1 /*
2  * Wrapper functions for OpenSSL libcrypto
3  * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
4  *
5  * This software may be distributed under the terms of the BSD license.
6  * See README for more details.
7  */
8 
9 #include "includes.h"
10 #include <openssl/opensslv.h>
11 #include <openssl/err.h>
12 #include <openssl/des.h>
13 #include <openssl/aes.h>
14 #include <openssl/bn.h>
15 #include <openssl/evp.h>
16 #include <openssl/dh.h>
17 #include <openssl/hmac.h>
18 #include <openssl/rand.h>
19 #ifdef CONFIG_OPENSSL_CMAC
20 #include <openssl/cmac.h>
21 #endif /* CONFIG_OPENSSL_CMAC */
22 #ifdef CONFIG_ECC
23 #include <openssl/ec.h>
24 #endif /* CONFIG_ECC */
25 
26 #include "common.h"
27 #include "wpabuf.h"
28 #include "dh_group5.h"
29 #include "sha1.h"
30 #include "sha256.h"
31 #include "sha384.h"
32 #include "crypto.h"
33 
get_group5_prime(void)34 static BIGNUM * get_group5_prime(void)
35 {
36 #ifdef OPENSSL_IS_BORINGSSL
37 	static const unsigned char RFC3526_PRIME_1536[] = {
38 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
39 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
40 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
41 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
42 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
43 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
44 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
45 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
46 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
47 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
48 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
49 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
50 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
51 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
52 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
53 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
54 	};
55         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
56 #else /* OPENSSL_IS_BORINGSSL */
57 	return get_rfc3526_prime_1536(NULL);
58 #endif /* OPENSSL_IS_BORINGSSL */
59 }
60 
61 #ifdef OPENSSL_NO_SHA256
62 #define NO_SHA256_WRAPPER
63 #endif
64 
openssl_digest_vector(const EVP_MD * type,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)65 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
66 				 const u8 *addr[], const size_t *len, u8 *mac)
67 {
68 	EVP_MD_CTX ctx;
69 	size_t i;
70 	unsigned int mac_len;
71 
72 	EVP_MD_CTX_init(&ctx);
73 	if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
74 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
75 			   ERR_error_string(ERR_get_error(), NULL));
76 		return -1;
77 	}
78 	for (i = 0; i < num_elem; i++) {
79 		if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
80 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
81 				   "failed: %s",
82 				   ERR_error_string(ERR_get_error(), NULL));
83 			return -1;
84 		}
85 	}
86 	if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
87 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
88 			   ERR_error_string(ERR_get_error(), NULL));
89 		return -1;
90 	}
91 
92 	return 0;
93 }
94 
95 
md4_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)96 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
97 {
98 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
99 }
100 
101 
des_encrypt(const u8 * clear,const u8 * key,u8 * cypher)102 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
103 {
104 	u8 pkey[8], next, tmp;
105 	int i;
106 	DES_key_schedule ks;
107 
108 	/* Add parity bits to the key */
109 	next = 0;
110 	for (i = 0; i < 7; i++) {
111 		tmp = key[i];
112 		pkey[i] = (tmp >> i) | next | 1;
113 		next = tmp << (7 - i);
114 	}
115 	pkey[i] = next | 1;
116 
117 	DES_set_key((DES_cblock *) &pkey, &ks);
118 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
119 			DES_ENCRYPT);
120 }
121 
122 
rc4_skip(const u8 * key,size_t keylen,size_t skip,u8 * data,size_t data_len)123 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
124 	     u8 *data, size_t data_len)
125 {
126 #ifdef OPENSSL_NO_RC4
127 	return -1;
128 #else /* OPENSSL_NO_RC4 */
129 	EVP_CIPHER_CTX ctx;
130 	int outl;
131 	int res = -1;
132 	unsigned char skip_buf[16];
133 
134 	EVP_CIPHER_CTX_init(&ctx);
135 	if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
136 	    !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
137 	    !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
138 	    !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
139 		goto out;
140 
141 	while (skip >= sizeof(skip_buf)) {
142 		size_t len = skip;
143 		if (len > sizeof(skip_buf))
144 			len = sizeof(skip_buf);
145 		if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
146 			goto out;
147 		skip -= len;
148 	}
149 
150 	if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
151 		res = 0;
152 
153 out:
154 	EVP_CIPHER_CTX_cleanup(&ctx);
155 	return res;
156 #endif /* OPENSSL_NO_RC4 */
157 }
158 
159 
md5_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)160 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
161 {
