1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the VirtRegMap class.
11 //
12 // It also contains implementations of the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
15 // code as necessary.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "LiveDebugVariables.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
25 #include "llvm/CodeGen/LiveStackAnalysis.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
40 #include <algorithm>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "regalloc"
44 
45 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
46 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
47 
48 //===----------------------------------------------------------------------===//
49 //  VirtRegMap implementation
50 //===----------------------------------------------------------------------===//
51 
52 char VirtRegMap::ID = 0;
53 
54 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
55 
runOnMachineFunction(MachineFunction & mf)56 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
57   MRI = &mf.getRegInfo();
58   TII = mf.getSubtarget().getInstrInfo();
59   TRI = mf.getSubtarget().getRegisterInfo();
60   MF = &mf;
61 
62   Virt2PhysMap.clear();
63   Virt2StackSlotMap.clear();
64   Virt2SplitMap.clear();
65 
66   grow();
67   return false;
68 }
69 
grow()70 void VirtRegMap::grow() {
71   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
72   Virt2PhysMap.resize(NumRegs);
73   Virt2StackSlotMap.resize(NumRegs);
74   Virt2SplitMap.resize(NumRegs);
75 }
76 
createSpillSlot(const TargetRegisterClass * RC)77 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
78   int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
79                                                       RC->getAlignment());
80   ++NumSpillSlots;
81   return SS;
82 }
83 
hasPreferredPhys(unsigned VirtReg)84 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
85   unsigned Hint = MRI->getSimpleHint(VirtReg);
86   if (!Hint)
87     return 0;
88   if (TargetRegisterInfo::isVirtualRegister(Hint))
89     Hint = getPhys(Hint);
90   return getPhys(VirtReg) == Hint;
91 }
92 
hasKnownPreference(unsigned VirtReg)93 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
94   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
95   if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
96     return true;
97   if (TargetRegisterInfo::isVirtualRegister(Hint.second))
98     return hasPhys(Hint.second);
99   return false;
100 }
101 
assignVirt2StackSlot(unsigned virtReg)102 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
103   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
104   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
105          "attempt to assign stack slot to already spilled register");
106   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
107   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
108 }
109 
assignVirt2StackSlot(unsigned virtReg,int SS)110 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
111   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
112   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
113          "attempt to assign stack slot to already spilled register");
114   assert((SS >= 0 ||
115           (SS >= MF->getFrameInfo()->getObjectIndexBegin())) &&
116          "illegal fixed frame index");
117   Virt2StackSlotMap[virtReg] = SS;
118 }
119 
print(raw_ostream & OS,const Module *) const120 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
121   OS << "********** REGISTER MAP **********\n";
122   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
123     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
124     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
125       OS << '[' << PrintReg(Reg, TRI) << " -> "
126          << PrintReg(Virt2PhysMap[Reg], TRI) << "] "
127          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
128     }
129   }
130 
131   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
132     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
133     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
134       OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
135          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
136     }
137   }
138   OS << '\n';
139 }
140 
141 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const142 void VirtRegMap::dump() const {
143   print(dbgs());
144 }
145 #endif
146 
147 //===----------------------------------------------------------------------===//
148 //                              VirtRegRewriter
149 //===----------------------------------------------------------------------===//
150 //
151 // The VirtRegRewriter is the last of the register allocator passes.
152 // It rewrites virtual registers to physical registers as specified in the
153 // VirtRegMap analysis. It also updates live-in information on basic blocks
154 // according to LiveIntervals.
155 //
156 namespace {
157 class VirtRegRewriter : public MachineFunctionPass {
158   MachineFunction *MF;
159   const TargetMachine *TM;
160   const TargetRegisterInfo *TRI;
161   const TargetInstrInfo *TII;
162   MachineRegisterInfo *MRI;
163   SlotIndexes *Indexes;
164   LiveIntervals *LIS;
165   VirtRegMap *VRM;
166   SparseSet<unsigned> PhysRegs;
167 
168   void rewrite();
169   void addMBBLiveIns();
170 public:
171   static char ID;
VirtRegRewriter()172   VirtRegRewriter() : MachineFunctionPass(ID) {}
173 
174   void getAnalysisUsage(AnalysisUsage &AU) const override;
175 
176   bool runOnMachineFunction(MachineFunction&) override;
177 };
178 } // end anonymous namespace
179 
180 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
181 
182 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
183                       "Virtual Register Rewriter", false, false)
184 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
185 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
186 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
187 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
188 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
189 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
190                     "Virtual Register Rewriter", false, false)
191 
192 char VirtRegRewriter::ID = 0;
193 
getAnalysisUsage(AnalysisUsage & AU) const194 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
195   AU.setPreservesCFG();
196   AU.addRequired<LiveIntervals>();
197   AU.addRequired<SlotIndexes>();
198   AU.addPreserved<SlotIndexes>();
199   AU.addRequired<LiveDebugVariables>();
200   AU.addRequired<LiveStacks>();
201   AU.addPreserved<LiveStacks>();
202   AU.addRequired<VirtRegMap>();
203   MachineFunctionPass::getAnalysisUsage(AU);
204 }
205 
runOnMachineFunction(MachineFunction & fn)206 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
207   MF = &fn;
208   TM = &MF->getTarget();
209   TRI = MF->getSubtarget().getRegisterInfo();
210   TII = MF->getSubtarget().getInstrInfo();
211   MRI = &MF->getRegInfo();
212   Indexes = &getAnalysis<SlotIndexes>();
213   LIS = &getAnalysis<LiveIntervals>();
214   VRM = &getAnalysis<VirtRegMap>();
215   DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
216                << "********** Function: "
217                << MF->getName() << '\n');
218   DEBUG(VRM->dump());
219 
220   // Add kill flags while we still have virtual registers.
