1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/RecyclingAllocator.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include <deque>
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
37 
38 #define DEBUG_TYPE "early-cse"
39 
40 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
41 STATISTIC(NumCSE,      "Number of instructions CSE'd");
42 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
43 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
44 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
45 
46 //===----------------------------------------------------------------------===//
47 // SimpleValue
48 //===----------------------------------------------------------------------===//
49 
50 namespace {
51 /// \brief Struct representing the available values in the scoped hash table.
52 struct SimpleValue {
53   Instruction *Inst;
54 
SimpleValue__anoncdf6c96d0111::SimpleValue55   SimpleValue(Instruction *I) : Inst(I) {
56     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
57   }
58 
isSentinel__anoncdf6c96d0111::SimpleValue59   bool isSentinel() const {
60     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
61            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
62   }
63 
canHandle__anoncdf6c96d0111::SimpleValue64   static bool canHandle(Instruction *Inst) {
65     // This can only handle non-void readnone functions.
66     if (CallInst *CI = dyn_cast<CallInst>(Inst))
67       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
68     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
69            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
70            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
71            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
72            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
73   }
74 };
75 }
76 
77 namespace llvm {
78 template <> struct DenseMapInfo<SimpleValue> {
getEmptyKeyllvm::DenseMapInfo79   static inline SimpleValue getEmptyKey() {
80     return DenseMapInfo<Instruction *>::getEmptyKey();
81   }
getTombstoneKeyllvm::DenseMapInfo82   static inline SimpleValue getTombstoneKey() {
83     return DenseMapInfo<Instruction *>::getTombstoneKey();
84   }
85   static unsigned getHashValue(SimpleValue Val);
86   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
87 };
88 }
89 
getHashValue(SimpleValue Val)90 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
91   Instruction *Inst = Val.Inst;
92   // Hash in all of the operands as pointers.
93   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
94     Value *LHS = BinOp->getOperand(0);
95     Value *RHS = BinOp->getOperand(1);
96     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
97       std::swap(LHS, RHS);
98 
99     if (isa<OverflowingBinaryOperator>(BinOp)) {
100       // Hash the overflow behavior
101       unsigned Overflow =
102           BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
103           BinOp->hasNoUnsignedWrap() *
104               OverflowingBinaryOperator::NoUnsignedWrap;
105       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
106     }
107 
108     return hash_combine(BinOp->getOpcode(), LHS, RHS);
109   }
110 
111   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
112     Value *LHS = CI->getOperand(0);
113     Value *RHS = CI->getOperand(1);
114     CmpInst::Predicate Pred = CI->getPredicate();
115     if (Inst->getOperand(0) > Inst->getOperand(1)) {
116       std::swap(LHS, RHS);
117       Pred = CI->getSwappedPredicate();
118     }
119     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
120   }
121 
122   if (CastInst *CI = dyn_cast<CastInst>(Inst))
123     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
124 
125   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
126     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
127                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
128 
129   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
130     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
131                         IVI->getOperand(1),
132                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
133 
134   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
135           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
136           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
137           isa<ShuffleVectorInst>(Inst)) &&
138          "Invalid/unknown instruction");
139 
140   // Mix in the opcode.
141   return hash_combine(
142       Inst->getOpcode(),
143       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
144 }
145 
isEqual(SimpleValue LHS,SimpleValue RHS)146 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
147   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
148 
149   if (LHS.isSentinel() || RHS.isSentinel())
150     return LHSI == RHSI;
151 
152   if (LHSI->getOpcode() != RHSI->getOpcode())
153     return false;
154   if (LHSI->isIdenticalTo(RHSI))
155     return true;
156 
157   // If we're not strictly identical, we still might be a commutable instruction
158   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
159     if (!LHSBinOp->isCommutative())
160       return false;
161 
162     assert(isa<BinaryOperator>(RHSI) &&
163            "same opcode, but different instruction type?");
164     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
165 
166     // Check overflow attributes
167     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
168       assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
169              "same opcode, but different operator type?");
170       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
171           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
172         return false;
173     }
174 
175     // Commuted equality
176     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
177            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
178   }
179   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
180     assert(isa<CmpInst>(RHSI) &&
181            "same opcode, but different instruction type?");
182     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
183     // Commuted equality
184     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
185            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
186            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
187   }
188 
189   return false;
190 }
191 
192 //===----------------------------------------------------------------------===//
193 // CallValue
194 //===----------------------------------------------------------------------===//
195 
196 namespace {
197 /// \brief Struct representing the available call values in the scoped hash
198 /// table.
