1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
11 //
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/Scalar.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/InstVisitor.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/IPO.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include <algorithm>
42 using namespace llvm;
43
44 #define DEBUG_TYPE "sccp"
45
46 STATISTIC(NumInstRemoved, "Number of instructions removed");
47 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
48
49 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
50 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
51 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
52
53 namespace {
54 /// LatticeVal class - This class represents the different lattice values that
55 /// an LLVM value may occupy. It is a simple class with value semantics.
56 ///
57 class LatticeVal {
58 enum LatticeValueTy {
59 /// undefined - This LLVM Value has no known value yet.
60 undefined,
61
62 /// constant - This LLVM Value has a specific constant value.
63 constant,
64
65 /// forcedconstant - This LLVM Value was thought to be undef until
66 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
67 /// with another (different) constant, it goes to overdefined, instead of
68 /// asserting.
69 forcedconstant,
70
71 /// overdefined - This instruction is not known to be constant, and we know
72 /// it has a value.
73 overdefined
74 };
75
76 /// Val: This stores the current lattice value along with the Constant* for
77 /// the constant if this is a 'constant' or 'forcedconstant' value.
78 PointerIntPair<Constant *, 2, LatticeValueTy> Val;
79
getLatticeValue() const80 LatticeValueTy getLatticeValue() const {
81 return Val.getInt();
82 }
83
84 public:
LatticeVal()85 LatticeVal() : Val(nullptr, undefined) {}
86
isUndefined() const87 bool isUndefined() const { return getLatticeValue() == undefined; }
isConstant() const88 bool isConstant() const {
89 return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
90 }
isOverdefined() const91 bool isOverdefined() const { return getLatticeValue() == overdefined; }
92
getConstant() const93 Constant *getConstant() const {
94 assert(isConstant() && "Cannot get the constant of a non-constant!");
95 return Val.getPointer();
96 }
97
98 /// markOverdefined - Return true if this is a change in status.
markOverdefined()99 bool markOverdefined() {
100 if (isOverdefined())
101 return false;
102
103 Val.setInt(overdefined);
104 return true;
105 }
106
107 /// markConstant - Return true if this is a change in status.
markConstant(Constant * V)108 bool markConstant(Constant *V) {
109 if (getLatticeValue() == constant) { // Constant but not forcedconstant.
110 assert(getConstant() == V && "Marking constant with different value");
111 return false;
112 }
113
114 if (isUndefined()) {
115 Val.setInt(constant);
116 assert(V && "Marking constant with NULL");
117 Val.setPointer(V);
118 } else {
119 assert(getLatticeValue() == forcedconstant &&
120 "Cannot move from overdefined to constant!");
121 // Stay at forcedconstant if the constant is the same.
122 if (V == getConstant()) return false;
123
124 // Otherwise, we go to overdefined. Assumptions made based on the
125 // forced value are possibly wrong. Assuming this is another constant
126 // could expose a contradiction.
127 Val.setInt(overdefined);
128 }
129 return true;
130 }
131
132 /// getConstantInt - If this is a constant with a ConstantInt value, return it
133 /// otherwise return null.
getConstantInt() const134 ConstantInt *getConstantInt() const {
135 if (isConstant())
136 return dyn_cast<ConstantInt>(getConstant());
137 return nullptr;
138 }
139
markForcedConstant(Constant * V)140 void markForcedConstant(Constant *V) {
141 assert(isUndefined() && "Can't force a defined value!");
142 Val.setInt(forcedconstant);
143 Val.setPointer(V);
144 }
145 };
146 } // end anonymous namespace.
147
148
149 namespace {
150
151 //===----------------------------------------------------------------------===//
152 //
153 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
154 /// Constant Propagation.
155 ///
156 class SCCPSolver : public InstVisitor<SCCPSolver> {
157 const DataLayout &DL;
158 const TargetLibraryInfo *TLI;
159 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
160 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
161
162 /// StructValueState - This maintains ValueState for values that have
163 /// StructType, for example for formal arguments, calls, insertelement, etc.
164 ///
165 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
166
167 /// GlobalValue - If we are tracking any values for the contents of a global
168 /// variable, we keep a mapping from the constant accessor to the element of
169 /// the global, to the currently known value. If the value becomes
170 /// overdefined, it's entry is simply removed from this map.
171 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
172
173 /// TrackedRetVals - If we are tracking arguments into and the return
174 /// value out of a function, it will have an entry in this map, indicating
175 /// what the known return value for the function is.
176 DenseMap<Function*, LatticeVal> TrackedRetVals;
177
178 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179 /// that return multiple values.
180 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
181
182 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183 /// represented here for efficient lookup.
184 SmallPtrSet<Function*, 16> MRVFunctionsTracked;
185
186 /// TrackingIncomingArguments - This is the set of functions for whose
187 /// arguments we make optimistic assumptions about and try to prove as
188 /// constants.
189 SmallPtrSet<Function*, 16> TrackingIncomingArguments;
190
191 /// The reason for two worklists is that overdefined is the lowest state
192 /// on the lattice, and moving things to overdefined as fast as possible
193 /// makes SCCP converge much faster.
194 ///
195 /// By having a separate worklist, we accomplish this because everything
196 /// possibly overdefined will become overdefined at the soonest possible
197 /// point.
198 SmallVector<Value*, 64> OverdefinedInstWorkList;
199 SmallVector<Value*, 64> InstWorkList;
200
201
202 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
203
204 /// KnownFeasibleEdges - Entries in this set are edges which have already had
205 /// PHI nodes retriggered.
206 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
207 DenseSet<Edge> KnownFeasibleEdges;
208 public:
SCCPSolver(const DataLayout & DL,const TargetLibraryInfo * tli)209 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
210 : DL(DL), TLI(tli) {}
211
212 /// MarkBlockExecutable - This method can be used by clients to mark all of
213 /// the blocks that are known to be intrinsically live in the processed unit.
214 ///
215 /// This returns true if the block was not considered live before.
MarkBlockExecutable(BasicBlock * BB)216 bool MarkBlockExecutable(BasicBlock *BB) {
217 if (!BBExecutable.insert(BB).second)
218 return false;
219 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
220 BBWorkList.push_back(BB); // Add the block to the work list!
221 return true;
222 }
223
224 /// TrackValueOfGlobalVariable - Clients can use this method to
225 /// inform the SCCPSolver that it should track loads and stores to the
226 /// specified global variable if it can. This is only legal to call if
227 /// performing Interprocedural SCCP.
TrackValueOfGlobalVariable(GlobalVariable * GV)228 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
229 // We only track the contents of scalar globals.
230 if (GV->getType()->getElementType()->isSingleValueType()) {
231 LatticeVal &IV = TrackedGlobals[GV];
232 if (!isa<UndefValue>(GV->getInitializer()))
233 IV.markConstant(GV->getInitializer());
234 }
235 }
236
237 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
238 /// and out of the specified function (which cannot have its address taken),
239 /// this method must be called.
AddTrackedFunction(Function * F)240 void AddTrackedFunction(Function *F) {
241 // Add an entry, F -> undef.
242 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
243 MRVFunctionsTracked.insert(F);
244 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
245 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
246 LatticeVal()));
247 } else
248 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
249 }
250
AddArgumentTrackedFunction(Function * F)251 void AddArgumentTrackedFunction(Function *F) {
252 TrackingIncomingArguments.insert(F);
253 }
254
255 /// Solve - Solve for constants and executable blocks.
256 ///
257 void Solve();
258
259 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
260 /// that branches on undef values cannot reach any of their successors.
261 /// However, this is not a safe assumption. After we solve dataflow, this
262 /// method should be use to handle this. If this returns true, the solver
263 /// should be rerun.
264 bool ResolvedUndefsIn(Function &F);
265
isBlockExecutable(BasicBlock * BB) const266 bool isBlockExecutable(BasicBlock *BB) const {
267 return BBExecutable.count(BB);
268 }
269
getLatticeValueFor(Value * V) const270 LatticeVal getLatticeValueFor(Value *V) const {
271 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
272 assert(I != ValueState.end() && "V is not in valuemap!");
273 return I->second;
274 }
275
276 /// getTrackedRetVals - Get the inferred return value map.
