1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // The original source code covered by the above license above has been
34 // modified significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36 
37 // A light-weight ARM Assembler
38 // Generates user mode instructions for the ARM architecture up to version 5
39 
40 #ifndef V8_ARM_ASSEMBLER_ARM_H_
41 #define V8_ARM_ASSEMBLER_ARM_H_
42 
43 #include <stdio.h>
44 #include <vector>
45 
46 #include "src/arm/constants-arm.h"
47 #include "src/assembler.h"
48 #include "src/serialize.h"
49 
50 namespace v8 {
51 namespace internal {
52 
53 // CPU Registers.
54 //
55 // 1) We would prefer to use an enum, but enum values are assignment-
56 // compatible with int, which has caused code-generation bugs.
57 //
58 // 2) We would prefer to use a class instead of a struct but we don't like
59 // the register initialization to depend on the particular initialization
60 // order (which appears to be different on OS X, Linux, and Windows for the
61 // installed versions of C++ we tried). Using a struct permits C-style
62 // "initialization". Also, the Register objects cannot be const as this
63 // forces initialization stubs in MSVC, making us dependent on initialization
64 // order.
65 //
66 // 3) By not using an enum, we are possibly preventing the compiler from
67 // doing certain constant folds, which may significantly reduce the
68 // code generated for some assembly instructions (because they boil down
69 // to a few constants). If this is a problem, we could change the code
70 // such that we use an enum in optimized mode, and the struct in debug
71 // mode. This way we get the compile-time error checking in debug mode
72 // and best performance in optimized code.
73 
74 // These constants are used in several locations, including static initializers
75 const int kRegister_no_reg_Code = -1;
76 const int kRegister_r0_Code = 0;
77 const int kRegister_r1_Code = 1;
78 const int kRegister_r2_Code = 2;
79 const int kRegister_r3_Code = 3;
80 const int kRegister_r4_Code = 4;
81 const int kRegister_r5_Code = 5;
82 const int kRegister_r6_Code = 6;
83 const int kRegister_r7_Code = 7;
84 const int kRegister_r8_Code = 8;
85 const int kRegister_r9_Code = 9;
86 const int kRegister_r10_Code = 10;
87 const int kRegister_fp_Code = 11;
88 const int kRegister_ip_Code = 12;
89 const int kRegister_sp_Code = 13;
90 const int kRegister_lr_Code = 14;
91 const int kRegister_pc_Code = 15;
92 
93 // Core register
94 struct Register {
95   static const int kNumRegisters = 16;
96   static const int kMaxNumAllocatableRegisters =
97       FLAG_enable_ool_constant_pool ? 8 : 9;
98   static const int kSizeInBytes = 4;
99 
100   inline static int NumAllocatableRegisters();
101 
ToAllocationIndexRegister102   static int ToAllocationIndex(Register reg) {
103     DCHECK(reg.code() < kMaxNumAllocatableRegisters);
104     return reg.code();
105   }
106 
FromAllocationIndexRegister107   static Register FromAllocationIndex(int index) {
108     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
109     return from_code(index);
110   }
111 
AllocationIndexToStringRegister112   static const char* AllocationIndexToString(int index) {
113     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
114     const char* const names[] = {
115       "r0",
116       "r1",
117       "r2",
118       "r3",
119       "r4",
120       "r5",
121       "r6",
122       "r7",
123       "r8",
124     };
125     if (FLAG_enable_ool_constant_pool && (index >= 7)) {
126       return names[index + 1];
127     }
128     return names[index];
129   }
130 
from_codeRegister131   static Register from_code(int code) {
132     Register r = { code };
133     return r;
134   }
135 
is_validRegister136   bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
isRegister137   bool is(Register reg) const { return code_ == reg.code_; }
codeRegister138   int code() const {
139     DCHECK(is_valid());
140     return code_;
141   }
bitRegister142   int bit() const {
143     DCHECK(is_valid());
144     return 1 << code_;
145   }
146 
set_codeRegister147   void set_code(int code) {
148     code_ = code;
149     DCHECK(is_valid());
150   }
151 
152   // Unfortunately we can't make this private in a struct.
153   int code_;
154 };
155 
156 const Register no_reg = { kRegister_no_reg_Code };
157 
158 const Register r0  = { kRegister_r0_Code };
159 const Register r1  = { kRegister_r1_Code };
160 const Register r2  = { kRegister_r2_Code };
161 const Register r3  = { kRegister_r3_Code };
162 const Register r4  = { kRegister_r4_Code };
163 const Register r5  = { kRegister_r5_Code };
164 const Register r6  = { kRegister_r6_Code };
165 // Used as constant pool pointer register if FLAG_enable_ool_constant_pool.
166 const Register r7  = { kRegister_r7_Code };
167 // Used as context register.
168 const Register r8  = { kRegister_r8_Code };
169 // Used as lithium codegen scratch register.
170 const Register r9  = { kRegister_r9_Code };
171 // Used as roots register.
172 const Register r10 = { kRegister_r10_Code };
173 const Register fp  = { kRegister_fp_Code };
174 const Register ip  = { kRegister_ip_Code };
175 const Register sp  = { kRegister_sp_Code };
176 const Register lr  = { kRegister_lr_Code };
177 const Register pc  = { kRegister_pc_Code };
178 
179 // Single word VFP register.
180 struct SwVfpRegister {
181   static const int kSizeInBytes = 4;
is_validSwVfpRegister182   bool is_valid() const { return 0 <= code_ && code_ < 32; }
isSwVfpRegister183   bool is(SwVfpRegister reg) const { return code_ == reg.code_; }
codeSwVfpRegister184   int code() const {
185     DCHECK(is_valid());
186     return code_;
187   }
bitSwVfpRegister188   int bit() const {
189     DCHECK(is_valid());
190     return 1 << code_;
191   }
split_codeSwVfpRegister192   void split_code(int* vm, int* m) const {
193     DCHECK(is_valid());
194     *m = code_ & 0x1;
195     *vm = code_ >> 1;
196   }
197 
198   int code_;
199 };
200 
201 
202 // Double word VFP register.
203 struct DwVfpRegister {
204   static const int kMaxNumRegisters = 32;
205   // A few double registers are reserved: one as a scratch register and one to
206   // hold 0.0, that does not fit in the immediate field of vmov instructions.
207   //  d14: 0.0
208   //  d15: scratch register.
209   static const int kNumReservedRegisters = 2;
210   static const int kMaxNumAllocatableRegisters = kMaxNumRegisters -
211       kNumReservedRegisters;
212   static const int kSizeInBytes = 8;
213 
214   // Note: the number of registers can be different at snapshot and run-time.
215   // Any code included in the snapshot must be able to run both with 16 or 32
216   // registers.
217   inline static int NumRegisters();
218   inline static int NumReservedRegisters();
219   inline static int NumAllocatableRegisters();
220 
221   inline static int ToAllocationIndex(DwVfpRegister reg);
222   static const char* AllocationIndexToString(int index);
223   inline static DwVfpRegister FromAllocationIndex(int index);
224 
from_codeDwVfpRegister225   static DwVfpRegister from_code(int code) {
226     DwVfpRegister r = { code };
227     return r;
228   }
229 
is_validDwVfpRegister230   bool is_valid() const {
231     return 0 <= code_ && code_ < kMaxNumRegisters;
232   }
isDwVfpRegister233   bool is(DwVfpRegister reg) const { return code_ == reg.code_; }
codeDwVfpRegister234   int code() const {
235     DCHECK(is_valid());
236     return code_;
237   }
bitDwVfpRegister238   int bit() const {
239     DCHECK(is_valid());
240     return 1 << code_;
241   }
split_codeDwVfpRegister242   void split_code(int* vm, int* m) const {
243     DCHECK(is_valid());
244     *m = (code_ & 0x10) >> 4;
245     *vm = code_ & 0x0F;
246   }
247 
248   int code_;
249 };
250 
251 
252 typedef DwVfpRegister DoubleRegister;
253 
254 
255 // Double word VFP register d0-15.
