawData()[0];
3193 uint64_t i2 = api.getRawData()[1];
3194 uint64_t myexponent = (i2 >> 48) & 0x7fff;
3195 uint64_t mysignificand = i1;
3196 uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3197
3198 initialize(&APFloat::IEEEquad);
3199 assert(partCount()==2);
3200
3201 sign = static_cast<unsigned int>(i2>>63);
3202 if (myexponent==0 &&
3203 (mysignificand==0 && mysignificand2==0)) {
3204 // exponent, significand meaningless
3205 category = fcZero;
3206 } else if (myexponent==0x7fff &&
3207 (mysignificand==0 && mysignificand2==0)) {
3208 // exponent, significand meaningless
3209 category = fcInfinity;
3210 } else if (myexponent==0x7fff &&
3211 (mysignificand!=0 || mysignificand2 !=0)) {
3212 // exponent meaningless
3213 category = fcNaN;
3214 significandParts()[0] = mysignificand;
3215 significandParts()[1] = mysignificand2;
3216 } else {
3217 category = fcNormal;
3218 exponent = myexponent - 16383;
3219 significandParts()[0] = mysignificand;
3220 significandParts()[1] = mysignificand2;
3221 if (myexponent==0) // denormal
3222 exponent = -16382;
3223 else
3224 significandParts()[1] |= 0x1000000000000LL; // integer bit
3225 }
3226 }
3227
3228 void
initFromDoubleAPInt(const APInt & api)3229 APFloat::initFromDoubleAPInt(const APInt &api)
3230 {
3231 assert(api.getBitWidth()==64);
3232 uint64_t i = *api.getRawData();
3233 uint64_t myexponent = (i >> 52) & 0x7ff;
3234 uint64_t mysignificand = i & 0xfffffffffffffLL;
3235
3236 initialize(&APFloat::IEEEdouble);
3237 assert(partCount()==1);
3238
3239 sign = static_cast<unsigned int>(i>>63);
3240 if (myexponent==0 && mysignificand==0) {
3241 // exponent, significand meaningless
3242 category = fcZero;
3243 } else if (myexponent==0x7ff && mysignificand==0) {
3244 // exponent, significand meaningless
3245 category = fcInfinity;
3246 } else if (myexponent==0x7ff && mysignificand!=0) {
3247 // exponent meaningless
3248 category = fcNaN;
3249 *significandParts() = mysignificand;
3250 } else {
3251 category = fcNormal;
3252 exponent = myexponent - 1023;
3253 *significandParts() = mysignificand;
3254 if (myexponent==0) // denormal
3255 exponent = -1022;
3256 else
3257 *significandParts() |= 0x10000000000000LL; // integer bit
3258 }
3259 }
3260
3261 void
initFromFloatAPInt(const APInt & api)3262 APFloat::initFromFloatAPInt(const APInt & api)
3263 {
3264 assert(api.getBitWidth()==32);
3265 uint32_t i = (uint32_t)*api.getRawData();
3266 uint32_t myexponent = (i >> 23) & 0xff;
3267 uint32_t mysignificand = i & 0x7fffff;
3268
3269 initialize(&APFloat::IEEEsingle);
3270 assert(partCount()==1);
3271
3272 sign = i >> 31;
3273 if (myexponent==0 && mysignificand==0) {
3274 // exponent, significand meaningless
3275 category = fcZero;
3276 } else if (myexponent==0xff && mysignificand==0) {
3277 // exponent, significand meaningless
3278 category = fcInfinity;
3279 } else if (myexponent==0xff && mysignificand!=0) {
3280 // sign, exponent, significand meaningless
3281 category = fcNaN;
3282 *significandParts() = mysignificand;
3283 } else {
3284 category = fcNormal;
3285 exponent = myexponent - 127; //bias
3286 *significandParts() = mysignificand;
3287 if (myexponent==0) // denormal
3288 exponent = -126;
3289 else
3290 *significandParts() |= 0x800000; // integer bit
3291 }
3292 }
3293
3294 void
initFromHalfAPInt(const APInt & api)3295 APFloat::initFromHalfAPInt(const APInt & api)
3296 {
3297 assert(api.getBitWidth()==16);
3298 uint32_t i = (uint32_t)*api.getRawData();
3299 uint32_t myexponent = (i >> 10) & 0x1f;
3300 uint32_t mysignificand = i & 0x3ff;
3301
3302 initialize(&APFloat::IEEEhalf);
3303 assert(partCount()==1);
3304
3305 sign = i >> 15;
3306 if (myexponent==0 && mysignificand==0) {
3307 // exponent, significand meaningless
3308 category = fcZero;
3309 } else if (myexponent==0x1f && mysignificand==0) {
3310 // exponent, significand meaningless
3311 category = fcInfinity;
3312 } else if (myexponent==0x1f && mysignificand!=0) {
3313 // sign, exponent, significand meaningless
3314 category = fcNaN;
3315 *significandParts() = mysignificand;
3316 } else {
3317 category = fcNormal;
3318 exponent = myexponent - 15; //bias
3319 *significandParts() = mysignificand;
3320 if (myexponent==0) // denormal
3321 exponent = -14;
3322 else
3323 *significandParts() |= 0x400; // integer bit
3324 }
3325 }
3326
3327 /// Treat api as containing the bits of a floating point number. Currently
3328 /// we infer the floating point type from the size of the APInt. The
3329 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3330 /// when the size is anything else).
