1 /*
2 * Wrapper functions for OpenSSL libcrypto
3 * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "sha384.h"
32 #include "crypto.h"
33
get_group5_prime(void)34 static BIGNUM * get_group5_prime(void)
35 {
36 #ifdef OPENSSL_IS_BORINGSSL
37 static const unsigned char RFC3526_PRIME_1536[] = {
38 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
39 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
40 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
41 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
42 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
43 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
44 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
45 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
46 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
47 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
48 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
49 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
50 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
51 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
52 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
53 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
54 };
55 return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
56 #else /* OPENSSL_IS_BORINGSSL */
57 return get_rfc3526_prime_1536(NULL);
58 #endif /* OPENSSL_IS_BORINGSSL */
59 }
60
61 #ifdef OPENSSL_NO_SHA256
62 #define NO_SHA256_WRAPPER
63 #endif
64
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)65 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
66 const u8 *addr[], const size_t *len, u8 *mac)
67 {
68 EVP_MD_CTX ctx;
69 size_t i;
70 unsigned int mac_len;
71
72 EVP_MD_CTX_init(&ctx);
73 if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
74 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
75 ERR_error_string(ERR_get_error(), NULL));
76 return -1;
77 }
78 for (i = 0; i < num_elem; i++) {
79 if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
80 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
81 "failed: %s",
82 ERR_error_string(ERR_get_error(), NULL));
83 return -1;
84 }
85 }
86 if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
87 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
88 ERR_error_string(ERR_get_error(), NULL));
89 return -1;
90 }
91
92 return 0;
93 }
94
95
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)96 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
97 {
98 return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
99 }
100
101
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)102 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
103 {
104 u8 pkey[8], next, tmp;
105 int i;
106 DES_key_schedule ks;
107
108 /* Add parity bits to the key */
109 next = 0;
110 for (i = 0; i < 7; i++) {
111 tmp = key[i];
112 pkey[i] = (tmp >> i) | next | 1;
113 next = tmp << (7 - i);
114 }
115 pkey[i] = next | 1;
116
117 DES_set_key((DES_cblock *) &pkey, &ks);
118 DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
119 DES_ENCRYPT);
120 }
121
122
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)123 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
124 u8 *data, size_t data_len)
125 {
126 #ifdef OPENSSL_NO_RC4
127 return -1;
128 #else /* OPENSSL_NO_RC4 */
129 EVP_CIPHER_CTX ctx;
130 int outl;
131 int res = -1;
132 unsigned char skip_buf[16];
133
134 EVP_CIPHER_CTX_init(&ctx);
135 if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
136 !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
137 !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
138 !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
139 goto out;
140
141 while (skip >= sizeof(skip_buf)) {
142 size_t len = skip;
143 if (len > sizeof(skip_buf))
144 len = sizeof(skip_buf);
145 if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
146 goto out;
147 skip -= len;
148 }
149
150 if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
151 res = 0;
152
153 out:
154 EVP_CIPHER_CTX_cleanup(&ctx);
155 return res;
156 #endif /* OPENSSL_NO_RC4 */
157 }
158
159
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)160 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
161 {
162 return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
163 }
164
165
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)166 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
167 {
168 return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
169 }
170
171
172 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)173 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
174 u8 *mac)
175 {