256 struct LowDwVfpRegister {
257  public:
258   static const int kMaxNumLowRegisters = 16;
DwVfpRegisterLowDwVfpRegister259   operator DwVfpRegister() const {
260     DwVfpRegister r = { code_ };
261     return r;
262   }
from_codeLowDwVfpRegister263   static LowDwVfpRegister from_code(int code) {
264     LowDwVfpRegister r = { code };
265     return r;
266   }
267 
is_validLowDwVfpRegister268   bool is_valid() const {
269     return 0 <= code_ && code_ < kMaxNumLowRegisters;
270   }
isLowDwVfpRegister271   bool is(DwVfpRegister reg) const { return code_ == reg.code_; }
isLowDwVfpRegister272   bool is(LowDwVfpRegister reg) const { return code_ == reg.code_; }
codeLowDwVfpRegister273   int code() const {
274     DCHECK(is_valid());
275     return code_;
276   }
lowLowDwVfpRegister277   SwVfpRegister low() const {
278     SwVfpRegister reg;
279     reg.code_ = code_ * 2;
280 
281     DCHECK(reg.is_valid());
282     return reg;
283   }
highLowDwVfpRegister284   SwVfpRegister high() const {
285     SwVfpRegister reg;
286     reg.code_ = (code_ * 2) + 1;
287 
288     DCHECK(reg.is_valid());
289     return reg;
290   }
291 
292   int code_;
293 };
294 
295 
296 // Quad word NEON register.
297 struct QwNeonRegister {
298   static const int kMaxNumRegisters = 16;
299 
from_codeQwNeonRegister300   static QwNeonRegister from_code(int code) {
301     QwNeonRegister r = { code };
302     return r;
303   }
304 
is_validQwNeonRegister305   bool is_valid() const {
306     return (0 <= code_) && (code_ < kMaxNumRegisters);
307   }
isQwNeonRegister308   bool is(QwNeonRegister reg) const { return code_ == reg.code_; }
codeQwNeonRegister309   int code() const {
310     DCHECK(is_valid());
311     return code_;
312   }
split_codeQwNeonRegister313   void split_code(int* vm, int* m) const {
314     DCHECK(is_valid());
315     int encoded_code = code_ << 1;
316     *m = (encoded_code & 0x10) >> 4;
317     *vm = encoded_code & 0x0F;
318   }
319 
320   int code_;
321 };
322 
323 
324 typedef QwNeonRegister QuadRegister;
325 
326 
327 // Support for the VFP registers s0 to s31 (d0 to d15).
328 // Note that "s(N):s(N+1)" is the same as "d(N/2)".
329 const SwVfpRegister s0  = {  0 };
330 const SwVfpRegister s1  = {  1 };
331 const SwVfpRegister s2  = {  2 };
332 const SwVfpRegister s3  = {  3 };
333 const SwVfpRegister s4  = {  4 };
334 const SwVfpRegister s5  = {  5 };
335 const SwVfpRegister s6  = {  6 };
336 const SwVfpRegister s7  = {  7 };
337 const SwVfpRegister s8  = {  8 };
338 const SwVfpRegister s9  = {  9 };
339 const SwVfpRegister s10 = { 10 };
340 const SwVfpRegister s11 = { 11 };
341 const SwVfpRegister s12 = { 12 };
342 const SwVfpRegister s13 = { 13 };
343 const SwVfpRegister s14 = { 14 };
344 const SwVfpRegister s15 = { 15 };
345 const SwVfpRegister s16 = { 16 };
346 const SwVfpRegister s17 = { 17 };
347 const SwVfpRegister s18 = { 18 };
348 const SwVfpRegister s19 = { 19 };
349 const SwVfpRegister s20 = { 20 };
350 const SwVfpRegister s21 = { 21 };
351 const SwVfpRegister s22 = { 22 };
352 const SwVfpRegister s23 = { 23 };
353 const SwVfpRegister s24 = { 24 };
354 const SwVfpRegister s25 = { 25 };
355 const SwVfpRegister s26 = { 26 };
356 const SwVfpRegister s27 = { 27 };
357 const SwVfpRegister s28 = { 28 };
358 const SwVfpRegister s29 = { 29 };
359 const SwVfpRegister s30 = { 30 };
360 const SwVfpRegister s31 = { 31 };
361 
362 const DwVfpRegister no_dreg = { -1 };
363 const LowDwVfpRegister d0 = { 0 };
364 const LowDwVfpRegister d1 = { 1 };
365 const LowDwVfpRegister d2 = { 2 };
366 const LowDwVfpRegister d3 = { 3 };
367 const LowDwVfpRegister d4 = { 4 };
368 const LowDwVfpRegister d5 = { 5 };
369 const LowDwVfpRegister d6 = { 6 };
370 const LowDwVfpRegister d7 = { 7 };
371 const LowDwVfpRegister d8 = { 8 };
372 const LowDwVfpRegister d9 = { 9 };
373 const LowDwVfpRegister d10 = { 10 };
374 const LowDwVfpRegister d11 = { 11 };
375 const LowDwVfpRegister d12 = { 12 };
376 const LowDwVfpRegister d13 = { 13 };
377 const LowDwVfpRegister d14 = { 14 };
378 const LowDwVfpRegister d15 = { 15 };
379 const DwVfpRegister d16 = { 16 };
380 const DwVfpRegister d17 = { 17 };
381 const DwVfpRegister d18 = { 18 };
382 const DwVfpRegister d19 = { 19 };
383 const DwVfpRegister d20 = { 20 };
384 const DwVfpRegister d21 = { 21 };
385 const DwVfpRegister d22 = { 22 };
386 const DwVfpRegister d23 = { 23 };
387 const DwVfpRegister d24 = { 24 };
388 const DwVfpRegister d25 = { 25 };
389 const DwVfpRegister d26 = { 26 };
390 const DwVfpRegister d27 = { 27 };
391 const DwVfpRegister d28 = { 28 };
392 const DwVfpRegister d29 = { 29 };
393 const DwVfpRegister d30 = { 30 };
394 const DwVfpRegister d31 = { 31 };
395 
396 const QwNeonRegister q0  = {  0 };
397 const QwNeonRegister q1  = {  1 };
398 const QwNeonRegister q2  = {  2 };
399 const QwNeonRegister q3  = {  3 };
400 const QwNeonRegister q4  = {  4 };
401 const QwNeonRegister q5  = {  5 };
402 const QwNeonRegister q6  = {  6 };
403 const QwNeonRegister q7  = {  7 };
404 const QwNeonRegister q8  = {  8 };
405 const QwNeonRegister q9  = {  9 };
406 const QwNeonRegister q10 = { 10 };
407 const QwNeonRegister q11 = { 11 };
408 const QwNeonRegister q12 = { 12 };
409 const QwNeonRegister q13 = { 13 };
410 const QwNeonRegister q14 = { 14 };
411 const QwNeonRegister q15 = { 15 };
412 
413 
414 // Aliases for double registers.  Defined using #define instead of
415 // "static const DwVfpRegister&" because Clang complains otherwise when a
416 // compilation unit that includes this header doesn't use the variables.
417 #define kFirstCalleeSavedDoubleReg d8
418 #define kLastCalleeSavedDoubleReg d15
419 #define kDoubleRegZero d14
420 #define kScratchDoubleReg d15
421 
422 
423 // Coprocessor register
424 struct CRegister {
is_validCRegister425   bool is_valid() const { return 0 <= code_ && code_ < 16; }
isCRegister426   bool is(CRegister creg) const { return code_ == creg.code_; }
codeCRegister427   int code() const {
428     DCHECK(is_valid());
429     return code_;
430   }
bitCRegister431   int bit() const {
432     DCHECK(is_valid());
433     return 1 << code_;
434   }
435 
436   // Unfortunately we can't make this private in a struct.