199 struct CallValue {
200   Instruction *Inst;
201 
CallValue__anoncdf6c96d0211::CallValue202   CallValue(Instruction *I) : Inst(I) {
203     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
204   }
205 
isSentinel__anoncdf6c96d0211::CallValue206   bool isSentinel() const {
207     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
208            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
209   }
210 
canHandle__anoncdf6c96d0211::CallValue211   static bool canHandle(Instruction *Inst) {
212     // Don't value number anything that returns void.
213     if (Inst->getType()->isVoidTy())
214       return false;
215 
216     CallInst *CI = dyn_cast<CallInst>(Inst);
217     if (!CI || !CI->onlyReadsMemory())
218       return false;
219     return true;
220   }
221 };
222 }
223 
224 namespace llvm {
225 template <> struct DenseMapInfo<CallValue> {
getEmptyKeyllvm::DenseMapInfo226   static inline CallValue getEmptyKey() {
227     return DenseMapInfo<Instruction *>::getEmptyKey();
228   }
getTombstoneKeyllvm::DenseMapInfo229   static inline CallValue getTombstoneKey() {
230     return DenseMapInfo<Instruction *>::getTombstoneKey();
231   }
232   static unsigned getHashValue(CallValue Val);
233   static bool isEqual(CallValue LHS, CallValue RHS);
234 };
235 }
236 
getHashValue(CallValue Val)237 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
238   Instruction *Inst = Val.Inst;
239   // Hash all of the operands as pointers and mix in the opcode.
240   return hash_combine(
241       Inst->getOpcode(),
242       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
243 }
244 
isEqual(CallValue LHS,CallValue RHS)245 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
246   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
247   if (LHS.isSentinel() || RHS.isSentinel())
248     return LHSI == RHSI;
249   return LHSI->isIdenticalTo(RHSI);
250 }
251 
252 //===----------------------------------------------------------------------===//
253 // EarlyCSE implementation
254 //===----------------------------------------------------------------------===//
255 
256 namespace {
257 /// \brief A simple and fast domtree-based CSE pass.
258 ///
259 /// This pass does a simple depth-first walk over the dominator tree,
260 /// eliminating trivially redundant instructions and using instsimplify to
261 /// canonicalize things as it goes. It is intended to be fast and catch obvious
262 /// cases so that instcombine and other passes are more effective. It is
263 /// expected that a later pass of GVN will catch the interesting/hard cases.
264 class EarlyCSE {
265 public:
266   Function &F;
267   const TargetLibraryInfo &TLI;
268   const TargetTransformInfo &TTI;
269   DominatorTree &DT;
270   AssumptionCache &AC;
271   typedef RecyclingAllocator<
272       BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
273   typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
274                           AllocatorTy> ScopedHTType;
275 
276   /// \brief A scoped hash table of the current values of all of our simple
277   /// scalar expressions.
278   ///
279   /// As we walk down the domtree, we look to see if instructions are in this:
280   /// if so, we replace them with what we find, otherwise we insert them so
281   /// that dominated values can succeed in their lookup.
282   ScopedHTType AvailableValues;
283 
284   /// \brief A scoped hash table of the current values of loads.
285   ///
286   /// This allows us to get efficient access to dominating loads when we have
287   /// a fully redundant load.  In addition to the most recent load, we keep
288   /// track of a generation count of the read, which is compared against the
289   /// current generation count.  The current generation count is incremented
290   /// after every possibly writing memory operation, which ensures that we only
291   /// CSE loads with other loads that have no intervening store.
