1 //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a simple loop unroller. It works best when loops have
11 // been canonicalized by the -indvars pass, allowing it to determine the trip
12 // counts of loops easily.
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopPass.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DiagnosticInfo.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/InstVisitor.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/UnrollLoop.h"
34 #include <climits>
35
36 using namespace llvm;
37
38 #define DEBUG_TYPE "loop-unroll"
39
40 static cl::opt<unsigned>
41 UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
42 cl::desc("The cut-off point for automatic loop unrolling"));
43
44 static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
45 "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
46 cl::desc("Don't allow loop unrolling to simulate more than this number of"
47 "iterations when checking full unroll profitability"));
48
49 static cl::opt<unsigned> UnrollMinPercentOfOptimized(
50 "unroll-percent-of-optimized-for-complete-unroll", cl::init(20), cl::Hidden,
51 cl::desc("If complete unrolling could trigger further optimizations, and, "
52 "by that, remove the given percent of instructions, perform the "
53 "complete unroll even if it's beyond the threshold"));
54
55 static cl::opt<unsigned> UnrollAbsoluteThreshold(
56 "unroll-absolute-threshold", cl::init(2000), cl::Hidden,
57 cl::desc("Don't unroll if the unrolled size is bigger than this threshold,"
58 " even if we can remove big portion of instructions later."));
59
60 static cl::opt<unsigned>
61 UnrollCount("unroll-count", cl::init(0), cl::Hidden,
62 cl::desc("Use this unroll count for all loops including those with "
63 "unroll_count pragma values, for testing purposes"));
64
65 static cl::opt<bool>
66 UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
67 cl::desc("Allows loops to be partially unrolled until "
68 "-unroll-threshold loop size is reached."));
69
70 static cl::opt<bool>
71 UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
72 cl::desc("Unroll loops with run-time trip counts"));
73
74 static cl::opt<unsigned>
75 PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
76 cl::desc("Unrolled size limit for loops with an unroll(full) or "
77 "unroll_count pragma."));
78
79 namespace {
80 class LoopUnroll : public LoopPass {
81 public:
82 static char ID; // Pass ID, replacement for typeid
LoopUnroll(int T=-1,int C=-1,int P=-1,int R=-1)83 LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
84 CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
85 CurrentAbsoluteThreshold = UnrollAbsoluteThreshold;
86 CurrentMinPercentOfOptimized = UnrollMinPercentOfOptimized;
87 CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
88 CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
89 CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
90
91 UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
92 UserAbsoluteThreshold = (UnrollAbsoluteThreshold.getNumOccurrences() > 0);
93 UserPercentOfOptimized =
94 (UnrollMinPercentOfOptimized.getNumOccurrences() > 0);
95 UserAllowPartial = (P != -1) ||
96 (UnrollAllowPartial.getNumOccurrences() > 0);
97 UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
98 UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
99
100 initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
101 }
102
103 /// A magic value for use with the Threshold parameter to indicate
104 /// that the loop unroll should be performed regardless of how much
105 /// code expansion would result.
106 static const unsigned NoThreshold = UINT_MAX;
107
108 // Threshold to use when optsize is specified (and there is no
109 // explicit -unroll-threshold).
110 static const unsigned OptSizeUnrollThreshold = 50;
111
112 // Default unroll count for loops with run-time trip count if
113 // -unroll-count is not set
114 static const unsigned UnrollRuntimeCount = 8;
115
116 unsigned CurrentCount;
117 unsigned CurrentThreshold;
118 unsigned CurrentAbsoluteThreshold;
119 unsigned CurrentMinPercentOfOptimized;
120 bool CurrentAllowPartial;
121 bool CurrentRuntime;
122 bool UserCount; // CurrentCount is user-specified.
123 bool UserThreshold; // CurrentThreshold is user-specified.
124 bool UserAbsoluteThreshold; // CurrentAbsoluteThreshold is
125 // user-specified.
126 bool UserPercentOfOptimized; // CurrentMinPercentOfOptimized is
127 // user-specified.
128 bool UserAllowPartial; // CurrentAllowPartial is user-specified.
129 bool UserRuntime; // CurrentRuntime is user-specified.
130
131 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
132
133 /// This transformation requires natural loop information & requires that
134 /// loop preheaders be inserted into the CFG...