437   int code_;
438 };
439 
440 
441 const CRegister no_creg = { -1 };
442 
443 const CRegister cr0  = {  0 };
444 const CRegister cr1  = {  1 };
445 const CRegister cr2  = {  2 };
446 const CRegister cr3  = {  3 };
447 const CRegister cr4  = {  4 };
448 const CRegister cr5  = {  5 };
449 const CRegister cr6  = {  6 };
450 const CRegister cr7  = {  7 };
451 const CRegister cr8  = {  8 };
452 const CRegister cr9  = {  9 };
453 const CRegister cr10 = { 10 };
454 const CRegister cr11 = { 11 };
455 const CRegister cr12 = { 12 };
456 const CRegister cr13 = { 13 };
457 const CRegister cr14 = { 14 };
458 const CRegister cr15 = { 15 };
459 
460 
461 // Coprocessor number
462 enum Coprocessor {
463   p0  = 0,
464   p1  = 1,
465   p2  = 2,
466   p3  = 3,
467   p4  = 4,
468   p5  = 5,
469   p6  = 6,
470   p7  = 7,
471   p8  = 8,
472   p9  = 9,
473   p10 = 10,
474   p11 = 11,
475   p12 = 12,
476   p13 = 13,
477   p14 = 14,
478   p15 = 15
479 };
480 
481 
482 // -----------------------------------------------------------------------------
483 // Machine instruction Operands
484 
485 // Class Operand represents a shifter operand in data processing instructions
486 class Operand BASE_EMBEDDED {
487  public:
488   // immediate
489   INLINE(explicit Operand(int32_t immediate,
490          RelocInfo::Mode rmode = RelocInfo::NONE32));
INLINE(static Operand Zero ())491   INLINE(static Operand Zero()) {
492     return Operand(static_cast<int32_t>(0));
493   }
494   INLINE(explicit Operand(const ExternalReference& f));
495   explicit Operand(Handle<Object> handle);
496   INLINE(explicit Operand(Smi* value));
497 
498   // rm
499   INLINE(explicit Operand(Register rm));
500 
501   // rm <shift_op> shift_imm
502   explicit Operand(Register rm, ShiftOp shift_op, int shift_imm);
INLINE(static Operand SmiUntag (Register rm))503   INLINE(static Operand SmiUntag(Register rm)) {
504     return Operand(rm, ASR, kSmiTagSize);
505   }
INLINE(static Operand PointerOffsetFromSmiKey (Register key))506   INLINE(static Operand PointerOffsetFromSmiKey(Register key)) {
507     STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
508     return Operand(key, LSL, kPointerSizeLog2 - kSmiTagSize);
509   }
INLINE(static Operand DoubleOffsetFromSmiKey (Register key))510   INLINE(static Operand DoubleOffsetFromSmiKey(Register key)) {
511     STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kDoubleSizeLog2);
512     return Operand(key, LSL, kDoubleSizeLog2 - kSmiTagSize);
513   }
514 
515   // rm <shift_op> rs
516   explicit Operand(Register rm, ShiftOp shift_op, Register rs);
517 
518   // Return true if this is a register operand.
519   INLINE(bool is_reg() const);
520 
521   // Return the number of actual instructions required to implement the given
522   // instruction for this particular operand. This can be a single instruction,
523   // if no load into the ip register is necessary, or anything between 2 and 4
524   // instructions when we need to load from the constant pool (depending upon
525   // whether the constant pool entry is in the small or extended section). If
526   // the instruction this operand is used for is a MOV or MVN instruction the
527   // actual instruction to use is required for this calculation. For other
528   // instructions instr is ignored.
529   //
530   // The value returned is only valid as long as no entries are added to the
531   // constant pool between this call and the actual instruction being emitted.
532   int instructions_required(const Assembler* assembler, Instr instr = 0) const;
533   bool must_output_reloc_info(const Assembler* assembler) const;
534 
immediate()535   inline int32_t immediate() const {
536     DCHECK(!rm_.is_valid());
537     return imm32_;
538   }
539 
rm()540   Register rm() const { return rm_; }
rs()541   Register rs() const { return rs_; }
shift_op()542   ShiftOp shift_op() const { return shift_op_; }
543 
544  private:
545   Register rm_;
546   Register rs_;
547   ShiftOp shift_op_;
548   int shift_imm_;  // valid if rm_ != no_reg && rs_ == no_reg
549   int32_t imm32_;  // valid if rm_ == no_reg
550   RelocInfo::Mode rmode_;
551 
552   friend class Assembler;
553 };
554 
555 
556 // Class MemOperand represents a memory operand in load and store instructions
557 class MemOperand BASE_EMBEDDED {
558  public:
559   // [rn +/- offset]      Offset/NegOffset
560   // [rn +/- offset]!     PreIndex/NegPreIndex
561   // [rn], +/- offset     PostIndex/NegPostIndex
562   // offset is any signed 32-bit value; offset is first loaded to register ip if
563   // it does not fit the addressing mode (12-bit unsigned and sign bit)
564   explicit MemOperand(Register rn, int32_t offset = 0, AddrMode am = Offset);
565 
566   // [rn +/- rm]          Offset/NegOffset
567   // [rn +/- rm]!         PreIndex/NegPreIndex
568   // [rn], +/- rm         PostIndex/NegPostIndex
569   explicit MemOperand(Register rn, Register rm, AddrMode am = Offset);
570 
571   // [rn +/- rm <shift_op> shift_imm]      Offset/NegOffset
572   // [rn +/- rm <shift_op> shift_imm]!     PreIndex/NegPreIndex
573   // [rn], +/- rm <shift_op> shift_imm     PostIndex/NegPostIndex
574   explicit MemOperand(Register rn, Register rm,
575                       ShiftOp shift_op, int shift_imm, AddrMode am = Offset);
576   INLINE(static MemOperand PointerAddressFromSmiKey(Register array,
577                                                     Register key,
578                                                     AddrMode am = Offset)) {
579     STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
580     return MemOperand(array, key, LSL, kPointerSizeLog2 - kSmiTagSize, am);
581   }
582 
set_offset(int32_t offset)583   void set_offset(int32_t offset) {
584       DCHECK(rm_.is(no_reg));
585       offset_ = offset;
586   }
587 
offset()588   uint32_t offset() const {
589       DCHECK(rm_.is(no_reg));
590       return offset_;
591   }
592 
rn()593   Register rn() const { return rn_; }
rm()594   Register rm() const { return rm_; }
am()595   AddrMode am() const { return am_; }
596 
OffsetIsUint12Encodable()597   bool OffsetIsUint12Encodable() const {
598     return offset_ >= 0 ? is_uint12(offset_) : is_uint12(-offset_);
599   }
600 
601  private:
602   Register rn_;  // base
603   Register rm_;  // register offset
604   int32_t offset_;  // valid if rm_ == no_reg
605   ShiftOp shift_op_;
606   int shift_imm_;  // valid if rm_ != no_reg && rs_ == no_reg
607   AddrMode am_;  // bits P, U, and W
608 
609   friend class Assembler;
610 };
611 
612 
613 // Class NeonMemOperand represents a memory operand in load and
614 // store NEON instructions
615 class NeonMemOperand BASE_EMBEDDED {
616  public:
617   // [rn {:align}]       Offset
618   // [rn {:align}]!      PostIndex
619   explicit NeonMemOperand(Register rn, AddrMode am = Offset, int align = 0);
620 
621   // [rn {:align}], rm   PostIndex
622   explicit NeonMemOperand(Register rn, Register rm, int align = 0);
623 
rn()624   Register rn() const { return rn_; }
rm()625   Register rm() const { return rm_; }
align()626   int align() const { return align_; }
627 
628  private:
629   void SetAlignment(int align);
630 
631   Register rn_;  // base
632   Register rm_;  // register increment
633   int align_;
634 };
635 
636 
637 // Class NeonListOperand represents a list of NEON registers
638 class NeonListOperand BASE_EMBEDDED {
639  public:
640   explicit NeonListOperand(DoubleRegister base, int registers_count = 1);
base()641   DoubleRegister base() const { return base_; }
type()642   NeonListType type() const { return type_; }
643  private:
644   DoubleRegister base_;
645   NeonListType type_;
646 };
647 
648 
649 // Class used to build a constant pool.