277 ///
getTrackedRetVals()278 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
279 return TrackedRetVals;
280 }
281
282 /// getTrackedGlobals - Get and return the set of inferred initializers for
283 /// global variables.
getTrackedGlobals()284 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
285 return TrackedGlobals;
286 }
287
markOverdefined(Value * V)288 void markOverdefined(Value *V) {
289 assert(!V->getType()->isStructTy() && "Should use other method");
290 markOverdefined(ValueState[V], V);
291 }
292
293 /// markAnythingOverdefined - Mark the specified value overdefined. This
294 /// works with both scalars and structs.
markAnythingOverdefined(Value * V)295 void markAnythingOverdefined(Value *V) {
296 if (StructType *STy = dyn_cast<StructType>(V->getType()))
297 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
298 markOverdefined(getStructValueState(V, i), V);
299 else
300 markOverdefined(V);
301 }
302
303 private:
304 // markConstant - Make a value be marked as "constant". If the value
305 // is not already a constant, add it to the instruction work list so that
306 // the users of the instruction are updated later.
307 //
markConstant(LatticeVal & IV,Value * V,Constant * C)308 void markConstant(LatticeVal &IV, Value *V, Constant *C) {
309 if (!IV.markConstant(C)) return;
310 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
311 if (IV.isOverdefined())
312 OverdefinedInstWorkList.push_back(V);
313 else
314 InstWorkList.push_back(V);
315 }
316
markConstant(Value * V,Constant * C)317 void markConstant(Value *V, Constant *C) {
318 assert(!V->getType()->isStructTy() && "Should use other method");
319 markConstant(ValueState[V], V, C);
320 }
321
markForcedConstant(Value * V,Constant * C)322 void markForcedConstant(Value *V, Constant *C) {
323 assert(!V->getType()->isStructTy() && "Should use other method");
324 LatticeVal &IV = ValueState[V];
325 IV.markForcedConstant(C);
326 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
327 if (IV.isOverdefined())
328 OverdefinedInstWorkList.push_back(V);
329 else
330 InstWorkList.push_back(V);
331 }
332
333
334 // markOverdefined - Make a value be marked as "overdefined". If the
335 // value is not already overdefined, add it to the overdefined instruction
336 // work list so that the users of the instruction are updated later.
markOverdefined(LatticeVal & IV,Value * V)337 void markOverdefined(LatticeVal &IV, Value *V) {
338 if (!IV.markOverdefined()) return;
339
340 DEBUG(dbgs() << "markOverdefined: ";
341 if (Function *F = dyn_cast<Function>(V))
342 dbgs() << "Function '" << F->getName() << "'\n";
343 else
344 dbgs() << *V << '\n');
345 // Only instructions go on the work list
346 OverdefinedInstWorkList.push_back(V);
347 }
348
mergeInValue(LatticeVal & IV,Value * V,LatticeVal MergeWithV)349 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
350 if (IV.isOverdefined() || MergeWithV.isUndefined())
351 return; // Noop.
352 if (MergeWithV.isOverdefined())
353 markOverdefined(IV, V);
354 else if (IV.isUndefined())
355 markConstant(IV, V, MergeWithV.getConstant());
356 else if (IV.getConstant() != MergeWithV.getConstant())
357 markOverdefined(IV, V);
358 }
359
mergeInValue(Value * V,LatticeVal MergeWithV)360 void mergeInValue(Value *V, LatticeVal MergeWithV) {
361 assert(!V->getType()->isStructTy() && "Should use other method");
362 mergeInValue(ValueState[V], V, MergeWithV);
363 }
364
365
366 /// getValueState - Return the LatticeVal object that corresponds to the
367 /// value. This function handles the case when the value hasn't been seen yet
368 /// by properly seeding constants etc.
getValueState(Value * V)369 LatticeVal &getValueState(Value *V) {
370 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
371
372 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
373 ValueState.insert(std::make_pair(V, LatticeVal()));
374 LatticeVal &LV = I.first->second;
375
376 if (!I.second)
377 return LV; // Common case, already in the map.
378
379 if (Constant *C = dyn_cast<Constant>(V)) {
380 // Undef values remain undefined.
381 if (!isa<UndefValue>(V))
382 LV.markConstant(C); // Constants are constant
383 }
384
385 // All others are underdefined by default.
386 return LV;
387 }
388
389 /// getStructValueState - Return the LatticeVal object that corresponds to the
390 /// value/field pair. This function handles the case when the value hasn't
391 /// been seen yet by properly seeding constants etc.
getStructValueState(Value * V,unsigned i)392 LatticeVal &getStructValueState(Value *V, unsigned i) {
393 assert(V->getType()->isStructTy() && "Should use getValueState");
394 assert(i < cast<StructType>(V->getType())->getNumElements() &&
395 "Invalid element #");
396
397 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
398 bool> I = StructValueState.insert(
399 std::make_pair(std::make_pair(V, i), LatticeVal()));
400 LatticeVal &LV = I.first->second;
401
402 if (!I.second)
403 return LV; // Common case, already in the map.
404
405 if (Constant *C = dyn_cast<Constant>(V)) {
406 Constant *Elt = C->getAggregateElement(i);
407
408 if (!Elt)
409 LV.markOverdefined(); // Unknown sort of constant.
410 else if (isa<UndefValue>(Elt))
411 ; // Undef values remain undefined.
412 else
413 LV.markConstant(Elt); // Constants are constant.
414 }
415
416 // All others are underdefined by default.
417 return LV;
418 }
419
420
421 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
422 /// work list if it is not already executable.
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)423 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
424 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
425 return; // This edge is already known to be executable!
426
427 if (!MarkBlockExecutable(Dest)) {
428 // If the destination is already executable, we just made an *edge*
429 // feasible that wasn't before. Revisit the PHI nodes in the block
430 // because they have potentially new operands.
431 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
432 << " -> " << Dest->getName() << '\n');
433
434 PHINode *PN;
435 for (BasicBlock::iterator I = Dest->begin();
436 (PN = dyn_cast<PHINode>(I)); ++I)
437 visitPHINode(*PN);
438 }
439 }
440
441 // getFeasibleSuccessors - Return a vector of booleans to indicate which
442 // successors are reachable from a given terminator instruction.
443 //
444 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
445
446 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
447 // block to the 'To' basic block is currently feasible.
448 //
449 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
450
451 // OperandChangedState - This method is invoked on all of the users of an
452 // instruction that was just changed state somehow. Based on this
453 // information, we need to update the specified user of this instruction.
454 //
OperandChangedState(Instruction * I)455 void OperandChangedState(Instruction *I) {
456 if (BBExecutable.count(I->getParent())) // Inst is executable?
457 visit(*I);
458 }
459
460 private:
461 friend class InstVisitor<SCCPSolver>;
462
463 // visit implementations - Something changed in this instruction. Either an
464 // operand made a transition, or the instruction is newly executable. Change
465 // the value type of I to reflect these changes if appropriate.
466 void visitPHINode(PHINode &I);
467
468 // Terminators
469 void visitReturnInst(ReturnInst &I);
470 void visitTerminatorInst(TerminatorInst &TI);
471
472 void visitCastInst(CastInst &I);
473 void visitSelectInst(SelectInst &I);
474 void visitBinaryOperator(Instruction &I);
475 void visitCmpInst(CmpInst &I);
476 void visitExtractElementInst(ExtractElementInst &I);
477 void visitInsertElementInst(InsertElementInst &I);
478 void visitShuffleVectorInst(ShuffleVectorInst &I);
479 void visitExtractValueInst(ExtractValueInst &EVI);
480 void visitInsertValueInst(InsertValueInst &IVI);
visitLandingPadInst(LandingPadInst & I)481 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
482
483 // Instructions that cannot be folded away.
484 void visitStoreInst (StoreInst &I);
485 void visitLoadInst (LoadInst &I);
486 void visitGetElementPtrInst(GetElementPtrInst &I);
visitCallInst(CallInst & I)487 void visitCallInst (CallInst &I) {
488 visitCallSite(&I);
489 }
visitInvokeInst(InvokeInst & II)490 void visitInvokeInst (InvokeInst &II) {
491 visitCallSite(&II);
492 visitTerminatorInst(II);
493 }
494 void visitCallSite (CallSite CS);
visitResumeInst(TerminatorInst & I)495 void visitResumeInst (TerminatorInst &I) { /*returns void*/ }
visitUnreachableInst(TerminatorInst & I)496 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
visitFenceInst(FenceInst & I)497 void visitFenceInst (FenceInst &I) { /*returns void*/ }
visitAtomicCmpXchgInst(AtomicCmpXchgInst & I)498 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
499 markAnythingOverdefined(&I);
500 }
visitAtomicRMWInst(AtomicRMWInst & I)501 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
visitAllocaInst(Instruction & I)502 void visitAllocaInst (Instruction &I) { markOverdefined(&I); }
visitVAArgInst(Instruction & I)503 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); }
504
visitInstruction(Instruction & I)505 void visitInstruction(Instruction &I) {
506 // If a new instruction is added to LLVM that we don't handle.