292   typedef RecyclingAllocator<
293       BumpPtrAllocator,
294       ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>>
295       LoadMapAllocator;
296   typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>,
297                           DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType;
298   LoadHTType AvailableLoads;
299 
300   /// \brief A scoped hash table of the current values of read-only call
301   /// values.
302   ///
303   /// It uses the same generation count as loads.
304   typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
305   CallHTType AvailableCalls;
306 
307   /// \brief This is the current generation of the memory value.
308   unsigned CurrentGeneration;
309 
310   /// \brief Set up the EarlyCSE runner for a particular function.
EarlyCSE(Function & F,const TargetLibraryInfo & TLI,const TargetTransformInfo & TTI,DominatorTree & DT,AssumptionCache & AC)311   EarlyCSE(Function &F, const TargetLibraryInfo &TLI,
312            const TargetTransformInfo &TTI, DominatorTree &DT,
313            AssumptionCache &AC)
314       : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
315 
316   bool run();
317 
318 private:
319   // Almost a POD, but needs to call the constructors for the scoped hash
320   // tables so that a new scope gets pushed on. These are RAII so that the
321   // scope gets popped when the NodeScope is destroyed.
322   class NodeScope {
323   public:
NodeScope(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,CallHTType & AvailableCalls)324     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
325               CallHTType &AvailableCalls)
326         : Scope(AvailableValues), LoadScope(AvailableLoads),
327           CallScope(AvailableCalls) {}
328 
329   private:
330     NodeScope(const NodeScope &) = delete;
331     void operator=(const NodeScope &) = delete;
332 
333     ScopedHTType::ScopeTy Scope;
334     LoadHTType::ScopeTy LoadScope;
335     CallHTType::ScopeTy CallScope;
336   };
337 
338   // Contains all the needed information to create a stack for doing a depth
339   // first tranversal of the tree. This includes scopes for values, loads, and
340   // calls as well as the generation. There is a child iterator so that the
341   // children do not need to be store spearately.
342   class StackNode {
343   public:
StackNode(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,CallHTType & AvailableCalls,unsigned cg,DomTreeNode * n,DomTreeNode::iterator child,DomTreeNode::iterator end)344     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
345               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
346               DomTreeNode::iterator child, DomTreeNode::iterator end)
347         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
348           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
349           Processed(false) {}
350 
351     // Accessors.
currentGeneration()352     unsigned currentGeneration() { return CurrentGeneration; }
childGeneration()353     unsigned childGeneration() { return ChildGeneration; }
childGeneration(unsigned generation)354     void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()355     DomTreeNode *node() { return Node; }
childIter()356     DomTreeNode::iterator childIter() { return ChildIter; }
nextChild()357     DomTreeNode *nextChild() {
358       DomTreeNode *child = *ChildIter;
359       ++ChildIter;
360       return child;
361     }
end()362     DomTreeNode::iterator end() { return EndIter; }
isProcessed()363     bool isProcessed() { return Processed; }
process()364     void process() { Processed = true; }
365 
366   private:
367     StackNode(const StackNode &) = delete;
368     void operator=(const StackNode &) = delete;
369 
370     // Members.
371     unsigned CurrentGeneration;
372     unsigned ChildGeneration;
373     DomTreeNode *Node;
374     DomTreeNode::iterator ChildIter;
375     DomTreeNode::iterator EndIter;
376     NodeScope Scopes;
377     bool Processed;
378   };
379 
380   /// \brief Wrapper class to handle memory instructions, including loads,
381   /// stores and intrinsic loads and stores defined by the target.
