1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrRedBlackTree_DEFINED
9 #define GrRedBlackTree_DEFINED
10 
11 #include "GrConfig.h"
12 #include "SkTypes.h"
13 
14 template <typename T>
15 class GrLess {
16 public:
operator()17     bool operator()(const T& a, const T& b) const { return a < b; }
18 };
19 
20 template <typename T>
21 class GrLess<T*> {
22 public:
operator()23     bool operator()(const T* a, const T* b) const { return *a < *b; }
24 };
25 
26 class GrStrLess {
27 public:
operator()28     bool operator()(const char* a, const char* b) const { return strcmp(a,b) < 0; }
29 };
30 
31 /**
32  * In debug build this will cause full traversals of the tree when the validate
33  * is called on insert and remove. Useful for debugging but very slow.
34  */
35 #define DEEP_VALIDATE 0
36 
37 /**
38  * A sorted tree that uses the red-black tree algorithm. Allows duplicate
39  * entries. Data is of type T and is compared using functor C. A single C object
40  * will be created and used for all comparisons.
41  */
42 template <typename T, typename C = GrLess<T> >
43 class GrRedBlackTree : SkNoncopyable {
44 public:
45     /**
46      * Creates an empty tree.
47      */
48     GrRedBlackTree();
49     virtual ~GrRedBlackTree();
50 
51     /**
52      * Class used to iterater through the tree. The valid range of the tree
53      * is given by [begin(), end()). It is legal to dereference begin() but not
54      * end(). The iterator has preincrement and predecrement operators, it is
55      * legal to decerement end() if the tree is not empty to get the last
56      * element. However, a last() helper is provided.
57      */
58     class Iter;
59 
60     /**
61      * Add an element to the tree. Duplicates are allowed.
62      * @param t     the item to add.
63      * @return  an iterator to the item.
64      */
65     Iter insert(const T& t);
66 
67     /**
68      * Removes all items in the tree.
69      */
70     void reset();
71 
72     /**
73      * @return true if there are no items in the tree, false otherwise.
74      */
empty()75     bool empty() const {return 0 == fCount;}
76 
77     /**
78      * @return the number of items in the tree.
79      */
count()80     int  count() const {return fCount;}
81 
82     /**
83      * @return  an iterator to the first item in sorted order, or end() if empty
84      */
85     Iter begin();
86     /**
87      * Gets the last valid iterator. This is always valid, even on an empty.
88      * However, it can never be dereferenced. Useful as a loop terminator.
89      * @return  an iterator that is just beyond the last item in sorted order.
90      */
91     Iter end();
92     /**
93      * @return  an iterator that to the last item in sorted order, or end() if
94      * empty.
95      */
96     Iter last();
97 
98     /**
99      * Finds an occurrence of an item.
100      * @param t     the item to find.
101      * @return an iterator to a tree element equal to t or end() if none exists.
102      */
103     Iter find(const T& t);
104     /**
105      * Finds the first of an item in iterator order.
106      * @param t     the item to find.
107      * @return  an iterator to the first element equal to t or end() if
108      *          none exists.
109      */
110     Iter findFirst(const T& t);
111     /**
112      * Finds the last of an item in iterator order.
113      * @param t     the item to find.
114      * @return  an iterator to the last element equal to t or end() if
115      *          none exists.
116      */
117     Iter findLast(const T& t);
118     /**
119      * Gets the number of items in the tree equal to t.
120      * @param t     the item to count.
121      * @return  number of items equal to t in the tree
122      */
123     int countOf(const T& t) const;
124 
125     /**
126      * Removes the item indicated by an iterator. The iterator will not be valid
127      * afterwards.
128      *
129      * @param iter      iterator of item to remove. Must be valid (not end()).