507 dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
508 markAnythingOverdefined(&I); // Just in case
509 }
510 };
511
512 } // end anonymous namespace
513
514
515 // getFeasibleSuccessors - Return a vector of booleans to indicate which
516 // successors are reachable from a given terminator instruction.
517 //
getFeasibleSuccessors(TerminatorInst & TI,SmallVectorImpl<bool> & Succs)518 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
519 SmallVectorImpl<bool> &Succs) {
520 Succs.resize(TI.getNumSuccessors());
521 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
522 if (BI->isUnconditional()) {
523 Succs[0] = true;
524 return;
525 }
526
527 LatticeVal BCValue = getValueState(BI->getCondition());
528 ConstantInt *CI = BCValue.getConstantInt();
529 if (!CI) {
530 // Overdefined condition variables, and branches on unfoldable constant
531 // conditions, mean the branch could go either way.
532 if (!BCValue.isUndefined())
533 Succs[0] = Succs[1] = true;
534 return;
535 }
536
537 // Constant condition variables mean the branch can only go a single way.
538 Succs[CI->isZero()] = true;
539 return;
540 }
541
542 if (isa<InvokeInst>(TI)) {
543 // Invoke instructions successors are always executable.
544 Succs[0] = Succs[1] = true;
545 return;
546 }
547
548 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
549 if (!SI->getNumCases()) {
550 Succs[0] = true;
551 return;
552 }
553 LatticeVal SCValue = getValueState(SI->getCondition());
554 ConstantInt *CI = SCValue.getConstantInt();
555
556 if (!CI) { // Overdefined or undefined condition?
557 // All destinations are executable!
558 if (!SCValue.isUndefined())
559 Succs.assign(TI.getNumSuccessors(), true);
560 return;
561 }
562
563 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
564 return;
565 }
566
567 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
568 if (isa<IndirectBrInst>(&TI)) {
569 // Just mark all destinations executable!
570 Succs.assign(TI.getNumSuccessors(), true);
571 return;
572 }
573
574 #ifndef NDEBUG
575 dbgs() << "Unknown terminator instruction: " << TI << '\n';
576 #endif
577 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
578 }
579
580
581 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
582 // block to the 'To' basic block is currently feasible.
583 //
isEdgeFeasible(BasicBlock * From,BasicBlock * To)584 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
585 assert(BBExecutable.count(To) && "Dest should always be alive!");
586
587 // Make sure the source basic block is executable!!
588 if (!BBExecutable.count(From)) return false;
589
590 // Check to make sure this edge itself is actually feasible now.
591 TerminatorInst *TI = From->getTerminator();
592 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
593 if (BI->isUnconditional())
594 return true;
595
596 LatticeVal BCValue = getValueState(BI->getCondition());
597
598 // Overdefined condition variables mean the branch could go either way,
599 // undef conditions mean that neither edge is feasible yet.
600 ConstantInt *CI = BCValue.getConstantInt();
601 if (!CI)
602 return !BCValue.isUndefined();
603
604 // Constant condition variables mean the branch can only go a single way.
605 return BI->getSuccessor(CI->isZero()) == To;
606 }
607
608 // Invoke instructions successors are always executable.
609 if (isa<InvokeInst>(TI))
610 return true;
611
612 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
613 if (SI->getNumCases() < 1)
614 return true;
615
616 LatticeVal SCValue = getValueState(SI->getCondition());
617 ConstantInt *CI = SCValue.getConstantInt();
618
619 if (!CI)
620 return !SCValue.isUndefined();
621
622 return SI->findCaseValue(CI).getCaseSuccessor() == To;
623 }
624
625 // Just mark all destinations executable!
626 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
627 if (isa<IndirectBrInst>(TI))
628 return true;
629
630 #ifndef NDEBUG
631 dbgs() << "Unknown terminator instruction: " << *TI << '\n';
632 #endif
633 llvm_unreachable(nullptr);
634 }
635
636 // visit Implementations - Something changed in this instruction, either an
637 // operand made a transition, or the instruction is newly executable. Change
638 // the value type of I to reflect these changes if appropriate. This method
639 // makes sure to do the following actions:
640 //
641 // 1. If a phi node merges two constants in, and has conflicting value coming
642 // from different branches, or if the PHI node merges in an overdefined
643 // value, then the PHI node becomes overdefined.
644 // 2. If a phi node merges only constants in, and they all agree on value, the
645 // PHI node becomes a constant value equal to that.
646 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
647 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
648 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
649 // 6. If a conditional branch has a value that is constant, make the selected
650 // destination executable
651 // 7. If a conditional branch has a value that is overdefined, make all
652 // successors executable.
653 //
visitPHINode(PHINode & PN)654 void SCCPSolver::visitPHINode(PHINode &PN) {
655 // If this PN returns a struct, just mark the result overdefined.
656 // TODO: We could do a lot better than this if code actually uses this.
657 if (PN.getType()->isStructTy())
658 return markAnythingOverdefined(&PN);
659
660 if (getValueState(&PN).isOverdefined())
661 return; // Quick exit
662
663 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
664 // and slow us down a lot. Just mark them overdefined.
665 if (PN.getNumIncomingValues() > 64)
666 return markOverdefined(&PN);
667
668 // Look at all of the executable operands of the PHI node. If any of them
669 // are overdefined, the PHI becomes overdefined as well. If they are all
670 // constant, and they agree with each other, the PHI becomes the identical
671 // constant. If they are constant and don't agree, the PHI is overdefined.
672 // If there are no executable operands, the PHI remains undefined.
673 //
674 Constant *OperandVal = nullptr;
675 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
676 LatticeVal IV = getValueState(PN.getIncomingValue(i));
677 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
678
679 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
680 continue;
681
682 if (IV.isOverdefined()) // PHI node becomes overdefined!
683 return markOverdefined(&PN);
684
685 if (!OperandVal) { // Grab the first value.
686 OperandVal = IV.getConstant();
687 continue;
688 }
689
690 // There is already a reachable operand. If we conflict with it,
691 // then the PHI node becomes overdefined. If we agree with it, we
692 // can continue on.
693
694 // Check to see if there are two different constants merging, if so, the PHI
695 // node is overdefined.
696 if (IV.getConstant() != OperandVal)
697 return markOverdefined(&PN);
698 }
699
700 // If we exited the loop, this means that the PHI node only has constant
701 // arguments that agree with each other(and OperandVal is the constant) or
702 // OperandVal is null because there are no defined incoming arguments. If
703 // this is the case, the PHI remains undefined.
704 //
705 if (OperandVal)
706 markConstant(&PN, OperandVal); // Acquire operand value
707 }
708
visitReturnInst(ReturnInst & I)709 void SCCPSolver::visitReturnInst(ReturnInst &I) {
710 if (I.getNumOperands() == 0) return; // ret void
711
712 Function *F = I.getParent()->getParent();
713 Value *ResultOp = I.getOperand(0);
714
715 // If we are tracking the return value of this function, merge it in.
716 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
717 DenseMap<Function*, LatticeVal>::iterator TFRVI =
718 TrackedRetVals.find(F);
719 if (TFRVI != TrackedRetVals.end()) {
720 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
721 return;
722 }
723 }
724
725 // Handle functions that return multiple values.
726 if (!TrackedMultipleRetVals.empty()) {
727 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
728 if (MRVFunctionsTracked.count(F))
729 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
730 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
731 getStructValueState(ResultOp, i));
732
733 }
734 }
735
visitTerminatorInst(TerminatorInst & TI)736 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
737 SmallVector<bool, 16> SuccFeasible;
738 getFeasibleSuccessors(TI, SuccFeasible);
739
740 BasicBlock *BB = TI.getParent();
741
742 // Mark all feasible successors executable.