176 return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
177 }
178 #endif /* NO_SHA256_WRAPPER */
179
180
aes_get_evp_cipher(size_t keylen)181 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
182 {
183 switch (keylen) {
184 case 16:
185 return EVP_aes_128_ecb();
186 #ifndef OPENSSL_IS_BORINGSSL
187 case 24:
188 return EVP_aes_192_ecb();
189 #endif /* OPENSSL_IS_BORINGSSL */
190 case 32:
191 return EVP_aes_256_ecb();
192 }
193
194 return NULL;
195 }
196
197
aes_encrypt_init(const u8 * key,size_t len)198 void * aes_encrypt_init(const u8 *key, size_t len)
199 {
200 EVP_CIPHER_CTX *ctx;
201 const EVP_CIPHER *type;
202
203 type = aes_get_evp_cipher(len);
204 if (type == NULL)
205 return NULL;
206
207 ctx = os_malloc(sizeof(*ctx));
208 if (ctx == NULL)
209 return NULL;
210 EVP_CIPHER_CTX_init(ctx);
211 if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
212 os_free(ctx);
213 return NULL;
214 }
215 EVP_CIPHER_CTX_set_padding(ctx, 0);
216 return ctx;
217 }
218
219
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)220 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
221 {
222 EVP_CIPHER_CTX *c = ctx;
223 int clen = 16;
224 if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
225 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
226 ERR_error_string(ERR_get_error(), NULL));
227 }
228 }
229
230
aes_encrypt_deinit(void * ctx)231 void aes_encrypt_deinit(void *ctx)
232 {
233 EVP_CIPHER_CTX *c = ctx;
234 u8 buf[16];
235 int len = sizeof(buf);
236 if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
237 wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
238 "%s", ERR_error_string(ERR_get_error(), NULL));
239 }
240 if (len != 0) {
241 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
242 "in AES encrypt", len);
243 }
244 EVP_CIPHER_CTX_cleanup(c);
245 bin_clear_free(c, sizeof(*c));
246 }
247
248
aes_decrypt_init(const u8 * key,size_t len)249 void * aes_decrypt_init(const u8 *key, size_t len)
250 {
251 EVP_CIPHER_CTX *ctx;
252 const EVP_CIPHER *type;
253
254 type = aes_get_evp_cipher(len);
255 if (type == NULL)
256 return NULL;
257
258 ctx = os_malloc(sizeof(*ctx));
259 if (ctx == NULL)
260 return NULL;
261 EVP_CIPHER_CTX_init(ctx);
262 if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
263 os_free(ctx);
264 return NULL;
265 }
266 EVP_CIPHER_CTX_set_padding(ctx, 0);
267 return ctx;
268 }
269
270
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)271 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
272 {
273 EVP_CIPHER_CTX *c = ctx;
274 int plen = 16;
275 if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
276 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
277 ERR_error_string(ERR_get_error(), NULL));
278 }
279 }
280
281
aes_decrypt_deinit(void * ctx)282 void aes_decrypt_deinit(void *ctx)
283 {
284 EVP_CIPHER_CTX *c = ctx;
285 u8 buf[16];
286 int len = sizeof(buf);
287 if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
288 wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
289 "%s", ERR_error_string(ERR_get_error(), NULL));
290 }
291 if (len != 0) {
292 wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
293 "in AES decrypt", len);
294 }
295 EVP_CIPHER_CTX_cleanup(c);
296 bin_clear_free(c, sizeof(*c));
297 }
298
299
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)300 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
301 {
302 AES_KEY actx;
303 int res;
304
305 if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
306 return -1;
307 res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
308 OPENSSL_cleanse(&actx, sizeof(actx));
309 return res <= 0 ? -1 : 0;
310 }
311
312
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)313 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
314 u8 *plain)
315 {
316 AES_KEY actx;
317 int res;
318
319 if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
320 return -1;
321 res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
322 OPENSSL_cleanse(&actx, sizeof(actx));
323 return res <= 0 ? -1 : 0;
324 }
325
326
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)327 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
328 {
329 EVP_CIPHER_CTX ctx;
330 int clen, len;
331 u8 buf[16];
332
333 EVP_CIPHER_CTX_init(&ctx);
334 if (EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
335 return -1;
336 EVP_CIPHER_CTX_set_padding(&ctx, 0);
337
338 clen = data_len;
339 if (EVP_EncryptUpdate(&ctx, data, &clen, data, data_len) != 1 ||
340 clen != (int) data_len)
341 return -1;
342
343 len = sizeof(buf);
344 if (EVP_EncryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
345 return -1;
346 EVP_CIPHER_CTX_cleanup(&ctx);
347
348 return 0;
