1 // Replace mux instructions with the corresponding legal instructions.
2 // It is meant to work post-SSA, but still on virtual registers. It was
3 // originally placed between register coalescing and machine instruction
4 // scheduler.
5 // In this place in the optimization sequence, live interval analysis had
6 // been performed, and the live intervals should be preserved. A large part
7 // of the code deals with preserving the liveness information.
8 //
9 // Liveness tracking aside, the main functionality of this pass is divided
10 // into two steps. The first step is to replace an instruction
11 // vreg0 = C2_mux vreg0, vreg1, vreg2
12 // with a pair of conditional transfers
13 // vreg0 = A2_tfrt vreg0, vreg1
14 // vreg0 = A2_tfrf vreg0, vreg2
15 // It is the intention that the execution of this pass could be terminated
16 // after this step, and the code generated would be functionally correct.
17 //
18 // If the uses of the source values vreg1 and vreg2 are kills, and their
19 // definitions are predicable, then in the second step, the conditional
20 // transfers will then be rewritten as predicated instructions. E.g.
21 // vreg0 = A2_or vreg1, vreg2
22 // vreg3 = A2_tfrt vreg99, vreg0<kill>
23 // will be rewritten as
24 // vreg3 = A2_port vreg99, vreg1, vreg2
25 //
26 // This replacement has two variants: "up" and "down". Consider this case:
27 // vreg0 = A2_or vreg1, vreg2
28 // ... [intervening instructions] ...
29 // vreg3 = A2_tfrt vreg99, vreg0<kill>
30 // variant "up":
31 // vreg3 = A2_port vreg99, vreg1, vreg2
32 // ... [intervening instructions, vreg0->vreg3] ...
33 // [deleted]
34 // variant "down":
35 // [deleted]
36 // ... [intervening instructions] ...
37 // vreg3 = A2_port vreg99, vreg1, vreg2
38 //
39 // Both, one or none of these variants may be valid, and checks are made
40 // to rule out inapplicable variants.
41 //
42 // As an additional optimization, before either of the two steps above is
43 // executed, the pass attempts to coalesce the target register with one of
44 // the source registers, e.g. given an instruction
45 // vreg3 = C2_mux vreg0, vreg1, vreg2
46 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
47 // the instruction would then be (for example)
48 // vreg3 = C2_mux vreg0, vreg3, vreg2
49 // and, under certain circumstances, this could result in only one predicated
50 // instruction:
51 // vreg3 = A2_tfrf vreg0, vreg2
52 //
53
54 #define DEBUG_TYPE "expand-condsets"
55 #include "HexagonTargetMachine.h"
56
57 #include "llvm/CodeGen/Passes.h"
58 #include "llvm/CodeGen/LiveInterval.h"
59 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
60 #include "llvm/CodeGen/MachineFunction.h"
61 #include "llvm/CodeGen/MachineInstrBuilder.h"
62 #include "llvm/CodeGen/MachineRegisterInfo.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetRegisterInfo.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69
70 using namespace llvm;
71
72 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
73 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
74 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
75 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
76
77 namespace llvm {
78 void initializeHexagonExpandCondsetsPass(PassRegistry&);
79 FunctionPass *createHexagonExpandCondsets();
80 }
81
82 namespace {
83 class HexagonExpandCondsets : public MachineFunctionPass {
84 public:
85 static char ID;
HexagonExpandCondsets()86 HexagonExpandCondsets() :
87 MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
88 LIS(0), CoaLimitActive(false),
89 TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
90 if (OptCoaLimit.getPosition())
91 CoaLimitActive = true, CoaLimit = OptCoaLimit;
92 if (OptTfrLimit.getPosition())
93 TfrLimitActive = true, TfrLimit = OptTfrLimit;
94 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
95 }
96
getPassName() const97 virtual const char *getPassName() const {
98 return "Hexagon Expand Condsets";
99 }
getAnalysisUsage(AnalysisUsage & AU) const100 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LiveIntervals>();
102 AU.addPreserved<LiveIntervals>();
103 AU.addPreserved<SlotIndexes>();
104 MachineFunctionPass::getAnalysisUsage(AU);
105 }
106 virtual bool runOnMachineFunction(MachineFunction &MF);
107
108 private:
109 const HexagonInstrInfo *HII;
110 const TargetRegisterInfo *TRI;
111 MachineRegisterInfo *MRI;
112 LiveIntervals *LIS;
113
114 bool CoaLimitActive, TfrLimitActive;
115 unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
116
117 struct RegisterRef {
RegisterRef__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef118 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
119 Sub(Op.getSubReg()) {}
RegisterRef__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef120 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
operator ==__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef121 bool operator== (RegisterRef RR) const {
122 return Reg == RR.Reg && Sub == RR.Sub;
123 }
operator !=__anonceba9f4e0111::HexagonExpandCondsets::RegisterRef124 bool operator!= (RegisterRef RR) const { return !operator==(RR); }
125 unsigned Reg, Sub;
126 };
127
128 typedef DenseMap<unsigned,unsigned> ReferenceMap;
129 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
130 enum { Exec_Then = 0x10, Exec_Else = 0x20 };
131 unsigned getMaskForSub(unsigned Sub);
132 bool isCondset(const MachineInstr *MI);
133
134 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
135 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
136
137 LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
138 LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
139 void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
140 void makeUndead(unsigned Reg, SlotIndex S);
141 void shrinkToUses(unsigned Reg, LiveInterval &LI);
142 void updateKillFlags(unsigned Reg, LiveInterval &LI);
143 void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
144 LiveInterval &LI);
145 void addInstrToLiveness(MachineInstr *MI);
146 void removeInstrFromLiveness(MachineInstr *MI);
147
148 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
149 MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
150 unsigned DstSR, const MachineOperand &PredOp, bool Cond);
151 bool split(MachineInstr *MI);
152 bool splitInBlock(MachineBasicBlock &B);
153
154 bool isPredicable(MachineInstr *MI);
155 MachineInstr *getReachingDefForPred(RegisterRef RD,
156 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