743 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
744 if (SuccFeasible[i])
745 markEdgeExecutable(BB, TI.getSuccessor(i));
746 }
747
visitCastInst(CastInst & I)748 void SCCPSolver::visitCastInst(CastInst &I) {
749 LatticeVal OpSt = getValueState(I.getOperand(0));
750 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
751 markOverdefined(&I);
752 else if (OpSt.isConstant()) // Propagate constant value
753 markConstant(&I, ConstantExpr::getCast(I.getOpcode(),
754 OpSt.getConstant(), I.getType()));
755 }
756
757
visitExtractValueInst(ExtractValueInst & EVI)758 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
759 // If this returns a struct, mark all elements over defined, we don't track
760 // structs in structs.
761 if (EVI.getType()->isStructTy())
762 return markAnythingOverdefined(&EVI);
763
764 // If this is extracting from more than one level of struct, we don't know.
765 if (EVI.getNumIndices() != 1)
766 return markOverdefined(&EVI);
767
768 Value *AggVal = EVI.getAggregateOperand();
769 if (AggVal->getType()->isStructTy()) {
770 unsigned i = *EVI.idx_begin();
771 LatticeVal EltVal = getStructValueState(AggVal, i);
772 mergeInValue(getValueState(&EVI), &EVI, EltVal);
773 } else {
774 // Otherwise, must be extracting from an array.
775 return markOverdefined(&EVI);
776 }
777 }
778
visitInsertValueInst(InsertValueInst & IVI)779 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
780 StructType *STy = dyn_cast<StructType>(IVI.getType());
781 if (!STy)
782 return markOverdefined(&IVI);
783
784 // If this has more than one index, we can't handle it, drive all results to
785 // undef.
786 if (IVI.getNumIndices() != 1)
787 return markAnythingOverdefined(&IVI);
788
789 Value *Aggr = IVI.getAggregateOperand();
790 unsigned Idx = *IVI.idx_begin();
791
792 // Compute the result based on what we're inserting.
793 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
794 // This passes through all values that aren't the inserted element.
795 if (i != Idx) {
796 LatticeVal EltVal = getStructValueState(Aggr, i);
797 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
798 continue;
799 }
800
801 Value *Val = IVI.getInsertedValueOperand();
802 if (Val->getType()->isStructTy())
803 // We don't track structs in structs.
804 markOverdefined(getStructValueState(&IVI, i), &IVI);
805 else {
806 LatticeVal InVal = getValueState(Val);
807 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
808 }
809 }
810 }
811
visitSelectInst(SelectInst & I)812 void SCCPSolver::visitSelectInst(SelectInst &I) {
813 // If this select returns a struct, just mark the result overdefined.
814 // TODO: We could do a lot better than this if code actually uses this.
815 if (I.getType()->isStructTy())
816 return markAnythingOverdefined(&I);
817
818 LatticeVal CondValue = getValueState(I.getCondition());
819 if (CondValue.isUndefined())
820 return;
821
822 if (ConstantInt *CondCB = CondValue.getConstantInt()) {
823 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
824 mergeInValue(&I, getValueState(OpVal));
825 return;
826 }
827
828 // Otherwise, the condition is overdefined or a constant we can't evaluate.
829 // See if we can produce something better than overdefined based on the T/F
830 // value.
831 LatticeVal TVal = getValueState(I.getTrueValue());
832 LatticeVal FVal = getValueState(I.getFalseValue());
833
834 // select ?, C, C -> C.
835 if (TVal.isConstant() && FVal.isConstant() &&
836 TVal.getConstant() == FVal.getConstant())
837 return markConstant(&I, FVal.getConstant());
838
839 if (TVal.isUndefined()) // select ?, undef, X -> X.
840 return mergeInValue(&I, FVal);
841 if (FVal.isUndefined()) // select ?, X, undef -> X.
842 return mergeInValue(&I, TVal);
843 markOverdefined(&I);
844 }
845
846 // Handle Binary Operators.
visitBinaryOperator(Instruction & I)847 void SCCPSolver::visitBinaryOperator(Instruction &I) {
848 LatticeVal V1State = getValueState(I.getOperand(0));
849 LatticeVal V2State = getValueState(I.getOperand(1));
850
851 LatticeVal &IV = ValueState[&I];
852 if (IV.isOverdefined()) return;
853
854 if (V1State.isConstant() && V2State.isConstant())
855 return markConstant(IV, &I,
856 ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
857 V2State.getConstant()));
858
859 // If something is undef, wait for it to resolve.
860 if (!V1State.isOverdefined() && !V2State.isOverdefined())
861 return;
862
863 // Otherwise, one of our operands is overdefined. Try to produce something
864 // better than overdefined with some tricks.
865
866 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
867 // operand is overdefined.
868 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
869 LatticeVal *NonOverdefVal = nullptr;
870 if (!V1State.isOverdefined())
871 NonOverdefVal = &V1State;
872 else if (!V2State.isOverdefined())
873 NonOverdefVal = &V2State;
874
875 if (NonOverdefVal) {
876 if (NonOverdefVal->isUndefined()) {
877 // Could annihilate value.
878 if (I.getOpcode() == Instruction::And)
879 markConstant(IV, &I, Constant::getNullValue(I.getType()));
880 else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
881 markConstant(IV, &I, Constant::getAllOnesValue(PT));
882 else
883 markConstant(IV, &I,
884 Constant::getAllOnesValue(I.getType()));
885 return;
886 }
887
888 if (I.getOpcode() == Instruction::And) {
889 // X and 0 = 0
890 if (NonOverdefVal->getConstant()->isNullValue())
891 return markConstant(IV, &I, NonOverdefVal->getConstant());
892 } else {
893 if (ConstantInt *CI = NonOverdefVal->getConstantInt())
894 if (CI->isAllOnesValue()) // X or -1 = -1
895 return markConstant(IV, &I, NonOverdefVal->getConstant());
896 }
897 }
898 }
899
900
901 markOverdefined(&I);
902 }
903
904 // Handle ICmpInst instruction.
visitCmpInst(CmpInst & I)905 void SCCPSolver::visitCmpInst(CmpInst &I) {
906 LatticeVal V1State = getValueState(I.getOperand(0));
907 LatticeVal V2State = getValueState(I.getOperand(1));
908
909 LatticeVal &IV = ValueState[&I];
910 if (IV.isOverdefined()) return;
911
912 if (V1State.isConstant() && V2State.isConstant())
913 return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(),
914 V1State.getConstant(),
915 V2State.getConstant()));
916
917 // If operands are still undefined, wait for it to resolve.
918 if (!V1State.isOverdefined() && !V2State.isOverdefined())
919 return;
920
921 markOverdefined(&I);
922 }
923
visitExtractElementInst(ExtractElementInst & I)924 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
925 // TODO : SCCP does not handle vectors properly.
926 return markOverdefined(&I);
927
928 #if 0
929 LatticeVal &ValState = getValueState(I.getOperand(0));
930 LatticeVal &IdxState = getValueState(I.getOperand(1));
931
932 if (ValState.isOverdefined() || IdxState.isOverdefined())
933 markOverdefined(&I);
934 else if(ValState.isConstant() && IdxState.isConstant())
935 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
936 IdxState.getConstant()));
937 #endif
938 }
939
visitInsertElementInst(InsertElementInst & I)940 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
941 // TODO : SCCP does not handle vectors properly.
942 return markOverdefined(&I);
943 #if 0
944 LatticeVal &ValState = getValueState(I.getOperand(0));
945 LatticeVal &EltState = getValueState(I.getOperand(1));
946 LatticeVal &IdxState = getValueState(I.getOperand(2));
947
948 if (ValState.isOverdefined() || EltState.isOverdefined() ||
949 IdxState.isOverdefined())
950 markOverdefined(&I);
951 else if(ValState.isConstant() && EltState.isConstant() &&
952 IdxState.isConstant())
953 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
954 EltState.getConstant(),
955 IdxState.getConstant()));
956 else if (ValState.isUndefined() && EltState.isConstant() &&
957 IdxState.isConstant())
958 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
959 EltState.getConstant(),
960 IdxState.getConstant()));
961 #endif
962 }
963
visitShuffleVectorInst(ShuffleVectorInst & I)964 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
965 // TODO : SCCP does not handle vectors properly.
966 return markOverdefined(&I);
967 #if 0
968 LatticeVal &V1State = getValueState(I.getOperand(0));
969 LatticeVal &V2State = getValueState(I.getOperand(1));
970 LatticeVal &MaskState = getValueState(I.getOperand(2));
971
972 if (MaskState.isUndefined() ||
973 (V1State.isUndefined() && V2State.isUndefined()))
974 return; // Undefined output if mask or both inputs undefined.