650 class ConstantPoolBuilder BASE_EMBEDDED {
651  public:
652   ConstantPoolBuilder();
653   ConstantPoolArray::LayoutSection AddEntry(Assembler* assm,
654                                             const RelocInfo& rinfo);
655   void Relocate(int pc_delta);
656   bool IsEmpty();
657   Handle<ConstantPoolArray> New(Isolate* isolate);
658   void Populate(Assembler* assm, ConstantPoolArray* constant_pool);
659 
current_section()660   inline ConstantPoolArray::LayoutSection current_section() const {
661     return current_section_;
662   }
663 
number_of_entries(ConstantPoolArray::LayoutSection section)664   inline ConstantPoolArray::NumberOfEntries* number_of_entries(
665       ConstantPoolArray::LayoutSection section) {
666     return &number_of_entries_[section];
667   }
668 
small_entries()669   inline ConstantPoolArray::NumberOfEntries* small_entries() {
670     return number_of_entries(ConstantPoolArray::SMALL_SECTION);
671   }
672 
extended_entries()673   inline ConstantPoolArray::NumberOfEntries* extended_entries() {
674     return number_of_entries(ConstantPoolArray::EXTENDED_SECTION);
675   }
676 
677  private:
678   struct ConstantPoolEntry {
ConstantPoolEntryConstantPoolEntry679     ConstantPoolEntry(RelocInfo rinfo, ConstantPoolArray::LayoutSection section,
680                       int merged_index)
681         : rinfo_(rinfo), section_(section), merged_index_(merged_index) {}
682 
683     RelocInfo rinfo_;
684     ConstantPoolArray::LayoutSection section_;
685     int merged_index_;
686   };
687 
688   ConstantPoolArray::Type GetConstantPoolType(RelocInfo::Mode rmode);
689 
690   std::vector<ConstantPoolEntry> entries_;
691   ConstantPoolArray::LayoutSection current_section_;
692   ConstantPoolArray::NumberOfEntries number_of_entries_[2];
693 };
694 
695 struct VmovIndex {
696   unsigned char index;
697 };
698 const VmovIndex VmovIndexLo = { 0 };
699 const VmovIndex VmovIndexHi = { 1 };
700 
701 class Assembler : public AssemblerBase {
702  public:
703   // Create an assembler. Instructions and relocation information are emitted
704   // into a buffer, with the instructions starting from the beginning and the
705   // relocation information starting from the end of the buffer. See CodeDesc
706   // for a detailed comment on the layout (globals.h).
707   //
708   // If the provided buffer is NULL, the assembler allocates and grows its own
709   // buffer, and buffer_size determines the initial buffer size. The buffer is
710   // owned by the assembler and deallocated upon destruction of the assembler.
711   //
712   // If the provided buffer is not NULL, the assembler uses the provided buffer
713   // for code generation and assumes its size to be buffer_size. If the buffer
714   // is too small, a fatal error occurs. No deallocation of the buffer is done
715   // upon destruction of the assembler.
716   Assembler(Isolate* isolate, void* buffer, int buffer_size);
717   virtual ~Assembler();
718 
719   // GetCode emits any pending (non-emitted) code and fills the descriptor
720   // desc. GetCode() is idempotent; it returns the same result if no other
721   // Assembler functions are invoked in between GetCode() calls.
722   void GetCode(CodeDesc* desc);
723 
724   // Label operations & relative jumps (PPUM Appendix D)
725   //
726   // Takes a branch opcode (cc) and a label (L) and generates
727   // either a backward branch or a forward branch and links it
728   // to the label fixup chain. Usage:
729   //
730   // Label L;    // unbound label
731   // j(cc, &L);  // forward branch to unbound label
732   // bind(&L);   // bind label to the current pc
733   // j(cc, &L);  // backward branch to bound label
734   // bind(&L);   // illegal: a label may be bound only once
735   //
736   // Note: The same Label can be used for forward and backward branches
737   // but it may be bound only once.
738 
739   void bind(Label* L);  // binds an unbound label L to the current code position
740 
741   // Returns the branch offset to the given label from the current code position
742   // Links the label to the current position if it is still unbound
743   // Manages the jump elimination optimization if the second parameter is true.
744   int branch_offset(Label* L, bool jump_elimination_allowed);
745 
746   // Returns true if the given pc address is the start of a constant pool load
747   // instruction sequence.
748   INLINE(static bool is_constant_pool_load(Address pc));
749 
750   // Return the address in the constant pool of the code target address used by
751   // the branch/call instruction at pc, or the object in a mov.
752   INLINE(static Address constant_pool_entry_address(
753     Address pc, ConstantPoolArray* constant_pool));
754 
755   // Read/Modify the code target address in the branch/call instruction at pc.
756   INLINE(static Address target_address_at(Address pc,
757                                           ConstantPoolArray* constant_pool));
758   INLINE(static void set_target_address_at(Address pc,
759                                            ConstantPoolArray* constant_pool,
760                                            Address target,
761                                            ICacheFlushMode icache_flush_mode =
762                                                FLUSH_ICACHE_IF_NEEDED));
INLINE(static Address target_address_at (Address pc,Code * code))763   INLINE(static Address target_address_at(Address pc, Code* code)) {
764     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
765     return target_address_at(pc, constant_pool);
766   }
INLINE(static void set_target_address_at (Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))767   INLINE(static void set_target_address_at(Address pc,
768                                            Code* code,
769                                            Address target,
770                                            ICacheFlushMode icache_flush_mode =
771                                                FLUSH_ICACHE_IF_NEEDED)) {
772     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
773     set_target_address_at(pc, constant_pool, target, icache_flush_mode);
774   }
775 
776   // Return the code target address at a call site from the return address
777   // of that call in the instruction stream.
778   INLINE(static Address target_address_from_return_address(Address pc));
779 
780   // Given the address of the beginning of a call, return the address
781   // in the instruction stream that the call will return from.
782   INLINE(static Address return_address_from_call_start(Address pc));
783 
784   // Return the code target address of the patch debug break slot
785   INLINE(static Address break_address_from_return_address(Address pc));
786 
787   // This sets the branch destination (which is in the constant pool on ARM).
788   // This is for calls and branches within generated code.
789   inline static void deserialization_set_special_target_at(
790       Address constant_pool_entry, Code* code, Address target);
791 
792   // Here we are patching the address in the constant pool, not the actual call
793   // instruction.  The address in the constant pool is the same size as a
794   // pointer.
795   static const int kSpecialTargetSize = kPointerSize;
796 
797   // Size of an instruction.
798   static const int kInstrSize = sizeof(Instr);
799 
800   // Distance between start of patched return sequence and the emitted address
801   // to jump to.
802   // Patched return sequence is:
803   //  ldr  ip, [pc, #0]   @ emited address and start
804   //  blx  ip
805   static const int kPatchReturnSequenceAddressOffset =  0 * kInstrSize;
806 
807   // Distance between start of patched debug break slot and the emitted address
808   // to jump to.
809   // Patched debug break slot code is:
810   //  ldr  ip, [pc, #0]   @ emited address and start
811   //  blx  ip
812   static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
813 
814   static const int kPatchDebugBreakSlotReturnOffset = 2 * kInstrSize;
815 
816   // Difference between address of current opcode and value read from pc
817   // register.
818   static const int kPcLoadDelta = 8;
819 
820   static const int kJSReturnSequenceInstructions = 4;
821   static const int kDebugBreakSlotInstructions = 3;
822   static const int kDebugBreakSlotLength =
823       kDebugBreakSlotInstructions * kInstrSize;
824 
825   // ---------------------------------------------------------------------------
826   // Code generation
827 
828   // Insert the smallest number of nop instructions
829   // possible to align the pc offset to a multiple
830   // of m. m must be a power of 2 (>= 4).
831   void Align(int m);
832   // Aligns code to something that's optimal for a jump target for the platform.
