1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller.  It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/InstVisitor.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/UnrollLoop.h"
34 #include <climits>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "loop-unroll"
39 
40 static cl::opt<unsigned>
41 UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
42   cl::desc("The cut-off point for automatic loop unrolling"));
43 
44 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
45     "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
46     cl::desc("Don't allow loop unrolling to simulate more than this number of"
47              "iterations when checking full unroll profitability"));
48 
49 static cl::opt<unsigned> UnrollMinPercentOfOptimized(
50     "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
51     cl::desc("If complete unrolling could trigger further optimizations, and, "
52              "by that, remove the given percent of instructions, perform the "
53              "complete unroll even if it's beyond the threshold"));
54 
55 static cl::opt<unsigned> UnrollAbsoluteThreshold(
56     "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
57     cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
58              " even if we can remove big portion of instructions later."));
59 
60 static cl::opt<unsigned>
61 UnrollCount("unroll-count", cl::init(0), cl::Hidden,
62   cl::desc("Use this unroll count for all loops including those with "
63            "unroll_count pragma values, for testing purposes"));
64 
65 static cl::opt<bool>
66 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
67   cl::desc("Allows loops to be partially unrolled until "
68            "-unroll-threshold loop size is reached."));
69 
70 static cl::opt<bool>
71 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
72   cl::desc("Unroll loops with run-time trip counts"));
73 
74 static cl::opt<unsigned>
75 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
76   cl::desc("Unrolled size limit for loops with an unroll(full) or "
77            "unroll_count pragma."));
78 
79 namespace {
80   class LoopUnroll : public LoopPass {
81   public:
82     static char ID; // Pass ID, replacement for typeid
LoopUnroll(int T=-1,int C=-1,int P=-1,int R=-1)83     LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
84       CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
85       CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
86       CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
87       CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
88       CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
89       CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
90 
91       UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
92       UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
93       UserPercentOfOptimized =
94           (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
95       UserAllowPartial = (P != -1) ||
96                          (UnrollAllowPartial.getNumOccurrences() > 0);
97       UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
98       UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
99 
100       initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
101     }
102 
103     /// A magic value for use with the Threshold parameter to indicate
104     /// that the loop unroll should be performed regardless of how much
105     /// code expansion would result.
106     static const unsigned NoThreshold = UINT_MAX;
107 
108     // Threshold to use when optsize is specified (and there is no
109     // explicit -unroll-threshold).
110     static const unsigned OptSizeUnrollThreshold = 50;
111 
112     // Default unroll count for loops with run-time trip count if
113     // -unroll-count is not set
114     static const unsigned UnrollRuntimeCount = 8;
115 
116     unsigned CurrentCount;
117     unsigned CurrentThreshold;
118     unsigned CurrentAbsoluteThreshold;
119     unsigned CurrentMinPercentOfOptimized;
120     bool     CurrentAllowPartial;
121     bool     CurrentRuntime;
122     bool     UserCount;            // CurrentCount is user-specified.
123     bool     UserThreshold;        // CurrentThreshold is user-specified.
124     bool UserAbsoluteThreshold;    // CurrentAbsoluteThreshold is
125                                    // user-specified.
126     bool UserPercentOfOptimized;   // CurrentMinPercentOfOptimized is
127                                    // user-specified.
128     bool     UserAllowPartial;     // CurrentAllowPartial is user-specified.
129     bool     UserRuntime;          // CurrentRuntime is user-specified.
130 
131     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
132 
133     /// This transformation requires natural loop information & requires that
134     /// loop preheaders be inserted into the CFG...
135     ///
getAnalysisUsage(AnalysisUsage & AU) const136     void getAnalysisUsage(AnalysisUsage &AU) const override {
137       AU.addRequired<AssumptionCacheTracker>();
138       AU.addRequired<LoopInfoWrapperPass>();
139       AU.addPreserved<LoopInfoWrapperPass>();
140       AU.addRequiredID(LoopSimplifyID);
141       AU.addPreservedID(LoopSimplifyID);
142       AU.addRequiredID(LCSSAID);
143       AU.addPreservedID(LCSSAID);
144       AU.addRequired<ScalarEvolution>();
145       AU.addPreserved<ScalarEvolution>();
146       AU.addRequired<TargetTransformInfoWrapperPass>();
147       // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
148       // If loop unroll does not preserve dom info then LCSSA pass on next
149       // loop will receive invalid dom info.