975
976 if (V1State.isOverdefined() || V2State.isOverdefined() ||
977 MaskState.isOverdefined()) {
978 markOverdefined(&I);
979 } else {
980 // A mix of constant/undef inputs.
981 Constant *V1 = V1State.isConstant() ?
982 V1State.getConstant() : UndefValue::get(I.getType());
983 Constant *V2 = V2State.isConstant() ?
984 V2State.getConstant() : UndefValue::get(I.getType());
985 Constant *Mask = MaskState.isConstant() ?
986 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
987 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
988 }
989 #endif
990 }
991
992 // Handle getelementptr instructions. If all operands are constants then we
993 // can turn this into a getelementptr ConstantExpr.
994 //
visitGetElementPtrInst(GetElementPtrInst & I)995 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
996 if (ValueState[&I].isOverdefined()) return;
997
998 SmallVector<Constant*, 8> Operands;
999 Operands.reserve(I.getNumOperands());
1000
1001 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1002 LatticeVal State = getValueState(I.getOperand(i));
1003 if (State.isUndefined())
1004 return; // Operands are not resolved yet.
1005
1006 if (State.isOverdefined())
1007 return markOverdefined(&I);
1008
1009 assert(State.isConstant() && "Unknown state!");
1010 Operands.push_back(State.getConstant());
1011 }
1012
1013 Constant *Ptr = Operands[0];
1014 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1015 markConstant(&I, ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr,
1016 Indices));
1017 }
1018
visitStoreInst(StoreInst & SI)1019 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1020 // If this store is of a struct, ignore it.
1021 if (SI.getOperand(0)->getType()->isStructTy())
1022 return;
1023
1024 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1025 return;
1026
1027 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1028 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1029 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1030
1031 // Get the value we are storing into the global, then merge it.
1032 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1033 if (I->second.isOverdefined())
1034 TrackedGlobals.erase(I); // No need to keep tracking this!
1035 }
1036
1037
1038 // Handle load instructions. If the operand is a constant pointer to a constant
1039 // global, we can replace the load with the loaded constant value!
visitLoadInst(LoadInst & I)1040 void SCCPSolver::visitLoadInst(LoadInst &I) {
1041 // If this load is of a struct, just mark the result overdefined.
1042 if (I.getType()->isStructTy())
1043 return markAnythingOverdefined(&I);
1044
1045 LatticeVal PtrVal = getValueState(I.getOperand(0));
1046 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1047
1048 LatticeVal &IV = ValueState[&I];
1049 if (IV.isOverdefined()) return;
1050
1051 if (!PtrVal.isConstant() || I.isVolatile())
1052 return markOverdefined(IV, &I);
1053
1054 Constant *Ptr = PtrVal.getConstant();
1055
1056 // load null -> null
1057 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1058 return markConstant(IV, &I, Constant::getNullValue(I.getType()));
1059
1060 // Transform load (constant global) into the value loaded.
1061 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1062 if (!TrackedGlobals.empty()) {
1063 // If we are tracking this global, merge in the known value for it.
1064 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1065 TrackedGlobals.find(GV);
1066 if (It != TrackedGlobals.end()) {
1067 mergeInValue(IV, &I, It->second);
1068 return;
1069 }
1070 }
1071 }
1072
1073 // Transform load from a constant into a constant if possible.
1074 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, DL))
1075 return markConstant(IV, &I, C);
1076
1077 // Otherwise we cannot say for certain what value this load will produce.
1078 // Bail out.
1079 markOverdefined(IV, &I);
1080 }
1081
visitCallSite(CallSite CS)1082 void SCCPSolver::visitCallSite(CallSite CS) {
1083 Function *F = CS.getCalledFunction();
1084 Instruction *I = CS.getInstruction();
1085
1086 // The common case is that we aren't tracking the callee, either because we
1087 // are not doing interprocedural analysis or the callee is indirect, or is
1088 // external. Handle these cases first.
1089 if (!F || F->isDeclaration()) {
1090 CallOverdefined:
1091 // Void return and not tracking callee, just bail.
1092 if (I->getType()->isVoidTy()) return;
1093
1094 // Otherwise, if we have a single return value case, and if the function is
1095 // a declaration, maybe we can constant fold it.
1096 if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1097 canConstantFoldCallTo(F)) {
1098
1099 SmallVector<Constant*, 8> Operands;
1100 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1101 AI != E; ++AI) {
1102 LatticeVal State = getValueState(*AI);
1103
1104 if (State.isUndefined())
1105 return; // Operands are not resolved yet.
1106 if (State.isOverdefined())
1107 return markOverdefined(I);
1108 assert(State.isConstant() && "Unknown state!");
1109 Operands.push_back(State.getConstant());
1110 }
1111
1112 if (getValueState(I).isOverdefined())
1113 return;
1114
1115 // If we can constant fold this, mark the result of the call as a
1116 // constant.
1117 if (Constant *C = ConstantFoldCall(F, Operands, TLI))
1118 return markConstant(I, C);
1119 }
1120
1121 // Otherwise, we don't know anything about this call, mark it overdefined.
1122 return markAnythingOverdefined(I);
1123 }
1124
1125 // If this is a local function that doesn't have its address taken, mark its
1126 // entry block executable and merge in the actual arguments to the call into
1127 // the formal arguments of the function.
1128 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1129 MarkBlockExecutable(F->begin());
1130
1131 // Propagate information from this call site into the callee.
1132 CallSite::arg_iterator CAI = CS.arg_begin();
1133 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1134 AI != E; ++AI, ++CAI) {
1135 // If this argument is byval, and if the function is not readonly, there
1136 // will be an implicit copy formed of the input aggregate.
1137 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1138 markOverdefined(AI);
1139 continue;
1140 }
1141
1142 if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1143 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1144 LatticeVal CallArg = getStructValueState(*CAI, i);
1145 mergeInValue(getStructValueState(AI, i), AI, CallArg);
1146 }
1147 } else {
1148 mergeInValue(AI, getValueState(*CAI));
1149 }
1150 }
1151 }
1152
1153 // If this is a single/zero retval case, see if we're tracking the function.
1154 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1155 if (!MRVFunctionsTracked.count(F))
1156 goto CallOverdefined; // Not tracking this callee.
1157
1158 // If we are tracking this callee, propagate the result of the function
1159 // into this call site.
1160 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1161 mergeInValue(getStructValueState(I, i), I,
1162 TrackedMultipleRetVals[std::make_pair(F, i)]);
1163 } else {
1164 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1165 if (TFRVI == TrackedRetVals.end())
1166 goto CallOverdefined; // Not tracking this callee.
1167
1168 // If so, propagate the return value of the callee into this call result.
1169 mergeInValue(I, TFRVI->second);
1170 }
1171 }
1172
Solve()1173 void SCCPSolver::Solve() {
1174 // Process the work lists until they are empty!
1175 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1176 !OverdefinedInstWorkList.empty()) {
1177 // Process the overdefined instruction's work list first, which drives other
1178 // things to overdefined more quickly.
1179 while (!OverdefinedInstWorkList.empty()) {
1180 Value *I = OverdefinedInstWorkList.pop_back_val();
1181
1182 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1183
1184 // "I" got into the work list because it either made the transition from
1185 // bottom to constant, or to overdefined.
1186 //
1187 // Anything on this worklist that is overdefined need not be visited
1188 // since all of its users will have already been marked as overdefined
1189 // Update all of the users of this instruction's value.
1190 //
1191 for (User *U : I->users())
1192 if (Instruction *UI = dyn_cast<Instruction>(U))
1193 OperandChangedState(UI);
1194 }
1195
1196 // Process the instruction work list.
1197 while (!InstWorkList.empty()) {
1198 Value *I = InstWorkList.pop_back_val();
1199
1200 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1201
1202 // "I" got into the work list because it made the transition from undef to
1203 // constant.
1204 //
1205 // Anything on this worklist that is overdefined need not be visited
1206 // since all of its users will have already been marked as overdefined.
1207 // Update all of the users of this instruction's value.
1208 //
1209 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1210 for (User *U : I->users())
1211 if (Instruction *UI = dyn_cast<Instruction>(U))
1212 OperandChangedState(UI);
1213 }
1214
1215 // Process the basic block work list.
1216 while (!BBWorkList.empty()) {
1217 BasicBlock *BB = BBWorkList.back();
1218 BBWorkList.pop_back();
1219
1220 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1221
1222 // Notify all instructions in this basic block that they are newly
1223 // executable.