3331 void
initFromAPInt(const fltSemantics * Sem,const APInt & api)3332 APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
3333 {
3334 if (Sem == &IEEEhalf)
3335 return initFromHalfAPInt(api);
3336 if (Sem == &IEEEsingle)
3337 return initFromFloatAPInt(api);
3338 if (Sem == &IEEEdouble)
3339 return initFromDoubleAPInt(api);
3340 if (Sem == &x87DoubleExtended)
3341 return initFromF80LongDoubleAPInt(api);
3342 if (Sem == &IEEEquad)
3343 return initFromQuadrupleAPInt(api);
3344 if (Sem == &PPCDoubleDouble)
3345 return initFromPPCDoubleDoubleAPInt(api);
3346
3347 llvm_unreachable(nullptr);
3348 }
3349
3350 APFloat
getAllOnesValue(unsigned BitWidth,bool isIEEE)3351 APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
3352 {
3353 switch (BitWidth) {
3354 case 16:
3355 return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
3356 case 32:
3357 return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
3358 case 64:
3359 return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
3360 case 80:
3361 return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
3362 case 128:
3363 if (isIEEE)
3364 return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
3365 return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
3366 default:
3367 llvm_unreachable("Unknown floating bit width");
3368 }
3369 }
3370
3371 /// Make this number the largest magnitude normal number in the given
3372 /// semantics.
makeLargest(bool Negative)3373 void APFloat::makeLargest(bool Negative) {
3374 // We want (in interchange format):
3375 // sign = {Negative}
3376 // exponent = 1..10
3377 // significand = 1..1
3378 category = fcNormal;
3379 sign = Negative;
3380 exponent = semantics->maxExponent;
3381
3382 // Use memset to set all but the highest integerPart to all ones.
3383 integerPart *significand = significandParts();
3384 unsigned PartCount = partCount();
3385 memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
3386
3387 // Set the high integerPart especially setting all unused top bits for
3388 // internal consistency.
3389 const unsigned NumUnusedHighBits =
3390 PartCount*integerPartWidth - semantics->precision;
3391 significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
3392 ? (~integerPart(0) >> NumUnusedHighBits)
3393 : 0;
3394 }
3395
3396 /// Make this number the smallest magnitude denormal number in the given
3397 /// semantics.
makeSmallest(bool Negative)3398 void APFloat::makeSmallest(bool Negative) {
3399 // We want (in interchange format):
3400 // sign = {Negative}
3401 // exponent = 0..0
3402 // significand = 0..01
3403 category = fcNormal;
3404 sign = Negative;
3405 exponent = semantics->minExponent;
3406 APInt::tcSet(significandParts(), 1, partCount());
3407 }
3408
3409
getLargest(const fltSemantics & Sem,bool Negative)3410 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3411 // We want (in interchange format):
3412 // sign = {Negative}
3413 // exponent = 1..10
3414 // significand = 1..1
3415 APFloat Val(Sem, uninitialized);
3416 Val.makeLargest(Negative);
3417 return Val;
3418 }
3419
getSmallest(const fltSemantics & Sem,bool Negative)3420 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3421 // We want (in interchange format):
3422 // sign = {Negative}
3423 // exponent = 0..0
3424 // significand = 0..01
3425 APFloat Val(Sem, uninitialized);
3426 Val.makeSmallest(Negative);
3427 return Val;
3428 }
3429
getSmallestNormalized(const fltSemantics & Sem,bool Negative)3430 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3431 APFloat Val(Sem, uninitialized);
3432
3433 // We want (in interchange format):
3434 // sign = {Negative}
3435 // exponent = 0..0
3436 // significand = 10..0
3437
3438 Val.category = fcNormal;
3439 Val.zeroSignificand();
3440 Val.sign = Negative;
3441 Val.exponent = Sem.minExponent;
3442 Val.significandParts()[partCountForBits(Sem.precision)-1] |=
3443 (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
3444
3445 return Val;
3446 }
3447
APFloat(const fltSemantics & Sem,const APInt & API)3448 APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
3449 initFromAPInt(&Sem, API);
3450 }
3451
APFloat(float f)3452 APFloat::APFloat(float f) {
3453 initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
3454 }
3455
APFloat(double d)3456 APFloat::APFloat(double d) {
3457 initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
3458 }
3459
3460 namespace {
append(SmallVectorImpl<char> & Buffer,StringRef Str)3461 void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3462 Buffer.append(Str.begin(), Str.end());
3463 }
3464
3465 /// Removes data from the given significand until it is no more
3466 /// precise than is required for the desired precision.