130      */
remove(const Iter & iter)131     void remove(const Iter& iter) { deleteAtNode(iter.fN); }
132 
133 private:
134     enum Color {
135         kRed_Color,
136         kBlack_Color
137     };
138 
139     enum Child {
140         kLeft_Child  = 0,
141         kRight_Child = 1
142     };
143 
144     struct Node {
145         T       fItem;
146         Color   fColor;
147 
148         Node*   fParent;
149         Node*   fChildren[2];
150     };
151 
152     void rotateRight(Node* n);
153     void rotateLeft(Node* n);
154 
155     static Node* SuccessorNode(Node* x);
156     static Node* PredecessorNode(Node* x);
157 
158     void deleteAtNode(Node* x);
159     static void RecursiveDelete(Node* x);
160 
161     int onCountOf(const Node* n, const T& t) const;
162 
163 #ifdef SK_DEBUG
164     void validate() const;
165     int checkNode(Node* n, int* blackHeight) const;
166     // checks relationship between a node and its children. allowRedRed means
167     // node may be in an intermediate state where a red parent has a red child.
168     bool validateChildRelations(const Node* n, bool allowRedRed) const;
169     // place to stick break point if validateChildRelations is failing.
validateChildRelationsFailed()170     bool validateChildRelationsFailed() const { return false; }
171 #else
validate()172     void validate() const {}
173 #endif
174 
175     int     fCount;
176     Node*   fRoot;
177     Node*   fFirst;
178     Node*   fLast;
179 
180     const C fComp;
181 };
182 
183 template <typename T, typename C>
184 class GrRedBlackTree<T,C>::Iter {
185 public:
Iter()186     Iter() {};
Iter(const Iter & i)187     Iter(const Iter& i) {fN = i.fN; fTree = i.fTree;}
188     Iter& operator =(const Iter& i) {
189         fN = i.fN;
190         fTree = i.fTree;
191         return *this;
192     }
193     // altering the sort value of the item using this method will cause
194     // errors.
195     T& operator *() const { return fN->fItem; }
196     bool operator ==(const Iter& i) const {
197         return fN == i.fN && fTree == i.fTree;
198     }
199     bool operator !=(const Iter& i) const { return !(*this == i); }
200     Iter& operator ++() {
201         SkASSERT(*this != fTree->end());
202         fN = SuccessorNode(fN);
203         return *this;
204     }
205     Iter& operator --() {
206         SkASSERT(*this != fTree->begin());
207         if (fN) {
208             fN = PredecessorNode(fN);
209         } else {
210             *this = fTree->last();
211         }
212         return *this;
213     }
214 
215 private:
216     friend class GrRedBlackTree;
Iter(Node * n,GrRedBlackTree * tree)217     explicit Iter(Node* n, GrRedBlackTree* tree) {
218         fN = n;
219         fTree = tree;
220     }
221     Node* fN;
222     GrRedBlackTree* fTree;
223 };
224 
225 template <typename T, typename C>
GrRedBlackTree()226 GrRedBlackTree<T,C>::GrRedBlackTree() : fComp() {
227     fRoot = NULL;
228     fFirst = NULL;
229     fLast = NULL;
230     fCount = 0;
231     validate();
232 }
233 
234 template <typename T, typename C>
~GrRedBlackTree()235 GrRedBlackTree<T,C>::~GrRedBlackTree() {
236     RecursiveDelete(fRoot);
237 }
238 
239 template <typename T, typename C>
begin()240 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::begin() {
241     return Iter(fFirst, this);
242 }
243 
244 template <typename T, typename C>
end()245 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::end() {
246     return Iter(NULL, this);
247 }
248 
249 template <typename T, typename C>
last()250 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() {
251     return Iter(fLast, this);
252 }
253 
254 template <typename T, typename C>
find(const T & t)255 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) {
256     Node* n = fRoot;
257     while (n) {
258         if (fComp(t, n->fItem)) {
259             n = n->fChildren[kLeft_Child];
260         } else {
261             if (!fComp(n->fItem, t)) {
262                 return Iter(n, this);
263             }
264             n = n->fChildren[kRight_Child];
265         }
266     }
267     return end();
268 }
269 
270 template <typename T, typename C>
findFirst(const T & t)271 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) {
272     Node* n = fRoot;
273     Node* leftMost = NULL;
274     while (n) {
275         if (fComp(t, n->fItem)) {
276             n = n->fChildren[kLeft_Child];
277         } else {
278             if (!fComp(n->fItem, t)) {
279                 // found one. check if another in left subtree.