1224 visit(BB);
1225 }
1226 }
1227 }
1228
1229 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1230 /// that branches on undef values cannot reach any of their successors.
1231 /// However, this is not a safe assumption. After we solve dataflow, this
1232 /// method should be use to handle this. If this returns true, the solver
1233 /// should be rerun.
1234 ///
1235 /// This method handles this by finding an unresolved branch and marking it one
1236 /// of the edges from the block as being feasible, even though the condition
1237 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1238 /// CFG and only slightly pessimizes the analysis results (by marking one,
1239 /// potentially infeasible, edge feasible). This cannot usefully modify the
1240 /// constraints on the condition of the branch, as that would impact other users
1241 /// of the value.
1242 ///
1243 /// This scan also checks for values that use undefs, whose results are actually
1244 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1245 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1246 /// even if X isn't defined.
ResolvedUndefsIn(Function & F)1247 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1248 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1249 if (!BBExecutable.count(BB))
1250 continue;
1251
1252 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1253 // Look for instructions which produce undef values.
1254 if (I->getType()->isVoidTy()) continue;
1255
1256 if (StructType *STy = dyn_cast<StructType>(I->getType())) {
1257 // Only a few things that can be structs matter for undef.
1258
1259 // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1260 if (CallSite CS = CallSite(I))
1261 if (Function *F = CS.getCalledFunction())
1262 if (MRVFunctionsTracked.count(F))
1263 continue;
1264
1265 // extractvalue and insertvalue don't need to be marked; they are
1266 // tracked as precisely as their operands.
1267 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1268 continue;
1269
1270 // Send the results of everything else to overdefined. We could be
1271 // more precise than this but it isn't worth bothering.
1272 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1273 LatticeVal &LV = getStructValueState(I, i);
1274 if (LV.isUndefined())
1275 markOverdefined(LV, I);
1276 }
1277 continue;
1278 }
1279
1280 LatticeVal &LV = getValueState(I);
1281 if (!LV.isUndefined()) continue;
1282
1283 // extractvalue is safe; check here because the argument is a struct.
1284 if (isa<ExtractValueInst>(I))
1285 continue;
1286
1287 // Compute the operand LatticeVals, for convenience below.
1288 // Anything taking a struct is conservatively assumed to require
1289 // overdefined markings.
1290 if (I->getOperand(0)->getType()->isStructTy()) {
1291 markOverdefined(I);
1292 return true;
1293 }
1294 LatticeVal Op0LV = getValueState(I->getOperand(0));
1295 LatticeVal Op1LV;
1296 if (I->getNumOperands() == 2) {
1297 if (I->getOperand(1)->getType()->isStructTy()) {
1298 markOverdefined(I);
1299 return true;
1300 }
1301
1302 Op1LV = getValueState(I->getOperand(1));
1303 }
1304 // If this is an instructions whose result is defined even if the input is
1305 // not fully defined, propagate the information.
1306 Type *ITy = I->getType();
1307 switch (I->getOpcode()) {
1308 case Instruction::Add:
1309 case Instruction::Sub:
1310 case Instruction::Trunc:
1311 case Instruction::FPTrunc:
1312 case Instruction::BitCast:
1313 break; // Any undef -> undef
1314 case Instruction::FSub:
1315 case Instruction::FAdd:
1316 case Instruction::FMul:
1317 case Instruction::FDiv:
1318 case Instruction::FRem:
1319 // Floating-point binary operation: be conservative.
1320 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1321 markForcedConstant(I, Constant::getNullValue(ITy));
1322 else
1323 markOverdefined(I);
1324 return true;
1325 case Instruction::ZExt:
1326 case Instruction::SExt:
1327 case Instruction::FPToUI:
1328 case Instruction::FPToSI:
1329 case Instruction::FPExt:
1330 case Instruction::PtrToInt:
1331 case Instruction::IntToPtr:
1332 case Instruction::SIToFP:
1333 case Instruction::UIToFP:
1334 // undef -> 0; some outputs are impossible
1335 markForcedConstant(I, Constant::getNullValue(ITy));
1336 return true;
1337 case Instruction::Mul:
1338 case Instruction::And:
1339 // Both operands undef -> undef
1340 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1341 break;
1342 // undef * X -> 0. X could be zero.
1343 // undef & X -> 0. X could be zero.
1344 markForcedConstant(I, Constant::getNullValue(ITy));
1345 return true;
1346
1347 case Instruction::Or:
1348 // Both operands undef -> undef
1349 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1350 break;
1351 // undef | X -> -1. X could be -1.
1352 markForcedConstant(I, Constant::getAllOnesValue(ITy));
1353 return true;
1354
1355 case Instruction::Xor:
1356 // undef ^ undef -> 0; strictly speaking, this is not strictly
1357 // necessary, but we try to be nice to people who expect this
1358 // behavior in simple cases
1359 if (Op0LV.isUndefined() && Op1LV.isUndefined()) {
1360 markForcedConstant(I, Constant::getNullValue(ITy));
1361 return true;
1362 }
1363 // undef ^ X -> undef
1364 break;
1365
1366 case Instruction::SDiv:
1367 case Instruction::UDiv:
1368 case Instruction::SRem:
1369 case Instruction::URem:
1370 // X / undef -> undef. No change.
1371 // X % undef -> undef. No change.
1372 if (Op1LV.isUndefined()) break;
1373
1374 // undef / X -> 0. X could be maxint.
1375 // undef % X -> 0. X could be 1.
1376 markForcedConstant(I, Constant::getNullValue(ITy));
1377 return true;
1378
1379 case Instruction::AShr:
1380 // X >>a undef -> undef.
1381 if (Op1LV.isUndefined()) break;
1382
1383 // undef >>a X -> all ones
1384 markForcedConstant(I, Constant::getAllOnesValue(ITy));
1385 return true;
1386 case Instruction::LShr:
1387 case Instruction::Shl:
1388 // X << undef -> undef.
1389 // X >> undef -> undef.
1390 if (Op1LV.isUndefined()) break;
1391
1392 // undef << X -> 0
1393 // undef >> X -> 0
1394 markForcedConstant(I, Constant::getNullValue(ITy));
1395 return true;
1396 case Instruction::Select:
1397 Op1LV = getValueState(I->getOperand(1));
1398 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1399 if (Op0LV.isUndefined()) {
1400 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1401 Op1LV = getValueState(I->getOperand(2));
1402 } else if (Op1LV.isUndefined()) {
1403 // c ? undef : undef -> undef. No change.
1404 Op1LV = getValueState(I->getOperand(2));
1405 if (Op1LV.isUndefined())
1406 break;
1407 // Otherwise, c ? undef : x -> x.
1408 } else {
1409 // Leave Op1LV as Operand(1)'s LatticeValue.
1410 }
1411
1412 if (Op1LV.isConstant())
1413 markForcedConstant(I, Op1LV.getConstant());
1414 else
1415 markOverdefined(I);
1416 return true;
1417 case Instruction::Load:
1418 // A load here means one of two things: a load of undef from a global,
1419 // a load from an unknown pointer. Either way, having it return undef
1420 // is okay.
1421 break;
1422 case Instruction::ICmp:
1423 // X == undef -> undef. Other comparisons get more complicated.
1424 if (cast<ICmpInst>(I)->isEquality())
1425 break;
1426 markOverdefined(I);
1427 return true;
1428 case Instruction::Call:
1429 case Instruction::Invoke: {
1430 // There are two reasons a call can have an undef result
1431 // 1. It could be tracked.
1432 // 2. It could be constant-foldable.
1433 // Because of the way we solve return values, tracked calls must
1434 // never be marked overdefined in ResolvedUndefsIn.
1435 if (Function *F = CallSite(I).getCalledFunction())
1436 if (TrackedRetVals.count(F))
1437 break;
1438
1439 // If the call is constant-foldable, we mark it overdefined because
1440 // we do not know what return values are valid.
1441 markOverdefined(I);
1442 return true;
1443 }
1444 default:
1445 // If we don't know what should happen here, conservatively mark it
1446 // overdefined.
1447 markOverdefined(I);
1448 return true;
1449 }
1450 }
1451
1452 // Check to see if we have a branch or switch on an undefined value. If so
1453 // we force the branch to go one way or the other to make the successor
1454 // values live. It doesn't really matter which way we force it.