AdjustToPrecision(APInt & significand,int & exp,unsigned FormatPrecision)3467 void AdjustToPrecision(APInt &significand,
3468 int &exp, unsigned FormatPrecision) {
3469 unsigned bits = significand.getActiveBits();
3470
3471 // 196/59 is a very slight overestimate of lg_2(10).
3472 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3473
3474 if (bits <= bitsRequired) return;
3475
3476 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3477 if (!tensRemovable) return;
3478
3479 exp += tensRemovable;
3480
3481 APInt divisor(significand.getBitWidth(), 1);
3482 APInt powten(significand.getBitWidth(), 10);
3483 while (true) {
3484 if (tensRemovable & 1)
3485 divisor *= powten;
3486 tensRemovable >>= 1;
3487 if (!tensRemovable) break;
3488 powten *= powten;
3489 }
3490
3491 significand = significand.udiv(divisor);
3492
3493 // Truncate the significand down to its active bit count.
3494 significand = significand.trunc(significand.getActiveBits());
3495 }
3496
3497
AdjustToPrecision(SmallVectorImpl<char> & buffer,int & exp,unsigned FormatPrecision)3498 void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3499 int &exp, unsigned FormatPrecision) {
3500 unsigned N = buffer.size();
3501 if (N <= FormatPrecision) return;
3502
3503 // The most significant figures are the last ones in the buffer.
3504 unsigned FirstSignificant = N - FormatPrecision;
3505
3506 // Round.
3507 // FIXME: this probably shouldn't use 'round half up'.
3508
3509 // Rounding down is just a truncation, except we also want to drop
3510 // trailing zeros from the new result.
3511 if (buffer[FirstSignificant - 1] < '5') {
3512 while (FirstSignificant < N && buffer[FirstSignificant] == '0')
3513 FirstSignificant++;
3514
3515 exp += FirstSignificant;
3516 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3517 return;
3518 }
3519
3520 // Rounding up requires a decimal add-with-carry. If we continue
3521 // the carry, the newly-introduced zeros will just be truncated.
3522 for (unsigned I = FirstSignificant; I != N; ++I) {
3523 if (buffer[I] == '9') {
3524 FirstSignificant++;
3525 } else {
3526 buffer[I]++;
3527 break;
3528 }
3529 }
3530
3531 // If we carried through, we have exactly one digit of precision.
3532 if (FirstSignificant == N) {
3533 exp += FirstSignificant;
3534 buffer.clear();
3535 buffer.push_back('1');
3536 return;
3537 }
3538
3539 exp += FirstSignificant;
3540 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3541 }
3542 }
3543
toString(SmallVectorImpl<char> & Str,unsigned FormatPrecision,unsigned FormatMaxPadding) const3544 void APFloat::toString(SmallVectorImpl<char> &Str,
3545 unsigned FormatPrecision,
3546 unsigned FormatMaxPadding) const {
3547 switch (category) {
3548 case fcInfinity:
3549 if (isNegative())
3550 return append(Str, "-Inf");
3551 else
3552 return append(Str, "+Inf");
3553
3554 case fcNaN: return append(Str, "NaN");
3555
3556 case fcZero:
3557 if (isNegative())
3558 Str.push_back('-');
3559
3560 if (!FormatMaxPadding)
3561 append(Str, "0.0E+0");
3562 else
3563 Str.push_back('0');
3564 return;
3565
3566 case fcNormal:
3567 break;
3568 }
3569
3570 if (isNegative())
3571 Str.push_back('-');
3572
3573 // Decompose the number into an APInt and an exponent.