280                 leftMost = n;
281                 n = n->fChildren[kLeft_Child];
282             } else {
283                 n = n->fChildren[kRight_Child];
284             }
285         }
286     }
287     return Iter(leftMost, this);
288 }
289 
290 template <typename T, typename C>
findLast(const T & t)291 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) {
292     Node* n = fRoot;
293     Node* rightMost = NULL;
294     while (n) {
295         if (fComp(t, n->fItem)) {
296             n = n->fChildren[kLeft_Child];
297         } else {
298             if (!fComp(n->fItem, t)) {
299                 // found one. check if another in right subtree.
300                 rightMost = n;
301             }
302             n = n->fChildren[kRight_Child];
303         }
304     }
305     return Iter(rightMost, this);
306 }
307 
308 template <typename T, typename C>
countOf(const T & t)309 int GrRedBlackTree<T,C>::countOf(const T& t) const {
310     return onCountOf(fRoot, t);
311 }
312 
313 template <typename T, typename C>
onCountOf(const Node * n,const T & t)314 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const {
315     // this is count*log(n) :(
316     while (n) {
317         if (fComp(t, n->fItem)) {
318             n = n->fChildren[kLeft_Child];
319         } else {
320             if (!fComp(n->fItem, t)) {
321                 int count = 1;
322                 count += onCountOf(n->fChildren[kLeft_Child], t);
323                 count += onCountOf(n->fChildren[kRight_Child], t);
324                 return count;
325             }
326             n = n->fChildren[kRight_Child];
327         }
328     }
329     return 0;
330 
331 }
332 
333 template <typename T, typename C>
reset()334 void GrRedBlackTree<T,C>::reset() {
335     RecursiveDelete(fRoot);
336     fRoot = NULL;
337     fFirst = NULL;
338     fLast = NULL;
339     fCount = 0;
340 }
341 
342 template <typename T, typename C>
insert(const T & t)343 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::insert(const T& t) {
344     validate();
345 
346     ++fCount;
347 
348     Node* x = SkNEW(Node);
349     x->fChildren[kLeft_Child] = NULL;
350     x->fChildren[kRight_Child] = NULL;
351     x->fItem = t;
352 
353     Node* returnNode = x;
354 
355     Node* gp = NULL;
356     Node* p = NULL;
357     Node* n = fRoot;
358     Child pc = kLeft_Child; // suppress uninit warning
359     Child gpc = kLeft_Child;
360 
361     bool first = true;
362     bool last = true;
363     while (n) {
364         gpc = pc;
365         pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child;
366         first = first && kLeft_Child == pc;
367         last = last && kRight_Child == pc;
368         gp = p;
369         p = n;
370         n = p->fChildren[pc];
371     }
372     if (last) {
373         fLast = x;
374     }
375     if (first) {
376         fFirst = x;
377     }
378 
379     if (NULL == p) {
380         fRoot = x;
381         x->fColor = kBlack_Color;
382         x->fParent = NULL;
383         SkASSERT(1 == fCount);
384         return Iter(returnNode, this);
385     }
386     p->fChildren[pc] = x;
387     x->fColor = kRed_Color;
388     x->fParent = p;
389 
390     do {
391         // assumptions at loop start.
392         SkASSERT(x);
393         SkASSERT(kRed_Color == x->fColor);
394         // can't have a grandparent but no parent.
395         SkASSERT(!(gp && NULL == p));
396         // make sure pc and gpc are correct
397         SkASSERT(NULL == p  || p->fChildren[pc] == x);
398         SkASSERT(NULL == gp || gp->fChildren[gpc] == p);
399 
400         // if x's parent is black then we didn't violate any of the
401         // red/black properties when we added x as red.