150       // For now, recreate dom info, if loop is unrolled.
151       AU.addPreserved<DominatorTreeWrapperPass>();
152     }
153 
154     // Fill in the UnrollingPreferences parameter with values from the
155     // TargetTransformationInfo.
getUnrollingPreferences(Loop * L,const TargetTransformInfo & TTI,TargetTransformInfo::UnrollingPreferences & UP)156     void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
157                                  TargetTransformInfo::UnrollingPreferences &UP) {
158       UP.Threshold = CurrentThreshold;
159       UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
160       UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
161       UP.OptSizeThreshold = OptSizeUnrollThreshold;
162       UP.PartialThreshold = CurrentThreshold;
163       UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
164       UP.Count = CurrentCount;
165       UP.MaxCount = UINT_MAX;
166       UP.Partial = CurrentAllowPartial;
167       UP.Runtime = CurrentRuntime;
168       UP.AllowExpensiveTripCount = false;
169       TTI.getUnrollingPreferences(L, UP);
170     }
171 
172     // Select and return an unroll count based on parameters from
173     // user, unroll preferences, unroll pragmas, or a heuristic.
174     // SetExplicitly is set to true if the unroll count is is set by
175     // the user or a pragma rather than selected heuristically.
176     unsigned
177     selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
178                       unsigned PragmaCount,
179                       const TargetTransformInfo::UnrollingPreferences &UP,
180                       bool &SetExplicitly);
181 
182     // Select threshold values used to limit unrolling based on a
183     // total unrolled size.  Parameters Threshold and PartialThreshold
184     // are set to the maximum unrolled size for fully and partially
185     // unrolled loops respectively.
selectThresholds(const Loop * L,bool HasPragma,const TargetTransformInfo::UnrollingPreferences & UP,unsigned & Threshold,unsigned & PartialThreshold,unsigned NumberOfOptimizedInstructions)186     void selectThresholds(const Loop *L, bool HasPragma,
187                           const TargetTransformInfo::UnrollingPreferences &UP,
188                           unsigned &Threshold, unsigned &PartialThreshold,
189                           unsigned NumberOfOptimizedInstructions) {
190       // Determine the current unrolling threshold.  While this is
191       // normally set from UnrollThreshold, it is overridden to a
192       // smaller value if the current function is marked as
193       // optimize-for-size, and the unroll threshold was not user
194       // specified.
195       Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
196 
197       // If we are allowed to completely unroll if we can remove M% of
198       // instructions, and we know that with complete unrolling we'll be able
199       // to kill N instructions, then we can afford to completely unroll loops
200       // with unrolled size up to N*100/M.
201       // Adjust the threshold according to that:
202       unsigned PercentOfOptimizedForCompleteUnroll =
203           UserPercentOfOptimized ? CurrentMinPercentOfOptimized
204                                  : UP.MinPercentOfOptimized;
205       unsigned AbsoluteThreshold = UserAbsoluteThreshold
206                                        ? CurrentAbsoluteThreshold
207                                        : UP.AbsoluteThreshold;
208       if (PercentOfOptimizedForCompleteUnroll)
209         Threshold = std::max<unsigned>(Threshold,
210                                        NumberOfOptimizedInstructions * 100 /
211                                            PercentOfOptimizedForCompleteUnroll);
212       // But don't allow unrolling loops bigger than absolute threshold.
213       Threshold = std::min<unsigned>(Threshold, AbsoluteThreshold);
214 
215       PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
216       if (!UserThreshold &&
217           L->getHeader()->getParent()->hasFnAttribute(
218               Attribute::OptimizeForSize)) {
219         Threshold = UP.OptSizeThreshold;
220         PartialThreshold = UP.PartialOptSizeThreshold;
221       }
222       if (HasPragma) {
223         // If the loop has an unrolling pragma, we want to be more
224         // aggressive with unrolling limits.  Set thresholds to at
225         // least the PragmaTheshold value which is larger than the
226         // default limits.