162 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
163 }
164 
165 
sha1_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)166 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
167 {
168 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
169 }
170 
171 
172 #ifndef NO_SHA256_WRAPPER
sha256_vector(size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)173 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
174 		  u8 *mac)
175 {
176 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
177 }
178 #endif /* NO_SHA256_WRAPPER */
179 
180 
aes_get_evp_cipher(size_t keylen)181 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
182 {
183 	switch (keylen) {
184 	case 16:
185 		return EVP_aes_128_ecb();
186 #ifndef OPENSSL_IS_BORINGSSL
187 	case 24:
188 		return EVP_aes_192_ecb();
189 #endif /* OPENSSL_IS_BORINGSSL */
190 	case 32:
191 		return EVP_aes_256_ecb();
192 	}
193 
194 	return NULL;
195 }
196 
197 
aes_encrypt_init(const u8 * key,size_t len)198 void * aes_encrypt_init(const u8 *key, size_t len)
199 {
200 	EVP_CIPHER_CTX *ctx;
201 	const EVP_CIPHER *type;
202 
203 	type = aes_get_evp_cipher(len);
204 	if (type == NULL)
205 		return NULL;
206 
207 	ctx = os_malloc(sizeof(*ctx));
208 	if (ctx == NULL)
209 		return NULL;
210 	EVP_CIPHER_CTX_init(ctx);
211 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
212 		os_free(ctx);
213 		return NULL;
214 	}
215 	EVP_CIPHER_CTX_set_padding(ctx, 0);
216 	return ctx;
217 }
218 
219 
aes_encrypt(void * ctx,const u8 * plain,u8 * crypt)220 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
221 {
222 	EVP_CIPHER_CTX *c = ctx;
223 	int clen = 16;
224 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
225 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
226 			   ERR_error_string(ERR_get_error(), NULL));
227 	}
228 }
229 
230 
aes_encrypt_deinit(void * ctx)231 void aes_encrypt_deinit(void *ctx)
232 {
233 	EVP_CIPHER_CTX *c = ctx;
234 	u8 buf[16];
235 	int len = sizeof(buf);
236 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
237 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
238 			   "%s", ERR_error_string(ERR_get_error(), NULL));
239 	}
240 	if (len != 0) {
241 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
242 			   "in AES encrypt", len);
243 	}
244 	EVP_CIPHER_CTX_cleanup(c);
245 	bin_clear_free(c, sizeof(*c));
246 }
247 
248 
aes_decrypt_init(const u8 * key,size_t len)249 void * aes_decrypt_init(const u8 *key, size_t len)
250 {
251 	EVP_CIPHER_CTX *ctx;
252 	const EVP_CIPHER *type;
253 
254 	type = aes_get_evp_cipher(len);
255 	if (type == NULL)
256 		return NULL;
257 
258 	ctx = os_malloc(sizeof(*ctx));
259 	if (ctx == NULL)
260 		return NULL;
261 	EVP_CIPHER_CTX_init(ctx);
262 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
263 		os_free(ctx);
264 		return NULL;
265 	}
266 	EVP_CIPHER_CTX_set_padding(ctx, 0);
267 	return ctx;
268 }
269 
270 
aes_decrypt(void * ctx,const u8 * crypt,u8 * plain)271 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
272 {
273 	EVP_CIPHER_CTX *c = ctx;
274 	int plen = 16;
275 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
276 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
277 			   ERR_error_string(ERR_get_error(), NULL));
278 	}
279 }
280 
281 
aes_decrypt_deinit(void * ctx)282 void aes_decrypt_deinit(void *ctx)
283 {
284 	EVP_CIPHER_CTX *c = ctx;
285 	u8 buf[16];
286 	int len = sizeof(buf);
287 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
288 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
289 			   "%s", ERR_error_string(ERR_get_error(), NULL));
290 	}
291 	if (len != 0) {
292 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
293 			   "in AES decrypt", len);
294 	}
295 	EVP_CIPHER_CTX_cleanup(c);
296 	bin_clear_free(c, sizeof(*c));
297 }
298 
299 
aes_wrap(const u8 * kek,size_t kek_len,int n,const u8 * plain,u8 * cipher)300 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
301 {
302 	AES_KEY actx;
303 	int res;
304 
305 	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
306 		return -1;
307 	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
308 	OPENSSL_cleanse(&actx, sizeof(actx));
309 	return res <= 0 ? -1 : 0;
310 }
311 
312 
aes_unwrap(const u8 * kek,size_t kek_len,int n,const u8 * cipher,u8 * plain)313 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
314 	       u8 *plain)
315 {
316 	AES_KEY actx;
317 	int res;
318 
319 	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
320 		return -1;
321 	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
322 	OPENSSL_cleanse(&actx, sizeof(actx));
323 	return res <= 0 ? -1 : 0;
324 }
325 
326 
aes_128_cbc_encrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)327 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
328 {
329 	EVP_CIPHER_CTX ctx;
330 	int clen, len;
331 	u8 buf[16];
332 
333 	EVP_CIPHER_CTX_init(&ctx);
334 	if (EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
335 		return -1;
336 	EVP_CIPHER_CTX_set_padding(&ctx, 0);
337 
338 	clen = data_len;
339 	if (EVP_EncryptUpdate(&ctx, data, &clen, data, data_len) != 1 ||
340 	    clen != (int) data_len)