157 bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
158 bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
159 void predicateAt(RegisterRef RD, MachineInstr *MI,
160 MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
161 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
162 bool Cond, MachineBasicBlock::iterator First,
163 MachineBasicBlock::iterator Last);
164 bool predicate(MachineInstr *TfrI, bool Cond);
165 bool predicateInBlock(MachineBasicBlock &B);
166
167 void postprocessUndefImplicitUses(MachineBasicBlock &B);
168 void removeImplicitUses(MachineInstr *MI);
169 void removeImplicitUses(MachineBasicBlock &B);
170
171 bool isIntReg(RegisterRef RR, unsigned &BW);
172 bool isIntraBlocks(LiveInterval &LI);
173 bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
174 bool coalesceSegments(MachineFunction &MF);
175 };
176 }
177
178 char HexagonExpandCondsets::ID = 0;
179
180
getMaskForSub(unsigned Sub)181 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
182 switch (Sub) {
183 case Hexagon::subreg_loreg:
184 return Sub_Low;
185 case Hexagon::subreg_hireg:
186 return Sub_High;
187 case Hexagon::NoSubRegister:
188 return Sub_None;
189 }
190 llvm_unreachable("Invalid subregister");
191 }
192
193
isCondset(const MachineInstr * MI)194 bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
195 unsigned Opc = MI->getOpcode();
196 switch (Opc) {
197 case Hexagon::C2_mux:
198 case Hexagon::C2_muxii:
199 case Hexagon::C2_muxir:
200 case Hexagon::C2_muxri:
201 case Hexagon::MUX64_rr:
202 return true;
203 break;
204 }
205 return false;
206 }
207
208
addRefToMap(RegisterRef RR,ReferenceMap & Map,unsigned Exec)209 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
210 unsigned Exec) {
211 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
212 ReferenceMap::iterator F = Map.find(RR.Reg);
213 if (F == Map.end())
214 Map.insert(std::make_pair(RR.Reg, Mask));
215 else
216 F->second |= Mask;
217 }
218
219
isRefInMap(RegisterRef RR,ReferenceMap & Map,unsigned Exec)220 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
221 unsigned Exec) {
222 ReferenceMap::iterator F = Map.find(RR.Reg);
223 if (F == Map.end())
224 return false;
225 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
226 if (Mask & F->second)
227 return true;
228 return false;
229 }
230
231
nextSegment(LiveInterval & LI,SlotIndex S)232 LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
233 SlotIndex S) {
234 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
235 if (I->start >= S)
236 return I;
237 }
238 return LI.end();
239 }
240
241
prevSegment(LiveInterval & LI,SlotIndex S)242 LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
243 SlotIndex S) {
244 LiveInterval::iterator P = LI.end();
245 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
246 if (I->end > S)
247 return P;
248 P = I;
249 }
250 return P;
251 }
252
253
254 /// Find the implicit use of register Reg in slot index S, and make sure
255 /// that the "defined" flag is set to SetDef. While the mux expansion is
256 /// going on, predicated instructions will have implicit uses of the
257 /// registers that are being defined. This is to keep any preceding
258 /// definitions live. If there is no preceding definition, the implicit
259 /// use will be marked as "undef", otherwise it will be "defined". This
260 /// function is used to update the flag.
makeDefined(unsigned Reg,SlotIndex S,bool SetDef)261 void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
262 bool SetDef) {
263 if (!S.isRegister())
264 return;
265 MachineInstr *MI = LIS->getInstructionFromIndex(S);
266 assert(MI && "Expecting instruction");
267 for (auto &Op : MI->operands()) {
268 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
269 continue;
270 bool IsDef = !Op.isUndef();
271 if (Op.isImplicit() && IsDef != SetDef)
272 Op.setIsUndef(!SetDef);
273 }
274 }
275
276
makeUndead(unsigned Reg,SlotIndex S)277 void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
278 // If S is a block boundary, then there can still be a dead def reaching
279 // this point. Instead of traversing the CFG, queue start points of all
280 // live segments that begin with a register, and end at a block boundary.
281 // This may "resurrect" some truly dead definitions, but doing so is
282 // harmless.
283 SmallVector<MachineInstr*,8> Defs;
284 if (S.isBlock()) {
285 LiveInterval &LI = LIS->getInterval(Reg);
286 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
287 if (!I->start.isRegister() || !I->end.isBlock())
288 continue;
289 MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
290 Defs.push_back(MI);
291 }
292 } else if (S.isRegister()) {
293 MachineInstr *MI = LIS->getInstructionFromIndex(S);
294 Defs.push_back(MI);
295 }
296
297 for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
298 MachineInstr *MI = Defs[i];
299 for (auto &Op : MI->operands()) {
300 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
301 continue;
302 Op.setIsDead(false);
303 }
304 }
305 }
306
307
308 /// Shrink the segments in the live interval for a given register to the last
309 /// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
310 /// function will not mark any definitions of Reg as dead. The reason for this
311 /// is that this function is used while a MUX instruction is being expanded,
312 /// or while a conditional copy is undergoing predication. During these
313 /// processes, there may be defs present in the instruction sequence that have
314 /// not yet been removed, or there may be missing uses that have not yet been
315 /// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
316 /// but since it does not extend any intervals that are too short, we need to
317 /// pre-emptively extend them here in anticipation of further changes.
shrinkToUses(unsigned Reg,LiveInterval & LI)318 void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
319 SmallVector<MachineInstr*,4> Deads;
320 LIS->shrinkToUses(&LI, &Deads);
321 // Need to undo the deadification made by "shrinkToUses". It's easier to
322 // do it here, since we have a list of all instructions that were just
323 // marked as dead.
324 for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
325 MachineInstr *MI = Deads[i];
326 // Clear the "dead" flag.
327 for (auto &Op : MI->operands()) {
328 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
329 continue;
330 Op.setIsDead(false);
331 }
332 // Extend the live segment to the beginning of the next one.