227         if (Threshold != NoThreshold)
228           Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
229         if (PartialThreshold != NoThreshold)
230           PartialThreshold =
231               std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
232       }
233     }
234   };
235 }
236 
237 char LoopUnroll::ID = 0;
238 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)239 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
241 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
242 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
243 INITIALIZE_PASS_DEPENDENCY(LCSSA)
244 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
245 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
246 
247 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
248                                  int Runtime) {
249   return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
250 }
251 
createSimpleLoopUnrollPass()252 Pass *llvm::createSimpleLoopUnrollPass() {
253   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
254 }
255 
isLoadFromConstantInitializer(Value * V)256 static bool isLoadFromConstantInitializer(Value *V) {
257   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
258     if (GV->isConstant() && GV->hasDefinitiveInitializer())
259       return GV->getInitializer();
260   return false;
261 }
262 
263 namespace {
264 struct FindConstantPointers {
265   bool LoadCanBeConstantFolded;
266   bool IndexIsConstant;
267   APInt Step;
268   APInt StartValue;
269   Value *BaseAddress;
270   const Loop *L;
271   ScalarEvolution &SE;
FindConstantPointers__anon0cdda4420211::FindConstantPointers272   FindConstantPointers(const Loop *loop, ScalarEvolution &SE)
273       : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop), SE(SE) {}
274 
follow__anon0cdda4420211::FindConstantPointers275   bool follow(const SCEV *S) {
276     if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
277       // We've reached the leaf node of SCEV, it's most probably just a
278       // variable. Now it's time to see if it corresponds to a global constant
279       // global (in which case we can eliminate the load), or not.
280       BaseAddress = SC->getValue();
281       LoadCanBeConstantFolded =
282           IndexIsConstant && isLoadFromConstantInitializer(BaseAddress);
283       return false;
284     }
285     if (isa<SCEVConstant>(S))
286       return true;
287     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
288       // If the current SCEV expression is AddRec, and its loop isn't the loop
289       // we are about to unroll, then we won't get a constant address after
290       // unrolling, and thus, won't be able to eliminate the load.
291       if (AR->getLoop() != L)
292         return IndexIsConstant = false;
293       // If the step isn't constant, we won't get constant addresses in unrolled
294       // version. Bail out.
295       if (const SCEVConstant *StepSE =
296               dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
297         Step = StepSE->getValue()->getValue();
298       else
299         return IndexIsConstant = false;
300 
301       return IndexIsConstant;
302     }
303     // If Result is true, continue traversal.
304     // Otherwise, we have found something that prevents us from (possible) load
305     // elimination.
306     return IndexIsConstant;
307   }
isDone__anon0cdda4420211::FindConstantPointers308   bool isDone() const { return !IndexIsConstant; }
309 };
310 
311 // This class is used to get an estimate of the optimization effects that we
312 // could get from complete loop unrolling. It comes from the fact that some
313 // loads might be replaced with concrete constant values and that could trigger
314 // a chain of instruction simplifications.
315 //
316 // E.g. we might have:
317 //   int a[] = {0, 1, 0};
318 //   v = 0;
319 //   for (i = 0; i < 3; i ++)
320 //     v += b[i]*a[i];
321 // If we completely unroll the loop, we would get:
322 //   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
323 // Which then will be simplified to:
324 //   v = b[0]* 0 + b[1]* 1 + b[2]* 0
325 // And finally:
326 //   v = b[1]
327 class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> {
328   typedef InstVisitor<UnrollAnalyzer, bool> Base;
329   friend class InstVisitor<UnrollAnalyzer, bool>;
330 
331   const Loop *L;
332   unsigned TripCount;
333   ScalarEvolution &SE;
334   const TargetTransformInfo &TTI;
335 
336   DenseMap<Value *, Constant *> SimplifiedValues;
337   DenseMap<LoadInst *, Value *> LoadBaseAddresses;
338   SmallPtrSet<Instruction *, 32> CountedInstructions;
339 
340   /// \brief Count the number of optimized instructions.
341   unsigned NumberOfOptimizedInstructions;
342 
343   // Provide base case for our instruction visit.
visitInstruction(Instruction & I)344   bool visitInstruction(Instruction &I) { return false; };
345   // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc, ZExt, SExt,
346   // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select,
347   // ExtractElement, InsertElement, ShuffleVector, ExtractValue, InsertValue.