833   void CodeTargetAlign();
834 
835   // Branch instructions
836   void b(int branch_offset, Condition cond = al);
837   void bl(int branch_offset, Condition cond = al);
838   void blx(int branch_offset);  // v5 and above
839   void blx(Register target, Condition cond = al);  // v5 and above
840   void bx(Register target, Condition cond = al);  // v5 and above, plus v4t
841 
842   // Convenience branch instructions using labels
843   void b(Label* L, Condition cond = al)  {
844     b(branch_offset(L, cond == al), cond);
845   }
b(Condition cond,Label * L)846   void b(Condition cond, Label* L)  { b(branch_offset(L, cond == al), cond); }
847   void bl(Label* L, Condition cond = al)  { bl(branch_offset(L, false), cond); }
bl(Condition cond,Label * L)848   void bl(Condition cond, Label* L)  { bl(branch_offset(L, false), cond); }
blx(Label * L)849   void blx(Label* L)  { blx(branch_offset(L, false)); }  // v5 and above
850 
851   // Data-processing instructions
852 
853   void and_(Register dst, Register src1, const Operand& src2,
854             SBit s = LeaveCC, Condition cond = al);
855 
856   void eor(Register dst, Register src1, const Operand& src2,
857            SBit s = LeaveCC, Condition cond = al);
858 
859   void sub(Register dst, Register src1, const Operand& src2,
860            SBit s = LeaveCC, Condition cond = al);
861   void sub(Register dst, Register src1, Register src2,
862            SBit s = LeaveCC, Condition cond = al) {
863     sub(dst, src1, Operand(src2), s, cond);
864   }
865 
866   void rsb(Register dst, Register src1, const Operand& src2,
867            SBit s = LeaveCC, Condition cond = al);
868 
869   void add(Register dst, Register src1, const Operand& src2,
870            SBit s = LeaveCC, Condition cond = al);
871   void add(Register dst, Register src1, Register src2,
872            SBit s = LeaveCC, Condition cond = al) {
873     add(dst, src1, Operand(src2), s, cond);
874   }
875 
876   void adc(Register dst, Register src1, const Operand& src2,
877            SBit s = LeaveCC, Condition cond = al);
878 
879   void sbc(Register dst, Register src1, const Operand& src2,
880            SBit s = LeaveCC, Condition cond = al);
881 
882   void rsc(Register dst, Register src1, const Operand& src2,
883            SBit s = LeaveCC, Condition cond = al);
884 
885   void tst(Register src1, const Operand& src2, Condition cond = al);
886   void tst(Register src1, Register src2, Condition cond = al) {
887     tst(src1, Operand(src2), cond);
888   }
889 
890   void teq(Register src1, const Operand& src2, Condition cond = al);
891 
892   void cmp(Register src1, const Operand& src2, Condition cond = al);
893   void cmp(Register src1, Register src2, Condition cond = al) {
894     cmp(src1, Operand(src2), cond);
895   }
896   void cmp_raw_immediate(Register src1, int raw_immediate, Condition cond = al);
897 
898   void cmn(Register src1, const Operand& src2, Condition cond = al);
899 
900   void orr(Register dst, Register src1, const Operand& src2,
901            SBit s = LeaveCC, Condition cond = al);
902   void orr(Register dst, Register src1, Register src2,
903            SBit s = LeaveCC, Condition cond = al) {
904     orr(dst, src1, Operand(src2), s, cond);
905   }
906 
907   void mov(Register dst, const Operand& src,
908            SBit s = LeaveCC, Condition cond = al);
909   void mov(Register dst, Register src, SBit s = LeaveCC, Condition cond = al) {
910     mov(dst, Operand(src), s, cond);
911   }
912 
913   // Load the position of the label relative to the generated code object
914   // pointer in a register.
915   void mov_label_offset(Register dst, Label* label);
916 
917   // ARMv7 instructions for loading a 32 bit immediate in two instructions.
918   // The constant for movw and movt should be in the range 0-0xffff.
919   void movw(Register reg, uint32_t immediate, Condition cond = al);
920   void movt(Register reg, uint32_t immediate, Condition cond = al);
921 
922   void bic(Register dst, Register src1, const Operand& src2,
923            SBit s = LeaveCC, Condition cond = al);
924 
925   void mvn(Register dst, const Operand& src,
926            SBit s = LeaveCC, Condition cond = al);
927 
928   // Shift instructions
929 
930   void asr(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
931            Condition cond = al) {
932     if (src2.is_reg()) {
933       mov(dst, Operand(src1, ASR, src2.rm()), s, cond);
934     } else {
935       mov(dst, Operand(src1, ASR, src2.immediate()), s, cond);
936     }
937   }
938 
939   void lsl(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
940            Condition cond = al) {
941     if (src2.is_reg()) {
942       mov(dst, Operand(src1, LSL, src2.rm()), s, cond);
943     } else {
944       mov(dst, Operand(src1, LSL, src2.immediate()), s, cond);
945     }
946   }
947 
948   void lsr(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
949            Condition cond = al) {
950     if (src2.is_reg()) {
951       mov(dst, Operand(src1, LSR, src2.rm()), s, cond);
952     } else {
953       mov(dst, Operand(src1, LSR, src2.immediate()), s, cond);
954     }
955   }
956 
957   // Multiply instructions
958 
959   void mla(Register dst, Register src1, Register src2, Register srcA,
960            SBit s = LeaveCC, Condition cond = al);
961 
962   void mls(Register dst, Register src1, Register src2, Register srcA,
963            Condition cond = al);
964 
965   void sdiv(Register dst, Register src1, Register src2,
966             Condition cond = al);
967 
968   void udiv(Register dst, Register src1, Register src2, Condition cond = al);
969 
970   void mul(Register dst, Register src1, Register src2,
971            SBit s = LeaveCC, Condition cond = al);
972 
973   void smlal(Register dstL, Register dstH, Register src1, Register src2,
974              SBit s = LeaveCC, Condition cond = al);
975 
976   void smull(Register dstL, Register dstH, Register src1, Register src2,
977              SBit s = LeaveCC, Condition cond = al);
978 
979   void umlal(Register dstL, Register dstH, Register src1, Register src2,
980              SBit s = LeaveCC, Condition cond = al);
981 
982   void umull(Register dstL, Register dstH, Register src1, Register src2,
983              SBit s = LeaveCC, Condition cond = al);
984 
985   // Miscellaneous arithmetic instructions
986 
987   void clz(Register dst, Register src, Condition cond = al);  // v5 and above
988 
989   // Saturating instructions. v6 and above.
990 
991   // Unsigned saturate.
992   //
993   // Saturate an optionally shifted signed value to an unsigned range.
994   //
995   //   usat dst, #satpos, src
996   //   usat dst, #satpos, src, lsl #sh
997   //   usat dst, #satpos, src, asr #sh
998   //
999   // Register dst will contain:
1000   //
1001   //   0,                 if s < 0
1002   //   (1 << satpos) - 1, if s > ((1 << satpos) - 1)
1003   //   s,                 otherwise
1004   //
1005   // where s is the contents of src after shifting (if used.)
1006   void usat(Register dst, int satpos, const Operand& src, Condition cond = al);
1007 
1008   // Bitfield manipulation instructions. v7 and above.
1009 
1010   void ubfx(Register dst, Register src, int lsb, int width,
1011             Condition cond = al);
1012 
1013   void sbfx(Register dst, Register src, int lsb, int width,
1014             Condition cond = al);
1015 
1016   void bfc(Register dst, int lsb, int width, Condition cond = al);
1017 
1018   void bfi(Register dst, Register src, int lsb, int width,
1019            Condition cond = al);
1020 
1021   void pkhbt(Register dst, Register src1, const Operand& src2,
1022              Condition cond = al);
1023 
1024   void pkhtb(Register dst, Register src1, const Operand& src2,
1025              Condition cond = al);
1026 
1027   void uxtb(Register dst, const Operand& src, Condition cond = al);
1028 
1029   void uxtab(Register dst, Register src1, const Operand& src2,
1030              Condition cond = al);
1031 
1032   void uxtb16(Register dst, const Operand& src, Condition cond = al);
1033 
1034   // Status register access instructions
1035 
1036   void mrs(Register dst, SRegister s, Condition cond = al);
1037   void msr(SRegisterFieldMask fields, const Operand& src, Condition cond = al);
1038 
1039   // Load/Store instructions
1040   void ldr(Register dst, const MemOperand& src, Condition cond = al);
1041   void str(Register src, const MemOperand& dst, Condition cond = al);
1042   void ldrb(Register dst, const MemOperand& src, Condition cond = al);
1043   void strb(Register src, const MemOperand& dst, Condition cond = al);
1044   void ldrh(Register dst, const MemOperand& src, Condition cond = al);
1045   void strh(Register src, const MemOperand& dst, Condition cond = al);
1046   void ldrsb(Register dst, const MemOperand& src, Condition cond = al);
1047   void ldrsh(Register dst, const MemOperand& src, Condition cond = al);
1048   void ldrd(Register dst1,
1049             Register dst2,
1050             const MemOperand& src, Condition cond = al);
1051   void strd(Register src1,
1052             Register src2,
1053             const MemOperand& dst, Condition cond = al);
1054 
1055   // Preload instructions
1056   void pld(const MemOperand& address);
1057 
1058   // Load/Store multiple instructions
1059   void ldm(BlockAddrMode am, Register base, RegList dst, Condition cond = al);
1060   void stm(BlockAddrMode am, Register base, RegList src, Condition cond = al);
1061 
1062   // Exception-generating instructions and debugging support
1063   void stop(const char* msg,
1064             Condition cond = al,
1065             int32_t code = kDefaultStopCode);
1066 
1067   void bkpt(uint32_t imm16);  // v5 and above
1068   void svc(uint32_t imm24, Condition cond = al);
1069 
1070   // Coprocessor instructions
1071 
1072   void cdp(Coprocessor coproc, int opcode_1,
1073            CRegister crd, CRegister crn, CRegister crm,
1074            int opcode_2, Condition cond = al);
1075 
1076   void cdp2(Coprocessor coproc, int opcode_1,
1077             CRegister crd, CRegister crn, CRegister crm,
1078             int opcode_2);  // v5 and above
1079 
1080   void mcr(Coprocessor coproc, int opcode_1,
1081            Register rd, CRegister crn, CRegister crm,
1082            int opcode_2 = 0, Condition cond = al);
1083 
1084   void mcr2(Coprocessor coproc, int opcode_1,
1085             Register rd, CRegister crn, CRegister crm,
1086             int opcode_2 = 0);  // v5 and above
1087 
1088   void mrc(Coprocessor coproc, int opcode_1,
1089            Register rd, CRegister crn, CRegister crm,
1090            int opcode_2 = 0, Condition cond = al);
1091 
1092   void mrc2(Coprocessor coproc, int opcode_1,
1093             Register rd, CRegister crn, CRegister crm,
1094             int opcode_2 = 0);  // v5 and above
1095 
1096   void ldc(Coprocessor coproc, CRegister crd, const MemOperand& src,
1097            LFlag l = Short, Condition cond = al);
1098   void ldc(Coprocessor coproc, CRegister crd, Register base, int option,
1099            LFlag l = Short, Condition cond = al);
1100 
1101   void ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src,
1102             LFlag l = Short);  // v5 and above
1103   void ldc2(Coprocessor coproc, CRegister crd, Register base, int option,
1104             LFlag l = Short);  // v5 and above
1105 
1106   // Support for VFP.