333 LiveInterval::iterator End = LI.end();
334 SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
335 LiveInterval::iterator T = LI.FindSegmentContaining(S);
336 assert(T != End);
337 LiveInterval::iterator N = std::next(T);
338 if (N != End)
339 T->end = N->start;
340 else
341 T->end = LIS->getMBBEndIdx(MI->getParent());
342 }
343 updateKillFlags(Reg, LI);
344 }
345
346
347 /// Given an updated live interval LI for register Reg, update the kill flags
348 /// in instructions using Reg to reflect the liveness changes.
updateKillFlags(unsigned Reg,LiveInterval & LI)349 void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
350 MRI->clearKillFlags(Reg);
351 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
352 SlotIndex EX = I->end;
353 if (!EX.isRegister())
354 continue;
355 MachineInstr *MI = LIS->getInstructionFromIndex(EX);
356 for (auto &Op : MI->operands()) {
357 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
358 continue;
359 // Only set the kill flag on the first encountered use of Reg in this
360 // instruction.
361 Op.setIsKill(true);
362 break;
363 }
364 }
365 }
366
367
368 /// When adding a new instruction to liveness, the newly added definition
369 /// will start a new live segment. This may happen at a position that falls
370 /// within an existing live segment. In such case that live segment needs to
371 /// be truncated to make room for the new segment. Ultimately, the truncation
372 /// will occur at the last use, but for now the segment can be terminated
373 /// right at the place where the new segment will start. The segments will be
374 /// shrunk-to-uses later.
terminateSegment(LiveInterval::iterator LT,SlotIndex S,LiveInterval & LI)375 void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
376 SlotIndex S, LiveInterval &LI) {
377 // Terminate the live segment pointed to by LT within a live interval LI.
378 if (LT == LI.end())
379 return;
380
381 VNInfo *OldVN = LT->valno;
382 SlotIndex EX = LT->end;
383 LT->end = S;
384 // If LT does not end at a block boundary, the termination is done.
385 if (!EX.isBlock())
386 return;
387
388 // If LT ended at a block boundary, it's possible that its value number
389 // is picked up at the beginning other blocks. Create a new value number
390 // and change such blocks to use it instead.
391 VNInfo *NewVN = 0;
392 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
393 if (!I->start.isBlock() || I->valno != OldVN)
394 continue;
395 // Generate on-demand a new value number that is defined by the
396 // block beginning (i.e. -phi).
397 if (!NewVN)
398 NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
399 I->valno = NewVN;
400 }
401 }
402
403
404 /// Add the specified instruction to live intervals. This function is used
405 /// to update the live intervals while the program code is being changed.
406 /// Neither the expansion of a MUX, nor the predication are atomic, and this
407 /// function is used to update the live intervals while these transformations
408 /// are being done.
addInstrToLiveness(MachineInstr * MI)409 void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
410 SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
411 : LIS->getInstructionIndex(MI);
412 DEBUG(dbgs() << "adding liveness info for instr\n " << MX << " " << *MI);
413
414 MX = MX.getRegSlot();
415 bool Predicated = HII->isPredicated(MI);
416 MachineBasicBlock *MB = MI->getParent();
417
418 // Strip all implicit uses from predicated instructions. They will be
419 // added again, according to the updated information.
420 if (Predicated)
421 removeImplicitUses(MI);
422
423 // For each def in MI we need to insert a new live segment starting at MX
424 // into the interval. If there already exists a live segment in the interval
425 // that contains MX, we need to terminate it at MX.
426 SmallVector<RegisterRef,2> Defs;
427 for (auto &Op : MI->operands())
428 if (Op.isReg() && Op.isDef())
429 Defs.push_back(RegisterRef(Op));
430
431 for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
432 unsigned DefR = Defs[i].Reg;
433 LiveInterval &LID = LIS->getInterval(DefR);
434 DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
435 << " with interval\n " << LID << "\n");
436 // If MX falls inside of an existing live segment, terminate it.
437 LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
438 if (LT != LID.end())
439 terminateSegment(LT, MX, LID);
440 DEBUG(dbgs() << "after terminating segment\n " << LID << "\n");
441
442 // Create a new segment starting from MX.
443 LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
444 SlotIndex EX;
445 VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
446 if (N == LID.end()) {
447 // There is no live segment after MX. End this segment at the end of
448 // the block.
449 EX = LIS->getMBBEndIdx(MB);
450 } else {
451 // If the next segment starts at the block boundary, end the new segment
452 // at the boundary of the preceding block (i.e. the previous index).
453 // Otherwise, end the segment at the beginning of the next segment. In
454 // either case it will be "shrunk-to-uses" later.
455 EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
456 }
457 if (Predicated) {
458 // Predicated instruction will have an implicit use of the defined
459 // register. This is necessary so that this definition will not make
460 // any previous definitions dead. If there are no previous live
461 // segments, still add the implicit use, but make it "undef".
462 // Because of the implicit use, the preceding definition is not
463 // dead. Mark is as such (if necessary).
464 MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
465 ImpUse.setSubReg(Defs[i].Sub);
466 bool Undef = false;
467 if (P == LID.end())
468 Undef = true;
469 else {
470 // If the previous segment extends to the end of the previous block,
471 // the end index may actually be the beginning of this block. If
472 // the previous segment ends at a block boundary, move it back by one,
473 // to get the proper block for it.
474 SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
475 MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
476 if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
477 Undef = true;
478 }
479 if (!Undef) {
480 makeUndead(DefR, P->valno->def);
481 // We are adding a live use, so extend the previous segment to
482 // include it.
483 P->end = MX;
484 } else {
485 ImpUse.setIsUndef(true);
486 }
487
488 if (!MI->readsRegister(DefR))
489 MI->addOperand(ImpUse);
490 if (N != LID.end())
491 makeDefined(DefR, N->start, true);
492 }
493 LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
494 LID.addSegment(NR);
495 DEBUG(dbgs() << "added a new segment " << NR << "\n " << LID << "\n");
496 shrinkToUses(DefR, LID);
497 DEBUG(dbgs() << "updated imp-uses: " << *MI);
498 LID.verify();
499 }
500
501 // For each use in MI:
502 // - If there is no live segment that contains MX for the used register,
503 // extend the previous one. Ignore implicit uses.