349 }
350
351
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)352 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
353 {
354 EVP_CIPHER_CTX ctx;
355 int plen, len;
356 u8 buf[16];
357
358 EVP_CIPHER_CTX_init(&ctx);
359 if (EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
360 return -1;
361 EVP_CIPHER_CTX_set_padding(&ctx, 0);
362
363 plen = data_len;
364 if (EVP_DecryptUpdate(&ctx, data, &plen, data, data_len) != 1 ||
365 plen != (int) data_len)
366 return -1;
367
368 len = sizeof(buf);
369 if (EVP_DecryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
370 return -1;
371 EVP_CIPHER_CTX_cleanup(&ctx);
372
373 return 0;
374 }
375
376
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)377 int crypto_mod_exp(const u8 *base, size_t base_len,
378 const u8 *power, size_t power_len,
379 const u8 *modulus, size_t modulus_len,
380 u8 *result, size_t *result_len)
381 {
382 BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
383 int ret = -1;
384 BN_CTX *ctx;
385
386 ctx = BN_CTX_new();
387 if (ctx == NULL)
388 return -1;
389
390 bn_base = BN_bin2bn(base, base_len, NULL);
391 bn_exp = BN_bin2bn(power, power_len, NULL);
392 bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
393 bn_result = BN_new();
394
395 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
396 bn_result == NULL)
397 goto error;
398
399 if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
400 goto error;
401
402 *result_len = BN_bn2bin(bn_result, result);
403 ret = 0;
404
405 error:
406 BN_clear_free(bn_base);
407 BN_clear_free(bn_exp);
408 BN_clear_free(bn_modulus);
409 BN_clear_free(bn_result);
410 BN_CTX_free(ctx);
411 return ret;
412 }
413
414
415 struct crypto_cipher {
416 EVP_CIPHER_CTX enc;
417 EVP_CIPHER_CTX dec;
418 };
419
420
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)421 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
422 const u8 *iv, const u8 *key,
423 size_t key_len)
424 {
425 struct crypto_cipher *ctx;
426 const EVP_CIPHER *cipher;
427
428 ctx = os_zalloc(sizeof(*ctx));
429 if (ctx == NULL)
430 return NULL;
431
432 switch (alg) {
433 #ifndef OPENSSL_NO_RC4
434 case CRYPTO_CIPHER_ALG_RC4:
435 cipher = EVP_rc4();
436 break;
437 #endif /* OPENSSL_NO_RC4 */
438 #ifndef OPENSSL_NO_AES
439 case CRYPTO_CIPHER_ALG_AES:
440 switch (key_len) {
441 case 16:
442 cipher = EVP_aes_128_cbc();
443 break;
444 #ifndef OPENSSL_IS_BORINGSSL
445 case 24:
446 cipher = EVP_aes_192_cbc();
447 break;
448 #endif /* OPENSSL_IS_BORINGSSL */
449 case 32:
450 cipher = EVP_aes_256_cbc();
451 break;
452 default:
453 os_free(ctx);
454 return NULL;
455 }
456 break;
457 #endif /* OPENSSL_NO_AES */
458 #ifndef OPENSSL_NO_DES
459 case CRYPTO_CIPHER_ALG_3DES:
460 cipher = EVP_des_ede3_cbc();
461 break;
462 case CRYPTO_CIPHER_ALG_DES:
463 cipher = EVP_des_cbc();
464 break;
465 #endif /* OPENSSL_NO_DES */
466 #ifndef OPENSSL_NO_RC2
467 case CRYPTO_CIPHER_ALG_RC2:
468 cipher = EVP_rc2_ecb();
469 break;
470 #endif /* OPENSSL_NO_RC2 */
471 default:
472 os_free(ctx);
473 return NULL;
474 }
475
476 EVP_CIPHER_CTX_init(&ctx->enc);
477 EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
478 if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
479 !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
480 !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
481 EVP_CIPHER_CTX_cleanup(&ctx->enc);
482 os_free(ctx);
483 return NULL;
484 }
485
486 EVP_CIPHER_CTX_init(&ctx->dec);
487 EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
488 if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
489 !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
490 !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
491 EVP_CIPHER_CTX_cleanup(&ctx->enc);
492 EVP_CIPHER_CTX_cleanup(&ctx->dec);
493 os_free(ctx);
494 return NULL;
495 }
496
497 return ctx;
498 }
499
500
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)501 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
502 u8 *crypt, size_t len)
503 {
504 int outl;
505 if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
506 return -1;
507 return 0;
508 }
509
510
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)511 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
512 u8 *plain, size_t len)
513 {
514 int outl;
515 outl = len;
516 if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
517 return -1;
518 return 0;
519 }
520
521
crypto_cipher_deinit(struct crypto_cipher * ctx)522 void crypto_cipher_deinit(struct crypto_cipher *ctx)
523 {
524 EVP_CIPHER_CTX_cleanup(&ctx->enc);
525 EVP_CIPHER_CTX_cleanup(&ctx->dec);
526 os_free(ctx);
527 }
528
529