341 		return -1;
342 
343 	len = sizeof(buf);
344 	if (EVP_EncryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
345 		return -1;
346 	EVP_CIPHER_CTX_cleanup(&ctx);
347 
348 	return 0;
349 }
350 
351 
aes_128_cbc_decrypt(const u8 * key,const u8 * iv,u8 * data,size_t data_len)352 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
353 {
354 	EVP_CIPHER_CTX ctx;
355 	int plen, len;
356 	u8 buf[16];
357 
358 	EVP_CIPHER_CTX_init(&ctx);
359 	if (EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, key, iv) != 1)
360 		return -1;
361 	EVP_CIPHER_CTX_set_padding(&ctx, 0);
362 
363 	plen = data_len;
364 	if (EVP_DecryptUpdate(&ctx, data, &plen, data, data_len) != 1 ||
365 	    plen != (int) data_len)
366 		return -1;
367 
368 	len = sizeof(buf);
369 	if (EVP_DecryptFinal_ex(&ctx, buf, &len) != 1 || len != 0)
370 		return -1;
371 	EVP_CIPHER_CTX_cleanup(&ctx);
372 
373 	return 0;
374 }
375 
376 
crypto_mod_exp(const u8 * base,size_t base_len,const u8 * power,size_t power_len,const u8 * modulus,size_t modulus_len,u8 * result,size_t * result_len)377 int crypto_mod_exp(const u8 *base, size_t base_len,
378 		   const u8 *power, size_t power_len,
379 		   const u8 *modulus, size_t modulus_len,
380 		   u8 *result, size_t *result_len)
381 {
382 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
383 	int ret = -1;
384 	BN_CTX *ctx;
385 
386 	ctx = BN_CTX_new();
387 	if (ctx == NULL)
388 		return -1;
389 
390 	bn_base = BN_bin2bn(base, base_len, NULL);
391 	bn_exp = BN_bin2bn(power, power_len, NULL);
392 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
393 	bn_result = BN_new();
394 
395 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
396 	    bn_result == NULL)
397 		goto error;
398 
399 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
400 		goto error;
401 
402 	*result_len = BN_bn2bin(bn_result, result);
403 	ret = 0;
404 
405 error:
406 	BN_clear_free(bn_base);
407 	BN_clear_free(bn_exp);
408 	BN_clear_free(bn_modulus);
409 	BN_clear_free(bn_result);
410 	BN_CTX_free(ctx);
411 	return ret;
412 }
413 
414 
415 struct crypto_cipher {
416 	EVP_CIPHER_CTX enc;
417 	EVP_CIPHER_CTX dec;
418 };
419 
420 
crypto_cipher_init(enum crypto_cipher_alg alg,const u8 * iv,const u8 * key,size_t key_len)421 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
422 					  const u8 *iv, const u8 *key,
423 					  size_t key_len)
424 {
425 	struct crypto_cipher *ctx;
426 	const EVP_CIPHER *cipher;
427 
428 	ctx = os_zalloc(sizeof(*ctx));
429 	if (ctx == NULL)
430 		return NULL;
431 
432 	switch (alg) {
433 #ifndef OPENSSL_NO_RC4
434 	case CRYPTO_CIPHER_ALG_RC4:
435 		cipher = EVP_rc4();
436 		break;
437 #endif /* OPENSSL_NO_RC4 */
438 #ifndef OPENSSL_NO_AES
439 	case CRYPTO_CIPHER_ALG_AES:
440 		switch (key_len) {
441 		case 16:
442 			cipher = EVP_aes_128_cbc();
443 			break;
444 #ifndef OPENSSL_IS_BORINGSSL
445 		case 24:
446 			cipher = EVP_aes_192_cbc();
447 			break;
448 #endif /* OPENSSL_IS_BORINGSSL */
449 		case 32:
450 			cipher = EVP_aes_256_cbc();
451 			break;
452 		default:
453 			os_free(ctx);
454 			return NULL;
455 		}
456 		break;
457 #endif /* OPENSSL_NO_AES */
458 #ifndef OPENSSL_NO_DES
459 	case CRYPTO_CIPHER_ALG_3DES:
460 		cipher = EVP_des_ede3_cbc();
461 		break;
462 	case CRYPTO_CIPHER_ALG_DES:
463 		cipher = EVP_des_cbc();
464 		break;
465 #endif /* OPENSSL_NO_DES */
466 #ifndef OPENSSL_NO_RC2
467 	case CRYPTO_CIPHER_ALG_RC2:
468 		cipher = EVP_rc2_ecb();
469 		break;
470 #endif /* OPENSSL_NO_RC2 */
471 	default:
472 		os_free(ctx);
473 		return NULL;
474 	}
475 
476 	EVP_CIPHER_CTX_init(&ctx->enc);
477 	EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
478 	if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
479 	    !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
480 	    !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
481 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
482 		os_free(ctx);
483 		return NULL;
484 	}
485 
486 	EVP_CIPHER_CTX_init(&ctx->dec);
487 	EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
488 	if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
489 	    !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
490 	    !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
491 		EVP_CIPHER_CTX_cleanup(&ctx->enc);
492 		EVP_CIPHER_CTX_cleanup(&ctx->dec);
493 		os_free(ctx);
494 		return NULL;
495 	}
496 
497 	return ctx;
498 }
499 
500 
crypto_cipher_encrypt(struct crypto_cipher * ctx,const u8 * plain,u8 * crypt,size_t len)501 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
502 			  u8 *crypt, size_t len)
503 {
504 	int outl;
505 	if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
506 		return -1;
507 	return 0;
508 }
509 
510 
crypto_cipher_decrypt(struct crypto_cipher * ctx,const u8 * crypt,u8 * plain,size_t len)511 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
512 			  u8 *plain, size_t len)
513 {
514 	int outl;
515 	outl = len;
516 	if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
517 		return -1;
518 	return 0;
519 }
520 
521 
crypto_cipher_deinit(struct crypto_cipher * ctx)522 void crypto_cipher_deinit(struct crypto_cipher *ctx)