1107   // All these APIs support S0 to S31 and D0 to D31.
1108 
1109   void vldr(const DwVfpRegister dst,
1110             const Register base,
1111             int offset,
1112             const Condition cond = al);
1113   void vldr(const DwVfpRegister dst,
1114             const MemOperand& src,
1115             const Condition cond = al);
1116 
1117   void vldr(const SwVfpRegister dst,
1118             const Register base,
1119             int offset,
1120             const Condition cond = al);
1121   void vldr(const SwVfpRegister dst,
1122             const MemOperand& src,
1123             const Condition cond = al);
1124 
1125   void vstr(const DwVfpRegister src,
1126             const Register base,
1127             int offset,
1128             const Condition cond = al);
1129   void vstr(const DwVfpRegister src,
1130             const MemOperand& dst,
1131             const Condition cond = al);
1132 
1133   void vstr(const SwVfpRegister src,
1134             const Register base,
1135             int offset,
1136             const Condition cond = al);
1137   void vstr(const SwVfpRegister src,
1138             const MemOperand& dst,
1139             const Condition cond = al);
1140 
1141   void vldm(BlockAddrMode am,
1142             Register base,
1143             DwVfpRegister first,
1144             DwVfpRegister last,
1145             Condition cond = al);
1146 
1147   void vstm(BlockAddrMode am,
1148             Register base,
1149             DwVfpRegister first,
1150             DwVfpRegister last,
1151             Condition cond = al);
1152 
1153   void vldm(BlockAddrMode am,
1154             Register base,
1155             SwVfpRegister first,
1156             SwVfpRegister last,
1157             Condition cond = al);
1158 
1159   void vstm(BlockAddrMode am,
1160             Register base,
1161             SwVfpRegister first,
1162             SwVfpRegister last,
1163             Condition cond = al);
1164 
1165   void vmov(const DwVfpRegister dst,
1166             double imm,
1167             const Register scratch = no_reg);
1168   void vmov(const SwVfpRegister dst,
1169             const SwVfpRegister src,
1170             const Condition cond = al);
1171   void vmov(const DwVfpRegister dst,
1172             const DwVfpRegister src,
1173             const Condition cond = al);
1174   void vmov(const DwVfpRegister dst,
1175             const VmovIndex index,
1176             const Register src,
1177             const Condition cond = al);
1178   void vmov(const Register dst,
1179             const VmovIndex index,
1180             const DwVfpRegister src,
1181             const Condition cond = al);
1182   void vmov(const DwVfpRegister dst,
1183             const Register src1,
1184             const Register src2,
1185             const Condition cond = al);
1186   void vmov(const Register dst1,
1187             const Register dst2,
1188             const DwVfpRegister src,
1189             const Condition cond = al);
1190   void vmov(const SwVfpRegister dst,
1191             const Register src,
1192             const Condition cond = al);
1193   void vmov(const Register dst,
1194             const SwVfpRegister src,
1195             const Condition cond = al);
1196   void vcvt_f64_s32(const DwVfpRegister dst,
1197                     const SwVfpRegister src,
1198                     VFPConversionMode mode = kDefaultRoundToZero,
1199                     const Condition cond = al);
1200   void vcvt_f32_s32(const SwVfpRegister dst,
1201                     const SwVfpRegister src,
1202                     VFPConversionMode mode = kDefaultRoundToZero,
1203                     const Condition cond = al);
1204   void vcvt_f64_u32(const DwVfpRegister dst,
1205                     const SwVfpRegister src,
1206                     VFPConversionMode mode = kDefaultRoundToZero,
1207                     const Condition cond = al);
1208   void vcvt_s32_f64(const SwVfpRegister dst,
1209                     const DwVfpRegister src,
1210                     VFPConversionMode mode = kDefaultRoundToZero,
1211                     const Condition cond = al);
1212   void vcvt_u32_f64(const SwVfpRegister dst,
1213                     const DwVfpRegister src,
1214                     VFPConversionMode mode = kDefaultRoundToZero,
1215                     const Condition cond = al);
1216   void vcvt_f64_f32(const DwVfpRegister dst,
1217                     const SwVfpRegister src,
1218                     VFPConversionMode mode = kDefaultRoundToZero,
1219                     const Condition cond = al);
1220   void vcvt_f32_f64(const SwVfpRegister dst,
1221                     const DwVfpRegister src,
1222                     VFPConversionMode mode = kDefaultRoundToZero,
1223                     const Condition cond = al);
1224   void vcvt_f64_s32(const DwVfpRegister dst,
1225                     int fraction_bits,
1226                     const Condition cond = al);
1227 
1228   void vneg(const DwVfpRegister dst,
1229             const DwVfpRegister src,
1230             const Condition cond = al);
1231   void vabs(const DwVfpRegister dst,
1232             const DwVfpRegister src,
1233             const Condition cond = al);
1234   void vadd(const DwVfpRegister dst,
1235             const DwVfpRegister src1,
1236             const DwVfpRegister src2,
1237             const Condition cond = al);
1238   void vsub(const DwVfpRegister dst,
1239             const DwVfpRegister src1,
1240             const DwVfpRegister src2,
1241             const Condition cond = al);
1242   void vmul(const DwVfpRegister dst,
1243             const DwVfpRegister src1,
1244             const DwVfpRegister src2,
1245             const Condition cond = al);
1246   void vmla(const DwVfpRegister dst,
1247             const DwVfpRegister src1,
1248             const DwVfpRegister src2,
1249             const Condition cond = al);
1250   void vmls(const DwVfpRegister dst,
1251             const DwVfpRegister src1,
1252             const DwVfpRegister src2,
1253             const Condition cond = al);
1254   void vdiv(const DwVfpRegister dst,
1255             const DwVfpRegister src1,
1256             const DwVfpRegister src2,
1257             const Condition cond = al);
1258   void vcmp(const DwVfpRegister src1,
1259             const DwVfpRegister src2,
1260             const Condition cond = al);
1261   void vcmp(const DwVfpRegister src1,
1262             const double src2,
1263             const Condition cond = al);
1264   void vmrs(const Register dst,
1265             const Condition cond = al);
1266   void vmsr(const Register dst,
1267             const Condition cond = al);
1268   void vsqrt(const DwVfpRegister dst,
1269              const DwVfpRegister src,
1270              const Condition cond = al);
1271 
1272   // Support for NEON.
1273   // All these APIs support D0 to D31 and Q0 to Q15.
1274 
1275   void vld1(NeonSize size,
1276             const NeonListOperand& dst,
1277             const NeonMemOperand& src);
1278   void vst1(NeonSize size,
1279             const NeonListOperand& src,
1280             const NeonMemOperand& dst);
1281   void vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src);
1282 
1283   // Pseudo instructions
1284 
1285   // Different nop operations are used by the code generator to detect certain
1286   // states of the generated code.
1287   enum NopMarkerTypes {
1288     NON_MARKING_NOP = 0,
1289     DEBUG_BREAK_NOP,
1290     // IC markers.