402         if (kBlack_Color == p->fColor) {
403             return Iter(returnNode, this);
404         }
405         // gp must be valid because if p was the root then it is black
406         SkASSERT(gp);
407         // gp must be black since it's child, p, is red.
408         SkASSERT(kBlack_Color == gp->fColor);
409 
410 
411         // x and its parent are red, violating red-black property.
412         Node* u = gp->fChildren[1-gpc];
413         // if x's uncle (p's sibling) is also red then we can flip
414         // p and u to black and make gp red. But then we have to recurse
415         // up to gp since it's parent may also be red.
416         if (u && kRed_Color == u->fColor) {
417             p->fColor = kBlack_Color;
418             u->fColor = kBlack_Color;
419             gp->fColor = kRed_Color;
420             x = gp;
421             p = x->fParent;
422             if (NULL == p) {
423                 // x (prev gp) is the root, color it black and be done.
424                 SkASSERT(fRoot == x);
425                 x->fColor = kBlack_Color;
426                 validate();
427                 return Iter(returnNode, this);
428             }
429             gp = p->fParent;
430             pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child :
431                                                     kRight_Child;
432             if (gp) {
433                 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child :
434                                                           kRight_Child;
435             }
436             continue;
437         } break;
438     } while (true);
439     // Here p is red but u is black and we still have to resolve the fact
440     // that x and p are both red.
441     SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc]->fColor);
442     SkASSERT(kRed_Color == x->fColor);
443     SkASSERT(kRed_Color == p->fColor);
444     SkASSERT(kBlack_Color == gp->fColor);
445 
446     // make x be on the same side of p as p is of gp. If it isn't already
447     // the case then rotate x up to p and swap their labels.
448     if (pc != gpc) {
449         if (kRight_Child == pc) {
450             rotateLeft(p);
451             Node* temp = p;
452             p = x;
453             x = temp;
454             pc = kLeft_Child;
455         } else {
456             rotateRight(p);
457             Node* temp = p;
458             p = x;
459             x = temp;
460             pc = kRight_Child;
461         }
462     }
463     // we now rotate gp down, pulling up p to be it's new parent.
464     // gp's child, u, that is not affected we know to be black. gp's new
465     // child is p's previous child (x's pre-rotation sibling) which must be
466     // black since p is red.
467     SkASSERT(NULL == p->fChildren[1-pc] ||
468              kBlack_Color == p->fChildren[1-pc]->fColor);
469     // Since gp's two children are black it can become red if p is made
470     // black. This leaves the black-height of both of p's new subtrees
471     // preserved and removes the red/red parent child relationship.
472     p->fColor = kBlack_Color;
473     gp->fColor = kRed_Color;
474     if (kLeft_Child == pc) {
475         rotateRight(gp);
476     } else {
477         rotateLeft(gp);
478     }
479     validate();
480     return Iter(returnNode, this);
481 }
482 
483 
484 template <typename T, typename C>
rotateRight(Node * n)485 void GrRedBlackTree<T,C>::rotateRight(Node* n) {
486     /*            d?              d?
487      *           /               /
488      *          n               s
489      *         / \     --->    / \
490      *        s   a?          c?  n
491      *       / \                 / \
492      *      c?  b?              b?  a?