135 ///
getAnalysisUsage(AnalysisUsage & AU) const136 void getAnalysisUsage(AnalysisUsage &AU) const override {
137 AU.addRequired<AssumptionCacheTracker>();
138 AU.addRequired<LoopInfoWrapperPass>();
139 AU.addPreserved<LoopInfoWrapperPass>();
140 AU.addRequiredID(LoopSimplifyID);
141 AU.addPreservedID(LoopSimplifyID);
142 AU.addRequiredID(LCSSAID);
143 AU.addPreservedID(LCSSAID);
144 AU.addRequired<ScalarEvolution>();
145 AU.addPreserved<ScalarEvolution>();
146 AU.addRequired<TargetTransformInfoWrapperPass>();
147 // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
148 // If loop unroll does not preserve dom info then LCSSA pass on next
149 // loop will receive invalid dom info.
150 // For now, recreate dom info, if loop is unrolled.
151 AU.addPreserved<DominatorTreeWrapperPass>();
152 }
153
154 // Fill in the UnrollingPreferences parameter with values from the
155 // TargetTransformationInfo.
getUnrollingPreferences(Loop * L,const TargetTransformInfo & TTI,TargetTransformInfo::UnrollingPreferences & UP)156 void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
157 TargetTransformInfo::UnrollingPreferences &UP) {
158 UP.Threshold = CurrentThreshold;
159 UP.AbsoluteThreshold = CurrentAbsoluteThreshold;
160 UP.MinPercentOfOptimized = CurrentMinPercentOfOptimized;
161 UP.OptSizeThreshold = OptSizeUnrollThreshold;
162 UP.PartialThreshold = CurrentThreshold;
163 UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
164 UP.Count = CurrentCount;
165 UP.MaxCount = UINT_MAX;
166 UP.Partial = CurrentAllowPartial;
167 UP.Runtime = CurrentRuntime;
168 UP.AllowExpensiveTripCount = false;
169 TTI.getUnrollingPreferences(L, UP);
170 }
171
172 // Select and return an unroll count based on parameters from
173 // user, unroll preferences, unroll pragmas, or a heuristic.
174 // SetExplicitly is set to true if the unroll count is is set by
175 // the user or a pragma rather than selected heuristically.
176 unsigned
177 selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
178 unsigned PragmaCount,
179 const TargetTransformInfo::UnrollingPreferences &UP,
180 bool &SetExplicitly);
181
182 // Select threshold values used to limit unrolling based on a
183 // total unrolled size. Parameters Threshold and PartialThreshold
184 // are set to the maximum unrolled size for fully and partially
185 // unrolled loops respectively.
selectThresholds(const Loop * L,bool HasPragma,const TargetTransformInfo::UnrollingPreferences & UP,unsigned & Threshold,unsigned & PartialThreshold,unsigned NumberOfOptimizedInstructions)186 void selectThresholds(const Loop *L, bool HasPragma,
187 const TargetTransformInfo::UnrollingPreferences &UP,
188 unsigned &Threshold, unsigned &PartialThreshold,
189 unsigned NumberOfOptimizedInstructions) {
190 // Determine the current unrolling threshold. While this is
191 // normally set from UnrollThreshold, it is overridden to a
192 // smaller value if the current function is marked as
193 // optimize-for-size, and the unroll threshold was not user
194 // specified.
195 Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
196
197 // If we are allowed to completely unroll if we can remove M% of
198 // instructions, and we know that with complete unrolling we'll be able
199 // to kill N instructions, then we can afford to completely unroll loops
200 // with unrolled size up to N*100/M.
201 // Adjust the threshold according to that:
202 unsigned PercentOfOptimizedForCompleteUnroll =
203 UserPercentOfOptimized ? CurrentMinPercentOfOptimized
204 : UP.MinPercentOfOptimized;
205 unsigned AbsoluteThreshold = UserAbsoluteThreshold
206 ? CurrentAbsoluteThreshold
207 : UP.AbsoluteThreshold;
208 if (PercentOfOptimizedForCompleteUnroll)
209 Threshold = std::max<unsigned>(Threshold,
210 NumberOfOptimizedInstructions * 100 /
211 PercentOfOptimizedForCompleteUnroll);
212 // But don't allow unrolling loops bigger than absolute threshold.
213 Threshold = std::min<unsigned>(Threshold, AbsoluteThreshold);
214
215 PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
216 if (!UserThreshold &&
217 L->getHeader()->getParent()->hasFnAttribute(
218 Attribute::OptimizeForSize)) {
219 Threshold = UP.OptSizeThreshold;
220 PartialThreshold = UP.PartialOptSizeThreshold;
221 }
222 if (HasPragma) {
223 // If the loop has an unrolling pragma, we want to be more
224 // aggressive with unrolling limits. Set thresholds to at
225 // least the PragmaTheshold value which is larger than the
226 // default limits.