348   //
349   // Probaly it's worth to hoist the code for estimating the simplifications
350   // effects to a separate class, since we have a very similar code in
351   // InlineCost already.
visitBinaryOperator(BinaryOperator & I)352   bool visitBinaryOperator(BinaryOperator &I) {
353     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
354     if (!isa<Constant>(LHS))
355       if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
356         LHS = SimpleLHS;
357     if (!isa<Constant>(RHS))
358       if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
359         RHS = SimpleRHS;
360     Value *SimpleV = nullptr;
361     const DataLayout &DL = I.getModule()->getDataLayout();
362     if (auto FI = dyn_cast<FPMathOperator>(&I))
363       SimpleV =
364           SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
365     else
366       SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
367 
368     if (SimpleV && CountedInstructions.insert(&I).second)
369       NumberOfOptimizedInstructions += TTI.getUserCost(&I);
370 
371     if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
372       SimplifiedValues[&I] = C;
373       return true;
374     }
375     return false;
376   }
377 
computeLoadValue(LoadInst * LI,unsigned Iteration)378   Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) {
379     if (!LI)
380       return nullptr;
381     Value *BaseAddr = LoadBaseAddresses[LI];
382     if (!BaseAddr)
383       return nullptr;
384 
385     auto GV = dyn_cast<GlobalVariable>(BaseAddr);
386     if (!GV)
387       return nullptr;
388 
389     ConstantDataSequential *CDS =
390         dyn_cast<ConstantDataSequential>(GV->getInitializer());
391     if (!CDS)
392       return nullptr;
393 
394     const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr);
395     const SCEV *S = SE.getSCEV(LI->getPointerOperand());
396     const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
397 
398     APInt StepC, StartC;
399     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
400     if (!AR)
401       return nullptr;
402 
403     if (const SCEVConstant *StepSE =
404             dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
405       StepC = StepSE->getValue()->getValue();
406     else
407       return nullptr;
408 
409     if (const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart()))
410       StartC = StartSE->getValue()->getValue();
411     else
412       return nullptr;
413 
414     unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
415     unsigned Start = StartC.getLimitedValue();
416     unsigned Step = StepC.getLimitedValue();
417 
418     unsigned Index = (Start + Step * Iteration) / ElemSize;
419     if (Index >= CDS->getNumElements())
420       return nullptr;
421 
422     Constant *CV = CDS->getElementAsConstant(Index);
423 
424     return CV;
425   }
426 
427 public:
UnrollAnalyzer(const Loop * L,unsigned TripCount,ScalarEvolution & SE,const TargetTransformInfo & TTI)428   UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
429                  const TargetTransformInfo &TTI)
430       : L(L), TripCount(TripCount), SE(SE), TTI(TTI),
431         NumberOfOptimizedInstructions(0) {}
432 
433   // Visit all loads the loop L, and for those that, after complete loop
434   // unrolling, would have a constant address and it will point to a known
435   // constant initializer, record its base address for future use.  It is used
436   // when we estimate number of potentially simplified instructions.
findConstFoldableLoads()437   void findConstFoldableLoads() {
438     for (auto BB : L->getBlocks()) {
439       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
440         if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
441           if (!LI->isSimple())
442             continue;
443           Value *AddrOp = LI->getPointerOperand();
444           const SCEV *S = SE.getSCEV(AddrOp);
445           FindConstantPointers Visitor(L, SE);
446           SCEVTraversal<FindConstantPointers> T(Visitor);
447           T.visitAll(S);
448           if (Visitor.IndexIsConstant && Visitor.LoadCanBeConstantFolded) {
449             LoadBaseAddresses[LI] = Visitor.BaseAddress;
450           }
451         }
452       }
453     }
454   }
455 
456   // Given a list of loads that could be constant-folded (LoadBaseAddresses),
457   // estimate number of optimized instructions after substituting the concrete
458   // values for the given Iteration. Also track how many instructions become
459   // dead through this process.
estimateNumberOfOptimizedInstructions(unsigned Iteration)460   unsigned estimateNumberOfOptimizedInstructions(unsigned Iteration) {
461     // We keep a set vector for the worklist so that we don't wast space in the
462     // worklist queuing up the same instruction repeatedly. This can happen due
463     // to multiple operands being the same instruction or due to the same
464     // instruction being an operand of lots of things that end up dead or
465     // simplified.