493      */
494     Node* d = n->fParent;
495     Node* s = n->fChildren[kLeft_Child];
496     SkASSERT(s);
497     Node* b = s->fChildren[kRight_Child];
498 
499     if (d) {
500         Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child :
501                                              kRight_Child;
502         d->fChildren[c] = s;
503     } else {
504         SkASSERT(fRoot == n);
505         fRoot = s;
506     }
507     s->fParent = d;
508     s->fChildren[kRight_Child] = n;
509     n->fParent = s;
510     n->fChildren[kLeft_Child] = b;
511     if (b) {
512         b->fParent = n;
513     }
514 
515     GR_DEBUGASSERT(validateChildRelations(d, true));
516     GR_DEBUGASSERT(validateChildRelations(s, true));
517     GR_DEBUGASSERT(validateChildRelations(n, false));
518     GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true));
519     GR_DEBUGASSERT(validateChildRelations(b, true));
520     GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true));
521 }
522 
523 template <typename T, typename C>
rotateLeft(Node * n)524 void GrRedBlackTree<T,C>::rotateLeft(Node* n) {
525 
526     Node* d = n->fParent;
527     Node* s = n->fChildren[kRight_Child];
528     SkASSERT(s);
529     Node* b = s->fChildren[kLeft_Child];
530 
531     if (d) {
532         Child c = d->fChildren[kRight_Child] == n ? kRight_Child :
533                                                    kLeft_Child;
534         d->fChildren[c] = s;
535     } else {
536         SkASSERT(fRoot == n);
537         fRoot = s;
538     }
539     s->fParent = d;
540     s->fChildren[kLeft_Child] = n;
541     n->fParent = s;
542     n->fChildren[kRight_Child] = b;
543     if (b) {
544         b->fParent = n;
545     }
546 
547     GR_DEBUGASSERT(validateChildRelations(d, true));
548     GR_DEBUGASSERT(validateChildRelations(s, true));
549     GR_DEBUGASSERT(validateChildRelations(n, true));
550     GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true));
551     GR_DEBUGASSERT(validateChildRelations(b, true));
552     GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true));
553 }
554 
555 template <typename T, typename C>
SuccessorNode(Node * x)556 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x) {
557     SkASSERT(x);
558     if (x->fChildren[kRight_Child]) {
559         x = x->fChildren[kRight_Child];
560         while (x->fChildren[kLeft_Child]) {
561             x = x->fChildren[kLeft_Child];
562         }
563         return x;
564     }
565     while (x->fParent && x == x->fParent->fChildren[kRight_Child]) {
566         x = x->fParent;
567     }
568     return x->fParent;
569 }
570 
571 template <typename T, typename C>
PredecessorNode(Node * x)572 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x) {
573     SkASSERT(x);
574     if (x->fChildren[kLeft_Child]) {
575         x = x->fChildren[kLeft_Child];
576         while (x->fChildren[kRight_Child]) {
577             x = x->fChildren[kRight_Child];
578         }
579         return x;
580     }
581     while (x->fParent && x == x->fParent->fChildren[kLeft_Child]) {
582         x = x->fParent;
583     }
584     return x->fParent;
585 }
586 
587 template <typename T, typename C>
deleteAtNode(Node * x)588 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) {
589     SkASSERT(x);
590     validate();
591     --fCount;
592 
593     bool hasLeft =  SkToBool(x->fChildren[kLeft_Child]);
594     bool hasRight = SkToBool(x->fChildren[kRight_Child]);
595     Child c = hasLeft ? kLeft_Child : kRight_Child;
596 
597     if (hasLeft && hasRight) {
598         // first and last can't have two children.
599         SkASSERT(fFirst != x);
600         SkASSERT(fLast != x);
601         // if x is an interior node then we find it's successor
602         // and swap them.
603         Node* s = x->fChildren[kRight_Child];
604         while (s->fChildren[kLeft_Child]) {
605             s = s->fChildren[kLeft_Child];
606         }
607         SkASSERT(s);
608         // this might be expensive relative to swapping node ptrs around.
609         // depends on T.
610         x->fItem = s->fItem;
611         x = s;
612         c = kRight_Child;
613     } else if (NULL == x->fParent) {
614         // if x was the root we just replace it with its child and make
615         // the new root (if the tree is not empty) black.