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)530 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
531 {
532 DH *dh;
533 struct wpabuf *pubkey = NULL, *privkey = NULL;
534 size_t publen, privlen;
535
536 *priv = NULL;
537 *publ = NULL;
538
539 dh = DH_new();
540 if (dh == NULL)
541 return NULL;
542
543 dh->g = BN_new();
544 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
545 goto err;
546
547 dh->p = get_group5_prime();
548 if (dh->p == NULL)
549 goto err;
550
551 if (DH_generate_key(dh) != 1)
552 goto err;
553
554 publen = BN_num_bytes(dh->pub_key);
555 pubkey = wpabuf_alloc(publen);
556 if (pubkey == NULL)
557 goto err;
558 privlen = BN_num_bytes(dh->priv_key);
559 privkey = wpabuf_alloc(privlen);
560 if (privkey == NULL)
561 goto err;
562
563 BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
564 BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
565
566 *priv = privkey;
567 *publ = pubkey;
568 return dh;
569
570 err:
571 wpabuf_clear_free(pubkey);
572 wpabuf_clear_free(privkey);
573 DH_free(dh);
574 return NULL;
575 }
576
577
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)578 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
579 {
580 DH *dh;
581
582 dh = DH_new();
583 if (dh == NULL)
584 return NULL;
585
586 dh->g = BN_new();
587 if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
588 goto err;
589
590 dh->p = get_group5_prime();
591 if (dh->p == NULL)
592 goto err;
593
594 dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
595 if (dh->priv_key == NULL)
596 goto err;
597
598 dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
599 if (dh->pub_key == NULL)
600 goto err;
601
602 if (DH_generate_key(dh) != 1)
603 goto err;
604
605 return dh;
606
607 err:
608 DH_free(dh);
609 return NULL;
610 }
611
612
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)613 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
614 const struct wpabuf *own_private)
615 {
616 BIGNUM *pub_key;
617 struct wpabuf *res = NULL;
618 size_t rlen;
619 DH *dh = ctx;
620 int keylen;
621
622 if (ctx == NULL)
623 return NULL;
624
625 pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
626 NULL);
627 if (pub_key == NULL)
628 return NULL;
629
630 rlen = DH_size(dh);
631 res = wpabuf_alloc(rlen);
632 if (res == NULL)
633 goto err;
634
635 keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
636 if (keylen < 0)
637 goto err;
638 wpabuf_put(res, keylen);
639 BN_clear_free(pub_key);
640
641 return res;
642
643 err:
644 BN_clear_free(pub_key);
645 wpabuf_clear_free(res);
646 return NULL;
647 }
648
649
dh5_free(void * ctx)650 void dh5_free(void *ctx)
651 {
652 DH *dh;
653 if (ctx == NULL)
654 return;
655 dh = ctx;
656 DH_free(dh);
657 }
658
659
660 struct crypto_hash {
661 HMAC_CTX ctx;
662 };
663
664
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)665 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
666 size_t key_len)
667 {
668 struct crypto_hash *ctx;
669 const EVP_MD *md;
670
671 switch (alg) {
672 #ifndef OPENSSL_NO_MD5
673 case CRYPTO_HASH_ALG_HMAC_MD5:
674 md = EVP_md5();
675 break;
676 #endif /* OPENSSL_NO_MD5 */
677 #ifndef OPENSSL_NO_SHA
678 case CRYPTO_HASH_ALG_HMAC_SHA1:
679 md = EVP_sha1();
680 break;
681 #endif /* OPENSSL_NO_SHA */
682 #ifndef OPENSSL_NO_SHA256
683 #ifdef CONFIG_SHA256
684 case CRYPTO_HASH_ALG_HMAC_SHA256:
685 md = EVP_sha256();
686 break;
687 #endif /* CONFIG_SHA256 */
688 #endif /* OPENSSL_NO_SHA256 */
689 default:
690 return NULL;
691 }
692
693 ctx = os_zalloc(sizeof(*ctx));
694 if (ctx == NULL)
695 return NULL;
696 HMAC_CTX_init(&ctx->ctx);
697
698 #if OPENSSL_VERSION_NUMBER < 0x00909000
699 HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
700 #else /* openssl < 0.9.9 */
701 if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
702 bin_clear_free(ctx, sizeof(*ctx));
703 return NULL;
704 }
705 #endif /* openssl < 0.9.9 */
706
707 return ctx;
708 }
709
710
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)711 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
712 {
713 if (ctx == NULL)
714 return;
715 HMAC_Update(&ctx->ctx, data, len);
716 }
717
718
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)719 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
720 {
721 unsigned int mdlen;
722 int res;
723
724 if (ctx == NULL)
725 return -2;
726
727 if (mac == NULL || len == NULL) {
728 bin_clear_free(ctx, sizeof(*ctx));
729 return 0;
730 }
731
732 mdlen = *len;
733 #if OPENSSL_VERSION_NUMBER < 0x00909000
734 HMAC_Final(&ctx->ctx, mac, &mdlen);
735 res = 1;
736 #else /* openssl < 0.9.9 */
737 res = HMAC_Final(&ctx->ctx, mac, &mdlen);
738 #endif /* openssl < 0.9.9 */