504 for (auto &Op : MI->operands()) {
505 if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
506 continue;
507 unsigned UseR = Op.getReg();
508 LiveInterval &LIU = LIS->getInterval(UseR);
509 // Find the last segment P that starts before MX.
510 LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
511 if (P == LIU.end())
512 P = prevSegment(LIU, MX);
513
514 assert(P != LIU.end() && "MI uses undefined register?");
515 SlotIndex EX = P->end;
516 // If P contains MX, there is not much to do.
517 if (EX > MX) {
518 Op.setIsKill(false);
519 continue;
520 }
521 // Otherwise, extend P to "next(MX)".
522 P->end = MX.getNextIndex();
523 Op.setIsKill(true);
524 // Get the old "kill" instruction, and remove the kill flag.
525 if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
526 KI->clearRegisterKills(UseR, nullptr);
527 shrinkToUses(UseR, LIU);
528 LIU.verify();
529 }
530 }
531
532
533 /// Update the live interval information to reflect the removal of the given
534 /// instruction from the program. As with "addInstrToLiveness", this function
535 /// is called while the program code is being changed.
removeInstrFromLiveness(MachineInstr * MI)536 void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
537 SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
538 DEBUG(dbgs() << "removing instr\n " << MX << " " << *MI);
539
540 // For each def in MI:
541 // If MI starts a live segment, merge this segment with the previous segment.
542 //
543 for (auto &Op : MI->operands()) {
544 if (!Op.isReg() || !Op.isDef())
545 continue;
546 unsigned DefR = Op.getReg();
547 LiveInterval &LID = LIS->getInterval(DefR);
548 LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
549 assert(LT != LID.end() && "Expecting live segments");
550 DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
551 << " with interval\n " << LID << "\n");
552 if (LT->start != MX)
553 continue;
554
555 VNInfo *MVN = LT->valno;
556 if (LT != LID.begin()) {
557 // If the current live segment is not the first, the task is easy. If
558 // the previous segment continues into the current block, extend it to
559 // the end of the current one, and merge the value numbers.
560 // Otherwise, remove the current segment, and make the end of it "undef".
561 LiveInterval::iterator P = std::prev(LT);
562 SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
563 MachineBasicBlock *MB = MI->getParent();
564 MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
565 if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
566 makeDefined(DefR, LT->end, false);
567 LID.removeSegment(*LT);
568 } else {
569 // Make the segments adjacent, so that merge-vn can also merge the
570 // segments.
571 P->end = LT->start;
572 makeUndead(DefR, P->valno->def);
573 LID.MergeValueNumberInto(MVN, P->valno);
574 }
575 } else {
576 LiveInterval::iterator N = std::next(LT);
577 LiveInterval::iterator RmB = LT, RmE = N;
578 while (N != LID.end()) {
579 // Iterate until the first register-based definition is found
580 // (i.e. skip all block-boundary entries).
581 LiveInterval::iterator Next = std::next(N);
582 if (N->start.isRegister()) {
583 makeDefined(DefR, N->start, false);
584 break;
585 }
586 if (N->end.isRegister()) {
587 makeDefined(DefR, N->end, false);
588 RmE = Next;
589 break;
590 }
591 RmE = Next;
592 N = Next;
593 }
594 // Erase the segments in one shot to avoid invalidating iterators.
595 LID.segments.erase(RmB, RmE);
596 }
597
598 bool VNUsed = false;
599 for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
600 if (I->valno != MVN)
601 continue;
602 VNUsed = true;
603 break;
604 }
605 if (!VNUsed)
606 MVN->markUnused();
607
608 DEBUG(dbgs() << "new interval: ");
609 if (!LID.empty()) {
610 DEBUG(dbgs() << LID << "\n");
611 LID.verify();
612 } else {
613 DEBUG(dbgs() << "<empty>\n");
614 LIS->removeInterval(DefR);
615 }
616 }
617
618 // For uses there is nothing to do. The intervals will be updated via
619 // shrinkToUses.
620 SmallVector<unsigned,4> Uses;
621 for (auto &Op : MI->operands()) {
622 if (!Op.isReg() || !Op.isUse())
623 continue;
624 unsigned R = Op.getReg();
625 if (!TargetRegisterInfo::isVirtualRegister(R))
626 continue;
627 Uses.push_back(R);
628 }
629 LIS->RemoveMachineInstrFromMaps(MI);
630 MI->eraseFromParent();
631 for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
632 LiveInterval &LI = LIS->getInterval(Uses[i]);
633 shrinkToUses(Uses[i], LI);
634 }
635 }
636
637
638 /// Get the opcode for a conditional transfer of the value in SO (source
639 /// operand). The condition (true/false) is given in Cond.
getCondTfrOpcode(const MachineOperand & SO,bool Cond)640 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
641 bool Cond) {
642 using namespace Hexagon;
643 if (SO.isReg()) {
644 unsigned PhysR;
645 RegisterRef RS = SO;
646 if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
647 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
648 assert(VC->begin() != VC->end() && "Empty register class");
649 PhysR = *VC->begin();
650 } else {
651 assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
652 PhysR = RS.Reg;
653 }
654 unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
655 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
656 switch (RC->getSize()) {
657 case 4:
658 return Cond ? A2_tfrt : A2_tfrf;
659 case 8:
660 return Cond ? A2_tfrpt : A2_tfrpf;
661 }
662 llvm_unreachable("Invalid register operand");
663 }
664 if (SO.isImm() || SO.isFPImm())
665 return Cond ? C2_cmoveit : C2_cmoveif;
666 llvm_unreachable("Unexpected source operand");
667 }
668
669
670 /// Generate a conditional transfer, copying the value SrcOp to the
671 /// destination register DstR:DstSR, and using the predicate register from
672 /// PredOp. The Cond argument specifies whether the predicate is to be
673 /// if(PredOp), or if(!PredOp).
genTfrFor(MachineOperand & SrcOp,unsigned DstR,unsigned DstSR,const MachineOperand & PredOp,bool Cond)674 MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
675 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
676 MachineInstr *MI = SrcOp.getParent();
677 MachineBasicBlock &B = *MI->getParent();
678 MachineBasicBlock::iterator At = MI;
679 DebugLoc DL = MI->getDebugLoc();
680
681 // Don't avoid identity copies here (i.e. if the source and the destination
682 // are the same registers). It is actually better to generate them here,
683 // since this would cause the copy to potentially be predicated in the next
684 // step. The predication will remove such a copy if it is unable to
685 /// predicate.