616         SkASSERT(fRoot == x);
617         fRoot = x->fChildren[c];
618         if (fRoot) {
619             fRoot->fParent = NULL;
620             fRoot->fColor = kBlack_Color;
621             if (x == fLast) {
622                 SkASSERT(c == kLeft_Child);
623                 fLast = fRoot;
624             } else if (x == fFirst) {
625                 SkASSERT(c == kRight_Child);
626                 fFirst = fRoot;
627             }
628         } else {
629             SkASSERT(fFirst == fLast && x == fFirst);
630             fFirst = NULL;
631             fLast = NULL;
632             SkASSERT(0 == fCount);
633         }
634         delete x;
635         validate();
636         return;
637     }
638 
639     Child pc;
640     Node* p = x->fParent;
641     pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : kRight_Child;
642 
643     if (NULL == x->fChildren[c]) {
644         if (fLast == x) {
645             fLast = p;
646             SkASSERT(p == PredecessorNode(x));
647         } else if (fFirst == x) {
648             fFirst = p;
649             SkASSERT(p == SuccessorNode(x));
650         }
651         // x has two implicit black children.
652         Color xcolor = x->fColor;
653         p->fChildren[pc] = NULL;
654         delete x;
655         x = NULL;
656         // when x is red it can be with an implicit black leaf without
657         // violating any of the red-black tree properties.
658         if (kRed_Color == xcolor) {
659             validate();
660             return;
661         }
662         // s is p's other child (x's sibling)
663         Node* s = p->fChildren[1-pc];
664 
665         //s cannot be an implicit black node because the original
666         // black-height at x was >= 2 and s's black-height must equal the
667         // initial black height of x.
668         SkASSERT(s);
669         SkASSERT(p == s->fParent);
670 
671         // assigned in loop
672         Node* sl;
673         Node* sr;
674         bool slRed;
675         bool srRed;
676 
677         do {
678             // When we start this loop x may already be deleted it is/was
679             // p's child on its pc side. x's children are/were black. The
680             // first time through the loop they are implict children.
681             // On later passes we will be walking up the tree and they will
682             // be real nodes.
683             // The x side of p has a black-height that is one less than the
684             // s side. It must be rebalanced.
685             SkASSERT(s);
686             SkASSERT(p == s->fParent);
687             SkASSERT(NULL == x || x->fParent == p);
688 
689             //sl and sr are s's children, which may be implicit.
690             sl = s->fChildren[kLeft_Child];
691             sr = s->fChildren[kRight_Child];
692 
693             // if the s is red we will rotate s and p, swap their colors so
694             // that x's new sibling is black
695             if (kRed_Color == s->fColor) {
696                 // if s is red then it's parent must be black.
697                 SkASSERT(kBlack_Color == p->fColor);
698                 // s's children must also be black since s is red. They can't
699                 // be implicit since s is red and it's black-height is >= 2.
700                 SkASSERT(sl && kBlack_Color == sl->fColor);
701                 SkASSERT(sr && kBlack_Color == sr->fColor);
702                 p->fColor = kRed_Color;
703                 s->fColor = kBlack_Color;
704                 if (kLeft_Child == pc) {
705                     rotateLeft(p);
706                     s = sl;
707                 } else {
708                     rotateRight(p);
709                     s = sr;
710                 }
711                 sl = s->fChildren[kLeft_Child];
712                 sr = s->fChildren[kRight_Child];
713             }
714             // x and s are now both black.
715             SkASSERT(kBlack_Color == s->fColor);
716             SkASSERT(NULL == x || kBlack_Color == x->fColor);
717             SkASSERT(p == s->fParent);
718             SkASSERT(NULL == x || p == x->fParent);
719 
720             // when x is deleted its subtree will have reduced black-height.
721             slRed = (sl && kRed_Color == sl->fColor);
722             srRed = (sr && kRed_Color == sr->fColor);
723             if (!slRed && !srRed) {
724                 // if s can be made red that will balance out x's removal
725                 // to make both subtrees of p have the same black-height.
726                 if (kBlack_Color == p->fColor) {
727                     s->fColor = kRed_Color;
728                     // now subtree at p has black-height of one less than
729                     // p's parent's other child's subtree. We move x up to
730                     // p and go through the loop again. At the top of loop
731                     // we assumed x and x's children are black, which holds
732                     // by above ifs.