739 HMAC_CTX_cleanup(&ctx->ctx);
740 bin_clear_free(ctx, sizeof(*ctx));
741
742 if (res == 1) {
743 *len = mdlen;
744 return 0;
745 }
746
747 return -1;
748 }
749
750
openssl_hmac_vector(const EVP_MD * type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)751 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
752 size_t key_len, size_t num_elem,
753 const u8 *addr[], const size_t *len, u8 *mac,
754 unsigned int mdlen)
755 {
756 HMAC_CTX ctx;
757 size_t i;
758 int res;
759
760 HMAC_CTX_init(&ctx);
761 #if OPENSSL_VERSION_NUMBER < 0x00909000
762 HMAC_Init_ex(&ctx, key, key_len, type, NULL);
763 #else /* openssl < 0.9.9 */
764 if (HMAC_Init_ex(&ctx, key, key_len, type, NULL) != 1)
765 return -1;
766 #endif /* openssl < 0.9.9 */
767
768 for (i = 0; i < num_elem; i++)
769 HMAC_Update(&ctx, addr[i], len[i]);
770
771 #if OPENSSL_VERSION_NUMBER < 0x00909000
772 HMAC_Final(&ctx, mac, &mdlen);
773 res = 1;
774 #else /* openssl < 0.9.9 */
775 res = HMAC_Final(&ctx, mac, &mdlen);
776 #endif /* openssl < 0.9.9 */
777 HMAC_CTX_cleanup(&ctx);
778
779 return res == 1 ? 0 : -1;
780 }
781
782
783 #ifndef CONFIG_FIPS
784
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)785 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
786 const u8 *addr[], const size_t *len, u8 *mac)
787 {
788 return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
789 mac, 16);
790 }
791
792
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)793 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
794 u8 *mac)
795 {
796 return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
797 }
798
799 #endif /* CONFIG_FIPS */
800
801
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)802 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
803 int iterations, u8 *buf, size_t buflen)
804 {
805 if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
806 ssid_len, iterations, buflen, buf) != 1)
807 return -1;
808 return 0;
809 }
810
811
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)812 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
813 const u8 *addr[], const size_t *len, u8 *mac)
814 {
815 return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
816 len, mac, 20);
817 }
818
819
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)820 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
821 u8 *mac)
822 {
823 return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
824 }
825
826
827 #ifdef CONFIG_SHA256
828
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)829 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
830 const u8 *addr[], const size_t *len, u8 *mac)
831 {
832 return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
833 len, mac, 32);
834 }
835
836
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)837 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
838 size_t data_len, u8 *mac)
839 {
840 return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
841 }
842
843 #endif /* CONFIG_SHA256 */
844
845
846 #ifdef CONFIG_SHA384
847
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)848 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
849 const u8 *addr[], const size_t *len, u8 *mac)
850 {
851 return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
852 len, mac, 32);
853 }
854
855
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)856 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
857 size_t data_len, u8 *mac)
858 {
859 return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
860 }
861
862 #endif /* CONFIG_SHA384 */
863
864
crypto_get_random(void * buf,size_t len)865 int crypto_get_random(void *buf, size_t len)
866 {
867 if (RAND_bytes(buf, len) != 1)
868 return -1;
869 return 0;
870 }
871
872
873 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)874 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
875 const u8 *addr[], const size_t *len, u8 *mac)
876 {
877 CMAC_CTX *ctx;
878 int ret = -1;
879 size_t outlen, i;
880
881 ctx = CMAC_CTX_new();
882 if (ctx == NULL)
883 return -1;
884
885 if (key_len == 32) {
886 if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
887 goto fail;
888 } else if (key_len == 16) {
889 if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
890 goto fail;
891 } else {
892 goto fail;
893 }
894 for (i = 0; i < num_elem; i++) {
895 if (!CMAC_Update(ctx, addr[i], len[i]))
896 goto fail;
897 }
898 if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
899 goto fail;
900
901 ret = 0;
902 fail:
903 CMAC_CTX_free(ctx);
904 return ret;
905 }
906
907
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)908 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