1455 TerminatorInst *TI = BB->getTerminator();
1456 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1457 if (!BI->isConditional()) continue;
1458 if (!getValueState(BI->getCondition()).isUndefined())
1459 continue;
1460
1461 // If the input to SCCP is actually branch on undef, fix the undef to
1462 // false.
1463 if (isa<UndefValue>(BI->getCondition())) {
1464 BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1465 markEdgeExecutable(BB, TI->getSuccessor(1));
1466 return true;
1467 }
1468
1469 // Otherwise, it is a branch on a symbolic value which is currently
1470 // considered to be undef. Handle this by forcing the input value to the
1471 // branch to false.
1472 markForcedConstant(BI->getCondition(),
1473 ConstantInt::getFalse(TI->getContext()));
1474 return true;
1475 }
1476
1477 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1478 if (!SI->getNumCases())
1479 continue;
1480 if (!getValueState(SI->getCondition()).isUndefined())
1481 continue;
1482
1483 // If the input to SCCP is actually switch on undef, fix the undef to
1484 // the first constant.
1485 if (isa<UndefValue>(SI->getCondition())) {
1486 SI->setCondition(SI->case_begin().getCaseValue());
1487 markEdgeExecutable(BB, SI->case_begin().getCaseSuccessor());
1488 return true;
1489 }
1490
1491 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1492 return true;
1493 }
1494 }
1495
1496 return false;
1497 }
1498
1499
1500 namespace {
1501 //===--------------------------------------------------------------------===//
1502 //
1503 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1504 /// Sparse Conditional Constant Propagator.
1505 ///
1506 struct SCCP : public FunctionPass {
getAnalysisUsage__anon10360b9e0311::SCCP1507 void getAnalysisUsage(AnalysisUsage &AU) const override {
1508 AU.addRequired<TargetLibraryInfoWrapperPass>();
1509 }
1510 static char ID; // Pass identification, replacement for typeid
SCCP__anon10360b9e0311::SCCP1511 SCCP() : FunctionPass(ID) {
1512 initializeSCCPPass(*PassRegistry::getPassRegistry());
1513 }
1514
1515 // runOnFunction - Run the Sparse Conditional Constant Propagation
1516 // algorithm, and return true if the function was modified.
1517 //
1518 bool runOnFunction(Function &F) override;
1519 };
1520 } // end anonymous namespace
1521
1522 char SCCP::ID = 0;
1523 INITIALIZE_PASS(SCCP, "sccp",
1524 "Sparse Conditional Constant Propagation", false, false)
1525
1526 // createSCCPPass - This is the public interface to this file.
createSCCPPass()1527 FunctionPass *llvm::createSCCPPass() {
1528 return new SCCP();
1529 }
1530
DeleteInstructionInBlock(BasicBlock * BB)1531 static void DeleteInstructionInBlock(BasicBlock *BB) {
1532 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
1533 ++NumDeadBlocks;
1534
1535 // Check to see if there are non-terminating instructions to delete.
1536 if (isa<TerminatorInst>(BB->begin()))
1537 return;
1538
1539 // Delete the instructions backwards, as it has a reduced likelihood of having
1540 // to update as many def-use and use-def chains.
1541 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1542 while (EndInst != BB->begin()) {
1543 // Delete the next to last instruction.
1544 BasicBlock::iterator I = EndInst;
1545 Instruction *Inst = --I;
1546 if (!Inst->use_empty())
1547 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1548 if (isa<LandingPadInst>(Inst)) {
1549 EndInst = Inst;
1550 continue;
1551 }
1552 BB->getInstList().erase(Inst);
1553 ++NumInstRemoved;
1554 }
1555 }
1556
1557 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1558 // and return true if the function was modified.
1559 //
runOnFunction(Function & F)1560 bool SCCP::runOnFunction(Function &F) {
1561 if (skipOptnoneFunction(F))
1562 return false;
1563
1564 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1565 const DataLayout &DL = F.getParent()->getDataLayout();
1566 const TargetLibraryInfo *TLI =
1567 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1568 SCCPSolver Solver(DL, TLI);
1569
1570 // Mark the first block of the function as being executable.
1571 Solver.MarkBlockExecutable(F.begin());
1572
1573 // Mark all arguments to the function as being overdefined.
1574 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1575 Solver.markAnythingOverdefined(AI);
1576
1577 // Solve for constants.
1578 bool ResolvedUndefs = true;
1579 while (ResolvedUndefs) {
1580 Solver.Solve();
1581 DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1582 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1583 }
1584
1585 bool MadeChanges = false;
1586
1587 // If we decided that there are basic blocks that are dead in this function,
1588 // delete their contents now. Note that we cannot actually delete the blocks,
1589 // as we cannot modify the CFG of the function.
1590
1591 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1592 if (!Solver.isBlockExecutable(BB)) {
1593 DeleteInstructionInBlock(BB);
1594 MadeChanges = true;
1595 continue;
1596 }
1597
1598 // Iterate over all of the instructions in a function, replacing them with
1599 // constants if we have found them to be of constant values.
1600 //
1601 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1602 Instruction *Inst = BI++;
1603 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1604 continue;
1605
1606 // TODO: Reconstruct structs from their elements.
1607 if (Inst->getType()->isStructTy())
1608 continue;
1609
1610 LatticeVal IV = Solver.getLatticeValueFor(Inst);
1611 if (IV.isOverdefined())
1612 continue;
1613
1614 Constant *Const = IV.isConstant()
1615 ? IV.getConstant() : UndefValue::get(Inst->getType());
1616 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
1617
1618 // Replaces all of the uses of a variable with uses of the constant.
1619 Inst->replaceAllUsesWith(Const);
1620
1621 // Delete the instruction.
1622 Inst->eraseFromParent();
1623
1624 // Hey, we just changed something!
1625 MadeChanges = true;
1626 ++NumInstRemoved;
1627 }
1628 }
1629
1630 return MadeChanges;
1631 }
1632
1633 namespace {
1634 //===--------------------------------------------------------------------===//
1635 //
1636 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1637 /// Constant Propagation.
1638 ///
1639 struct IPSCCP : public ModulePass {
getAnalysisUsage__anon10360b9e0411::IPSCCP1640 void getAnalysisUsage(AnalysisUsage &AU) const override {
1641 AU.addRequired<TargetLibraryInfoWrapperPass>();
1642 }
1643 static char ID;
IPSCCP__anon10360b9e0411::IPSCCP1644 IPSCCP() : ModulePass(ID) {
1645 initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1646 }
1647 bool runOnModule(Module &M) override;
1648 };
1649 } // end anonymous namespace
1650
1651 char IPSCCP::ID = 0;
1652 INITIALIZE_PASS_BEGIN(IPSCCP, "ipsccp",
1653 "Interprocedural Sparse Conditional Constant Propagation",
1654 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)1655 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1656 INITIALIZE_PASS_END(IPSCCP, "ipsccp",
1657 "Interprocedural Sparse Conditional Constant Propagation",
1658 false, false)
1659
1660 // createIPSCCPPass - This is the public interface to this file.
1661 ModulePass *llvm::createIPSCCPPass() {
1662 return new IPSCCP();
1663 }
1664
1665
AddressIsTaken(const GlobalValue * GV)1666 static bool AddressIsTaken(const GlobalValue *GV) {
1667 // Delete any dead constantexpr klingons.
1668 GV->removeDeadConstantUsers();
1669
1670 for (const Use &U : GV->uses()) {
1671 const User *UR = U.getUser();
1672 if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1673 if (SI->getOperand(0) == GV || SI->isVolatile())
1674 return true; // Storing addr of GV.
1675 } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1676 // Make sure we are calling the function, not passing the address.
1677 ImmutableCallSite CS(cast<Instruction>(UR));
1678 if (!CS.isCallee(&U))
1679 return true;
1680 } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1681 if (LI->isVolatile())
1682 return true;
1683 } else if (isa<BlockAddress>(UR)) {
1684 // blockaddress doesn't take the address of the function, it takes addr
1685 // of label.
1686 } else {
1687 return true;
1688 }
1689 }
1690 return false;
1691 }
1692
runOnModule(Module & M)1693 bool IPSCCP::runOnModule(Module &M) {
1694 const DataLayout &DL = M.getDataLayout();
1695 const TargetLibraryInfo *TLI =
1696 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1697 SCCPSolver Solver(DL, TLI);
1698
1699 // AddressTakenFunctions - This set keeps track of the address-taken functions
1700 // that are in the input. As IPSCCP runs through and simplifies code,
1701 // functions that were address taken can end up losing their
1702 // address-taken-ness. Because of this, we keep track of their addresses from
1703 // the first pass so we can use them for the later simplification pass.
