1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkMatrix44_DEFINED
9 #define SkMatrix44_DEFINED
10 
11 #include "SkMatrix.h"
12 #include "SkScalar.h"
13 
14 #ifdef SK_MSCALAR_IS_DOUBLE
15 #ifdef SK_MSCALAR_IS_FLOAT
16     #error "can't define MSCALAR both as DOUBLE and FLOAT"
17 #endif
18     typedef double SkMScalar;
19 
SkFloatToMScalar(float x)20     static inline double SkFloatToMScalar(float x) {
21         return static_cast<double>(x);
22     }
SkMScalarToFloat(double x)23     static inline float SkMScalarToFloat(double x) {
24         return static_cast<float>(x);
25     }
SkDoubleToMScalar(double x)26     static inline double SkDoubleToMScalar(double x) {
27         return x;
28     }
SkMScalarToDouble(double x)29     static inline double SkMScalarToDouble(double x) {
30         return x;
31     }
SkMScalarAbs(double x)32     static inline double SkMScalarAbs(double x) {
33         return fabs(x);
34     }
35     static const SkMScalar SK_MScalarPI = 3.141592653589793;
36 
37     #define SkMScalarFloor(x)           sk_double_floor(x)
38     #define SkMScalarCeil(x)            sk_double_ceil(x)
39     #define SkMScalarRound(x)           sk_double_round(x)
40 
41     #define SkMScalarFloorToInt(x)      sk_double_floor2int(x)
42     #define SkMScalarCeilToInt(x)       sk_double_ceil2int(x)
43     #define SkMScalarRoundToInt(x)      sk_double_round2int(x)
44 
45 
46 #elif defined SK_MSCALAR_IS_FLOAT
47 #ifdef SK_MSCALAR_IS_DOUBLE
48     #error "can't define MSCALAR both as DOUBLE and FLOAT"
49 #endif
50     typedef float SkMScalar;
51 
SkFloatToMScalar(float x)52     static inline float SkFloatToMScalar(float x) {
53         return x;
54     }
SkMScalarToFloat(float x)55     static inline float SkMScalarToFloat(float x) {
56         return x;
57     }
SkDoubleToMScalar(double x)58     static inline float SkDoubleToMScalar(double x) {
59         return static_cast<float>(x);
60     }
SkMScalarToDouble(float x)61     static inline double SkMScalarToDouble(float x) {
62         return static_cast<double>(x);
63     }
SkMScalarAbs(float x)64     static inline float SkMScalarAbs(float x) {
65         return sk_float_abs(x);
66     }
67     static const SkMScalar SK_MScalarPI = 3.14159265f;
68 
69     #define SkMScalarFloor(x)           sk_float_floor(x)
70     #define SkMScalarCeil(x)            sk_float_ceil(x)
71     #define SkMScalarRound(x)           sk_float_round(x)
72 
73     #define SkMScalarFloorToInt(x)      sk_float_floor2int(x)
74     #define SkMScalarCeilToInt(x)       sk_float_ceil2int(x)
75     #define SkMScalarRoundToInt(x)      sk_float_round2int(x)
76 
77 #endif
78 
79 #define SkIntToMScalar(n)       static_cast<SkMScalar>(n)
80 
81 #define SkMScalarToScalar(x)    SkMScalarToFloat(x)
82 #define SkScalarToMScalar(x)    SkFloatToMScalar(x)
83 
84 static const SkMScalar SK_MScalar1 = 1;
85 
86 ///////////////////////////////////////////////////////////////////////////////
87 
88 struct SkVector4 {
89     SkScalar fData[4];
90 
SkVector4SkVector491     SkVector4() {
92         this->set(0, 0, 0, 1);
93     }
SkVector4SkVector494     SkVector4(const SkVector4& src) {
95         memcpy(fData, src.fData, sizeof(fData));
96     }
97     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
98         fData[0] = x;
99         fData[1] = y;
100         fData[2] = z;
101         fData[3] = w;
102     }
103 
104     SkVector4& operator=(const SkVector4& src) {
105         memcpy(fData, src.fData, sizeof(fData));
106         return *this;
107     }
108 
109     bool operator==(const SkVector4& v) {
110         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
111                fData[2] == v.fData[2] && fData[3] == v.fData[3];
112     }
113     bool operator!=(const SkVector4& v) {
114         return !(*this == v);
115     }
116     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
117         return fData[0] == x && fData[1] == y &&