466     SmallSetVector<Instruction *, 8> Worklist;
467 
468     // Clear the simplified values and counts for this iteration.
469     SimplifiedValues.clear();
470     CountedInstructions.clear();
471     NumberOfOptimizedInstructions = 0;
472 
473     // We start by adding all loads to the worklist.
474     for (auto &LoadDescr : LoadBaseAddresses) {
475       LoadInst *LI = LoadDescr.first;
476       SimplifiedValues[LI] = computeLoadValue(LI, Iteration);
477       if (CountedInstructions.insert(LI).second)
478         NumberOfOptimizedInstructions += TTI.getUserCost(LI);
479 
480       for (User *U : LI->users())
481         Worklist.insert(cast<Instruction>(U));
482     }
483 
484     // And then we try to simplify every user of every instruction from the
485     // worklist. If we do simplify a user, add it to the worklist to process
486     // its users as well.
487     while (!Worklist.empty()) {
488       Instruction *I = Worklist.pop_back_val();
489       if (!L->contains(I))
490         continue;
491       if (!visit(I))
492         continue;
493       for (User *U : I->users())
494         Worklist.insert(cast<Instruction>(U));
495     }
496 
497     // Now that we know the potentially simplifed instructions, estimate number
498     // of instructions that would become dead if we do perform the
499     // simplification.
500 
501     // The dead instructions are held in a separate set. This is used to
502     // prevent us from re-examining instructions and make sure we only count
503     // the benifit once. The worklist's internal set handles insertion
504     // deduplication.
505     SmallPtrSet<Instruction *, 16> DeadInstructions;
506 
507     // Lambda to enque operands onto the worklist.
508     auto EnqueueOperands = [&](Instruction &I) {
509       for (auto *Op : I.operand_values())
510         if (auto *OpI = dyn_cast<Instruction>(Op))
511           if (!OpI->use_empty())
512             Worklist.insert(OpI);
513     };
514 
515     // Start by initializing worklist with simplified instructions.
516     for (auto &FoldedKeyValue : SimplifiedValues)
517       if (auto *FoldedInst = dyn_cast<Instruction>(FoldedKeyValue.first)) {
518         DeadInstructions.insert(FoldedInst);
519 
520         // Add each instruction operand of this dead instruction to the
521         // worklist.
522         EnqueueOperands(*FoldedInst);
523       }
524 
525     // If a definition of an insn is only used by simplified or dead
526     // instructions, it's also dead. Check defs of all instructions from the
527     // worklist.
528     while (!Worklist.empty()) {
529       Instruction *I = Worklist.pop_back_val();
530       if (!L->contains(I))
531         continue;
532       if (DeadInstructions.count(I))
533         continue;
534 
535       if (std::all_of(I->user_begin(), I->user_end(), [&](User *U) {
536             return DeadInstructions.count(cast<Instruction>(U));
537           })) {
538         NumberOfOptimizedInstructions += TTI.getUserCost(I);
539         DeadInstructions.insert(I);
540         EnqueueOperands(*I);
541       }
542     }
543     return NumberOfOptimizedInstructions;
544   }
545 };
546 } // namespace
547 
548 // Complete loop unrolling can make some loads constant, and we need to know if
549 // that would expose any further optimization opportunities.
550 // This routine estimates this optimization effect and returns the number of
551 // instructions, that potentially might be optimized away.
552 static unsigned
approximateNumberOfOptimizedInstructions(const Loop * L,ScalarEvolution & SE,unsigned TripCount,const TargetTransformInfo & TTI)553 approximateNumberOfOptimizedInstructions(const Loop *L, ScalarEvolution &SE,
554                                          unsigned TripCount,
555                                          const TargetTransformInfo &TTI) {
556   if (!TripCount || !UnrollMaxIterationsCountToAnalyze)
557     return 0;
558 
559   UnrollAnalyzer UA(L, TripCount, SE, TTI);
560   UA.findConstFoldableLoads();
561 
562   // Estimate number of instructions, that could be simplified if we replace a
563   // load with the corresponding constant. Since the same load will take
564   // different values on different iterations, we have to go through all loop's
565   // iterations here. To limit ourselves here, we check only first N
566   // iterations, and then scale the found number, if necessary.