382   class ParseMemoryInst {
383   public:
ParseMemoryInst(Instruction * Inst,const TargetTransformInfo & TTI)384     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
385         : Load(false), Store(false), Vol(false), MayReadFromMemory(false),
386           MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) {
387       MayReadFromMemory = Inst->mayReadFromMemory();
388       MayWriteToMemory = Inst->mayWriteToMemory();
389       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
390         MemIntrinsicInfo Info;
391         if (!TTI.getTgtMemIntrinsic(II, Info))
392           return;
393         if (Info.NumMemRefs == 1) {
394           Store = Info.WriteMem;
395           Load = Info.ReadMem;
396           MatchingId = Info.MatchingId;
397           MayReadFromMemory = Info.ReadMem;
398           MayWriteToMemory = Info.WriteMem;
399           Vol = Info.Vol;
400           Ptr = Info.PtrVal;
401         }
402       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
403         Load = true;
404         Vol = !LI->isSimple();
405         Ptr = LI->getPointerOperand();
406       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
407         Store = true;
408         Vol = !SI->isSimple();
409         Ptr = SI->getPointerOperand();
410       }
411     }
isLoad()412     bool isLoad() { return Load; }
isStore()413     bool isStore() { return Store; }
isVolatile()414     bool isVolatile() { return Vol; }
isMatchingMemLoc(const ParseMemoryInst & Inst)415     bool isMatchingMemLoc(const ParseMemoryInst &Inst) {
416       return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId;
417     }
isValid()418     bool isValid() { return Ptr != nullptr; }
getMatchingId()419     int getMatchingId() { return MatchingId; }
getPtr()420     Value *getPtr() { return Ptr; }
mayReadFromMemory()421     bool mayReadFromMemory() { return MayReadFromMemory; }
mayWriteToMemory()422     bool mayWriteToMemory() { return MayWriteToMemory; }
423 
424   private:
425     bool Load;
426     bool Store;
427     bool Vol;
428     bool MayReadFromMemory;
429     bool MayWriteToMemory;
430     // For regular (non-intrinsic) loads/stores, this is set to -1. For
431     // intrinsic loads/stores, the id is retrieved from the corresponding
432     // field in the MemIntrinsicInfo structure.  That field contains
433     // non-negative values only.
434     int MatchingId;
435     Value *Ptr;
436   };
437 
438   bool processNode(DomTreeNode *Node);
439 
getOrCreateResult(Value * Inst,Type * ExpectedType) const440   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
441     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
442       return LI;
443     else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
444       return SI->getValueOperand();
445     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
446     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
447                                                  ExpectedType);
448   }
449 };
450 }
451 
processNode(DomTreeNode * Node)452 bool EarlyCSE::processNode(DomTreeNode *Node) {
453   BasicBlock *BB = Node->getBlock();
454 
455   // If this block has a single predecessor, then the predecessor is the parent
456   // of the domtree node and all of the live out memory values are still current
457   // in this block.  If this block has multiple predecessors, then they could
458   // have invalidated the live-out memory values of our parent value.  For now,
459   // just be conservative and invalidate memory if this block has multiple
460   // predecessors.
461   if (!BB->getSinglePredecessor())
462     ++CurrentGeneration;
463 
464   /// LastStore - Keep track of the last non-volatile store that we saw... for
465   /// as long as there in no instruction that reads memory.  If we see a store
466   /// to the same location, we delete the dead store.  This zaps trivial dead
467   /// stores which can occur in bitfield code among other things.
468   Instruction *LastStore = nullptr;
469 
470   bool Changed = false;
471   const DataLayout &DL = BB->getModule()->getDataLayout();
472 
473   // See if any instructions in the block can be eliminated.  If so, do it.  If
474   // not, add them to AvailableValues.
475   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
476     Instruction *Inst = I++;
477 
478     // Dead instructions should just be removed.
479     if (isInstructionTriviallyDead(Inst, &TLI)) {
480       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
481       Inst->eraseFromParent();
482       Changed = true;
483       ++NumSimplify;
484       continue;
485     }
486 
487     // Skip assume intrinsics, they don't really have side effects (although
488     // they're marked as such to ensure preservation of control dependencies),
489     // and this pass will not disturb any of the assumption's control
490     // dependencies.
491     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
492       DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
493       continue;
494     }
495 
496     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
497     // its simpler value.
498     if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
499       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
500       Inst->replaceAllUsesWith(V);
501       Inst->eraseFromParent();
502       Changed = true;
503       ++NumSimplify;
504       continue;
505     }
506 
507     // If this is a simple instruction that we can value number, process it.
508     if (SimpleValue::canHandle(Inst)) {
509       // See if the instruction has an available value.  If so, use it.