1291     PROPERTY_ACCESS_INLINED,
1292     PROPERTY_ACCESS_INLINED_CONTEXT,
1293     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
1294     // Helper values.
1295     LAST_CODE_MARKER,
1296     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
1297   };
1298 
1299   void nop(int type = 0);   // 0 is the default non-marking type.
1300 
1301   void push(Register src, Condition cond = al) {
1302     str(src, MemOperand(sp, 4, NegPreIndex), cond);
1303   }
1304 
1305   void pop(Register dst, Condition cond = al) {
1306     ldr(dst, MemOperand(sp, 4, PostIndex), cond);
1307   }
1308 
pop()1309   void pop() {
1310     add(sp, sp, Operand(kPointerSize));
1311   }
1312 
1313   // Jump unconditionally to given label.
jmp(Label * L)1314   void jmp(Label* L) { b(L, al); }
1315 
1316   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1317   int SizeOfCodeGeneratedSince(Label* label) {
1318     return pc_offset() - label->pos();
1319   }
1320 
1321   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)1322   int InstructionsGeneratedSince(Label* label) {
1323     return SizeOfCodeGeneratedSince(label) / kInstrSize;
1324   }
1325 
1326   // Check whether an immediate fits an addressing mode 1 instruction.
1327   static bool ImmediateFitsAddrMode1Instruction(int32_t imm32);
1328 
1329   // Check whether an immediate fits an addressing mode 2 instruction.
1330   bool ImmediateFitsAddrMode2Instruction(int32_t imm32);
1331 
1332   // Class for scoping postponing the constant pool generation.
1333   class BlockConstPoolScope {
1334    public:
BlockConstPoolScope(Assembler * assem)1335     explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
1336       assem_->StartBlockConstPool();
1337     }
~BlockConstPoolScope()1338     ~BlockConstPoolScope() {
1339       assem_->EndBlockConstPool();
1340     }
1341 
1342    private:
1343     Assembler* assem_;
1344 
1345     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
1346   };
1347 
1348   // Debugging
1349 
1350   // Mark address of the ExitJSFrame code.
1351   void RecordJSReturn();
1352 
1353   // Mark address of a debug break slot.
1354   void RecordDebugBreakSlot();
1355 
1356   // Record the AST id of the CallIC being compiled, so that it can be placed
1357   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)1358   void SetRecordedAstId(TypeFeedbackId ast_id) {
1359     DCHECK(recorded_ast_id_.IsNone());
1360     recorded_ast_id_ = ast_id;
1361   }
1362 
RecordedAstId()1363   TypeFeedbackId RecordedAstId() {
1364     DCHECK(!recorded_ast_id_.IsNone());
1365     return recorded_ast_id_;
1366   }
1367 
ClearRecordedAstId()1368   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1369 
1370   // Record a comment relocation entry that can be used by a disassembler.
1371   // Use --code-comments to enable.
1372   void RecordComment(const char* msg);
1373 
1374   // Record the emission of a constant pool.
1375   //
1376   // The emission of constant pool depends on the size of the code generated and
1377   // the number of RelocInfo recorded.
1378   // The Debug mechanism needs to map code offsets between two versions of a
1379   // function, compiled with and without debugger support (see for example
1380   // Debug::PrepareForBreakPoints()).
1381   // Compiling functions with debugger support generates additional code
1382   // (DebugCodegen::GenerateSlot()). This may affect the emission of the
1383   // constant pools and cause the version of the code with debugger support to
1384   // have constant pools generated in different places.
1385   // Recording the position and size of emitted constant pools allows to
1386   // correctly compute the offset mappings between the different versions of a
1387   // function in all situations.
1388   //
1389   // The parameter indicates the size of the constant pool (in bytes), including
1390   // the marker and branch over the data.
1391   void RecordConstPool(int size);
1392 
1393   // Writes a single byte or word of data in the code stream.  Used
1394   // for inline tables, e.g., jump-tables. The constant pool should be
1395   // emitted before any use of db and dd to ensure that constant pools
1396   // are not emitted as part of the tables generated.
1397   void db(uint8_t data);
1398   void dd(uint32_t data);
1399 
1400   // Emits the address of the code stub's first instruction.
1401   void emit_code_stub_address(Code* stub);
1402 
positions_recorder()1403   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1404 
1405   // Read/patch instructions
instr_at(int pos)1406   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)1407   void instr_at_put(int pos, Instr instr) {
1408     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
1409   }
instr_at(byte * pc)1410   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)1411   static void instr_at_put(byte* pc, Instr instr) {
1412     *reinterpret_cast<Instr*>(pc) = instr;
1413   }
1414   static Condition GetCondition(Instr instr);
1415   static bool IsBranch(Instr instr);
1416   static int GetBranchOffset(Instr instr);
1417   static bool IsLdrRegisterImmediate(Instr instr);
1418   static bool IsVldrDRegisterImmediate(Instr instr);
1419   static Instr GetConsantPoolLoadPattern();
1420   static Instr GetConsantPoolLoadMask();
1421   static bool IsLdrPpRegOffset(Instr instr);
1422   static Instr GetLdrPpRegOffsetPattern();
1423   static bool IsLdrPpImmediateOffset(Instr instr);
1424   static bool IsVldrDPpImmediateOffset(Instr instr);
1425   static int GetLdrRegisterImmediateOffset(Instr instr);
1426   static int GetVldrDRegisterImmediateOffset(Instr instr);
1427   static Instr SetLdrRegisterImmediateOffset(Instr instr, int offset);
1428   static Instr SetVldrDRegisterImmediateOffset(Instr instr, int offset);
1429   static bool IsStrRegisterImmediate(Instr instr);
1430   static Instr SetStrRegisterImmediateOffset(Instr instr, int offset);
1431   static bool IsAddRegisterImmediate(Instr instr);
1432   static Instr SetAddRegisterImmediateOffset(Instr instr, int offset);
1433   static Register GetRd(Instr instr);
1434   static Register GetRn(Instr instr);
1435   static Register GetRm(Instr instr);
1436   static bool IsPush(Instr instr);
1437   static bool IsPop(Instr instr);
1438   static bool IsStrRegFpOffset(Instr instr);
1439   static bool IsLdrRegFpOffset(Instr instr);
1440   static bool IsStrRegFpNegOffset(Instr instr);
1441   static bool IsLdrRegFpNegOffset(Instr instr);
1442   static bool IsLdrPcImmediateOffset(Instr instr);
1443   static bool IsVldrDPcImmediateOffset(Instr instr);
1444   static bool IsBlxReg(Instr instr);
1445   static bool IsBlxIp(Instr instr);
1446   static bool IsTstImmediate(Instr instr);
1447   static bool IsCmpRegister(Instr instr);
1448   static bool IsCmpImmediate(Instr instr);
1449   static Register GetCmpImmediateRegister(Instr instr);
1450   static int GetCmpImmediateRawImmediate(Instr instr);
1451   static bool IsNop(Instr instr, int type = NON_MARKING_NOP);
1452   static bool IsMovImmed(Instr instr);
1453   static bool IsOrrImmed(Instr instr);
1454   static bool IsMovT(Instr instr);
1455   static Instr GetMovTPattern();
1456   static bool IsMovW(Instr instr);
1457   static Instr GetMovWPattern();
1458   static Instr EncodeMovwImmediate(uint32_t immediate);
1459   static Instr PatchMovwImmediate(Instr instruction, uint32_t immediate);
1460   static int DecodeShiftImm(Instr instr);
1461   static Instr PatchShiftImm(Instr instr, int immed);
1462 
1463   // Constants in pools are accessed via pc relative addressing, which can
1464   // reach +/-4KB for integer PC-relative loads and +/-1KB for floating-point
1465   // PC-relative loads, thereby defining a maximum distance between the
1466   // instruction and the accessed constant.
1467   static const int kMaxDistToIntPool = 4*KB;
1468   static const int kMaxDistToFPPool = 1*KB;
1469   // All relocations could be integer, it therefore acts as the limit.
1470   static const int kMaxNumPending32RelocInfo = kMaxDistToIntPool/kInstrSize;
1471   static const int kMaxNumPending64RelocInfo = kMaxDistToFPPool/kInstrSize;
1472 
1473   // Postpone the generation of the constant pool for the specified number of
1474   // instructions.
1475   void BlockConstPoolFor(int instructions);
1476 
1477   // Check if is time to emit a constant pool.