733                     // if p is the root there is no other subtree to balance
734                     // against.
735                     x = p;
736                     p = x->fParent;
737                     if (NULL == p) {
738                         SkASSERT(fRoot == x);
739                         validate();
740                         return;
741                     } else {
742                         pc = p->fChildren[kLeft_Child] == x ? kLeft_Child :
743                                                               kRight_Child;
744 
745                     }
746                     s = p->fChildren[1-pc];
747                     SkASSERT(s);
748                     SkASSERT(p == s->fParent);
749                     continue;
750                 } else if (kRed_Color == p->fColor) {
751                     // we can make p black and s red. This balance out p's
752                     // two subtrees and keep the same black-height as it was
753                     // before the delete.
754                     s->fColor = kRed_Color;
755                     p->fColor = kBlack_Color;
756                     validate();
757                     return;
758                 }
759             }
760             break;
761         } while (true);
762         // if we made it here one or both of sl and sr is red.
763         // s and x are black. We make sure that a red child is on
764         // the same side of s as s is of p.
765         SkASSERT(slRed || srRed);
766         if (kLeft_Child == pc && !srRed) {
767             s->fColor = kRed_Color;
768             sl->fColor = kBlack_Color;
769             rotateRight(s);
770             sr = s;
771             s = sl;
772             //sl = s->fChildren[kLeft_Child]; don't need this
773         } else if (kRight_Child == pc && !slRed) {
774             s->fColor = kRed_Color;
775             sr->fColor = kBlack_Color;
776             rotateLeft(s);
777             sl = s;
778             s = sr;
779             //sr = s->fChildren[kRight_Child]; don't need this
780         }
781         // now p is either red or black, x and s are red and s's 1-pc
782         // child is red.
783         // We rotate p towards x, pulling s up to replace p. We make
784         // p be black and s takes p's old color.
785         // Whether p was red or black, we've increased its pc subtree
786         // rooted at x by 1 (balancing the imbalance at the start) and
787         // we've also its subtree rooted at s's black-height by 1. This
788         // can be balanced by making s's red child be black.
789         s->fColor = p->fColor;
790         p->fColor = kBlack_Color;
791         if (kLeft_Child == pc) {
792             SkASSERT(sr && kRed_Color == sr->fColor);
793             sr->fColor = kBlack_Color;
794             rotateLeft(p);
795         } else {
796             SkASSERT(sl && kRed_Color == sl->fColor);
797             sl->fColor = kBlack_Color;
798             rotateRight(p);
799         }
800     }
801     else {
802         // x has exactly one implicit black child. x cannot be red.
803         // Proof by contradiction: Assume X is red. Let c0 be x's implicit
804         // child and c1 be its non-implicit child. c1 must be black because
805         // red nodes always have two black children. Then the two subtrees
806         // of x rooted at c0 and c1 will have different black-heights.
807         SkASSERT(kBlack_Color == x->fColor);
808         // So we know x is black and has one implicit black child, c0. c1
809         // must be red, otherwise the subtree at c1 will have a different
810         // black-height than the subtree rooted at c0.
811         SkASSERT(kRed_Color == x->fChildren[c]->fColor);
812         // replace x with c1, making c1 black, preserves all red-black tree
813         // props.