510       if (Value *V = AvailableValues.lookup(Inst)) {
511         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
512         Inst->replaceAllUsesWith(V);
513         Inst->eraseFromParent();
514         Changed = true;
515         ++NumCSE;
516         continue;
517       }
518 
519       // Otherwise, just remember that this value is available.
520       AvailableValues.insert(Inst, Inst);
521       continue;
522     }
523 
524     ParseMemoryInst MemInst(Inst, TTI);
525     // If this is a non-volatile load, process it.
526     if (MemInst.isValid() && MemInst.isLoad()) {
527       // Ignore volatile loads.
528       if (MemInst.isVolatile()) {
529         LastStore = nullptr;
530         // Don't CSE across synchronization boundaries.
531         if (Inst->mayWriteToMemory())
532           ++CurrentGeneration;
533         continue;
534       }
535 
536       // If we have an available version of this load, and if it is the right
537       // generation, replace this instruction.
538       std::pair<Value *, unsigned> InVal =
539           AvailableLoads.lookup(MemInst.getPtr());
540       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
541         Value *Op = getOrCreateResult(InVal.first, Inst->getType());
542         if (Op != nullptr) {
543           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
544                        << "  to: " << *InVal.first << '\n');
545           if (!Inst->use_empty())
546             Inst->replaceAllUsesWith(Op);
547           Inst->eraseFromParent();
548           Changed = true;
549           ++NumCSELoad;
550           continue;
551         }
552       }
553 
554       // Otherwise, remember that we have this instruction.
555       AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
556                                                   Inst, CurrentGeneration));
557       LastStore = nullptr;
558       continue;
559     }
560 
561     // If this instruction may read from memory, forget LastStore.
562     // Load/store intrinsics will indicate both a read and a write to
563     // memory.  The target may override this (e.g. so that a store intrinsic
564     // does not read  from memory, and thus will be treated the same as a
565     // regular store for commoning purposes).
566     if (Inst->mayReadFromMemory() &&
567         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
568       LastStore = nullptr;
569 
570     // If this is a read-only call, process it.
571     if (CallValue::canHandle(Inst)) {
572       // If we have an available version of this call, and if it is the right
573       // generation, replace this instruction.
574       std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
575       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
576         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
577                      << "  to: " << *InVal.first << '\n');
578         if (!Inst->use_empty())
579           Inst->replaceAllUsesWith(InVal.first);
580         Inst->eraseFromParent();
581         Changed = true;
582         ++NumCSECall;
583         continue;
584       }
585 
586       // Otherwise, remember that we have this instruction.
587       AvailableCalls.insert(
588           Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
589       continue;
590     }
591 
592     // Okay, this isn't something we can CSE at all.  Check to see if it is
593     // something that could modify memory.  If so, our available memory values
594     // cannot be used so bump the generation count.
595     if (Inst->mayWriteToMemory()) {
596       ++CurrentGeneration;
597 
598       if (MemInst.isValid() && MemInst.isStore()) {
599         // We do a trivial form of DSE if there are two stores to the same
600         // location with no intervening loads.  Delete the earlier store.
601         if (LastStore) {
602           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
603           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
604             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
605                          << "  due to: " << *Inst << '\n');
606             LastStore->eraseFromParent();
607             Changed = true;
608             ++NumDSE;
609             LastStore = nullptr;
610           }
611           // fallthrough - we can exploit information about this store
612         }
613 
614         // Okay, we just invalidated anything we knew about loaded values.  Try
615         // to salvage *something* by remembering that the stored value is a live
616         // version of the pointer.  It is safe to forward from volatile stores
617         // to non-volatile loads, so we don't have to check for volatility of
618         // the store.
619         AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>(
620                                                     Inst, CurrentGeneration));
621 
622         // Remember that this was the last store we saw for DSE.
623         if (!MemInst.isVolatile())
624           LastStore = Inst;
625       }
626     }
627   }
628 
629   return Changed;
630 }
631 
run()632 bool EarlyCSE::run() {
633   // Note, deque is being used here because there is significant performance
634   // gains over vector when the container becomes very large due to the
635   // specific access patterns. For more information see the mailing list
636   // discussion on this:
637   // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
638   std::deque<StackNode *> nodesToProcess;
639 
640   bool Changed = false;
641 
642   // Process the root node.