909 const u8 *addr[], const size_t *len, u8 *mac)
910 {
911 return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
912 }
913
914
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)915 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
916 {
917 return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
918 }
919
920
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)921 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
922 {
923 return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
924 }
925 #endif /* CONFIG_OPENSSL_CMAC */
926
927
crypto_bignum_init(void)928 struct crypto_bignum * crypto_bignum_init(void)
929 {
930 return (struct crypto_bignum *) BN_new();
931 }
932
933
crypto_bignum_init_set(const u8 * buf,size_t len)934 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
935 {
936 BIGNUM *bn = BN_bin2bn(buf, len, NULL);
937 return (struct crypto_bignum *) bn;
938 }
939
940
crypto_bignum_deinit(struct crypto_bignum * n,int clear)941 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
942 {
943 if (clear)
944 BN_clear_free((BIGNUM *) n);
945 else
946 BN_free((BIGNUM *) n);
947 }
948
949
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)950 int crypto_bignum_to_bin(const struct crypto_bignum *a,
951 u8 *buf, size_t buflen, size_t padlen)
952 {
953 int num_bytes, offset;
954
955 if (padlen > buflen)
956 return -1;
957
958 num_bytes = BN_num_bytes((const BIGNUM *) a);
959 if ((size_t) num_bytes > buflen)
960 return -1;
961 if (padlen > (size_t) num_bytes)
962 offset = padlen - num_bytes;
963 else
964 offset = 0;
965
966 os_memset(buf, 0, offset);
967 BN_bn2bin((const BIGNUM *) a, buf + offset);
968
969 return num_bytes + offset;
970 }
971
972
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)973 int crypto_bignum_add(const struct crypto_bignum *a,
974 const struct crypto_bignum *b,
975 struct crypto_bignum *c)
976 {
977 return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
978 0 : -1;
979 }
980
981
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)982 int crypto_bignum_mod(const struct crypto_bignum *a,
983 const struct crypto_bignum *b,
984 struct crypto_bignum *c)
985 {
986 int res;
987 BN_CTX *bnctx;
988
989 bnctx = BN_CTX_new();
990 if (bnctx == NULL)
991 return -1;
992 res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
993 bnctx);
994 BN_CTX_free(bnctx);
995
996 return res ? 0 : -1;
997 }
998
999
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1000 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1001 const struct crypto_bignum *b,
1002 const struct crypto_bignum *c,
1003 struct crypto_bignum *d)
1004 {
1005 int res;
1006 BN_CTX *bnctx;
1007
1008 bnctx = BN_CTX_new();
1009 if (bnctx == NULL)
1010 return -1;
1011 res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1012 (const BIGNUM *) c, bnctx);
1013 BN_CTX_free(bnctx);
1014
1015 return res ? 0 : -1;
1016 }
1017
1018
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1019 int crypto_bignum_inverse(const struct crypto_bignum *a,
1020 const struct crypto_bignum *b,
1021 struct crypto_bignum *c)
1022 {
1023 BIGNUM *res;
1024 BN_CTX *bnctx;
1025
1026 bnctx = BN_CTX_new();
1027 if (bnctx == NULL)
1028 return -1;
1029 res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1030 (const BIGNUM *) b, bnctx);
1031 BN_CTX_free(bnctx);
1032
1033 return res ? 0 : -1;
1034 }
1035
1036
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1037 int crypto_bignum_sub(const struct crypto_bignum *a,
1038 const struct crypto_bignum *b,
1039 struct crypto_bignum *c)
1040 {
1041 return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1042 0 : -1;
1043 }
1044
1045
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1046 int crypto_bignum_div(const struct crypto_bignum *a,
1047 const struct crypto_bignum *b,
1048 struct crypto_bignum *c)
1049 {
1050 int res;
1051
1052 BN_CTX *bnctx;
1053
1054 bnctx = BN_CTX_new();
1055 if (bnctx == NULL)
1056 return -1;
1057 res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1058 (const BIGNUM *) b, bnctx);
1059 BN_CTX_free(bnctx);
1060
1061 return res ? 0 : -1;
1062 }
1063
1064
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1065 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1066 const struct crypto_bignum *b,
1067 const struct crypto_bignum *c,
1068 struct crypto_bignum *d)
1069 {
1070 int res;
1071
1072 BN_CTX *bnctx;
1073
1074 bnctx = BN_CTX_new();
1075 if (bnctx == NULL)
1076 return -1;
1077 res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1078 (const BIGNUM *) c, bnctx);
1079 BN_CTX_free(bnctx);
1080
1081 return res ? 0 : -1;
1082 }
1083
1084