3574 int exp = exponent - ((int) semantics->precision - 1);
3575 APInt significand(semantics->precision,
3576 makeArrayRef(significandParts(),
3577 partCountForBits(semantics->precision)));
3578
3579 // Set FormatPrecision if zero. We want to do this before we
3580 // truncate trailing zeros, as those are part of the precision.
3581 if (!FormatPrecision) {
3582 // We use enough digits so the number can be round-tripped back to an
3583 // APFloat. The formula comes from "How to Print Floating-Point Numbers
3584 // Accurately" by Steele and White.
3585 // FIXME: Using a formula based purely on the precision is conservative;
3586 // we can print fewer digits depending on the actual value being printed.
3587
3588 // FormatPrecision = 2 + floor(significandBits / lg_2(10))
3589 FormatPrecision = 2 + semantics->precision * 59 / 196;
3590 }
3591
3592 // Ignore trailing binary zeros.
3593 int trailingZeros = significand.countTrailingZeros();
3594 exp += trailingZeros;
3595 significand = significand.lshr(trailingZeros);
3596
3597 // Change the exponent from 2^e to 10^e.
3598 if (exp == 0) {
3599 // Nothing to do.
3600 } else if (exp > 0) {
3601 // Just shift left.
3602 significand = significand.zext(semantics->precision + exp);
3603 significand <<= exp;
3604 exp = 0;
3605 } else { /* exp < 0 */
3606 int texp = -exp;
3607
3608 // We transform this using the identity:
3609 // (N)(2^-e) == (N)(5^e)(10^-e)
3610 // This means we have to multiply N (the significand) by 5^e.
3611 // To avoid overflow, we have to operate on numbers large
3612 // enough to store N * 5^e:
3613 // log2(N * 5^e) == log2(N) + e * log2(5)
3614 // <= semantics->precision + e * 137 / 59
3615 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3616
3617 unsigned precision = semantics->precision + (137 * texp + 136) / 59;
3618
3619 // Multiply significand by 5^e.
3620 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3621 significand = significand.zext(precision);
3622 APInt five_to_the_i(precision, 5);
3623 while (true) {
3624 if (texp & 1) significand *= five_to_the_i;
3625
3626 texp >>= 1;
3627 if (!texp) break;
3628 five_to_the_i *= five_to_the_i;
3629 }
3630 }
3631
3632 AdjustToPrecision(significand, exp, FormatPrecision);
3633
3634 SmallVector<char, 256> buffer;
3635
3636 // Fill the buffer.
3637 unsigned precision = significand.getBitWidth();
3638 APInt ten(precision, 10);
3639 APInt digit(precision, 0);
3640
3641 bool inTrail = true;
3642 while (significand != 0) {
3643 // digit <- significand % 10
3644 // significand <- significand / 10
3645 APInt::udivrem(significand, ten, significand, digit);
3646
3647 unsigned d = digit.getZExtValue();
3648
3649 // Drop trailing zeros.
3650 if (inTrail && !d) exp++;
3651 else {
3652 buffer.push_back((char) ('0' + d));
3653 inTrail = false;
3654 }
3655 }
3656
3657 assert(!buffer.empty() && "no characters in buffer!");
3658
3659 // Drop down to FormatPrecision.
3660 // TODO: don't do more precise calculations above than are required.
3661 AdjustToPrecision(buffer, exp, FormatPrecision);
3662
3663 unsigned NDigits = buffer.size();
3664
3665 // Check whether we should use scientific notation.
3666 bool FormatScientific;
3667 if (!FormatMaxPadding)
3668 FormatScientific = true;
3669 else {
3670 if (exp >= 0) {
3671 // 765e3 --> 765000
3672 // ^^^
3673 // But we shouldn't make the number look more precise than it is.
3674 FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3675 NDigits + (unsigned) exp > FormatPrecision);
3676 } else {
3677 // Power of the most significant digit.
3678 int MSD = exp + (int) (NDigits - 1);
3679 if (MSD >= 0) {
3680 // 765e-2 == 7.65
3681 FormatScientific = false;
3682 } else {
3683 // 765e-5 == 0.00765
3684 // ^ ^^
3685 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3686 }
3687 }
3688 }
3689
3690 // Scientific formatting is pretty straightforward.