686
687 unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
688 MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
689 .addReg(DstR, RegState::Define, DstSR)
690 .addOperand(PredOp)
691 .addOperand(SrcOp);
692 // We don't want any kills yet.
693 TfrI->clearKillInfo();
694 DEBUG(dbgs() << "created an initial copy: " << *TfrI);
695 return TfrI;
696 }
697
698
699 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
700 /// performs all necessary changes to complete the replacement.
split(MachineInstr * MI)701 bool HexagonExpandCondsets::split(MachineInstr *MI) {
702 if (TfrLimitActive) {
703 if (TfrCounter >= TfrLimit)
704 return false;
705 TfrCounter++;
706 }
707 DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
708 << ": " << *MI);
709 MachineOperand &MD = MI->getOperand(0); // Definition
710 MachineOperand &MP = MI->getOperand(1); // Predicate register
711 assert(MD.isDef());
712 unsigned DR = MD.getReg(), DSR = MD.getSubReg();
713
714 // First, create the two invididual conditional transfers, and add each
715 // of them to the live intervals information. Do that first and then remove
716 // the old instruction from live intervals.
717 if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
718 addInstrToLiveness(TfrT);
719 if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
720 addInstrToLiveness(TfrF);
721 removeInstrFromLiveness(MI);
722
723 return true;
724 }
725
726
727 /// Split all MUX instructions in the given block into pairs of contitional
728 /// transfers.
splitInBlock(MachineBasicBlock & B)729 bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
730 bool Changed = false;
731 MachineBasicBlock::iterator I, E, NextI;
732 for (I = B.begin(), E = B.end(); I != E; I = NextI) {
733 NextI = std::next(I);
734 if (isCondset(I))
735 Changed |= split(I);
736 }
737 return Changed;
738 }
739
740
isPredicable(MachineInstr * MI)741 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
742 if (HII->isPredicated(MI) || !HII->isPredicable(MI))
743 return false;
744 if (MI->hasUnmodeledSideEffects() || MI->mayStore())
745 return false;
746 // Reject instructions with multiple defs (e.g. post-increment loads).
747 bool HasDef = false;
748 for (auto &Op : MI->operands()) {
749 if (!Op.isReg() || !Op.isDef())
750 continue;
751 if (HasDef)
752 return false;
753 HasDef = true;
754 }
755 for (auto &Mo : MI->memoperands())
756 if (Mo->isVolatile())
757 return false;
758 return true;
759 }
760
761
762 /// Find the reaching definition for a predicated use of RD. The RD is used
763 /// under the conditions given by PredR and Cond, and this function will ignore
764 /// definitions that set RD under the opposite conditions.
getReachingDefForPred(RegisterRef RD,MachineBasicBlock::iterator UseIt,unsigned PredR,bool Cond)765 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
766 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
767 MachineBasicBlock &B = *UseIt->getParent();
768 MachineBasicBlock::iterator I = UseIt, S = B.begin();
769 if (I == S)
770 return 0;
771
772 bool PredValid = true;
773 do {
774 --I;
775 MachineInstr *MI = &*I;
776 // Check if this instruction can be ignored, i.e. if it is predicated
777 // on the complementary condition.
778 if (PredValid && HII->isPredicated(MI)) {
779 if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
780 continue;
781 }
782
783 // Check the defs. If the PredR is defined, invalidate it. If RD is
784 // defined, return the instruction or 0, depending on the circumstances.
785 for (auto &Op : MI->operands()) {
786 if (!Op.isReg() || !Op.isDef())
787 continue;
788 RegisterRef RR = Op;
789 if (RR.Reg == PredR) {
790 PredValid = false;
791 continue;
792 }
793 if (RR.Reg != RD.Reg)
794 continue;
795 // If the "Reg" part agrees, there is still the subregister to check.
796 // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
797 // not vreg1 (w/o subregisters).
798 if (RR.Sub == RD.Sub)
799 return MI;
800 if (RR.Sub == 0 || RD.Sub == 0)
801 return 0;
802 // We have different subregisters, so we can continue looking.
803 }
804 } while (I != S);
805
806 return 0;
807 }
808
809
810 /// Check if the instruction MI can be safely moved over a set of instructions
811 /// whose side-effects (in terms of register defs and uses) are expressed in
812 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
813 /// that depend on the same predicate register to allow moving instructions
814 /// over instructions predicated on the opposite condition.
canMoveOver(MachineInstr * MI,ReferenceMap & Defs,ReferenceMap & Uses)815 bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
816 ReferenceMap &Uses) {
817 // In order to be able to safely move MI over instructions that define
818 // "Defs" and use "Uses", no def operand from MI can be defined or used
819 // and no use operand can be defined.
820 for (auto &Op : MI->operands()) {
821 if (!Op.isReg())
822 continue;
823 RegisterRef RR = Op;
824 // For physical register we would need to check register aliases, etc.
825 // and we don't want to bother with that. It would be of little value
826 // before the actual register rewriting (from virtual to physical).
827 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
828 return false;
829 // No redefs for any operand.
830 if (isRefInMap(RR, Defs, Exec_Then))
831 return false;
832 // For defs, there cannot be uses.
833 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
834 return false;
835 }
836 return true;
837 }
838
839
840 /// Check if the instruction accessing memory (TheI) can be moved to the
841 /// location ToI.
canMoveMemTo(MachineInstr * TheI,MachineInstr * ToI,bool IsDown)842 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
843 bool IsDown) {
844 bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
845 if (!IsLoad && !IsStore)
846 return true;
847 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
848 return true;
849 if (TheI->hasUnmodeledSideEffects())
850 return false;
851
852 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
853 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
854 bool Ordered = TheI->hasOrderedMemoryRef();
855
856 // Search for aliased memory reference in (StartI, EndI).