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1085 int crypto_bignum_cmp(const struct crypto_bignum *a,
1086 const struct crypto_bignum *b)
1087 {
1088 return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1089 }
1090
1091
crypto_bignum_bits(const struct crypto_bignum * a)1092 int crypto_bignum_bits(const struct crypto_bignum *a)
1093 {
1094 return BN_num_bits((const BIGNUM *) a);
1095 }
1096
1097
crypto_bignum_is_zero(const struct crypto_bignum * a)1098 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1099 {
1100 return BN_is_zero((const BIGNUM *) a);
1101 }
1102
1103
crypto_bignum_is_one(const struct crypto_bignum * a)1104 int crypto_bignum_is_one(const struct crypto_bignum *a)
1105 {
1106 return BN_is_one((const BIGNUM *) a);
1107 }
1108
1109
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1110 int crypto_bignum_legendre(const struct crypto_bignum *a,
1111 const struct crypto_bignum *p)
1112 {
1113 BN_CTX *bnctx;
1114 BIGNUM *exp = NULL, *tmp = NULL;
1115 int res = -2;
1116
1117 bnctx = BN_CTX_new();
1118 if (bnctx == NULL)
1119 return -2;
1120
1121 exp = BN_new();
1122 tmp = BN_new();
1123 if (!exp || !tmp ||
1124 /* exp = (p-1) / 2 */
1125 !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1126 !BN_rshift1(exp, exp) ||
1127 !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
1128 bnctx))
1129 goto fail;
1130
1131 if (BN_is_word(tmp, 1))
1132 res = 1;
1133 else if (BN_is_zero(tmp))
1134 res = 0;
1135 else
1136 res = -1;
1137
1138 fail:
1139 BN_clear_free(tmp);
1140 BN_clear_free(exp);
1141 BN_CTX_free(bnctx);
1142 return res;
1143 }
1144
1145
1146 #ifdef CONFIG_ECC
1147
1148 struct crypto_ec {
1149 EC_GROUP *group;
1150 BN_CTX *bnctx;
1151 BIGNUM *prime;
1152 BIGNUM *order;
1153 BIGNUM *a;
1154 BIGNUM *b;
1155 };
1156
crypto_ec_init(int group)1157 struct crypto_ec * crypto_ec_init(int group)
1158 {
1159 struct crypto_ec *e;
1160 int nid;
1161
1162 /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1163 switch (group) {
1164 case 19:
1165 nid = NID_X9_62_prime256v1;
1166 break;
1167 case 20:
1168 nid = NID_secp384r1;
1169 break;
1170 case 21:
1171 nid = NID_secp521r1;
1172 break;
1173 case 25:
1174 nid = NID_X9_62_prime192v1;
1175 break;
1176 case 26:
1177 nid = NID_secp224r1;
1178 break;
1179 #ifdef NID_brainpoolP224r1
1180 case 27:
1181 nid = NID_brainpoolP224r1;
1182 break;
1183 #endif /* NID_brainpoolP224r1 */
1184 #ifdef NID_brainpoolP256r1
1185 case 28:
1186 nid = NID_brainpoolP256r1;
1187 break;
1188 #endif /* NID_brainpoolP256r1 */
1189 #ifdef NID_brainpoolP384r1
1190 case 29:
1191 nid = NID_brainpoolP384r1;
1192 break;
1193 #endif /* NID_brainpoolP384r1 */
1194 #ifdef NID_brainpoolP512r1
1195 case 30:
1196 nid = NID_brainpoolP512r1;
1197 break;
1198 #endif /* NID_brainpoolP512r1 */
1199 default:
1200 return NULL;
1201 }
1202
1203 e = os_zalloc(sizeof(*e));
1204 if (e == NULL)
1205 return NULL;
1206
1207 e->bnctx = BN_CTX_new();
1208 e->group = EC_GROUP_new_by_curve_name(nid);
1209 e->prime = BN_new();
1210 e->order = BN_new();
1211 e->a = BN_new();
1212 e->b = BN_new();
1213 if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1214 e->order == NULL || e->a == NULL || e->b == NULL ||
1215 !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1216 !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1217 crypto_ec_deinit(e);
1218 e = NULL;
1219 }
1220
1221 return e;
1222 }
1223
1224
crypto_ec_deinit(struct crypto_ec * e)1225 void crypto_ec_deinit(struct crypto_ec *e)
1226 {
1227 if (e == NULL)
1228 return;
1229 BN_clear_free(e->b);
1230 BN_clear_free(e->a);
1231 BN_clear_free(e->order);
1232 BN_clear_free(e->prime);
1233 EC_GROUP_free(e->group);
1234 BN_CTX_free(e->bnctx);
1235 os_free(e);
1236 }
1237
1238
crypto_ec_point_init(struct crypto_ec * e)1239 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1240 {
1241 if (e == NULL)
1242 return NULL;
1243 return (struct crypto_ec_point *) EC_POINT_new(e->group);
1244 }
1245
1246
crypto_ec_prime_len(struct crypto_ec * e)1247 size_t crypto_ec_prime_len(struct crypto_ec *e)
1248 {
1249 return BN_num_bytes(e->prime);
1250 }
1251
1252
crypto_ec_prime_len_bits(struct crypto_ec * e)1253 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1254 {
1255 return BN_num_bits(e->prime);
1256 }
1257
1258
crypto_ec_get_prime(struct crypto_ec * e)1259 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1260 {
1261 return (const struct crypto_bignum *) e->prime;
1262 }
1263
1264
crypto_ec_get_order(struct crypto_ec * e)1265 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1266 {
1267 return (const struct crypto_bignum *) e->order;
1268 }
1269
1270