227 if (Threshold != NoThreshold)
228 Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
229 if (PartialThreshold != NoThreshold)
230 PartialThreshold =
231 std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
232 }
233 }
234 };
235 }
236
237 char LoopUnroll::ID = 0;
238 INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)239 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
240 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
241 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
242 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
243 INITIALIZE_PASS_DEPENDENCY(LCSSA)
244 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
245 INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
246
247 Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
248 int Runtime) {
249 return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
250 }
251
createSimpleLoopUnrollPass()252 Pass *llvm::createSimpleLoopUnrollPass() {
253 return llvm::createLoopUnrollPass(-1, -1, 0, 0);
254 }
255
isLoadFromConstantInitializer(Value * V)256 static bool isLoadFromConstantInitializer(Value *V) {
257 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
258 if (GV->isConstant() && GV->hasDefinitiveInitializer())
259 return GV->getInitializer();
260 return false;
261 }
262
263 namespace {
264 struct FindConstantPointers {
265 bool LoadCanBeConstantFolded;
266 bool IndexIsConstant;
267 APInt Step;
268 APInt StartValue;
269 Value *BaseAddress;
270 const Loop *L;
271 ScalarEvolution &SE;
FindConstantPointers__anon0cdda4420211::FindConstantPointers272 FindConstantPointers(const Loop *loop, ScalarEvolution &SE)
273 : LoadCanBeConstantFolded(true), IndexIsConstant(true), L(loop), SE(SE) {}
274
follow__anon0cdda4420211::FindConstantPointers275 bool follow(const SCEV *S) {
276 if (const SCEVUnknown *SC = dyn_cast<SCEVUnknown>(S)) {
277 // We've reached the leaf node of SCEV, it's most probably just a
278 // variable. Now it's time to see if it corresponds to a global constant
279 // global (in which case we can eliminate the load), or not.
280 BaseAddress = SC->getValue();
281 LoadCanBeConstantFolded =
282 IndexIsConstant && isLoadFromConstantInitializer(BaseAddress);
283 return false;
284 }
285 if (isa<SCEVConstant>(S))
286 return true;
287 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
288 // If the current SCEV expression is AddRec, and its loop isn't the loop
289 // we are about to unroll, then we won't get a constant address after
290 // unrolling, and thus, won't be able to eliminate the load.
291 if (AR->getLoop() != L)
292 return IndexIsConstant = false;
293 // If the step isn't constant, we won't get constant addresses in unrolled
294 // version. Bail out.
295 if (const SCEVConstant *StepSE =
296 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
297 Step = StepSE->getValue()->getValue();
298 else
299 return IndexIsConstant = false;
300
301 return IndexIsConstant;
302 }
303 // If Result is true, continue traversal.
304 // Otherwise, we have found something that prevents us from (possible) load
305 // elimination.
306 return IndexIsConstant;
307 }
isDone__anon0cdda4420211::FindConstantPointers308 bool isDone() const { return !IndexIsConstant; }
309 };
310
311 // This class is used to get an estimate of the optimization effects that we
312 // could get from complete loop unrolling. It comes from the fact that some
313 // loads might be replaced with concrete constant values and that could trigger
314 // a chain of instruction simplifications.
315 //
316 // E.g. we might have:
317 // int a[] = {0, 1, 0};
318 // v = 0;
319 // for (i = 0; i < 3; i ++)
320 // v += b[i]*a[i];
321 // If we completely unroll the loop, we would get:
322 // v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
323 // Which then will be simplified to:
324 // v = b[0]* 0 + b[1]* 1 + b[2]* 0
325 // And finally:
326 // v = b[1]
327 class UnrollAnalyzer : public InstVisitor<UnrollAnalyzer, bool> {
328 typedef InstVisitor<UnrollAnalyzer, bool> Base;
329 friend class InstVisitor<UnrollAnalyzer, bool>;
330
331 const Loop *L;
332 unsigned TripCount;
333 ScalarEvolution &SE;
334 const TargetTransformInfo &TTI;
335
336 DenseMap<Value *, Constant *> SimplifiedValues;
337 DenseMap<LoadInst *, Value *> LoadBaseAddresses;
338 SmallPtrSet<Instruction *, 32> CountedInstructions;
339
340 /// \brief Count the number of optimized instructions.