3691 if (FormatScientific) {
3692 exp += (NDigits - 1);
3693
3694 Str.push_back(buffer[NDigits-1]);
3695 Str.push_back('.');
3696 if (NDigits == 1)
3697 Str.push_back('0');
3698 else
3699 for (unsigned I = 1; I != NDigits; ++I)
3700 Str.push_back(buffer[NDigits-1-I]);
3701 Str.push_back('E');
3702
3703 Str.push_back(exp >= 0 ? '+' : '-');
3704 if (exp < 0) exp = -exp;
3705 SmallVector<char, 6> expbuf;
3706 do {
3707 expbuf.push_back((char) ('0' + (exp % 10)));
3708 exp /= 10;
3709 } while (exp);
3710 for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3711 Str.push_back(expbuf[E-1-I]);
3712 return;
3713 }
3714
3715 // Non-scientific, positive exponents.
3716 if (exp >= 0) {
3717 for (unsigned I = 0; I != NDigits; ++I)
3718 Str.push_back(buffer[NDigits-1-I]);
3719 for (unsigned I = 0; I != (unsigned) exp; ++I)
3720 Str.push_back('0');
3721 return;
3722 }
3723
3724 // Non-scientific, negative exponents.
3725
3726 // The number of digits to the left of the decimal point.
3727 int NWholeDigits = exp + (int) NDigits;
3728
3729 unsigned I = 0;
3730 if (NWholeDigits > 0) {
3731 for (; I != (unsigned) NWholeDigits; ++I)
3732 Str.push_back(buffer[NDigits-I-1]);
3733 Str.push_back('.');
3734 } else {
3735 unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3736
3737 Str.push_back('0');
3738 Str.push_back('.');
3739 for (unsigned Z = 1; Z != NZeros; ++Z)
3740 Str.push_back('0');
3741 }
3742
3743 for (; I != NDigits; ++I)
3744 Str.push_back(buffer[NDigits-I-1]);
3745 }
3746
getExactInverse(APFloat * inv) const3747 bool APFloat::getExactInverse(APFloat *inv) const {
3748 // Special floats and denormals have no exact inverse.
3749 if (!isFiniteNonZero())
3750 return false;
3751
3752 // Check that the number is a power of two by making sure that only the
3753 // integer bit is set in the significand.
3754 if (significandLSB() != semantics->precision - 1)
3755 return false;
3756
3757 // Get the inverse.
3758 APFloat reciprocal(*semantics, 1ULL);
3759 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
3760 return false;
3761
3762 // Avoid multiplication with a denormal, it is not safe on all platforms and
3763 // may be slower than a normal division.
3764 if (reciprocal.isDenormal())
3765 return false;
3766
3767 assert(reciprocal.isFiniteNonZero() &&
3768 reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
3769
3770 if (inv)
3771 *inv = reciprocal;
3772
3773 return true;
3774 }
3775
isSignaling() const3776 bool APFloat::isSignaling() const {
3777 if (!isNaN())
3778 return false;
3779
3780 // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
3781 // first bit of the trailing significand being 0.
3782 return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
3783 }
3784
3785 /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
3786 ///
3787 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
3788 /// appropriate sign switching before/after the computation.
next(bool nextDown)3789 APFloat::opStatus APFloat::next(bool nextDown) {
3790 // If we are performing nextDown, swap sign so we have -x.
3791 if (nextDown)
3792 changeSign();
3793
3794 // Compute nextUp(x)
3795 opStatus result = opOK;
3796
3797 // Handle each float category separately.
3798 switch (category) {
3799 case fcInfinity:
3800 // nextUp(+inf) = +inf
3801 if (!isNegative())
3802 break;
3803 // nextUp(-inf) = -getLargest()
3804 makeLargest(true);
3805 break;
3806 case fcNaN:
3807 // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
3808 // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
3809 // change the payload.
3810 if (isSignaling()) {
3811 result = opInvalidOp;
3812 // For consistency, propagate the sign of the sNaN to the qNaN.
3813 makeNaN(false, isNegative(), nullptr);
3814 }
3815 break;
3816 case fcZero:
3817 // nextUp(pm 0) = +getSmallest()
3818 makeSmallest(false);
3819 break;
3820 case fcNormal:
3821 // nextUp(-getSmallest()) = -0
3822 if (isSmallest() && isNegative()) {
3823 APInt::tcSet(significandParts(), 0, partCount());
3824 category = fcZero;
3825 exponent = 0;
3826 break;
3827 }
3828
3829 // nextUp(getLargest()) == INFINITY
3830 if (isLargest() && !isNegative()) {
3831 APInt::tcSet(significandParts(), 0, partCount());
3832 category = fcInfinity;
3833 exponent = semantics->maxExponent + 1;
3834 break;
3835 }
3836
3837 // nextUp(normal) == normal + inc.