1478   void CheckConstPool(bool force_emit, bool require_jump);
1479 
1480   // Allocate a constant pool of the correct size for the generated code.
1481   Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1482 
1483   // Generate the constant pool for the generated code.
1484   void PopulateConstantPool(ConstantPoolArray* constant_pool);
1485 
is_constant_pool_available()1486   bool is_constant_pool_available() const { return constant_pool_available_; }
1487 
use_extended_constant_pool()1488   bool use_extended_constant_pool() const {
1489     return constant_pool_builder_.current_section() ==
1490            ConstantPoolArray::EXTENDED_SECTION;
1491   }
1492 
1493 
1494  protected:
1495   // Relocation for a type-recording IC has the AST id added to it.  This
1496   // member variable is a way to pass the information from the call site to
1497   // the relocation info.
1498   TypeFeedbackId recorded_ast_id_;
1499 
buffer_space()1500   int buffer_space() const { return reloc_info_writer.pos() - pc_; }
1501 
1502   // Decode branch instruction at pos and return branch target pos
1503   int target_at(int pos);
1504 
1505   // Patch branch instruction at pos to branch to given branch target pos
1506   void target_at_put(int pos, int target_pos);
1507 
1508   // Prevent contant pool emission until EndBlockConstPool is called.
1509   // Call to this function can be nested but must be followed by an equal
1510   // number of call to EndBlockConstpool.
StartBlockConstPool()1511   void StartBlockConstPool() {
1512     if (const_pool_blocked_nesting_++ == 0) {
1513       // Prevent constant pool checks happening by setting the next check to
1514       // the biggest possible offset.
1515       next_buffer_check_ = kMaxInt;
1516     }
1517   }
1518 
1519   // Resume constant pool emission. Need to be called as many time as
1520   // StartBlockConstPool to have an effect.
EndBlockConstPool()1521   void EndBlockConstPool() {
1522     if (--const_pool_blocked_nesting_ == 0) {
1523 #ifdef DEBUG
1524       // Max pool start (if we need a jump and an alignment).
1525       int start = pc_offset() + kInstrSize + 2 * kPointerSize;
1526       // Check the constant pool hasn't been blocked for too long.
1527       DCHECK((num_pending_32_bit_reloc_info_ == 0) ||
1528              (start + num_pending_64_bit_reloc_info_ * kDoubleSize <
1529               (first_const_pool_32_use_ + kMaxDistToIntPool)));
1530       DCHECK((num_pending_64_bit_reloc_info_ == 0) ||
1531              (start < (first_const_pool_64_use_ + kMaxDistToFPPool)));
1532 #endif
1533       // Two cases:
1534       //  * no_const_pool_before_ >= next_buffer_check_ and the emission is
1535       //    still blocked
1536       //  * no_const_pool_before_ < next_buffer_check_ and the next emit will
1537       //    trigger a check.
1538       next_buffer_check_ = no_const_pool_before_;
1539     }
1540   }
1541 
is_const_pool_blocked()1542   bool is_const_pool_blocked() const {
1543     return (const_pool_blocked_nesting_ > 0) ||
1544            (pc_offset() < no_const_pool_before_);
1545   }
1546 
set_constant_pool_available(bool available)1547   void set_constant_pool_available(bool available) {
1548     constant_pool_available_ = available;
1549   }
1550 
1551  private:
1552   int next_buffer_check_;  // pc offset of next buffer check
1553 
1554   // Code generation
1555   // The relocation writer's position is at least kGap bytes below the end of
1556   // the generated instructions. This is so that multi-instruction sequences do
1557   // not have to check for overflow. The same is true for writes of large
1558   // relocation info entries.
1559   static const int kGap = 32;
1560 
1561   // Constant pool generation
1562   // Pools are emitted in the instruction stream, preferably after unconditional
1563   // jumps or after returns from functions (in dead code locations).
1564   // If a long code sequence does not contain unconditional jumps, it is
1565   // necessary to emit the constant pool before the pool gets too far from the
1566   // location it is accessed from. In this case, we emit a jump over the emitted
1567   // constant pool.
1568   // Constants in the pool may be addresses of functions that gets relocated;
1569   // if so, a relocation info entry is associated to the constant pool entry.
1570 
1571   // Repeated checking whether the constant pool should be emitted is rather
1572   // expensive. By default we only check again once a number of instructions
1573   // has been generated. That also means that the sizing of the buffers is not
1574   // an exact science, and that we rely on some slop to not overrun buffers.
1575   static const int kCheckPoolIntervalInst = 32;
1576   static const int kCheckPoolInterval = kCheckPoolIntervalInst * kInstrSize;
1577 
1578 
1579   // Emission of the constant pool may be blocked in some code sequences.
1580   int const_pool_blocked_nesting_;  // Block emission if this is not zero.
1581   int no_const_pool_before_;  // Block emission before this pc offset.
1582 
1583   // Keep track of the first instruction requiring a constant pool entry
1584   // since the previous constant pool was emitted.
1585   int first_const_pool_32_use_;
1586   int first_const_pool_64_use_;
1587 
1588   // Relocation info generation
1589   // Each relocation is encoded as a variable size value
1590   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1591   RelocInfoWriter reloc_info_writer;
1592 
1593   // Relocation info records are also used during code generation as temporary
1594   // containers for constants and code target addresses until they are emitted
1595   // to the constant pool. These pending relocation info records are temporarily
1596   // stored in a separate buffer until a constant pool is emitted.
1597   // If every instruction in a long sequence is accessing the pool, we need one
1598   // pending relocation entry per instruction.
1599 
1600   // The buffers of pending relocation info.
1601   RelocInfo pending_32_bit_reloc_info_[kMaxNumPending32RelocInfo];
1602   RelocInfo pending_64_bit_reloc_info_[kMaxNumPending64RelocInfo];
1603   // Number of pending reloc info entries in the 32 bits buffer.
1604   int num_pending_32_bit_reloc_info_;
1605   // Number of pending reloc info entries in the 64 bits buffer.
1606   int num_pending_64_bit_reloc_info_;
1607 
1608   ConstantPoolBuilder constant_pool_builder_;
1609 
1610   // The bound position, before this we cannot do instruction elimination.
1611   int last_bound_pos_;
1612 
1613   // Indicates whether the constant pool can be accessed, which is only possible
1614   // if the pp register points to the current code object's constant pool.
1615   bool constant_pool_available_;
1616 
1617   // Code emission
1618   inline void CheckBuffer();
1619   void GrowBuffer();
1620   inline void emit(Instr x);
1621 
1622   // 32-bit immediate values
1623   void move_32_bit_immediate(Register rd,
1624                              const Operand& x,
1625                              Condition cond = al);
1626 
1627   // Instruction generation
1628   void addrmod1(Instr instr, Register rn, Register rd, const Operand& x);
1629   void addrmod2(Instr instr, Register rd, const MemOperand& x);
1630   void addrmod3(Instr instr, Register rd, const MemOperand& x);
1631   void addrmod4(Instr instr, Register rn, RegList rl);
1632   void addrmod5(Instr instr, CRegister crd, const MemOperand& x);
1633 
1634   // Labels
1635   void print(Label* L);
1636   void bind_to(Label* L, int pos);
1637   void next(Label* L);
1638 
1639   enum UseConstantPoolMode {
1640     USE_CONSTANT_POOL,
1641     DONT_USE_CONSTANT_POOL
1642   };
1643 
1644   // Record reloc info for current pc_
1645   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1646   void RecordRelocInfo(const RelocInfo& rinfo);
1647   ConstantPoolArray::LayoutSection ConstantPoolAddEntry(const RelocInfo& rinfo);
1648 
1649   friend class RelocInfo;
1650   friend class CodePatcher;
1651   friend class BlockConstPoolScope;
1652   friend class FrameAndConstantPoolScope;
1653   friend class ConstantPoolUnavailableScope;
1654 
1655   PositionsRecorder positions_recorder_;
1656   friend class PositionsRecorder;
1657   friend class EnsureSpace;
1658 };
1659 
1660 
1661 class EnsureSpace BASE_EMBEDDED {
1662  public:
EnsureSpace(Assembler * assembler)1663   explicit EnsureSpace(Assembler* assembler) {
1664     assembler->CheckBuffer();
1665   }
1666 };
1667 
1668 
1669 } }  // namespace v8::internal
1670 
1671 #endif  // V8_ARM_ASSEMBLER_ARM_H_
1672