341 unsigned NumberOfOptimizedInstructions;
342
343 // Provide base case for our instruction visit.
visitInstruction(Instruction & I)344 bool visitInstruction(Instruction &I) { return false; };
345 // TODO: We should also visit ICmp, FCmp, GetElementPtr, Trunc, ZExt, SExt,
346 // FPTrunc, FPExt, FPToUI, FPToSI, UIToFP, SIToFP, BitCast, Select,
347 // ExtractElement, InsertElement, ShuffleVector, ExtractValue, InsertValue.
348 //
349 // Probaly it's worth to hoist the code for estimating the simplifications
350 // effects to a separate class, since we have a very similar code in
351 // InlineCost already.
visitBinaryOperator(BinaryOperator & I)352 bool visitBinaryOperator(BinaryOperator &I) {
353 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
354 if (!isa<Constant>(LHS))
355 if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
356 LHS = SimpleLHS;
357 if (!isa<Constant>(RHS))
358 if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
359 RHS = SimpleRHS;
360 Value *SimpleV = nullptr;
361 const DataLayout &DL = I.getModule()->getDataLayout();
362 if (auto FI = dyn_cast<FPMathOperator>(&I))
363 SimpleV =
364 SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
365 else
366 SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
367
368 if (SimpleV && CountedInstructions.insert(&I).second)
369 NumberOfOptimizedInstructions += TTI.getUserCost(&I);
370
371 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
372 SimplifiedValues[&I] = C;
373 return true;
374 }
375 return false;
376 }
377
computeLoadValue(LoadInst * LI,unsigned Iteration)378 Constant *computeLoadValue(LoadInst *LI, unsigned Iteration) {
379 if (!LI)
380 return nullptr;
381 Value *BaseAddr = LoadBaseAddresses[LI];
382 if (!BaseAddr)
383 return nullptr;
384
385 auto GV = dyn_cast<GlobalVariable>(BaseAddr);
386 if (!GV)
387 return nullptr;
388
389 ConstantDataSequential *CDS =
390 dyn_cast<ConstantDataSequential>(GV->getInitializer());
391 if (!CDS)
392 return nullptr;
393
394 const SCEV *BaseAddrSE = SE.getSCEV(BaseAddr);
395 const SCEV *S = SE.getSCEV(LI->getPointerOperand());
396 const SCEV *OffSE = SE.getMinusSCEV(S, BaseAddrSE);
397
398 APInt StepC, StartC;
399 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OffSE);
400 if (!AR)
401 return nullptr;
402
403 if (const SCEVConstant *StepSE =
404 dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
405 StepC = StepSE->getValue()->getValue();
406 else
407 return nullptr;
408
409 if (const SCEVConstant *StartSE = dyn_cast<SCEVConstant>(AR->getStart()))
410 StartC = StartSE->getValue()->getValue();
411 else
412 return nullptr;
413
414 unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
415 unsigned Start = StartC.getLimitedValue();
416 unsigned Step = StepC.getLimitedValue();
417
418 unsigned Index = (Start + Step * Iteration) / ElemSize;
419 if (Index >= CDS->getNumElements())
420 return nullptr;
421
422 Constant *CV = CDS->getElementAsConstant(Index);
423
424 return CV;
425 }
426
427 public:
UnrollAnalyzer(const Loop * L,unsigned TripCount,ScalarEvolution & SE,const TargetTransformInfo & TTI)428 UnrollAnalyzer(const Loop *L, unsigned TripCount, ScalarEvolution &SE,
429 const TargetTransformInfo &TTI)
430 : L(L), TripCount(TripCount), SE(SE), TTI(TTI),
431 NumberOfOptimizedInstructions(0) {}
432
433 // Visit all loads the loop L, and for those that, after complete loop
434 // unrolling, would have a constant address and it will point to a known
435 // constant initializer, record its base address for future use. It is used
436 // when we estimate number of potentially simplified instructions.
findConstFoldableLoads()437 void findConstFoldableLoads() {
438 for (auto BB : L->getBlocks()) {
439 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
440 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
441 if (!LI->isSimple())
442 continue;
443 Value *AddrOp = LI->getPointerOperand();
444 const SCEV *S = SE.getSCEV(AddrOp);
445 FindConstantPointers Visitor(L, SE);
446 SCEVTraversal<FindConstantPointers> T(Visitor);
447 T.visitAll(S);
448 if (Visitor.IndexIsConstant && Visitor.LoadCanBeConstantFolded) {
449 LoadBaseAddresses[LI] = Visitor.BaseAddress;
450 }
451 }
452 }
453 }
454 }
455
456 // Given a list of loads that could be constant-folded (LoadBaseAddresses),
457 // estimate number of optimized instructions after substituting the concrete
458 // values for the given Iteration. Also track how many instructions become
459 // dead through this process.
estimateNumberOfOptimizedInstructions(unsigned Iteration)460 unsigned estimateNumberOfOptimizedInstructions(unsigned Iteration) {
461 // We keep a set vector for the worklist so that we don't wast space in the
462 // worklist queuing up the same instruction repeatedly. This can happen due
463 // to multiple operands being the same instruction or due to the same
464 // instruction being an operand of lots of things that end up dead or
465 // simplified.