3838 if (isNegative()) {
3839 // If we are negative, we need to decrement the significand.
3840
3841 // We only cross a binade boundary that requires adjusting the exponent
3842 // if:
3843 // 1. exponent != semantics->minExponent. This implies we are not in the
3844 // smallest binade or are dealing with denormals.
3845 // 2. Our significand excluding the integral bit is all zeros.
3846 bool WillCrossBinadeBoundary =
3847 exponent != semantics->minExponent && isSignificandAllZeros();
3848
3849 // Decrement the significand.
3850 //
3851 // We always do this since:
3852 // 1. If we are dealing with a non-binade decrement, by definition we
3853 // just decrement the significand.
3854 // 2. If we are dealing with a normal -> normal binade decrement, since
3855 // we have an explicit integral bit the fact that all bits but the
3856 // integral bit are zero implies that subtracting one will yield a
3857 // significand with 0 integral bit and 1 in all other spots. Thus we
3858 // must just adjust the exponent and set the integral bit to 1.
3859 // 3. If we are dealing with a normal -> denormal binade decrement,
3860 // since we set the integral bit to 0 when we represent denormals, we
3861 // just decrement the significand.
3862 integerPart *Parts = significandParts();
3863 APInt::tcDecrement(Parts, partCount());
3864
3865 if (WillCrossBinadeBoundary) {
3866 // Our result is a normal number. Do the following:
3867 // 1. Set the integral bit to 1.
3868 // 2. Decrement the exponent.
3869 APInt::tcSetBit(Parts, semantics->precision - 1);
3870 exponent--;
3871 }
3872 } else {
3873 // If we are positive, we need to increment the significand.
3874
3875 // We only cross a binade boundary that requires adjusting the exponent if
3876 // the input is not a denormal and all of said input's significand bits
3877 // are set. If all of said conditions are true: clear the significand, set
3878 // the integral bit to 1, and increment the exponent. If we have a
3879 // denormal always increment since moving denormals and the numbers in the
3880 // smallest normal binade have the same exponent in our representation.
3881 bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
3882
3883 if (WillCrossBinadeBoundary) {
3884 integerPart *Parts = significandParts();
3885 APInt::tcSet(Parts, 0, partCount());
3886 APInt::tcSetBit(Parts, semantics->precision - 1);
3887 assert(exponent != semantics->maxExponent &&
3888 "We can not increment an exponent beyond the maxExponent allowed"
3889 " by the given floating point semantics.");
3890 exponent++;
3891 } else {
3892 incrementSignificand();
3893 }
3894 }
3895 break;
3896 }
3897
3898 // If we are performing nextDown, swap sign so we have -nextUp(-x)
3899 if (nextDown)
3900 changeSign();
3901
3902 return result;
3903 }
3904
3905 void
makeInf(bool Negative)3906 APFloat::makeInf(bool Negative) {
3907 category = fcInfinity;
3908 sign = Negative;
3909 exponent = semantics->maxExponent + 1;
3910 APInt::tcSet(significandParts(), 0, partCount());
3911 }
3912
3913 void
makeZero(bool Negative)3914 APFloat::makeZero(bool Negative) {
3915 category = fcZero;
3916 sign = Negative;
3917 exponent = semantics->minExponent-1;
3918 APInt::tcSet(significandParts(), 0, partCount());
3919 }
3920
scalbn(APFloat X,int Exp)3921 APFloat llvm::scalbn(APFloat X, int Exp) {
3922 if (X.isInfinity() || X.isZero() || X.isNaN())
3923 return std::move(X);
3924
3925 auto MaxExp = X.getSemantics().maxExponent;
3926 auto MinExp = X.getSemantics().minExponent;
3927 if (Exp > (MaxExp - X.exponent))
3928 // Overflow saturates to infinity.
3929 return APFloat::getInf(X.getSemantics(), X.isNegative());
3930 if (Exp < (MinExp - X.exponent))
3931 // Underflow saturates to zero.
3932 return APFloat::getZero(X.getSemantics(), X.isNegative());
3933
3934 X.exponent += Exp;
3935 return std::move(X);
3936 }
3937