118                fData[2] == z && fData[3] == w;
119     }
120 
121     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
122         fData[0] = x;
123         fData[1] = y;
124         fData[2] = z;
125         fData[3] = w;
126     }
127 };
128 
129 class SK_API SkMatrix44 {
130 public:
131 
132     enum Uninitialized_Constructor {
133         kUninitialized_Constructor
134     };
135     enum Identity_Constructor {
136         kIdentity_Constructor
137     };
138 
SkMatrix44(Uninitialized_Constructor)139     SkMatrix44(Uninitialized_Constructor) { }
SkMatrix44(Identity_Constructor)140     SkMatrix44(Identity_Constructor) { this->setIdentity(); }
141 
142     SK_ATTR_DEPRECATED("use the constructors that take an enum")
SkMatrix44()143     SkMatrix44() { this->setIdentity(); }
144 
SkMatrix44(const SkMatrix44 & src)145     SkMatrix44(const SkMatrix44& src) {
146         memcpy(fMat, src.fMat, sizeof(fMat));
147         fTypeMask = src.fTypeMask;
148     }
149 
SkMatrix44(const SkMatrix44 & a,const SkMatrix44 & b)150     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
151         this->setConcat(a, b);
152     }
153 
154     SkMatrix44& operator=(const SkMatrix44& src) {
155         if (&src != this) {
156             memcpy(fMat, src.fMat, sizeof(fMat));
157             fTypeMask = src.fTypeMask;
158         }
159         return *this;
160     }
161 
162     bool operator==(const SkMatrix44& other) const;
163     bool operator!=(const SkMatrix44& other) const {
164         return !(other == *this);
165     }
166 
167     /* When converting from SkMatrix44 to SkMatrix, the third row and
168      * column is dropped.  When converting from SkMatrix to SkMatrix44
169      * the third row and column remain as identity:
170      * [ a b c ]      [ a b 0 c ]
171      * [ d e f ]  ->  [ d e 0 f ]
172      * [ g h i ]      [ 0 0 1 0 ]
173      *                [ g h 0 i ]
174      */
175     SkMatrix44(const SkMatrix&);
176     SkMatrix44& operator=(const SkMatrix& src);
177     operator SkMatrix() const;
178 
179     /**
180      *  Return a reference to a const identity matrix
181      */
182     static const SkMatrix44& I();
183 
184     enum TypeMask {
185         kIdentity_Mask      = 0,
186         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
187         kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
188         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
189         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
190     };
191 
192     /**
193      *  Returns a bitfield describing the transformations the matrix may
194      *  perform. The bitfield is computed conservatively, so it may include
195      *  false positives. For example, when kPerspective_Mask is true, all
196      *  other bits may be set to true even in the case of a pure perspective
197      *  transform.
198      */
getType()199     inline TypeMask getType() const {
200         if (fTypeMask & kUnknown_Mask) {
201             fTypeMask = this->computeTypeMask();
202         }
203         SkASSERT(!(fTypeMask & kUnknown_Mask));
204         return (TypeMask)fTypeMask;
205     }
206 
207     /**
208      *  Return true if the matrix is identity.
209      */
isIdentity()210     inline bool isIdentity() const {
211         return kIdentity_Mask == this->getType();
212     }
213 
214     /**
215      *  Return true if the matrix contains translate or is identity.
216      */
isTranslate()217     inline bool isTranslate() const {
218         return !(this->getType() & ~kTranslate_Mask);
219     }
220 
221     /**
222      *  Return true if the matrix only contains scale or translate or is identity.
223      */
isScaleTranslate()224     inline bool isScaleTranslate() const {
225         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
226     }
227 
228     /**
229      *  Returns true if the matrix only contains scale or is identity.