814         Node* c1 = x->fChildren[c];
815         if (x == fFirst) {
816             SkASSERT(c == kRight_Child);
817             fFirst = c1;
818             while (fFirst->fChildren[kLeft_Child]) {
819                 fFirst = fFirst->fChildren[kLeft_Child];
820             }
821             SkASSERT(fFirst == SuccessorNode(x));
822         } else if (x == fLast) {
823             SkASSERT(c == kLeft_Child);
824             fLast = c1;
825             while (fLast->fChildren[kRight_Child]) {
826                 fLast = fLast->fChildren[kRight_Child];
827             }
828             SkASSERT(fLast == PredecessorNode(x));
829         }
830         c1->fParent = p;
831         p->fChildren[pc] = c1;
832         c1->fColor = kBlack_Color;
833         delete x;
834         validate();
835     }
836     validate();
837 }
838 
839 template <typename T, typename C>
RecursiveDelete(Node * x)840 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) {
841     if (x) {
842         RecursiveDelete(x->fChildren[kLeft_Child]);
843         RecursiveDelete(x->fChildren[kRight_Child]);
844         delete x;
845     }
846 }
847 
848 #ifdef SK_DEBUG
849 template <typename T, typename C>
validate()850 void GrRedBlackTree<T,C>::validate() const {
851     if (fCount) {
852         SkASSERT(NULL == fRoot->fParent);
853         SkASSERT(fFirst);
854         SkASSERT(fLast);
855 
856         SkASSERT(kBlack_Color == fRoot->fColor);
857         if (1 == fCount) {
858             SkASSERT(fFirst == fRoot);
859             SkASSERT(fLast == fRoot);
860             SkASSERT(0 == fRoot->fChildren[kLeft_Child]);
861             SkASSERT(0 == fRoot->fChildren[kRight_Child]);
862         }
863     } else {
864         SkASSERT(NULL == fRoot);
865         SkASSERT(NULL == fFirst);
866         SkASSERT(NULL == fLast);
867     }
868 #if DEEP_VALIDATE
869     int bh;
870     int count = checkNode(fRoot, &bh);
871     SkASSERT(count == fCount);
872 #endif
873 }
874 
875 template <typename T, typename C>
checkNode(Node * n,int * bh)876 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const {
877     if (n) {
878         SkASSERT(validateChildRelations(n, false));
879         if (kBlack_Color == n->fColor) {
880             *bh += 1;
881         }
882         SkASSERT(!fComp(n->fItem, fFirst->fItem));
883         SkASSERT(!fComp(fLast->fItem, n->fItem));
884         int leftBh = *bh;
885         int rightBh = *bh;
886         int cl = checkNode(n->fChildren[kLeft_Child], &leftBh);
887         int cr = checkNode(n->fChildren[kRight_Child], &rightBh);
888         SkASSERT(leftBh == rightBh);
889         *bh = leftBh;
890         return 1 + cl + cr;
891     }
892     return 0;
893 }
894 
895 template <typename T, typename C>
validateChildRelations(const Node * n,bool allowRedRed)896 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n,
897                                                  bool allowRedRed) const {
898     if (n) {
899         if (n->fChildren[kLeft_Child] ||
900             n->fChildren[kRight_Child]) {
901             if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) {
902                 return validateChildRelationsFailed();
903             }
904             if (n->fChildren[kLeft_Child] == n->fParent &&
905                 n->fParent) {
906                 return validateChildRelationsFailed();
907             }
908             if (n->fChildren[kRight_Child] == n->fParent &&
909                 n->fParent) {
910                 return validateChildRelationsFailed();
911             }
912             if (n->fChildren[kLeft_Child]) {
913                 if (!allowRedRed &&
914                     kRed_Color == n->fChildren[kLeft_Child]->fColor &&
915                     kRed_Color == n->fColor) {
916                     return validateChildRelationsFailed();
917                 }
918                 if (n->fChildren[kLeft_Child]->fParent != n) {
919                     return validateChildRelationsFailed();
920                 }
921                 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) ||
922                       (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) &&
923                        !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) {
924                     return validateChildRelationsFailed();
925                 }
926             }
927             if (n->fChildren[kRight_Child]) {
928                 if (!allowRedRed &&
929                     kRed_Color == n->fChildren[kRight_Child]->fColor &&
930                     kRed_Color == n->fColor) {
931                     return validateChildRelationsFailed();
932                 }
933                 if (n->fChildren[kRight_Child]->fParent != n) {
934                     return validateChildRelationsFailed();
935                 }
936                 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) ||
937                       (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) &&
938                        !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) {
939                     return validateChildRelationsFailed();
940                 }
941             }
942         }
943     }
944     return true;
945 }
946 #endif
947 
948 #endif
949