221   LIS->addKillFlags(VRM);
222 
223   // Live-in lists on basic blocks are required for physregs.
224   addMBBLiveIns();
225 
226   // Rewrite virtual registers.
227   rewrite();
228 
229   // Write out new DBG_VALUE instructions.
230   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
231 
232   // All machine operands and other references to virtual registers have been
233   // replaced. Remove the virtual registers and release all the transient data.
234   VRM->clearAllVirt();
235   MRI->clearVirtRegs();
236   return true;
237 }
238 
239 // Compute MBB live-in lists from virtual register live ranges and their
240 // assignments.
addMBBLiveIns()241 void VirtRegRewriter::addMBBLiveIns() {
242   SmallVector<MachineBasicBlock*, 16> LiveIn;
243   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
244     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
245     if (MRI->reg_nodbg_empty(VirtReg))
246       continue;
247     LiveInterval &LI = LIS->getInterval(VirtReg);
248     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
249       continue;
250     // This is a virtual register that is live across basic blocks. Its
251     // assigned PhysReg must be marked as live-in to those blocks.
252     unsigned PhysReg = VRM->getPhys(VirtReg);
253     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
254 
255     if (LI.hasSubRanges()) {
256       for (LiveInterval::SubRange &S : LI.subranges()) {
257         for (const auto &Seg : S.segments) {
258           if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn))
259             continue;
260           for (MCSubRegIndexIterator SR(PhysReg, TRI); SR.isValid(); ++SR) {
261             unsigned SubReg = SR.getSubReg();
262             unsigned SubRegIndex = SR.getSubRegIndex();
263             unsigned SubRegLaneMask = TRI->getSubRegIndexLaneMask(SubRegIndex);
264             if ((SubRegLaneMask & S.LaneMask) == 0)
265               continue;
266             for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) {
267               if (!LiveIn[i]->isLiveIn(SubReg))
268                 LiveIn[i]->addLiveIn(SubReg);
269             }
270           }
271           LiveIn.clear();
272         }
273       }
274     } else {
275       // Scan the segments of LI.
276       for (const auto &Seg : LI.segments) {
277         if (!Indexes->findLiveInMBBs(Seg.start, Seg.end, LiveIn))
278           continue;
279         for (unsigned i = 0, e = LiveIn.size(); i != e; ++i)
280           if (!LiveIn[i]->isLiveIn(PhysReg))
281             LiveIn[i]->addLiveIn(PhysReg);
282         LiveIn.clear();
283       }
284     }
285   }
286 }
287 
rewrite()288 void VirtRegRewriter::rewrite() {
289   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
290   SmallVector<unsigned, 8> SuperDeads;
291   SmallVector<unsigned, 8> SuperDefs;
292   SmallVector<unsigned, 8> SuperKills;
293   SmallPtrSet<const MachineInstr *, 4> NoReturnInsts;
294 
295   // Here we have a SparseSet to hold which PhysRegs are actually encountered
296   // in the MF we are about to iterate over so that later when we call
297   // setPhysRegUsed, we are only doing it for physRegs that were actually found
298   // in the program and not for all of the possible physRegs for the given
299   // target architecture. If the target has a lot of physRegs, then for a small
300   // program there will be a significant compile time reduction here.
301   PhysRegs.clear();
302   PhysRegs.setUniverse(TRI->getNumRegs());
303 
304   // The function with uwtable should guarantee that the stack unwinder
305   // can unwind the stack to the previous frame.  Thus, we can't apply the
306   // noreturn optimization if the caller function has uwtable attribute.
307   bool HasUWTable = MF->getFunction()->hasFnAttribute(Attribute::UWTable);
308 
309   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
310        MBBI != MBBE; ++MBBI) {
311     DEBUG(MBBI->print(dbgs(), Indexes));
312     bool IsExitBB = MBBI->succ_empty();
313     for (MachineBasicBlock::instr_iterator
314            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
315       MachineInstr *MI = MII;
316       ++MII;
317 
318       // Check if this instruction is a call to a noreturn function.  If this
319       // is a call to noreturn function and we don't need the stack unwinding
320       // functionality (i.e. this function does not have uwtable attribute and
321       // the callee function has the nounwind attribute), then we can ignore
322       // the definitions set by this instruction.