230      */
isScale()231     inline bool isScale() const {
232             return !(this->getType() & ~kScale_Mask);
233     }
234 
hasPerspective()235     inline bool hasPerspective() const {
236         return SkToBool(this->getType() & kPerspective_Mask);
237     }
238 
239     void setIdentity();
reset()240     inline void reset() { this->setIdentity();}
241 
242     /**
243      *  get a value from the matrix. The row,col parameters work as follows:
244      *  (0, 0)  scale-x
245      *  (0, 3)  translate-x
246      *  (3, 0)  perspective-x
247      */
get(int row,int col)248     inline SkMScalar get(int row, int col) const {
249         SkASSERT((unsigned)row <= 3);
250         SkASSERT((unsigned)col <= 3);
251         return fMat[col][row];
252     }
253 
254     /**
255      *  set a value in the matrix. The row,col parameters work as follows:
256      *  (0, 0)  scale-x
257      *  (0, 3)  translate-x
258      *  (3, 0)  perspective-x
259      */
set(int row,int col,SkMScalar value)260     inline void set(int row, int col, SkMScalar value) {
261         SkASSERT((unsigned)row <= 3);
262         SkASSERT((unsigned)col <= 3);
263         fMat[col][row] = value;
264         this->dirtyTypeMask();
265     }
266 
getDouble(int row,int col)267     inline double getDouble(int row, int col) const {
268         return SkMScalarToDouble(this->get(row, col));
269     }
setDouble(int row,int col,double value)270     inline void setDouble(int row, int col, double value) {
271         this->set(row, col, SkDoubleToMScalar(value));
272     }
getFloat(int row,int col)273     inline float getFloat(int row, int col) const {
274         return SkMScalarToFloat(this->get(row, col));
275     }
setFloat(int row,int col,float value)276     inline void setFloat(int row, int col, float value) {
277         this->set(row, col, SkFloatToMScalar(value));
278     }
279 
280     /** These methods allow one to efficiently read matrix entries into an
281      *  array. The given array must have room for exactly 16 entries. Whenever
282      *  possible, they will try to use memcpy rather than an entry-by-entry
283      *  copy.
284      */
285     void asColMajorf(float[]) const;
286     void asColMajord(double[]) const;
287     void asRowMajorf(float[]) const;
288     void asRowMajord(double[]) const;
289 
290     /** These methods allow one to efficiently set all matrix entries from an
291      *  array. The given array must have room for exactly 16 entries. Whenever
292      *  possible, they will try to use memcpy rather than an entry-by-entry
293      *  copy.
294      */
295     void setColMajorf(const float[]);
296     void setColMajord(const double[]);
297     void setRowMajorf(const float[]);
298     void setRowMajord(const double[]);
299 
300 #ifdef SK_MSCALAR_IS_FLOAT
setColMajor(const SkMScalar data[])301     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
setRowMajor(const SkMScalar data[])302     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
303 #else
setColMajor(const SkMScalar data[])304     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
setRowMajor(const SkMScalar data[])305     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
306 #endif
307 
308     /* This sets the top-left of the matrix and clears the translation and
309      * perspective components (with [3][3] set to 1). */
310     void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
311                 SkMScalar m10, SkMScalar m11, SkMScalar m12,
312                 SkMScalar m20, SkMScalar m21, SkMScalar m22);
313 
314     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
315     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
316     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
317 
318     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
319     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
320     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
321 
setScale(SkMScalar scale)322     inline void setScale(SkMScalar scale) {
323         this->setScale(scale, scale, scale);
324     }
preScale(SkMScalar scale)325     inline void preScale(SkMScalar scale) {
326         this->preScale(scale, scale, scale);
327     }
postScale(SkMScalar scale)328     inline void postScale(SkMScalar scale) {
329         this->postScale(scale, scale, scale);
330     }
331 
setRotateDegreesAbout(SkMScalar x,SkMScalar y,SkMScalar z,SkMScalar degrees)332     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
333                                SkMScalar degrees) {
334         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
335     }
336 
337     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
338         it will be automatically resized.
339      */
340     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
341                         SkMScalar radians);
342     /** Rotate about the vector [x,y,z]. Does not check the length of the
343         vector, assuming it is unit-length.
344      */
345     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
346                             SkMScalar radians);
347 
348     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
preConcat(const SkMatrix44 & m)349     inline void preConcat(const SkMatrix44& m) {
350         this->setConcat(*this, m);
351     }
postConcat(const SkMatrix44 & m)352     inline void postConcat(const SkMatrix44& m) {
353         this->setConcat(m, *this);
354     }
355 
356     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
357         return SkMatrix44(a, b);
358     }
359 
360     /** If this is invertible, return that in inverse and return true. If it is
361         not invertible, return false and ignore the inverse parameter.