857 for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
858 MachineInstr *MI = &*I;
859 if (MI->hasUnmodeledSideEffects())
860 return false;
861 bool L = MI->mayLoad(), S = MI->mayStore();
862 if (!L && !S)
863 continue;
864 if (Ordered && MI->hasOrderedMemoryRef())
865 return false;
866
867 bool Conflict = (L && IsStore) || S;
868 if (Conflict)
869 return false;
870 }
871 return true;
872 }
873
874
875 /// Generate a predicated version of MI (where the condition is given via
876 /// PredR and Cond) at the point indicated by Where.
predicateAt(RegisterRef RD,MachineInstr * MI,MachineBasicBlock::iterator Where,unsigned PredR,bool Cond)877 void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
878 MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
879 // The problem with updating live intervals is that we can move one def
880 // past another def. In particular, this can happen when moving an A2_tfrt
881 // over an A2_tfrf defining the same register. From the point of view of
882 // live intervals, these two instructions are two separate definitions,
883 // and each one starts another live segment. LiveIntervals's "handleMove"
884 // does not allow such moves, so we need to handle it ourselves. To avoid
885 // invalidating liveness data while we are using it, the move will be
886 // implemented in 4 steps: (1) add a clone of the instruction MI at the
887 // target location, (2) update liveness, (3) delete the old instruction,
888 // and (4) update liveness again.
889
890 MachineBasicBlock &B = *MI->getParent();
891 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction.
892 unsigned Opc = MI->getOpcode();
893 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
894 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
895 unsigned Ox = 0, NP = MI->getNumOperands();
896 // Skip all defs from MI first.
897 while (Ox < NP) {
898 MachineOperand &MO = MI->getOperand(Ox);
899 if (!MO.isReg() || !MO.isDef())
900 break;
901 Ox++;
902 }
903 // Add the new def, then the predicate register, then the rest of the
904 // operands.
905 MB.addReg(RD.Reg, RegState::Define, RD.Sub);
906 MB.addReg(PredR);
907 while (Ox < NP) {
908 MachineOperand &MO = MI->getOperand(Ox);
909 if (!MO.isReg() || !MO.isImplicit())
910 MB.addOperand(MO);
911 Ox++;
912 }
913
914 MachineFunction &MF = *B.getParent();
915 MachineInstr::mmo_iterator I = MI->memoperands_begin();
916 unsigned NR = std::distance(I, MI->memoperands_end());
917 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
918 for (unsigned i = 0; i < NR; ++i)
919 MemRefs[i] = *I++;
920 MB.setMemRefs(MemRefs, MemRefs+NR);
921
922 MachineInstr *NewI = MB;
923 NewI->clearKillInfo();
924 addInstrToLiveness(NewI);
925 }
926
927
928 /// In the range [First, Last], rename all references to the "old" register RO
929 /// to the "new" register RN, but only in instructions predicated on the given
930 /// condition.
renameInRange(RegisterRef RO,RegisterRef RN,unsigned PredR,bool Cond,MachineBasicBlock::iterator First,MachineBasicBlock::iterator Last)931 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
932 unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
933 MachineBasicBlock::iterator Last) {
934 MachineBasicBlock::iterator End = std::next(Last);
935 for (MachineBasicBlock::iterator I = First; I != End; ++I) {
936 MachineInstr *MI = &*I;
937 // Do not touch instructions that are not predicated, or are predicated
938 // on the opposite condition.
939 if (!HII->isPredicated(MI))
940 continue;
941 if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
942 continue;
943
944 for (auto &Op : MI->operands()) {
945 if (!Op.isReg() || RO != RegisterRef(Op))
946 continue;
947 Op.setReg(RN.Reg);
948 Op.setSubReg(RN.Sub);
949 // In practice, this isn't supposed to see any defs.
950 assert(!Op.isDef() && "Not expecting a def");
951 }
952 }
953 }
954
955
956 /// For a given conditional copy, predicate the definition of the source of
957 /// the copy under the given condition (using the same predicate register as
958 /// the copy).
predicate(MachineInstr * TfrI,bool Cond)959 bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
960 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
961 unsigned Opc = TfrI->getOpcode();
962 (void)Opc;
963 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
964 DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
965 << ": " << *TfrI);
966
967 MachineOperand &MD = TfrI->getOperand(0);
968 MachineOperand &MP = TfrI->getOperand(1);
969 MachineOperand &MS = TfrI->getOperand(2);
970 // The source operand should be a <kill>. This is not strictly necessary,
971 // but it makes things a lot simpler. Otherwise, we would need to rename
972 // some registers, which would complicate the transformation considerably.
973 if (!MS.isKill())
974 return false;
975
976 RegisterRef RT(MS);
977 unsigned PredR = MP.getReg();
978 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
979 if (!DefI || !isPredicable(DefI))
980 return false;
981
982 DEBUG(dbgs() << "Source def: " << *DefI);
983
984 // Collect the information about registers defined and used between the
985 // DefI and the TfrI.
986 // Map: reg -> bitmask of subregs
987 ReferenceMap Uses, Defs;
988 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
989
990 // Check if the predicate register is valid between DefI and TfrI.
991 // If it is, we can then ignore instructions predicated on the negated
992 // conditions when collecting def and use information.
993 bool PredValid = true;
994 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
995 if (!I->modifiesRegister(PredR, 0))
996 continue;
997 PredValid = false;
998 break;
999 }
1000
1001 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
1002 MachineInstr *MI = &*I;
1003 // If this instruction is predicated on the same register, it could
1004 // potentially be ignored.