1704 SmallPtrSet<Function*, 32> AddressTakenFunctions;
1705
1706 // Loop over all functions, marking arguments to those with their addresses
1707 // taken or that are external as overdefined.
1708 //
1709 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1710 if (F->isDeclaration())
1711 continue;
1712
1713 // If this is a strong or ODR definition of this function, then we can
1714 // propagate information about its result into callsites of it.
1715 if (!F->mayBeOverridden())
1716 Solver.AddTrackedFunction(F);
1717
1718 // If this function only has direct calls that we can see, we can track its
1719 // arguments and return value aggressively, and can assume it is not called
1720 // unless we see evidence to the contrary.
1721 if (F->hasLocalLinkage()) {
1722 if (AddressIsTaken(F))
1723 AddressTakenFunctions.insert(F);
1724 else {
1725 Solver.AddArgumentTrackedFunction(F);
1726 continue;
1727 }
1728 }
1729
1730 // Assume the function is called.
1731 Solver.MarkBlockExecutable(F->begin());
1732
1733 // Assume nothing about the incoming arguments.
1734 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1735 AI != E; ++AI)
1736 Solver.markAnythingOverdefined(AI);
1737 }
1738
1739 // Loop over global variables. We inform the solver about any internal global
1740 // variables that do not have their 'addresses taken'. If they don't have
1741 // their addresses taken, we can propagate constants through them.
1742 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1743 G != E; ++G)
1744 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
1745 Solver.TrackValueOfGlobalVariable(G);
1746
1747 // Solve for constants.
1748 bool ResolvedUndefs = true;
1749 while (ResolvedUndefs) {
1750 Solver.Solve();
1751
1752 DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1753 ResolvedUndefs = false;
1754 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1755 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1756 }
1757
1758 bool MadeChanges = false;
1759
1760 // Iterate over all of the instructions in the module, replacing them with
1761 // constants if we have found them to be of constant values.
1762 //
1763 SmallVector<BasicBlock*, 512> BlocksToErase;
1764
1765 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1766 if (Solver.isBlockExecutable(F->begin())) {
1767 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1768 AI != E; ++AI) {
1769 if (AI->use_empty() || AI->getType()->isStructTy()) continue;
1770
1771 // TODO: Could use getStructLatticeValueFor to find out if the entire
1772 // result is a constant and replace it entirely if so.
1773
1774 LatticeVal IV = Solver.getLatticeValueFor(AI);
1775 if (IV.isOverdefined()) continue;
1776
1777 Constant *CST = IV.isConstant() ?
1778 IV.getConstant() : UndefValue::get(AI->getType());
1779 DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n");
1780
1781 // Replaces all of the uses of a variable with uses of the
1782 // constant.
1783 AI->replaceAllUsesWith(CST);
1784 ++IPNumArgsElimed;
1785 }
1786 }
1787
1788 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
1789 if (!Solver.isBlockExecutable(BB)) {
1790 DeleteInstructionInBlock(BB);
1791 MadeChanges = true;
1792
1793 TerminatorInst *TI = BB->getTerminator();
1794 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1795 BasicBlock *Succ = TI->getSuccessor(i);
1796 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
1797 TI->getSuccessor(i)->removePredecessor(BB);
1798 }
1799 if (!TI->use_empty())
1800 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1801 TI->eraseFromParent();
1802
1803 if (&*BB != &F->front())
1804 BlocksToErase.push_back(BB);
1805 else
1806 new UnreachableInst(M.getContext(), BB);
1807 continue;
1808 }
1809
1810 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1811 Instruction *Inst = BI++;
1812 if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy())
1813 continue;
1814
1815 // TODO: Could use getStructLatticeValueFor to find out if the entire
1816 // result is a constant and replace it entirely if so.
1817
1818 LatticeVal IV = Solver.getLatticeValueFor(Inst);
1819 if (IV.isOverdefined())
1820 continue;
1821
1822 Constant *Const = IV.isConstant()
1823 ? IV.getConstant() : UndefValue::get(Inst->getType());
1824 DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst << '\n');
1825
1826 // Replaces all of the uses of a variable with uses of the
1827 // constant.
1828 Inst->replaceAllUsesWith(Const);
1829
1830 // Delete the instruction.
1831 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
1832 Inst->eraseFromParent();
1833
1834 // Hey, we just changed something!
1835 MadeChanges = true;
1836 ++IPNumInstRemoved;
1837 }
1838 }
1839
1840 // Now that all instructions in the function are constant folded, erase dead
1841 // blocks, because we can now use ConstantFoldTerminator to get rid of
1842 // in-edges.
1843 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1844 // If there are any PHI nodes in this successor, drop entries for BB now.
1845 BasicBlock *DeadBB = BlocksToErase[i];
1846 for (Value::user_iterator UI = DeadBB->user_begin(),
1847 UE = DeadBB->user_end();
1848 UI != UE;) {
1849 // Grab the user and then increment the iterator early, as the user
1850 // will be deleted. Step past all adjacent uses from the same user.
1851 Instruction *I = dyn_cast<Instruction>(*UI);
1852 do { ++UI; } while (UI != UE && *UI == I);
1853
1854 // Ignore blockaddress users; BasicBlock's dtor will handle them.
1855 if (!I) continue;
1856
1857 bool Folded = ConstantFoldTerminator(I->getParent());
1858 if (!Folded) {
1859 // The constant folder may not have been able to fold the terminator
1860 // if this is a branch or switch on undef. Fold it manually as a
1861 // branch to the first successor.
1862 #ifndef NDEBUG
1863 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1864 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1865 "Branch should be foldable!");
1866 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1867 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1868 } else {
1869 llvm_unreachable("Didn't fold away reference to block!");
1870 }
1871 #endif
1872
1873 // Make this an uncond branch to the first successor.
1874 TerminatorInst *TI = I->getParent()->getTerminator();
1875 BranchInst::Create(TI->getSuccessor(0), TI);
1876
1877 // Remove entries in successor phi nodes to remove edges.
1878 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1879 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1880
1881 // Remove the old terminator.
1882 TI->eraseFromParent();
1883 }
1884 }
1885
1886 // Finally, delete the basic block.
1887 F->getBasicBlockList().erase(DeadBB);
1888 }
1889 BlocksToErase.clear();
1890 }
1891
1892 // If we inferred constant or undef return values for a function, we replaced
1893 // all call uses with the inferred value. This means we don't need to bother
1894 // actually returning anything from the function. Replace all return
1895 // instructions with return undef.
1896 //
1897 // Do this in two stages: first identify the functions we should process, then
1898 // actually zap their returns. This is important because we can only do this
1899 // if the address of the function isn't taken. In cases where a return is the
1900 // last use of a function, the order of processing functions would affect
1901 // whether other functions are optimizable.
1902 SmallVector<ReturnInst*, 8> ReturnsToZap;
1903
1904 // TODO: Process multiple value ret instructions also.
1905 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1906 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1907 E = RV.end(); I != E; ++I) {
1908 Function *F = I->first;
1909 if (I->second.isOverdefined() || F->getReturnType()->isVoidTy())
1910 continue;
1911
1912 // We can only do this if we know that nothing else can call the function.
1913 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1914 continue;
1915
1916 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1917 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1918 if (!isa<UndefValue>(RI->getOperand(0)))
1919 ReturnsToZap.push_back(RI);
1920 }
1921
1922 // Zap all returns which we've identified as zap to change.
1923 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1924 Function *F = ReturnsToZap[i]->getParent()->getParent();
1925 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1926 }
1927
1928 // If we inferred constant or undef values for globals variables, we can
1929 // delete the global and any stores that remain to it.
1930 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1931 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1932 E = TG.end(); I != E; ++I) {
1933 GlobalVariable *GV = I->first;
1934 assert(!I->second.isOverdefined() &&
1935 "Overdefined values should have been taken out of the map!");
1936 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1937 while (!GV->use_empty()) {
1938 StoreInst *SI = cast<StoreInst>(GV->user_back());
1939 SI->eraseFromParent();
1940 }
1941 M.getGlobalList().erase(GV);
1942 ++IPNumGlobalConst;
1943 }
1944
1945 return MadeChanges;
1946 }
1947