523 {
524 	EVP_CIPHER_CTX_cleanup(&ctx->enc);
525 	EVP_CIPHER_CTX_cleanup(&ctx->dec);
526 	os_free(ctx);
527 }
528 
529 
dh5_init(struct wpabuf ** priv,struct wpabuf ** publ)530 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
531 {
532 	DH *dh;
533 	struct wpabuf *pubkey = NULL, *privkey = NULL;
534 	size_t publen, privlen;
535 
536 	*priv = NULL;
537 	*publ = NULL;
538 
539 	dh = DH_new();
540 	if (dh == NULL)
541 		return NULL;
542 
543 	dh->g = BN_new();
544 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
545 		goto err;
546 
547 	dh->p = get_group5_prime();
548 	if (dh->p == NULL)
549 		goto err;
550 
551 	if (DH_generate_key(dh) != 1)
552 		goto err;
553 
554 	publen = BN_num_bytes(dh->pub_key);
555 	pubkey = wpabuf_alloc(publen);
556 	if (pubkey == NULL)
557 		goto err;
558 	privlen = BN_num_bytes(dh->priv_key);
559 	privkey = wpabuf_alloc(privlen);
560 	if (privkey == NULL)
561 		goto err;
562 
563 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
564 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
565 
566 	*priv = privkey;
567 	*publ = pubkey;
568 	return dh;
569 
570 err:
571 	wpabuf_clear_free(pubkey);
572 	wpabuf_clear_free(privkey);
573 	DH_free(dh);
574 	return NULL;
575 }
576 
577 
dh5_init_fixed(const struct wpabuf * priv,const struct wpabuf * publ)578 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
579 {
580 	DH *dh;
581 
582 	dh = DH_new();
583 	if (dh == NULL)
584 		return NULL;
585 
586 	dh->g = BN_new();
587 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
588 		goto err;
589 
590 	dh->p = get_group5_prime();
591 	if (dh->p == NULL)
592 		goto err;
593 
594 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
595 	if (dh->priv_key == NULL)
596 		goto err;
597 
598 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
599 	if (dh->pub_key == NULL)
600 		goto err;
601 
602 	if (DH_generate_key(dh) != 1)
603 		goto err;
604 
605 	return dh;
606 
607 err:
608 	DH_free(dh);
609 	return NULL;
610 }
611 
612 
dh5_derive_shared(void * ctx,const struct wpabuf * peer_public,const struct wpabuf * own_private)613 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
614 				  const struct wpabuf *own_private)
615 {
616 	BIGNUM *pub_key;
617 	struct wpabuf *res = NULL;
618 	size_t rlen;
619 	DH *dh = ctx;
620 	int keylen;
621 
622 	if (ctx == NULL)
623 		return NULL;
624 
625 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
626 			    NULL);
627 	if (pub_key == NULL)
628 		return NULL;
629 
630 	rlen = DH_size(dh);
631 	res = wpabuf_alloc(rlen);
632 	if (res == NULL)
633 		goto err;
634 
635 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
636 	if (keylen < 0)
637 		goto err;
638 	wpabuf_put(res, keylen);
639 	BN_clear_free(pub_key);
640 
641 	return res;
642 
643 err:
644 	BN_clear_free(pub_key);
645 	wpabuf_clear_free(res);
646 	return NULL;
647 }
648 
649 
dh5_free(void * ctx)650 void dh5_free(void *ctx)
651 {
652 	DH *dh;
653 	if (ctx == NULL)
654 		return;
655 	dh = ctx;
656 	DH_free(dh);
657 }
658 
659 
660 struct crypto_hash {
661 	HMAC_CTX ctx;
662 };
663 
664 
crypto_hash_init(enum crypto_hash_alg alg,const u8 * key,size_t key_len)665 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
666 				      size_t key_len)
667 {
668 	struct crypto_hash *ctx;
669 	const EVP_MD *md;
670 
671 	switch (alg) {
672 #ifndef OPENSSL_NO_MD5
673 	case CRYPTO_HASH_ALG_HMAC_MD5:
674 		md = EVP_md5();
675 		break;
676 #endif /* OPENSSL_NO_MD5 */
677 #ifndef OPENSSL_NO_SHA
678 	case CRYPTO_HASH_ALG_HMAC_SHA1:
679 		md = EVP_sha1();
680 		break;
681 #endif /* OPENSSL_NO_SHA */
682 #ifndef OPENSSL_NO_SHA256
683 #ifdef CONFIG_SHA256
684 	case CRYPTO_HASH_ALG_HMAC_SHA256:
685 		md = EVP_sha256();
686 		break;
687 #endif /* CONFIG_SHA256 */
688 #endif /* OPENSSL_NO_SHA256 */
689 	default:
690 		return NULL;
691 	}
692 
693 	ctx = os_zalloc(sizeof(*ctx));
694 	if (ctx == NULL)
695 		return NULL;
696 	HMAC_CTX_init(&ctx->ctx);
697 
698 #if OPENSSL_VERSION_NUMBER < 0x00909000
699 	HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
700 #else /* openssl < 0.9.9 */
701 	if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
702 		bin_clear_free(ctx, sizeof(*ctx));
703 		return NULL;
704 	}
705 #endif /* openssl < 0.9.9 */
706 
707 	return ctx;
708 }
709 
710 
crypto_hash_update(struct crypto_hash * ctx,const u8 * data,size_t len)711 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
712 {
713 	if (ctx == NULL)
714 		return;
715 	HMAC_Update(&ctx->ctx, data, len);
716 }
717 
718 
crypto_hash_finish(struct crypto_hash * ctx,u8 * mac,size_t * len)719 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
720 {
721 	unsigned int mdlen;
722 	int res;
723 
724 	if (ctx == NULL)
725 		return -2;
726 
727 	if (mac == NULL || len == NULL) {
728 		bin_clear_free(ctx, sizeof(*ctx));
729 		return 0;
730 	}
731 
732 	mdlen = *len;
733 #if OPENSSL_VERSION_NUMBER < 0x00909000
734 	HMAC_Final(&ctx->ctx, mac, &mdlen);
735 	res = 1;
736 #else /* openssl < 0.9.9 */
737 	res = HMAC_Final(&ctx->ctx, mac, &mdlen);
738 #endif /* openssl < 0.9.9 */