323       if (!HasUWTable && IsExitBB && MI->isCall()) {
324         for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
325                MOE = MI->operands_end(); MOI != MOE; ++MOI) {
326           MachineOperand &MO = *MOI;
327           if (!MO.isGlobal())
328             continue;
329           const Function *Func = dyn_cast<Function>(MO.getGlobal());
330           if (!Func || !Func->hasFnAttribute(Attribute::NoReturn) ||
331               // We need to keep correct unwind information
332               // even if the function will not return, since the
333               // runtime may need it.
334               !Func->hasFnAttribute(Attribute::NoUnwind))
335             continue;
336           NoReturnInsts.insert(MI);
337           break;
338         }
339       }
340 
341       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
342            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
343         MachineOperand &MO = *MOI;
344 
345         // Make sure MRI knows about registers clobbered by regmasks.
346         if (MO.isRegMask())
347           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
348 
349         // If we encounter a VirtReg or PhysReg then get at the PhysReg and add
350         // it to the physreg bitset.  Later we use only the PhysRegs that were
351         // actually encountered in the MF to populate the MRI's used physregs.
352         if (MO.isReg() && MO.getReg())
353           PhysRegs.insert(
354               TargetRegisterInfo::isVirtualRegister(MO.getReg()) ?
355               VRM->getPhys(MO.getReg()) :
356               MO.getReg());
357 
358         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
359           continue;
360         unsigned VirtReg = MO.getReg();
361         unsigned PhysReg = VRM->getPhys(VirtReg);
362         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
363                "Instruction uses unmapped VirtReg");
364         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
365 
366         // Preserve semantics of sub-register operands.
367         if (MO.getSubReg()) {
368           // A virtual register kill refers to the whole register, so we may
369           // have to add <imp-use,kill> operands for the super-register.  A
370           // partial redef always kills and redefines the super-register.
371           if (NoSubRegLiveness && MO.readsReg()
372               && (MO.isDef() || MO.isKill()))
373             SuperKills.push_back(PhysReg);
374 
375           if (MO.isDef()) {
376             // The <def,undef> flag only makes sense for sub-register defs, and
377             // we are substituting a full physreg.  An <imp-use,kill> operand
378             // from the SuperKills list will represent the partial read of the
379             // super-register.
380             MO.setIsUndef(false);
381 
382             // Also add implicit defs for the super-register.
383             if (NoSubRegLiveness) {
384               if (MO.isDead())
385                 SuperDeads.push_back(PhysReg);
386               else
387                 SuperDefs.push_back(PhysReg);
388             }
389           }
390 
391           // PhysReg operands cannot have subregister indexes.
392           PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg());
393           assert(PhysReg && "Invalid SubReg for physical register");
394           MO.setSubReg(0);
395         }
396         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
397         // we need the inlining here.
398         MO.setReg(PhysReg);
399       }
400 
401       // Add any missing super-register kills after rewriting the whole
402       // instruction.
403       while (!SuperKills.empty())
404         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
405 
406       while (!SuperDeads.empty())
407         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
408 
409       while (!SuperDefs.empty())
410         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
411 
412       DEBUG(dbgs() << "> " << *MI);
413 
414       // Finally, remove any identity copies.
415       if (MI->isIdentityCopy()) {
416         ++NumIdCopies;
417         if (MI->getNumOperands() == 2) {
418           DEBUG(dbgs() << "Deleting identity copy.\n");
419           if (Indexes)
420             Indexes->removeMachineInstrFromMaps(MI);
421           // It's safe to erase MI because MII has already been incremented.
422           MI->eraseFromParent();
423         } else {
424           // Transform identity copy to a KILL to deal with subregisters.
425           MI->setDesc(TII->get(TargetOpcode::KILL));
426           DEBUG(dbgs() << "Identity copy: " << *MI);
427         }
428       }
429     }
430   }
431 
432   // Tell MRI about physical registers in use.
433   if (NoReturnInsts.empty()) {
434     for (SparseSet<unsigned>::iterator
435         RegI = PhysRegs.begin(), E = PhysRegs.end(); RegI != E; ++RegI)
436       if (!MRI->reg_nodbg_empty(*RegI))
437         MRI->setPhysRegUsed(*RegI);
438   } else {
439     for (SparseSet<unsigned>::iterator
440         I = PhysRegs.begin(), E = PhysRegs.end(); I != E; ++I) {
441       unsigned Reg = *I;
442       if (MRI->reg_nodbg_empty(Reg))
443         continue;
444       // Check if this register has a use that will impact the rest of the
445       // code. Uses in debug and noreturn instructions do not impact the
446       // generated code.
447       for (MachineInstr &It : MRI->reg_nodbg_instructions(Reg)) {
448         if (!NoReturnInsts.count(&It)) {
449           MRI->setPhysRegUsed(Reg);
450           break;
451         }
452       }
453     }
454   }
455 }
456 
457