567   unsigned IterationsNumberForEstimate =
568       std::min<unsigned>(UnrollMaxIterationsCountToAnalyze, TripCount);
569   unsigned NumberOfOptimizedInstructions = 0;
570   for (unsigned i = 0; i < IterationsNumberForEstimate; ++i)
571     NumberOfOptimizedInstructions +=
572         UA.estimateNumberOfOptimizedInstructions(i);
573 
574   NumberOfOptimizedInstructions *= TripCount / IterationsNumberForEstimate;
575 
576   return NumberOfOptimizedInstructions;
577 }
578 
579 /// ApproximateLoopSize - Approximate the size of the loop.
ApproximateLoopSize(const Loop * L,unsigned & NumCalls,bool & NotDuplicatable,const TargetTransformInfo & TTI,AssumptionCache * AC)580 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
581                                     bool &NotDuplicatable,
582                                     const TargetTransformInfo &TTI,
583                                     AssumptionCache *AC) {
584   SmallPtrSet<const Value *, 32> EphValues;
585   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
586 
587   CodeMetrics Metrics;
588   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
589        I != E; ++I)
590     Metrics.analyzeBasicBlock(*I, TTI, EphValues);
591   NumCalls = Metrics.NumInlineCandidates;
592   NotDuplicatable = Metrics.notDuplicatable;
593 
594   unsigned LoopSize = Metrics.NumInsts;
595 
596   // Don't allow an estimate of size zero.  This would allows unrolling of loops
597   // with huge iteration counts, which is a compile time problem even if it's
598   // not a problem for code quality. Also, the code using this size may assume
599   // that each loop has at least three instructions (likely a conditional
600   // branch, a comparison feeding that branch, and some kind of loop increment
601   // feeding that comparison instruction).
602   LoopSize = std::max(LoopSize, 3u);
603 
604   return LoopSize;
605 }
606 
607 // Returns the loop hint metadata node with the given name (for example,
608 // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
609 // returned.
GetUnrollMetadataForLoop(const Loop * L,StringRef Name)610 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
611   if (MDNode *LoopID = L->getLoopID())
612     return GetUnrollMetadata(LoopID, Name);
613   return nullptr;
614 }
615 
616 // Returns true if the loop has an unroll(full) pragma.
HasUnrollFullPragma(const Loop * L)617 static bool HasUnrollFullPragma(const Loop *L) {
618   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
619 }
620 
621 // Returns true if the loop has an unroll(disable) pragma.
HasUnrollDisablePragma(const Loop * L)622 static bool HasUnrollDisablePragma(const Loop *L) {
623   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
624 }
625 
626 // Returns true if the loop has an runtime unroll(disable) pragma.
HasRuntimeUnrollDisablePragma(const Loop * L)627 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
628   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
629 }
630 
631 // If loop has an unroll_count pragma return the (necessarily
632 // positive) value from the pragma.  Otherwise return 0.
UnrollCountPragmaValue(const Loop * L)633 static unsigned UnrollCountPragmaValue(const Loop *L) {
634   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
635   if (MD) {
636     assert(MD->getNumOperands() == 2 &&
637            "Unroll count hint metadata should have two operands.");
638     unsigned Count =
639         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
640     assert(Count >= 1 && "Unroll count must be positive.");
641     return Count;
642   }
643   return 0;
644 }
645 
646 // Remove existing unroll metadata and add unroll disable metadata to
647 // indicate the loop has already been unrolled.  This prevents a loop
648 // from being unrolled more than is directed by a pragma if the loop
649 // unrolling pass is run more than once (which it generally is).
SetLoopAlreadyUnrolled(Loop * L)650 static void SetLoopAlreadyUnrolled(Loop *L) {
651   MDNode *LoopID = L->getLoopID();
652   if (!LoopID) return;
653 
654   // First remove any existing loop unrolling metadata.
655   SmallVector<Metadata *, 4> MDs;
656   // Reserve first location for self reference to the LoopID metadata node.