739 	HMAC_CTX_cleanup(&ctx->ctx);
740 	bin_clear_free(ctx, sizeof(*ctx));
741 
742 	if (res == 1) {
743 		*len = mdlen;
744 		return 0;
745 	}
746 
747 	return -1;
748 }
749 
750 
openssl_hmac_vector(const EVP_MD * type,const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac,unsigned int mdlen)751 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
752 			       size_t key_len, size_t num_elem,
753 			       const u8 *addr[], const size_t *len, u8 *mac,
754 			       unsigned int mdlen)
755 {
756 	HMAC_CTX ctx;
757 	size_t i;
758 	int res;
759 
760 	HMAC_CTX_init(&ctx);
761 #if OPENSSL_VERSION_NUMBER < 0x00909000
762 	HMAC_Init_ex(&ctx, key, key_len, type, NULL);
763 #else /* openssl < 0.9.9 */
764 	if (HMAC_Init_ex(&ctx, key, key_len, type, NULL) != 1)
765 		return -1;
766 #endif /* openssl < 0.9.9 */
767 
768 	for (i = 0; i < num_elem; i++)
769 		HMAC_Update(&ctx, addr[i], len[i]);
770 
771 #if OPENSSL_VERSION_NUMBER < 0x00909000
772 	HMAC_Final(&ctx, mac, &mdlen);
773 	res = 1;
774 #else /* openssl < 0.9.9 */
775 	res = HMAC_Final(&ctx, mac, &mdlen);
776 #endif /* openssl < 0.9.9 */
777 	HMAC_CTX_cleanup(&ctx);
778 
779 	return res == 1 ? 0 : -1;
780 }
781 
782 
783 #ifndef CONFIG_FIPS
784 
hmac_md5_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)785 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
786 		    const u8 *addr[], const size_t *len, u8 *mac)
787 {
788 	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
789 				   mac, 16);
790 }
791 
792 
hmac_md5(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)793 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
794 	     u8 *mac)
795 {
796 	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
797 }
798 
799 #endif /* CONFIG_FIPS */
800 
801 
pbkdf2_sha1(const char * passphrase,const u8 * ssid,size_t ssid_len,int iterations,u8 * buf,size_t buflen)802 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
803 		int iterations, u8 *buf, size_t buflen)
804 {
805 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
806 				   ssid_len, iterations, buflen, buf) != 1)
807 		return -1;
808 	return 0;
809 }
810 
811 
hmac_sha1_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)812 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
813 		     const u8 *addr[], const size_t *len, u8 *mac)
814 {
815 	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
816 				   len, mac, 20);
817 }
818 
819 
hmac_sha1(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)820 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
821 	       u8 *mac)
822 {
823 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
824 }
825 
826 
827 #ifdef CONFIG_SHA256
828 
hmac_sha256_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)829 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
830 		       const u8 *addr[], const size_t *len, u8 *mac)
831 {
832 	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
833 				   len, mac, 32);
834 }
835 
836 
hmac_sha256(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)837 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
838 		size_t data_len, u8 *mac)
839 {
840 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
841 }
842 
843 #endif /* CONFIG_SHA256 */
844 
845 
846 #ifdef CONFIG_SHA384
847 
hmac_sha384_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)848 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
849 		       const u8 *addr[], const size_t *len, u8 *mac)
850 {
851 	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
852 				   len, mac, 32);
853 }
854 
855 
hmac_sha384(const u8 * key,size_t key_len,const u8 * data,size_t data_len,u8 * mac)856 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
857 		size_t data_len, u8 *mac)
858 {
859 	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
860 }
861 
862 #endif /* CONFIG_SHA384 */
863 
864 
crypto_get_random(void * buf,size_t len)865 int crypto_get_random(void *buf, size_t len)
866 {
867 	if (RAND_bytes(buf, len) != 1)
868 		return -1;
869 	return 0;
870 }
871 
872 
873 #ifdef CONFIG_OPENSSL_CMAC
omac1_aes_vector(const u8 * key,size_t key_len,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)874 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
875 		     const u8 *addr[], const size_t *len, u8 *mac)
876 {
877 	CMAC_CTX *ctx;
878 	int ret = -1;
879 	size_t outlen, i;
880 
881 	ctx = CMAC_CTX_new();
882 	if (ctx == NULL)
883 		return -1;
884 
885 	if (key_len == 32) {
886 		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
887 			goto fail;
888 	} else if (key_len == 16) {
889 		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
890 			goto fail;
891 	} else {
892 		goto fail;
893 	}
894 	for (i = 0; i < num_elem; i++) {
895 		if (!CMAC_Update(ctx, addr[i], len[i]))
896 			goto fail;
897 	}
898 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
899 		goto fail;
900 
901 	ret = 0;
902 fail:
903 	CMAC_CTX_free(ctx);
904 	return ret;
905 }
906 
907 
omac1_aes_128_vector(const u8 * key,size_t num_elem,const u8 * addr[],const size_t * len,u8 * mac)908 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