362      */
363     bool invert(SkMatrix44* inverse) const;
364 
365     /** Transpose this matrix in place. */
366     void transpose();
367 
368     /** Apply the matrix to the src vector, returning the new vector in dst.
369         It is legal for src and dst to point to the same memory.
370      */
371     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
mapScalars(SkScalar vec[4])372     inline void mapScalars(SkScalar vec[4]) const {
373         this->mapScalars(vec, vec);
374     }
375 
376     SK_ATTR_DEPRECATED("use mapScalars")
map(const SkScalar src[4],SkScalar dst[4])377     void map(const SkScalar src[4], SkScalar dst[4]) const {
378         this->mapScalars(src, dst);
379     }
380 
381     SK_ATTR_DEPRECATED("use mapScalars")
map(SkScalar vec[4])382     void map(SkScalar vec[4]) const {
383         this->mapScalars(vec, vec);
384     }
385 
386 #ifdef SK_MSCALAR_IS_DOUBLE
387     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
388 #elif defined SK_MSCALAR_IS_FLOAT
mapMScalars(const SkMScalar src[4],SkMScalar dst[4])389     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
390         this->mapScalars(src, dst);
391     }
392 #endif
mapMScalars(SkMScalar vec[4])393     inline void mapMScalars(SkMScalar vec[4]) const {
394         this->mapMScalars(vec, vec);
395     }
396 
397     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
398         SkVector4 dst;
399         m.mapScalars(src.fData, dst.fData);
400         return dst;
401     }
402 
403     /**
404      *  map an array of [x, y, 0, 1] through the matrix, returning an array
405      *  of [x', y', z', w'].
406      *
407      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
408      *  @param count    number of [x, y] pairs in src2
409      *  @param dst4     array of [x', y', z', w'] quads as the output.
410      */
411     void map2(const float src2[], int count, float dst4[]) const;
412     void map2(const double src2[], int count, double dst4[]) const;
413 
414     /** Returns true if transformating an axis-aligned square in 2d by this matrix
415         will produce another 2d axis-aligned square; typically means the matrix
416         is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
417         degrees into a perpendicular plane collapses a square to a line, but
418         is still considered to be axis-aligned.
419 
420         By default, tolerates very slight error due to float imprecisions;
421         a 90-degree rotation can still end up with 10^-17 of
422         "non-axis-aligned" result.
423      */
424     bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
425 
426     void dump() const;
427 
428     double determinant() const;
429 
430 private:
431     SkMScalar           fMat[4][4];
432     mutable unsigned    fTypeMask;
433 
434     enum {
435         kUnknown_Mask = 0x80,
436 
437         kAllPublic_Masks = 0xF
438     };
439 
transX()440     SkMScalar transX() const { return fMat[3][0]; }
transY()441     SkMScalar transY() const { return fMat[3][1]; }
transZ()442     SkMScalar transZ() const { return fMat[3][2]; }
443 
scaleX()444     SkMScalar scaleX() const { return fMat[0][0]; }
scaleY()445     SkMScalar scaleY() const { return fMat[1][1]; }
scaleZ()446     SkMScalar scaleZ() const { return fMat[2][2]; }
447 
perspX()448     SkMScalar perspX() const { return fMat[0][3]; }
perspY()449     SkMScalar perspY() const { return fMat[1][3]; }
perspZ()450     SkMScalar perspZ() const { return fMat[2][3]; }
451 
452     int computeTypeMask() const;
453 
dirtyTypeMask()454     inline void dirtyTypeMask() {
455         fTypeMask = kUnknown_Mask;
456     }
457 
setTypeMask(int mask)458     inline void setTypeMask(int mask) {
459         SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
460         fTypeMask = mask;
461     }
462 
463     /**
464      *  Does not take the time to 'compute' the typemask. Only returns true if
465      *  we already know that this matrix is identity.
466      */
isTriviallyIdentity()467     inline bool isTriviallyIdentity() const {
468         return 0 == fTypeMask;
469     }
470 };
471 
472 #endif
473