657   MDs.push_back(nullptr);
658   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
659     bool IsUnrollMetadata = false;
660     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
661     if (MD) {
662       const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
663       IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
664     }
665     if (!IsUnrollMetadata)
666       MDs.push_back(LoopID->getOperand(i));
667   }
668 
669   // Add unroll(disable) metadata to disable future unrolling.
670   LLVMContext &Context = L->getHeader()->getContext();
671   SmallVector<Metadata *, 1> DisableOperands;
672   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
673   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
674   MDs.push_back(DisableNode);
675 
676   MDNode *NewLoopID = MDNode::get(Context, MDs);
677   // Set operand 0 to refer to the loop id itself.
678   NewLoopID->replaceOperandWith(0, NewLoopID);
679   L->setLoopID(NewLoopID);
680 }
681 
selectUnrollCount(const Loop * L,unsigned TripCount,bool PragmaFullUnroll,unsigned PragmaCount,const TargetTransformInfo::UnrollingPreferences & UP,bool & SetExplicitly)682 unsigned LoopUnroll::selectUnrollCount(
683     const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
684     unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
685     bool &SetExplicitly) {
686   SetExplicitly = true;
687 
688   // User-specified count (either as a command-line option or
689   // constructor parameter) has highest precedence.
690   unsigned Count = UserCount ? CurrentCount : 0;
691 
692   // If there is no user-specified count, unroll pragmas have the next
693   // highest precendence.
694   if (Count == 0) {
695     if (PragmaCount) {
696       Count = PragmaCount;
697     } else if (PragmaFullUnroll) {
698       Count = TripCount;
699     }
700   }
701 
702   if (Count == 0)
703     Count = UP.Count;
704 
705   if (Count == 0) {
706     SetExplicitly = false;
707     if (TripCount == 0)
708       // Runtime trip count.
709       Count = UnrollRuntimeCount;
710     else
711       // Conservative heuristic: if we know the trip count, see if we can
712       // completely unroll (subject to the threshold, checked below); otherwise
713       // try to find greatest modulo of the trip count which is still under
714       // threshold value.
715       Count = TripCount;
716   }
717   if (TripCount && Count > TripCount)
718     return TripCount;
719   return Count;
720 }
721 
runOnLoop(Loop * L,LPPassManager & LPM)722 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
723   if (skipOptnoneFunction(L))
724     return false;
725 
726   Function &F = *L->getHeader()->getParent();
727 
728   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
729   ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
730   const TargetTransformInfo &TTI =
731       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
732   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
733 
734   BasicBlock *Header = L->getHeader();
735   DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
736         << "] Loop %" << Header->getName() << "\n");
737 
738   if (HasUnrollDisablePragma(L)) {
739     return false;
740   }
741   bool PragmaFullUnroll = HasUnrollFullPragma(L);
742   unsigned PragmaCount = UnrollCountPragmaValue(L);
743   bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
744 
745   TargetTransformInfo::UnrollingPreferences UP;
746   getUnrollingPreferences(L, TTI, UP);
747 
748   // Find trip count and trip multiple if count is not available
749   unsigned TripCount = 0;
750   unsigned TripMultiple = 1;
751   // If there are multiple exiting blocks but one of them is the latch, use the
752   // latch for the trip count estimation. Otherwise insist on a single exiting
753   // block for the trip count estimation.
754   BasicBlock *ExitingBlock = L->getLoopLatch();
755   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
756     ExitingBlock = L->getExitingBlock();
757   if (ExitingBlock) {
758     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
759     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
760   }
761 
762   // Select an initial unroll count.  This may be reduced later based
763   // on size thresholds.
764   bool CountSetExplicitly;
765   unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
766                                      PragmaCount, UP, CountSetExplicitly);
767 
768   unsigned NumInlineCandidates;
769   bool notDuplicatable;
770   unsigned LoopSize =
771       ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
772   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
773 
774   // When computing the unrolled size, note that the conditional branch on the
775   // backedge and the comparison feeding it are not replicated like the rest of
776   // the loop body (which is why 2 is subtracted).