909 			 const u8 *addr[], const size_t *len, u8 *mac)
910 {
911 	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
912 }
913 
914 
omac1_aes_128(const u8 * key,const u8 * data,size_t data_len,u8 * mac)915 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
916 {
917 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
918 }
919 
920 
omac1_aes_256(const u8 * key,const u8 * data,size_t data_len,u8 * mac)921 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
922 {
923 	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
924 }
925 #endif /* CONFIG_OPENSSL_CMAC */
926 
927 
crypto_bignum_init(void)928 struct crypto_bignum * crypto_bignum_init(void)
929 {
930 	return (struct crypto_bignum *) BN_new();
931 }
932 
933 
crypto_bignum_init_set(const u8 * buf,size_t len)934 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
935 {
936 	BIGNUM *bn = BN_bin2bn(buf, len, NULL);
937 	return (struct crypto_bignum *) bn;
938 }
939 
940 
crypto_bignum_deinit(struct crypto_bignum * n,int clear)941 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
942 {
943 	if (clear)
944 		BN_clear_free((BIGNUM *) n);
945 	else
946 		BN_free((BIGNUM *) n);
947 }
948 
949 
crypto_bignum_to_bin(const struct crypto_bignum * a,u8 * buf,size_t buflen,size_t padlen)950 int crypto_bignum_to_bin(const struct crypto_bignum *a,
951 			 u8 *buf, size_t buflen, size_t padlen)
952 {
953 	int num_bytes, offset;
954 
955 	if (padlen > buflen)
956 		return -1;
957 
958 	num_bytes = BN_num_bytes((const BIGNUM *) a);
959 	if ((size_t) num_bytes > buflen)
960 		return -1;
961 	if (padlen > (size_t) num_bytes)
962 		offset = padlen - num_bytes;
963 	else
964 		offset = 0;
965 
966 	os_memset(buf, 0, offset);
967 	BN_bn2bin((const BIGNUM *) a, buf + offset);
968 
969 	return num_bytes + offset;
970 }
971 
972 
crypto_bignum_add(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)973 int crypto_bignum_add(const struct crypto_bignum *a,
974 		      const struct crypto_bignum *b,
975 		      struct crypto_bignum *c)
976 {
977 	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
978 		0 : -1;
979 }
980 
981 
crypto_bignum_mod(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)982 int crypto_bignum_mod(const struct crypto_bignum *a,
983 		      const struct crypto_bignum *b,
984 		      struct crypto_bignum *c)
985 {
986 	int res;
987 	BN_CTX *bnctx;
988 
989 	bnctx = BN_CTX_new();
990 	if (bnctx == NULL)
991 		return -1;
992 	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
993 		     bnctx);
994 	BN_CTX_free(bnctx);
995 
996 	return res ? 0 : -1;
997 }
998 
999 
crypto_bignum_exptmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1000 int crypto_bignum_exptmod(const struct crypto_bignum *a,
1001 			  const struct crypto_bignum *b,
1002 			  const struct crypto_bignum *c,
1003 			  struct crypto_bignum *d)
1004 {
1005 	int res;
1006 	BN_CTX *bnctx;
1007 
1008 	bnctx = BN_CTX_new();
1009 	if (bnctx == NULL)
1010 		return -1;
1011 	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1012 			 (const BIGNUM *) c, bnctx);
1013 	BN_CTX_free(bnctx);
1014 
1015 	return res ? 0 : -1;
1016 }
1017 
1018 
crypto_bignum_inverse(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1019 int crypto_bignum_inverse(const struct crypto_bignum *a,
1020 			  const struct crypto_bignum *b,
1021 			  struct crypto_bignum *c)
1022 {
1023 	BIGNUM *res;
1024 	BN_CTX *bnctx;
1025 
1026 	bnctx = BN_CTX_new();
1027 	if (bnctx == NULL)
1028 		return -1;
1029 	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
1030 			     (const BIGNUM *) b, bnctx);
1031 	BN_CTX_free(bnctx);
1032 
1033 	return res ? 0 : -1;
1034 }
1035 
1036 
crypto_bignum_sub(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1037 int crypto_bignum_sub(const struct crypto_bignum *a,
1038 		      const struct crypto_bignum *b,
1039 		      struct crypto_bignum *c)
1040 {
1041 	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
1042 		0 : -1;
1043 }
1044 
1045 
crypto_bignum_div(const struct crypto_bignum * a,const struct crypto_bignum * b,struct crypto_bignum * c)1046 int crypto_bignum_div(const struct crypto_bignum *a,
1047 		      const struct crypto_bignum *b,
1048 		      struct crypto_bignum *c)
1049 {
1050 	int res;
1051 
1052 	BN_CTX *bnctx;
1053 
1054 	bnctx = BN_CTX_new();
1055 	if (bnctx == NULL)
1056 		return -1;
1057 	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
1058 		     (const BIGNUM *) b, bnctx);
1059 	BN_CTX_free(bnctx);
1060 
1061 	return res ? 0 : -1;
1062 }
1063 
1064 
crypto_bignum_mulmod(const struct crypto_bignum * a,const struct crypto_bignum * b,const struct crypto_bignum * c,struct crypto_bignum * d)1065 int crypto_bignum_mulmod(const struct crypto_bignum *a,
1066 			 const struct crypto_bignum *b,
1067 			 const struct crypto_bignum *c,
1068 			 struct crypto_bignum *d)
1069 {
1070 	int res;
1071 
1072 	BN_CTX *bnctx;
1073 
1074 	bnctx = BN_CTX_new();
1075 	if (bnctx == NULL)
1076 		return -1;
1077 	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
1078 			 (const BIGNUM *) c, bnctx);
1079 	BN_CTX_free(bnctx);
1080 
1081 	return res ? 0 : -1;
1082 }
1083 