1005 // By default assume that the instruction executes on the same condition
1006 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
1007 unsigned Exec = Exec_Then | Exec_Else;
1008 if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
1009 Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
1010
1011 for (auto &Op : MI->operands()) {
1012 if (!Op.isReg())
1013 continue;
1014 // We don't want to deal with physical registers. The reason is that
1015 // they can be aliased with other physical registers. Aliased virtual
1016 // registers must share the same register number, and can only differ
1017 // in the subregisters, which we are keeping track of. Physical
1018 // registers ters no longer have subregisters---their super- and
1019 // subregisters are other physical registers, and we are not checking
1020 // that.
1021 RegisterRef RR = Op;
1022 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1023 return false;
1024
1025 ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1026 addRefToMap(RR, Map, Exec);
1027 }
1028 }
1029
1030 // The situation:
1031 // RT = DefI
1032 // ...
1033 // RD = TfrI ..., RT
1034
1035 // If the register-in-the-middle (RT) is used or redefined between
1036 // DefI and TfrI, we may not be able proceed with this transformation.
1037 // We can ignore a def that will not execute together with TfrI, and a
1038 // use that will. If there is such a use (that does execute together with
1039 // TfrI), we will not be able to move DefI down. If there is a use that
1040 // executed if TfrI's condition is false, then RT must be available
1041 // unconditionally (cannot be predicated).
1042 // Essentially, we need to be able to rename RT to RD in this segment.
1043 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1044 return false;
1045 RegisterRef RD = MD;
1046 // If the predicate register is defined between DefI and TfrI, the only
1047 // potential thing to do would be to move the DefI down to TfrI, and then
1048 // predicate. The reaching def (DefI) must be movable down to the location
1049 // of the TfrI.
1050 // If the target register of the TfrI (RD) is not used or defined between
1051 // DefI and TfrI, consider moving TfrI up to DefI.
1052 bool CanUp = canMoveOver(TfrI, Defs, Uses);
1053 bool CanDown = canMoveOver(DefI, Defs, Uses);
1054 // The TfrI does not access memory, but DefI could. Check if it's safe
1055 // to move DefI down to TfrI.
1056 if (DefI->mayLoad() || DefI->mayStore())
1057 if (!canMoveMemTo(DefI, TfrI, true))
1058 CanDown = false;
1059
1060 DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1061 << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1062 MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1063 if (CanUp)
1064 predicateAt(RD, DefI, PastDefIt, PredR, Cond);
1065 else if (CanDown)
1066 predicateAt(RD, DefI, TfrIt, PredR, Cond);
1067 else
1068 return false;
1069
1070 if (RT != RD)
1071 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1072
1073 // Delete the user of RT first (it should work either way, but this order
1074 // of deleting is more natural).
1075 removeInstrFromLiveness(TfrI);
1076 removeInstrFromLiveness(DefI);
1077 return true;
1078 }
1079
1080
1081 /// Predicate all cases of conditional copies in the specified block.
predicateInBlock(MachineBasicBlock & B)1082 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
1083 bool Changed = false;
1084 MachineBasicBlock::iterator I, E, NextI;
1085 for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1086 NextI = std::next(I);
1087 unsigned Opc = I->getOpcode();
1088 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1089 bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
1090 if (!Done) {
1091 // If we didn't predicate I, we may need to remove it in case it is
1092 // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1.
1093 if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
1094 removeInstrFromLiveness(I);
1095 }
1096 Changed |= Done;
1097 }
1098 }
1099 return Changed;
1100 }
1101
1102
removeImplicitUses(MachineInstr * MI)1103 void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
1104 for (unsigned i = MI->getNumOperands(); i > 0; --i) {
1105 MachineOperand &MO = MI->getOperand(i-1);
1106 if (MO.isReg() && MO.isUse() && MO.isImplicit())
1107 MI->RemoveOperand(i-1);
1108 }
1109 }
1110
1111
removeImplicitUses(MachineBasicBlock & B)1112 void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
1113 for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1114 MachineInstr *MI = &*I;
1115 if (HII->isPredicated(MI))
1116 removeImplicitUses(MI);
1117 }
1118 }
1119
1120
postprocessUndefImplicitUses(MachineBasicBlock & B)1121 void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
1122 // Implicit uses that are "undef" are only meaningful (outside of the
1123 // internals of this pass) when the instruction defines a subregister,
1124 // and the implicit-undef use applies to the defined register. In such
1125 // cases, the proper way to record the information in the IR is to mark
1126 // the definition as "undef", which will be interpreted as "read-undef".
1127 typedef SmallSet<unsigned,2> RegisterSet;
1128 for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
1129 MachineInstr *MI = &*I;
1130 RegisterSet Undefs;
1131 for (unsigned i = MI->getNumOperands(); i > 0; --i) {
1132 MachineOperand &MO = MI->getOperand(i-1);
1133 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
1134 MI->RemoveOperand(i-1);
1135 Undefs.insert(MO.getReg());
1136 }
1137 }
1138 for (auto &Op : MI->operands()) {
1139 if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
1140 continue;
1141 if (Undefs.count(Op.getReg()))
1142 Op.setIsUndef(true);
1143 }
1144 }
1145 }
1146
1147
isIntReg(RegisterRef RR,unsigned & BW)1148 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1149 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1150 return false;
1151 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1152 if (RC == &Hexagon::IntRegsRegClass) {
1153 BW = 32;
1154 return true;
1155 }
1156 if (RC == &Hexagon::DoubleRegsRegClass) {
1157 BW = (RR.Sub != 0) ? 32 : 64;
1158 return true;
1159 }
1160 return false;
1161 }
1162
1163
isIntraBlocks(LiveInterval & LI)1164 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1165 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1166 LiveRange::Segment &LR = *I;
1167 // Range must start at a register...
1168 if (!LR.start.isRegister())
1169 return false;
1170 // ...and end in a register or in a dead slot.