777   uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
778   if (notDuplicatable) {
779     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
780                  << " instructions.\n");
781     return false;
782   }
783   if (NumInlineCandidates != 0) {
784     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
785     return false;
786   }
787 
788   unsigned NumberOfOptimizedInstructions =
789       approximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI);
790   DEBUG(dbgs() << "  Complete unrolling could save: "
791                << NumberOfOptimizedInstructions << "\n");
792 
793   unsigned Threshold, PartialThreshold;
794   selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
795                    NumberOfOptimizedInstructions);
796 
797   // Given Count, TripCount and thresholds determine the type of
798   // unrolling which is to be performed.
799   enum { Full = 0, Partial = 1, Runtime = 2 };
800   int Unrolling;
801   if (TripCount && Count == TripCount) {
802     if (Threshold != NoThreshold && UnrolledSize > Threshold) {
803       DEBUG(dbgs() << "  Too large to fully unroll with count: " << Count
804                    << " because size: " << UnrolledSize << ">" << Threshold
805                    << "\n");
806       Unrolling = Partial;
807     } else {
808       Unrolling = Full;
809     }
810   } else if (TripCount && Count < TripCount) {
811     Unrolling = Partial;
812   } else {
813     Unrolling = Runtime;
814   }
815 
816   // Reduce count based on the type of unrolling and the threshold values.
817   unsigned OriginalCount = Count;
818   bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
819   if (HasRuntimeUnrollDisablePragma(L)) {
820     AllowRuntime = false;
821   }
822   if (Unrolling == Partial) {
823     bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
824     if (!AllowPartial && !CountSetExplicitly) {
825       DEBUG(dbgs() << "  will not try to unroll partially because "
826                    << "-unroll-allow-partial not given\n");
827       return false;
828     }
829     if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
830       // Reduce unroll count to be modulo of TripCount for partial unrolling.
831       Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
832       while (Count != 0 && TripCount % Count != 0)
833         Count--;
834     }
835   } else if (Unrolling == Runtime) {
836     if (!AllowRuntime && !CountSetExplicitly) {
837       DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
838                    << "-unroll-runtime not given\n");
839       return false;
840     }
841     // Reduce unroll count to be the largest power-of-two factor of
842     // the original count which satisfies the threshold limit.
843     while (Count != 0 && UnrolledSize > PartialThreshold) {
844       Count >>= 1;
845       UnrolledSize = (LoopSize-2) * Count + 2;
846     }
847     if (Count > UP.MaxCount)
848       Count = UP.MaxCount;
849     DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
850   }
851 
852   if (HasPragma) {
853     if (PragmaCount != 0)
854       // If loop has an unroll count pragma mark loop as unrolled to prevent
855       // unrolling beyond that requested by the pragma.
856       SetLoopAlreadyUnrolled(L);
857 
858     // Emit optimization remarks if we are unable to unroll the loop
859     // as directed by a pragma.
860     DebugLoc LoopLoc = L->getStartLoc();
861     Function *F = Header->getParent();
862     LLVMContext &Ctx = F->getContext();
863     if (PragmaFullUnroll && PragmaCount == 0) {
864       if (TripCount && Count != TripCount) {
865         emitOptimizationRemarkMissed(
866             Ctx, DEBUG_TYPE, *F, LoopLoc,
867             "Unable to fully unroll loop as directed by unroll(full) pragma "
868             "because unrolled size is too large.");
869       } else if (!TripCount) {
870         emitOptimizationRemarkMissed(
871             Ctx, DEBUG_TYPE, *F, LoopLoc,
872             "Unable to fully unroll loop as directed by unroll(full) pragma "
873             "because loop has a runtime trip count.");
874       }
875     } else if (PragmaCount > 0 && Count != OriginalCount) {
876       emitOptimizationRemarkMissed(
877           Ctx, DEBUG_TYPE, *F, LoopLoc,
878           "Unable to unroll loop the number of times directed by "
879           "unroll_count pragma because unrolled size is too large.");
880     }
881   }
882 
883   if (Unrolling != Full && Count < 2) {
884     // Partial unrolling by 1 is a nop.  For full unrolling, a factor
885     // of 1 makes sense because loop control can be eliminated.
886     return false;
887   }
888 
889   // Unroll the loop.
890   if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
891                   TripMultiple, LI, this, &LPM, &AC))
892     return false;
893 
894   return true;
895 }
896