1084 
crypto_bignum_cmp(const struct crypto_bignum * a,const struct crypto_bignum * b)1085 int crypto_bignum_cmp(const struct crypto_bignum *a,
1086 		      const struct crypto_bignum *b)
1087 {
1088 	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
1089 }
1090 
1091 
crypto_bignum_bits(const struct crypto_bignum * a)1092 int crypto_bignum_bits(const struct crypto_bignum *a)
1093 {
1094 	return BN_num_bits((const BIGNUM *) a);
1095 }
1096 
1097 
crypto_bignum_is_zero(const struct crypto_bignum * a)1098 int crypto_bignum_is_zero(const struct crypto_bignum *a)
1099 {
1100 	return BN_is_zero((const BIGNUM *) a);
1101 }
1102 
1103 
crypto_bignum_is_one(const struct crypto_bignum * a)1104 int crypto_bignum_is_one(const struct crypto_bignum *a)
1105 {
1106 	return BN_is_one((const BIGNUM *) a);
1107 }
1108 
1109 
crypto_bignum_legendre(const struct crypto_bignum * a,const struct crypto_bignum * p)1110 int crypto_bignum_legendre(const struct crypto_bignum *a,
1111 			   const struct crypto_bignum *p)
1112 {
1113 	BN_CTX *bnctx;
1114 	BIGNUM *exp = NULL, *tmp = NULL;
1115 	int res = -2;
1116 
1117 	bnctx = BN_CTX_new();
1118 	if (bnctx == NULL)
1119 		return -2;
1120 
1121 	exp = BN_new();
1122 	tmp = BN_new();
1123 	if (!exp || !tmp ||
1124 	    /* exp = (p-1) / 2 */
1125 	    !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
1126 	    !BN_rshift1(exp, exp) ||
1127 	    !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
1128 			bnctx))
1129 		goto fail;
1130 
1131 	if (BN_is_word(tmp, 1))
1132 		res = 1;
1133 	else if (BN_is_zero(tmp))
1134 		res = 0;
1135 	else
1136 		res = -1;
1137 
1138 fail:
1139 	BN_clear_free(tmp);
1140 	BN_clear_free(exp);
1141 	BN_CTX_free(bnctx);
1142 	return res;
1143 }
1144 
1145 
1146 #ifdef CONFIG_ECC
1147 
1148 struct crypto_ec {
1149 	EC_GROUP *group;
1150 	BN_CTX *bnctx;
1151 	BIGNUM *prime;
1152 	BIGNUM *order;
1153 	BIGNUM *a;
1154 	BIGNUM *b;
1155 };
1156 
crypto_ec_init(int group)1157 struct crypto_ec * crypto_ec_init(int group)
1158 {
1159 	struct crypto_ec *e;
1160 	int nid;
1161 
1162 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
1163 	switch (group) {
1164 	case 19:
1165 		nid = NID_X9_62_prime256v1;
1166 		break;
1167 	case 20:
1168 		nid = NID_secp384r1;
1169 		break;
1170 	case 21:
1171 		nid = NID_secp521r1;
1172 		break;
1173 	case 25:
1174 		nid = NID_X9_62_prime192v1;
1175 		break;
1176 	case 26:
1177 		nid = NID_secp224r1;
1178 		break;
1179 #ifdef NID_brainpoolP224r1
1180 	case 27:
1181 		nid = NID_brainpoolP224r1;
1182 		break;
1183 #endif /* NID_brainpoolP224r1 */
1184 #ifdef NID_brainpoolP256r1
1185 	case 28:
1186 		nid = NID_brainpoolP256r1;
1187 		break;
1188 #endif /* NID_brainpoolP256r1 */
1189 #ifdef NID_brainpoolP384r1
1190 	case 29:
1191 		nid = NID_brainpoolP384r1;
1192 		break;
1193 #endif /* NID_brainpoolP384r1 */
1194 #ifdef NID_brainpoolP512r1
1195 	case 30:
1196 		nid = NID_brainpoolP512r1;
1197 		break;
1198 #endif /* NID_brainpoolP512r1 */
1199 	default:
1200 		return NULL;
1201 	}
1202 
1203 	e = os_zalloc(sizeof(*e));
1204 	if (e == NULL)
1205 		return NULL;
1206 
1207 	e->bnctx = BN_CTX_new();
1208 	e->group = EC_GROUP_new_by_curve_name(nid);
1209 	e->prime = BN_new();
1210 	e->order = BN_new();
1211 	e->a = BN_new();
1212 	e->b = BN_new();
1213 	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
1214 	    e->order == NULL || e->a == NULL || e->b == NULL ||
1215 	    !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
1216 	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
1217 		crypto_ec_deinit(e);
1218 		e = NULL;
1219 	}
1220 
1221 	return e;
1222 }
1223 
1224 
crypto_ec_deinit(struct crypto_ec * e)1225 void crypto_ec_deinit(struct crypto_ec *e)
1226 {
1227 	if (e == NULL)
1228 		return;
1229 	BN_clear_free(e->b);
1230 	BN_clear_free(e->a);
1231 	BN_clear_free(e->order);
1232 	BN_clear_free(e->prime);
1233 	EC_GROUP_free(e->group);
1234 	BN_CTX_free(e->bnctx);
1235 	os_free(e);
1236 }
1237 
1238 
crypto_ec_point_init(struct crypto_ec * e)1239 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
1240 {
1241 	if (e == NULL)
1242 		return NULL;
1243 	return (struct crypto_ec_point *) EC_POINT_new(e->group);
1244 }
1245 
1246 
crypto_ec_prime_len(struct crypto_ec * e)1247 size_t crypto_ec_prime_len(struct crypto_ec *e)
1248 {
1249 	return BN_num_bytes(e->prime);
1250 }
1251 
1252 
crypto_ec_prime_len_bits(struct crypto_ec * e)1253 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
1254 {
1255 	return BN_num_bits(e->prime);
1256 }
1257 
1258 
crypto_ec_get_prime(struct crypto_ec * e)1259 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
1260 {
1261 	return (const struct crypto_bignum *) e->prime;
1262 }
1263 
1264 
crypto_ec_get_order(struct crypto_ec * e)1265 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
1266 {
1267 	return (const struct crypto_bignum *) e->order;
1268 }
1269 
1270 
crypto_ec_point_deinit(struct crypto_ec_point * p,int clear)1271 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
1272 {
1273 	if (clear)
1274 		EC_POINT_clear_free((EC_POINT *) p);
1275 	else