1171 if (!LR.end.isRegister() && !LR.end.isDead())
1172 return false;
1173 }
1174 return true;
1175 }
1176
1177
coalesceRegisters(RegisterRef R1,RegisterRef R2)1178 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1179 if (CoaLimitActive) {
1180 if (CoaCounter >= CoaLimit)
1181 return false;
1182 CoaCounter++;
1183 }
1184 unsigned BW1, BW2;
1185 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1186 return false;
1187 if (MRI->isLiveIn(R1.Reg))
1188 return false;
1189 if (MRI->isLiveIn(R2.Reg))
1190 return false;
1191
1192 LiveInterval &L1 = LIS->getInterval(R1.Reg);
1193 LiveInterval &L2 = LIS->getInterval(R2.Reg);
1194 bool Overlap = L1.overlaps(L2);
1195
1196 DEBUG(dbgs() << "compatible registers: ("
1197 << (Overlap ? "overlap" : "disjoint") << ")\n "
1198 << PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n "
1199 << PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n");
1200 if (R1.Sub || R2.Sub)
1201 return false;
1202 if (Overlap)
1203 return false;
1204
1205 // Coalescing could have a negative impact on scheduling, so try to limit
1206 // to some reasonable extent. Only consider coalescing segments, when one
1207 // of them does not cross basic block boundaries.
1208 if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1209 return false;
1210
1211 MRI->replaceRegWith(R2.Reg, R1.Reg);
1212
1213 // Move all live segments from L2 to L1.
1214 typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
1215 ValueInfoMap VM;
1216 for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1217 VNInfo *NewVN, *OldVN = I->valno;
1218 ValueInfoMap::iterator F = VM.find(OldVN);
1219 if (F == VM.end()) {
1220 NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1221 VM.insert(std::make_pair(OldVN, NewVN));
1222 } else {
1223 NewVN = F->second;
1224 }
1225 L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1226 }
1227 while (L2.begin() != L2.end())
1228 L2.removeSegment(*L2.begin());
1229
1230 updateKillFlags(R1.Reg, L1);
1231 DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1232 L1.verify();
1233
1234 return true;
1235 }
1236
1237
1238 /// Attempt to coalesce one of the source registers to a MUX intruction with
1239 /// the destination register. This could lead to having only one predicated
1240 /// instruction in the end instead of two.
coalesceSegments(MachineFunction & MF)1241 bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
1242 SmallVector<MachineInstr*,16> Condsets;
1243 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1244 MachineBasicBlock &B = *I;
1245 for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
1246 MachineInstr *MI = &*J;
1247 if (!isCondset(MI))
1248 continue;
1249 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1250 if (!S1.isReg() && !S2.isReg())
1251 continue;
1252 Condsets.push_back(MI);
1253 }
1254 }
1255
1256 bool Changed = false;
1257 for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
1258 MachineInstr *CI = Condsets[i];
1259 RegisterRef RD = CI->getOperand(0);
1260 RegisterRef RP = CI->getOperand(1);
1261 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1262 bool Done = false;
1263 // Consider this case:
1264 // vreg1 = instr1 ...
1265 // vreg2 = instr2 ...
1266 // vreg0 = C2_mux ..., vreg1, vreg2
1267 // If vreg0 was coalesced with vreg1, we could end up with the following
1268 // code:
1269 // vreg0 = instr1 ...
1270 // vreg2 = instr2 ...
1271 // vreg0 = A2_tfrf ..., vreg2
1272 // which will later become:
1273 // vreg0 = instr1 ...
1274 // vreg0 = instr2_cNotPt ...
1275 // i.e. there will be an unconditional definition (instr1) of vreg0
1276 // followed by a conditional one. The output dependency was there before
1277 // and it unavoidable, but if instr1 is predicable, we will no longer be
1278 // able to predicate it here.
1279 // To avoid this scenario, don't coalesce the destination register with
1280 // a source register that is defined by a predicable instruction.
1281 if (S1.isReg()) {
1282 RegisterRef RS = S1;
1283 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1284 if (!RDef || !HII->isPredicable(RDef))
1285 Done = coalesceRegisters(RD, RegisterRef(S1));
1286 }
1287 if (!Done && S2.isReg()) {
1288 RegisterRef RS = S2;
1289 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1290 if (!RDef || !HII->isPredicable(RDef))
1291 Done = coalesceRegisters(RD, RegisterRef(S2));
1292 }
1293 Changed |= Done;
1294 }
1295 return Changed;
1296 }
1297
1298
runOnMachineFunction(MachineFunction & MF)1299 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1300 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1301 TRI = MF.getSubtarget().getRegisterInfo();
1302 LIS = &getAnalysis<LiveIntervals>();
1303 MRI = &MF.getRegInfo();
1304
1305 bool Changed = false;
1306
1307 // Try to coalesce the target of a mux with one of its sources.
1308 // This could eliminate a register copy in some circumstances.
1309 Changed |= coalesceSegments(MF);
1310
1311 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1312 // First, simply split all muxes into a pair of conditional transfers
1313 // and update the live intervals to reflect the new arrangement.
1314 // This is done mainly to make the live interval update simpler, than it
1315 // would be while trying to predicate instructions at the same time.
1316 Changed |= splitInBlock(*I);
1317 // Traverse all blocks and collapse predicable instructions feeding
1318 // conditional transfers into predicated instructions.
1319 // Walk over all the instructions again, so we may catch pre-existing
1320 // cases that were not created in the previous step.
1321 Changed |= predicateInBlock(*I);
1322 }
1323
1324 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
1325 postprocessUndefImplicitUses(*I);
1326 return Changed;
1327 }
1328
1329
1330 //===----------------------------------------------------------------------===//
1331 // Public Constructor Functions
1332 //===----------------------------------------------------------------------===//
1333
initializePassOnce(PassRegistry & Registry)1334 static void initializePassOnce(PassRegistry &Registry) {
1335 const char *Name = "Hexagon Expand Condsets";
1336 PassInfo *PI = new PassInfo(Name, "expand-condsets",
1337 &HexagonExpandCondsets::ID, 0, false, false);
1338 Registry.registerPass(*PI, true);
1339 }
1340
initializeHexagonExpandCondsetsPass(PassRegistry & Registry)1341 void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
1342 CALL_ONCE_INITIALIZATION(initializePassOnce)
1343 }
1344
1345
createHexagonExpandCondsets()1346 FunctionPass *llvm::createHexagonExpandCondsets() {
1347 return new HexagonExpandCondsets();
1348 }
1349