1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_BLAS_COMMON_H
11 #define EIGEN_BLAS_COMMON_H
12 
13 #include <Eigen/Core>
14 #include <Eigen/Jacobi>
15 
16 #include <iostream>
17 #include <complex>
18 
19 #ifndef SCALAR
20 #error the token SCALAR must be defined to compile this file
21 #endif
22 
23 #include <Eigen/src/misc/blas.h>
24 
25 
26 #define NOTR    0
27 #define TR      1
28 #define ADJ     2
29 
30 #define LEFT    0
31 #define RIGHT   1
32 
33 #define UP      0
34 #define LO      1
35 
36 #define NUNIT   0
37 #define UNIT    1
38 
39 #define INVALID 0xff
40 
41 #define OP(X)   (   ((X)=='N' || (X)=='n') ? NOTR   \
42                   : ((X)=='T' || (X)=='t') ? TR     \
43                   : ((X)=='C' || (X)=='c') ? ADJ    \
44                   : INVALID)
45 
46 #define SIDE(X) (   ((X)=='L' || (X)=='l') ? LEFT   \
47                   : ((X)=='R' || (X)=='r') ? RIGHT  \
48                   : INVALID)
49 
50 #define UPLO(X) (   ((X)=='U' || (X)=='u') ? UP     \
51                   : ((X)=='L' || (X)=='l') ? LO     \
52                   : INVALID)
53 
54 #define DIAG(X) (   ((X)=='N' || (X)=='n') ? NUNIT  \
55                   : ((X)=='U' || (X)=='u') ? UNIT   \
56                   : INVALID)
57 
58 
check_op(const char * op)59 inline bool check_op(const char* op)
60 {
61   return OP(*op)!=0xff;
62 }
63 
check_side(const char * side)64 inline bool check_side(const char* side)
65 {
66   return SIDE(*side)!=0xff;
67 }
68 
check_uplo(const char * uplo)69 inline bool check_uplo(const char* uplo)
70 {
71   return UPLO(*uplo)!=0xff;
72 }
73 
74 
75 namespace Eigen {
76 #include "BandTriangularSolver.h"
77 #include "GeneralRank1Update.h"
78 #include "PackedSelfadjointProduct.h"
79 #include "PackedTriangularMatrixVector.h"
80 #include "PackedTriangularSolverVector.h"
81 #include "Rank2Update.h"
82 }
83 
84 using namespace Eigen;
85 
86 typedef SCALAR Scalar;
87 typedef NumTraits<Scalar>::Real RealScalar;
88 typedef std::complex<RealScalar> Complex;
89 
90 enum
91 {
92   IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
93   Conj = IsComplex
94 };
95 
96 typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
97 typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
98 typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
99 typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
100 
101 template<typename T>
102 Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(T * data,int rows,int cols,int stride)103 matrix(T* data, int rows, int cols, int stride)
104 {
105   return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
106 }
107 
108 template<typename T>
vector(T * data,int size,int incr)109 Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > vector(T* data, int size, int incr)
110 {
111   return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
112 }
113 
114 template<typename T>
vector(T * data,int size)115 Map<Matrix<T,Dynamic,1> > vector(T* data, int size)
116 {
117   return Map<Matrix<T,Dynamic,1> >(data, size);
118 }
119 
120 template<typename T>
get_compact_vector(T * x,int n,int incx)121 T* get_compact_vector(T* x, int n, int incx)
122 {
123   if(incx==1)
124     return x;
125 
126   T* ret = new Scalar[n];
127   if(incx<0) vector(ret,n) = vector(x,n,-incx).reverse();
128   else       vector(ret,n) = vector(x,n, incx);
129   return ret;
130 }
131 
132 template<typename T>
copy_back(T * x_cpy,T * x,int n,int incx)133 T* copy_back(T* x_cpy, T* x, int n, int incx)
134 {
135   if(x_cpy==x)
136     return 0;
137 
138   if(incx<0) vector(x,n,-incx).reverse() = vector(x_cpy,n);
139   else       vector(x,n, incx)           = vector(x_cpy,n);
140   return x_cpy;
141 }
142 
143 #define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
144 
145 #endif // EIGEN_BLAS_COMMON_H
146