1276 		EC_POINT_free((EC_POINT *) p);
1277 }
1278 
1279 
crypto_ec_point_to_bin(struct crypto_ec * e,const struct crypto_ec_point * point,u8 * x,u8 * y)1280 int crypto_ec_point_to_bin(struct crypto_ec *e,
1281 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
1282 {
1283 	BIGNUM *x_bn, *y_bn;
1284 	int ret = -1;
1285 	int len = BN_num_bytes(e->prime);
1286 
1287 	x_bn = BN_new();
1288 	y_bn = BN_new();
1289 
1290 	if (x_bn && y_bn &&
1291 	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
1292 						x_bn, y_bn, e->bnctx)) {
1293 		if (x) {
1294 			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
1295 					     x, len, len);
1296 		}
1297 		if (y) {
1298 			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
1299 					     y, len, len);
1300 		}
1301 		ret = 0;
1302 	}
1303 
1304 	BN_clear_free(x_bn);
1305 	BN_clear_free(y_bn);
1306 	return ret;
1307 }
1308 
1309 
crypto_ec_point_from_bin(struct crypto_ec * e,const u8 * val)1310 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
1311 						  const u8 *val)
1312 {
1313 	BIGNUM *x, *y;
1314 	EC_POINT *elem;
1315 	int len = BN_num_bytes(e->prime);
1316 
1317 	x = BN_bin2bn(val, len, NULL);
1318 	y = BN_bin2bn(val + len, len, NULL);
1319 	elem = EC_POINT_new(e->group);
1320 	if (x == NULL || y == NULL || elem == NULL) {
1321 		BN_clear_free(x);
1322 		BN_clear_free(y);
1323 		EC_POINT_clear_free(elem);
1324 		return NULL;
1325 	}
1326 
1327 	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
1328 						 e->bnctx)) {
1329 		EC_POINT_clear_free(elem);
1330 		elem = NULL;
1331 	}
1332 
1333 	BN_clear_free(x);
1334 	BN_clear_free(y);
1335 
1336 	return (struct crypto_ec_point *) elem;
1337 }
1338 
1339 
crypto_ec_point_add(struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b,struct crypto_ec_point * c)1340 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
1341 			const struct crypto_ec_point *b,
1342 			struct crypto_ec_point *c)
1343 {
1344 	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
1345 			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
1346 }
1347 
1348 
crypto_ec_point_mul(struct crypto_ec * e,const struct crypto_ec_point * p,const struct crypto_bignum * b,struct crypto_ec_point * res)1349 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
1350 			const struct crypto_bignum *b,
1351 			struct crypto_ec_point *res)
1352 {
1353 	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
1354 			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
1355 		? 0 : -1;
1356 }
1357 
1358 
crypto_ec_point_invert(struct crypto_ec * e,struct crypto_ec_point * p)1359 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
1360 {
1361 	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
1362 }
1363 
1364 
crypto_ec_point_solve_y_coord(struct crypto_ec * e,struct crypto_ec_point * p,const struct crypto_bignum * x,int y_bit)1365 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
1366 				  struct crypto_ec_point *p,
1367 				  const struct crypto_bignum *x, int y_bit)
1368 {
1369 	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
1370 						     (const BIGNUM *) x, y_bit,
1371 						     e->bnctx) ||
1372 	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
1373 		return -1;
1374 	return 0;
1375 }
1376 
1377 
1378 struct crypto_bignum *
crypto_ec_point_compute_y_sqr(struct crypto_ec * e,const struct crypto_bignum * x)1379 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
1380 			      const struct crypto_bignum *x)
1381 {
1382 	BIGNUM *tmp, *tmp2, *y_sqr = NULL;
1383 
1384 	tmp = BN_new();
1385 	tmp2 = BN_new();
1386 
1387 	/* y^2 = x^3 + ax + b */
1388 	if (tmp && tmp2 &&
1389 	    BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1390 	    BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
1391 	    BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
1392 	    BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
1393 	    BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
1394 		y_sqr = tmp2;
1395 		tmp2 = NULL;
1396 	}
1397 
1398 	BN_clear_free(tmp);
1399 	BN_clear_free(tmp2);
1400 
1401 	return (struct crypto_bignum *) y_sqr;
1402 }
1403 
1404 
crypto_ec_point_is_at_infinity(struct crypto_ec * e,const struct crypto_ec_point * p)1405 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
1406 				   const struct crypto_ec_point *p)
1407 {
1408 	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
1409 }
1410 
1411 
crypto_ec_point_is_on_curve(struct crypto_ec * e,const struct crypto_ec_point * p)1412 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
1413 				const struct crypto_ec_point *p)
1414 {
1415 	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
1416 				    e->bnctx) == 1;
1417 }
1418 
1419 
crypto_ec_point_cmp(const struct crypto_ec * e,const struct crypto_ec_point * a,const struct crypto_ec_point * b)1420 int crypto_ec_point_cmp(const struct crypto_ec *e,
1421 			const struct crypto_ec_point *a,
1422 			const struct crypto_ec_point *b)
1423 {
1424 	return EC_POINT_cmp(e->group, (const EC_POINT *) a,
1425 			    (const EC_POINT *) b, e->bnctx);
1426 }
1427 
1428 #endif /* CONFIG_ECC */
1429