466 SmallSetVector<Instruction *, 8> Worklist;
467
468 // Clear the simplified values and counts for this iteration.
469 SimplifiedValues.clear();
470 CountedInstructions.clear();
471 NumberOfOptimizedInstructions = 0;
472
473 // We start by adding all loads to the worklist.
474 for (auto &LoadDescr : LoadBaseAddresses) {
475 LoadInst *LI = LoadDescr.first;
476 SimplifiedValues[LI] = computeLoadValue(LI, Iteration);
477 if (CountedInstructions.insert(LI).second)
478 NumberOfOptimizedInstructions += TTI.getUserCost(LI);
479
480 for (User *U : LI->users())
481 Worklist.insert(cast<Instruction>(U));
482 }
483
484 // And then we try to simplify every user of every instruction from the
485 // worklist. If we do simplify a user, add it to the worklist to process
486 // its users as well.
487 while (!Worklist.empty()) {
488 Instruction *I = Worklist.pop_back_val();
489 if (!L->contains(I))
490 continue;
491 if (!visit(I))
492 continue;
493 for (User *U : I->users())
494 Worklist.insert(cast<Instruction>(U));
495 }
496
497 // Now that we know the potentially simplifed instructions, estimate number
498 // of instructions that would become dead if we do perform the
499 // simplification.
500
501 // The dead instructions are held in a separate set. This is used to
502 // prevent us from re-examining instructions and make sure we only count
503 // the benifit once. The worklist's internal set handles insertion
504 // deduplication.
505 SmallPtrSet<Instruction *, 16> DeadInstructions;
506
507 // Lambda to enque operands onto the worklist.
508 auto EnqueueOperands = [&](Instruction &I) {
509 for (auto *Op : I.operand_values())
510 if (auto *OpI = dyn_cast<Instruction>(Op))
511 if (!OpI->use_empty())
512 Worklist.insert(OpI);
513 };
514
515 // Start by initializing worklist with simplified instructions.
516 for (auto &FoldedKeyValue : SimplifiedValues)
517 if (auto *FoldedInst = dyn_cast<Instruction>(FoldedKeyValue.first)) {
518 DeadInstructions.insert(FoldedInst);
519
520 // Add each instruction operand of this dead instruction to the
521 // worklist.
522 EnqueueOperands(*FoldedInst);
523 }
524
525 // If a definition of an insn is only used by simplified or dead
526 // instructions, it's also dead. Check defs of all instructions from the
527 // worklist.
528 while (!Worklist.empty()) {
529 Instruction *I = Worklist.pop_back_val();
530 if (!L->contains(I))
531 continue;
532 if (DeadInstructions.count(I))
533 continue;
534
535 if (std::all_of(I->user_begin(), I->user_end(), [&](User *U) {
536 return DeadInstructions.count(cast<Instruction>(U));
537 })) {
538 NumberOfOptimizedInstructions += TTI.getUserCost(I);
539 DeadInstructions.insert(I);
540 EnqueueOperands(*I);
541 }
542 }
543 return NumberOfOptimizedInstructions;
544 }
545 };
546 } // namespace
547
548 // Complete loop unrolling can make some loads constant, and we need to know if
549 // that would expose any further optimization opportunities.
550 // This routine estimates this optimization effect and returns the number of
551 // instructions, that potentially might be optimized away.
552 static unsigned
approximateNumberOfOptimizedInstructions(const Loop * L,ScalarEvolution & SE,unsigned TripCount,const TargetTransformInfo & TTI)553 approximateNumberOfOptimizedInstructions(const Loop *L, ScalarEvolution &SE,
554 unsigned TripCount,
555 const TargetTransformInfo &TTI) {
556 if (!TripCount || !UnrollMaxIterationsCountToAnalyze)
557 return 0;
558
559 UnrollAnalyzer UA(L, TripCount, SE, TTI);
560 UA.findConstFoldableLoads();
561
562 // Estimate number of instructions, that could be simplified if we replace a
563 // load with the corresponding constant. Since the same load will take
564 // different values on different iterations, we have to go through all loop's
565 // iterations here. To limit ourselves here, we check only first N
566 // iterations, and then scale the found number, if necessary.