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1271 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1272 {
1273 if (clear)
1274 EC_POINT_clear_free((EC_POINT *) p);
1275 else
1276 EC_POINT_free((EC_POINT *) p);
1277 }
1278
1279
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1280 int crypto_ec_point_to_bin(struct crypto_ec *e,
1281 const struct crypto_ec_point *point, u8 *x, u8 *y)
1282 {
1283 BIGNUM *x_bn, *y_bn;
1284 int ret = -1;
1285 int len = BN_num_bytes(e->prime);
1286
1287 x_bn = BN_new();
1288 y_bn = BN_new();
1289
1290 if (x_bn && y_bn &&
1291 EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1292 x_bn, y_bn, e->bnctx)) {
1293 if (x) {
1294 crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1295 x, len, len);
1296 }
1297 if (y) {
1298 crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1299 y, len, len);
1300 }
1301 ret = 0;
1302 }
1303
1304 BN_clear_free(x_bn);
1305 BN_clear_free(y_bn);
1306 return ret;
1307 }
1308
1309
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1310 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1311 const u8 *val)
1312 {
1313 BIGNUM *x, *y;
1314 EC_POINT *elem;
1315 int len = BN_num_bytes(e->prime);
1316
1317 x = BN_bin2bn(val, len, NULL);
1318 y = BN_bin2bn(val + len, len, NULL);
1319 elem = EC_POINT_new(e->group);
1320 if (x == NULL || y == NULL || elem == NULL) {
1321 BN_clear_free(x);
1322 BN_clear_free(y);
1323 EC_POINT_clear_free(elem);
1324 return NULL;
1325 }
1326
1327 if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1328 e->bnctx)) {
1329 EC_POINT_clear_free(elem);
1330 elem = NULL;
1331 }
1332
1333 BN_clear_free(x);
1334 BN_clear_free(y);
1335
1336 return (struct crypto_ec_point *) elem;
1337 }
1338
1339
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1340 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1341 const struct crypto_ec_point *b,
1342 struct crypto_ec_point *c)
1343 {
1344 return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1345 (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1346 }
1347
1348
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1349 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1350 const struct crypto_bignum *b,
1351 struct crypto_ec_point *res)
1352 {
1353 return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1354 (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1355 ? 0 : -1;
1356 }
1357
1358
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1359 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1360 {
1361 return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1362 }
1363
1364
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1365 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1366 struct crypto_ec_point *p,
1367 const struct crypto_bignum *x, int y_bit)
1368 {
1369 if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1370 (const BIGNUM *) x, y_bit,
1371 e->bnctx) ||
1372 !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1373 return -1;
1374 return 0;
1375 }
1376
1377
1378 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1379 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1380 const struct crypto_bignum *x)
1381 {
1382 BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1383
1384 tmp = BN_new();
1385 tmp2 = BN_new();
1386
1387 /* y^2 = x^3 + ax + b */
1388 if (tmp && tmp2 &&
1389 BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1390 BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1391 BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1392 BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1393 BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1394 y_sqr = tmp2;
1395 tmp2 = NULL;
1396 }
1397
1398 BN_clear_free(tmp);
1399 BN_clear_free(tmp2);
1400
1401 return (struct crypto_bignum *) y_sqr;
1402 }
1403
1404
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1405 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1406 const struct crypto_ec_point *p)
1407 {
1408 return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1409 }
1410
1411
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1412 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1413 const struct crypto_ec_point *p)
1414 {
1415 return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1416 e->bnctx) == 1;
1417 }
1418
1419
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1420 int crypto_ec_point_cmp(const struct crypto_ec *e,
1421 const struct crypto_ec_point *a,
1422 const struct crypto_ec_point *b)
1423 {
1424 return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1425 (const EC_POINT *) b, e->bnctx);
1426 }
1427
1428 #endif /* CONFIG_ECC */
1429