643   nodesToProcess.push_back(new StackNode(
644       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
645       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
646 
647   // Save the current generation.
648   unsigned LiveOutGeneration = CurrentGeneration;
649 
650   // Process the stack.
651   while (!nodesToProcess.empty()) {
652     // Grab the first item off the stack. Set the current generation, remove
653     // the node from the stack, and process it.
654     StackNode *NodeToProcess = nodesToProcess.back();
655 
656     // Initialize class members.
657     CurrentGeneration = NodeToProcess->currentGeneration();
658 
659     // Check if the node needs to be processed.
660     if (!NodeToProcess->isProcessed()) {
661       // Process the node.
662       Changed |= processNode(NodeToProcess->node());
663       NodeToProcess->childGeneration(CurrentGeneration);
664       NodeToProcess->process();
665     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
666       // Push the next child onto the stack.
667       DomTreeNode *child = NodeToProcess->nextChild();
668       nodesToProcess.push_back(
669           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
670                         NodeToProcess->childGeneration(), child, child->begin(),
671                         child->end()));
672     } else {
673       // It has been processed, and there are no more children to process,
674       // so delete it and pop it off the stack.
675       delete NodeToProcess;
676       nodesToProcess.pop_back();
677     }
678   } // while (!nodes...)
679 
680   // Reset the current generation.
681   CurrentGeneration = LiveOutGeneration;
682 
683   return Changed;
684 }
685 
run(Function & F,AnalysisManager<Function> * AM)686 PreservedAnalyses EarlyCSEPass::run(Function &F,
687                                     AnalysisManager<Function> *AM) {
688   auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
689   auto &TTI = AM->getResult<TargetIRAnalysis>(F);
690   auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
691   auto &AC = AM->getResult<AssumptionAnalysis>(F);
692 
693   EarlyCSE CSE(F, TLI, TTI, DT, AC);
694 
695   if (!CSE.run())
696     return PreservedAnalyses::all();
697 
698   // CSE preserves the dominator tree because it doesn't mutate the CFG.
699   // FIXME: Bundle this with other CFG-preservation.
700   PreservedAnalyses PA;
701   PA.preserve<DominatorTreeAnalysis>();
702   return PA;
703 }
704 
705 namespace {
706 /// \brief A simple and fast domtree-based CSE pass.
707 ///
708 /// This pass does a simple depth-first walk over the dominator tree,
709 /// eliminating trivially redundant instructions and using instsimplify to
710 /// canonicalize things as it goes. It is intended to be fast and catch obvious
711 /// cases so that instcombine and other passes are more effective. It is
712 /// expected that a later pass of GVN will catch the interesting/hard cases.
713 class EarlyCSELegacyPass : public FunctionPass {
714 public:
715   static char ID;
716 
EarlyCSELegacyPass()717   EarlyCSELegacyPass() : FunctionPass(ID) {
718     initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
719   }
720 
runOnFunction(Function & F)721   bool runOnFunction(Function &F) override {
722     if (skipOptnoneFunction(F))
723       return false;
724 
725     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
726     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
727     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
728     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
729 
730     EarlyCSE CSE(F, TLI, TTI, DT, AC);
731 
732     return CSE.run();
733   }
734 
getAnalysisUsage(AnalysisUsage & AU) const735   void getAnalysisUsage(AnalysisUsage &AU) const override {
736     AU.addRequired<AssumptionCacheTracker>();
737     AU.addRequired<DominatorTreeWrapperPass>();
738     AU.addRequired<TargetLibraryInfoWrapperPass>();
739     AU.addRequired<TargetTransformInfoWrapperPass>();
740     AU.setPreservesCFG();
741   }
742 };
743 }
744 
745 char EarlyCSELegacyPass::ID = 0;
746 
createEarlyCSEPass()747 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
748 
749 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
750                       false)
751 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
752 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
753 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
754 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
755 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
756