567 unsigned IterationsNumberForEstimate =
568 std::min<unsigned>(UnrollMaxIterationsCountToAnalyze, TripCount);
569 unsigned NumberOfOptimizedInstructions = 0;
570 for (unsigned i = 0; i < IterationsNumberForEstimate; ++i)
571 NumberOfOptimizedInstructions +=
572 UA.estimateNumberOfOptimizedInstructions(i);
573
574 NumberOfOptimizedInstructions *= TripCount / IterationsNumberForEstimate;
575
576 return NumberOfOptimizedInstructions;
577 }
578
579 /// ApproximateLoopSize - Approximate the size of the loop.
ApproximateLoopSize(const Loop * L,unsigned & NumCalls,bool & NotDuplicatable,const TargetTransformInfo & TTI,AssumptionCache * AC)580 static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
581 bool &NotDuplicatable,
582 const TargetTransformInfo &TTI,
583 AssumptionCache *AC) {
584 SmallPtrSet<const Value *, 32> EphValues;
585 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
586
587 CodeMetrics Metrics;
588 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
589 I != E; ++I)
590 Metrics.analyzeBasicBlock(*I, TTI, EphValues);
591 NumCalls = Metrics.NumInlineCandidates;
592 NotDuplicatable = Metrics.notDuplicatable;
593
594 unsigned LoopSize = Metrics.NumInsts;
595
596 // Don't allow an estimate of size zero. This would allows unrolling of loops
597 // with huge iteration counts, which is a compile time problem even if it's
598 // not a problem for code quality. Also, the code using this size may assume
599 // that each loop has at least three instructions (likely a conditional
600 // branch, a comparison feeding that branch, and some kind of loop increment
601 // feeding that comparison instruction).
602 LoopSize = std::max(LoopSize, 3u);
603
604 return LoopSize;
605 }
606
607 // Returns the loop hint metadata node with the given name (for example,
608 // "llvm.loop.unroll.count"). If no such metadata node exists, then nullptr is
609 // returned.
GetUnrollMetadataForLoop(const Loop * L,StringRef Name)610 static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
611 if (MDNode *LoopID = L->getLoopID())
612 return GetUnrollMetadata(LoopID, Name);
613 return nullptr;
614 }
615
616 // Returns true if the loop has an unroll(full) pragma.
HasUnrollFullPragma(const Loop * L)617 static bool HasUnrollFullPragma(const Loop *L) {
618 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
619 }
620
621 // Returns true if the loop has an unroll(disable) pragma.
HasUnrollDisablePragma(const Loop * L)622 static bool HasUnrollDisablePragma(const Loop *L) {
623 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
624 }
625
626 // Returns true if the loop has an runtime unroll(disable) pragma.
HasRuntimeUnrollDisablePragma(const Loop * L)627 static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
628 return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
629 }
630
631 // If loop has an unroll_count pragma return the (necessarily
632 // positive) value from the pragma. Otherwise return 0.
UnrollCountPragmaValue(const Loop * L)633 static unsigned UnrollCountPragmaValue(const Loop *L) {
634 MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
635 if (MD) {
636 assert(MD->getNumOperands() == 2 &&
637 "Unroll count hint metadata should have two operands.");
638 unsigned Count =
639 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
640 assert(Count >= 1 && "Unroll count must be positive.");
641 return Count;
642 }
643 return 0;
644 }
645
646 // Remove existing unroll metadata and add unroll disable metadata to
647 // indicate the loop has already been unrolled. This prevents a loop
648 // from being unrolled more than is directed by a pragma if the loop
649 // unrolling pass is run more than once (which it generally is).
SetLoopAlreadyUnrolled(Loop * L)650 static void SetLoopAlreadyUnrolled(Loop *L) {
651 MDNode *LoopID = L->getLoopID();
652 if (!LoopID) return;
653
654 // First remove any existing loop unrolling metadata.
655 SmallVector<Metadata *, 4> MDs;
656 // Reserve first location for self reference to the LoopID metadata node.
657 MDs.push_back(nullptr);
658 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
659 bool IsUnrollMetadata = false;
660 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
661 if (MD) {
662 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
663 IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
664 }
665 if (!IsUnrollMetadata)
666 MDs.push_back(LoopID->getOperand(i));
667 }
668
669 // Add unroll(disable) metadata to disable future unrolling.
670 LLVMContext &Context = L->getHeader()->getContext();
671 SmallVector<Metadata *, 1> DisableOperands;
672 DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
673 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
674 MDs.push_back(DisableNode);
675
676 MDNode *NewLoopID = MDNode::get(Context, MDs);
677 // Set operand 0 to refer to the loop id itself.
678 NewLoopID->replaceOperandWith(0, NewLoopID);
679 L->setLoopID(NewLoopID);
680 }
681
selectUnrollCount(const Loop * L,unsigned TripCount,bool PragmaFullUnroll,unsigned PragmaCount,const TargetTransformInfo::UnrollingPreferences & UP,bool & SetExplicitly)682 unsigned LoopUnroll::selectUnrollCount(
683 const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
684 unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
685 bool &SetExplicitly) {
686 SetExplicitly = true;
687
688 // User-specified count (either as a command-line option or
689 // constructor parameter) has highest precedence.
690 unsigned Count = UserCount ? CurrentCount : 0;
691
692 // If there is no user-specified count, unroll pragmas have the next
693 // highest precendence.
694 if (Count == 0) {
695 if (PragmaCount) {
696 Count = PragmaCount;
697 } else if (PragmaFullUnroll) {
698 Count = TripCount;
699 }
700 }
701
702 if (Count == 0)
703 Count = UP.Count;
704
705 if (Count == 0) {
706 SetExplicitly = false;
707 if (TripCount == 0)
708 // Runtime trip count.
709 Count = UnrollRuntimeCount;
710 else
711 // Conservative heuristic: if we know the trip count, see if we can
712 // completely unroll (subject to the threshold, checked below); otherwise
713 // try to find greatest modulo of the trip count which is still under
714 // threshold value.
715 Count = TripCount;
716 }
717 if (TripCount && Count > TripCount)
718 return TripCount;
719 return Count;
720 }
721
runOnLoop(Loop * L,LPPassManager & LPM)722 bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
723 if (skipOptnoneFunction(L))
724 return false;
725
726 Function &F = *L->getHeader()->getParent();
727
728 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
729 ScalarEvolution *SE = &getAnalysis<ScalarEvolution>();
730 const TargetTransformInfo &TTI =
731 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
732 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
733
734 BasicBlock *Header = L->getHeader();
735 DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
736 << "] Loop %" << Header->getName() << "\n");
737
738 if (HasUnrollDisablePragma(L)) {
739 return false;
740 }
741 bool PragmaFullUnroll = HasUnrollFullPragma(L);
742 unsigned PragmaCount = UnrollCountPragmaValue(L);
743 bool HasPragma = PragmaFullUnroll || PragmaCount > 0;
744
745 TargetTransformInfo::UnrollingPreferences UP;
746 getUnrollingPreferences(L, TTI, UP);
747
748 // Find trip count and trip multiple if count is not available
749 unsigned TripCount = 0;
750 unsigned TripMultiple = 1;
751 // If there are multiple exiting blocks but one of them is the latch, use the
752 // latch for the trip count estimation. Otherwise insist on a single exiting
753 // block for the trip count estimation.
754 BasicBlock *ExitingBlock = L->getLoopLatch();
755 if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
756 ExitingBlock = L->getExitingBlock();
757 if (ExitingBlock) {
758 TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
759 TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
760 }
761
762 // Select an initial unroll count. This may be reduced later based
763 // on size thresholds.
764 bool CountSetExplicitly;
765 unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
766 PragmaCount, UP, CountSetExplicitly);
767
768 unsigned NumInlineCandidates;
769 bool notDuplicatable;
770 unsigned LoopSize =
771 ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
772 DEBUG(dbgs() << " Loop Size = " << LoopSize << "\n");
773
774 // When computing the unrolled size, note that the conditional branch on the
775 // backedge and the comparison feeding it are not replicated like the rest of
776 // the loop body (which is why 2 is subtracted).
777 uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
778 if (notDuplicatable) {
779 DEBUG(dbgs() << " Not unrolling loop which contains non-duplicatable"
780 << " instructions.\n");
781 return false;
782 }
783 if (NumInlineCandidates != 0) {
784 DEBUG(dbgs() << " Not unrolling loop with inlinable calls.\n");
785 return false;
786 }
787
788 unsigned NumberOfOptimizedInstructions =
789 approximateNumberOfOptimizedInstructions(L, *SE, TripCount, TTI);
790 DEBUG(dbgs() << " Complete unrolling could save: "
791 << NumberOfOptimizedInstructions << "\n");
792
793 unsigned Threshold, PartialThreshold;
794 selectThresholds(L, HasPragma, UP, Threshold, PartialThreshold,
795 NumberOfOptimizedInstructions);
796
797 // Given Count, TripCount and thresholds determine the type of
798 // unrolling which is to be performed.
799 enum { Full = 0, Partial = 1, Runtime = 2 };
800 int Unrolling;
801 if (TripCount && Count == TripCount) {
802 if (Threshold != NoThreshold && UnrolledSize > Threshold) {
803 DEBUG(dbgs() << " Too large to fully unroll with count: " << Count
804 << " because size: " << UnrolledSize << ">" << Threshold
805 << "\n");
806 Unrolling = Partial;
807 } else {
808 Unrolling = Full;
809 }
810 } else if (TripCount && Count < TripCount) {
811 Unrolling = Partial;
812 } else {
813 Unrolling = Runtime;
814 }
815
816 // Reduce count based on the type of unrolling and the threshold values.
817 unsigned OriginalCount = Count;
818 bool AllowRuntime = UserRuntime ? CurrentRuntime : UP.Runtime;
819 if (HasRuntimeUnrollDisablePragma(L)) {
820 AllowRuntime = false;
821 }
822 if (Unrolling == Partial) {
823 bool AllowPartial = UserAllowPartial ? CurrentAllowPartial : UP.Partial;
824 if (!AllowPartial && !CountSetExplicitly) {
825 DEBUG(dbgs() << " will not try to unroll partially because "
826 << "-unroll-allow-partial not given\n");
827 return false;
828 }
829 if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
830 // Reduce unroll count to be modulo of TripCount for partial unrolling.
831 Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
832 while (Count != 0 && TripCount % Count != 0)
833 Count--;
834 }
835 } else if (Unrolling == Runtime) {
836 if (!AllowRuntime && !CountSetExplicitly) {
837 DEBUG(dbgs() << " will not try to unroll loop with runtime trip count "
838 << "-unroll-runtime not given\n");
839 return false;
840 }
841 // Reduce unroll count to be the largest power-of-two factor of
842 // the original count which satisfies the threshold limit.
843 while (Count != 0 && UnrolledSize > PartialThreshold) {
844 Count >>= 1;
845 UnrolledSize = (LoopSize-2) * Count + 2;
846 }
847 if (Count > UP.MaxCount)
848 Count = UP.MaxCount;
849 DEBUG(dbgs() << " partially unrolling with count: " << Count << "\n");
850 }
851
852 if (HasPragma) {
853 if (PragmaCount != 0)
854 // If loop has an unroll count pragma mark loop as unrolled to prevent
855 // unrolling beyond that requested by the pragma.
856 SetLoopAlreadyUnrolled(L);
857
858 // Emit optimization remarks if we are unable to unroll the loop
859 // as directed by a pragma.
860 DebugLoc LoopLoc = L->getStartLoc();
861 Function *F = Header->getParent();
862 LLVMContext &Ctx = F->getContext();
863 if (PragmaFullUnroll && PragmaCount == 0) {
864 if (TripCount && Count != TripCount) {
865 emitOptimizationRemarkMissed(
866 Ctx, DEBUG_TYPE, *F, LoopLoc,
867 "Unable to fully unroll loop as directed by unroll(full) pragma "
868 "because unrolled size is too large.");
869 } else if (!TripCount) {
870 emitOptimizationRemarkMissed(
871 Ctx, DEBUG_TYPE, *F, LoopLoc,
872 "Unable to fully unroll loop as directed by unroll(full) pragma "
873 "because loop has a runtime trip count.");
874 }
875 } else if (PragmaCount > 0 && Count != OriginalCount) {
876 emitOptimizationRemarkMissed(
877 Ctx, DEBUG_TYPE, *F, LoopLoc,
878 "Unable to unroll loop the number of times directed by "
879 "unroll_count pragma because unrolled size is too large.");
880 }
881 }
882
883 if (Unrolling != Full && Count < 2) {
884 // Partial unrolling by 1 is a nop. For full unrolling, a factor
885 // of 1 makes sense because loop control can be eliminated.
886 return false;
887 }
888
889 // Unroll the loop.
890 if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
891 TripMultiple, LI, this, &LPM, &AC))
892 return false;
893
894 return true;
895 }
896