1 /**************************************************************************
2  *
3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /**
29  * TGSI to PowerPC code generation.
30  */
31 
32 #include "pipe/p_config.h"
33 
34 #if defined(PIPE_ARCH_PPC)
35 
36 #include "util/u_debug.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "util/u_math.h"
39 #include "util/u_memory.h"
40 #include "util/u_sse.h"
41 #include "tgsi/tgsi_info.h"
42 #include "tgsi/tgsi_parse.h"
43 #include "tgsi/tgsi_util.h"
44 #include "tgsi_dump.h"
45 #include "tgsi_exec.h"
46 #include "tgsi_ppc.h"
47 #include "rtasm/rtasm_ppc.h"
48 
49 
50 /**
51  * Since it's pretty much impossible to form PPC vector immediates, load
52  * them from memory here:
53  */
54 PIPE_ALIGN_VAR(16) const float
55 ppc_builtin_constants[] = {
56    1.0f, -128.0f, 128.0, 0.0
57 };
58 
59 /**
60  * How many TGSI temps should be implemented with real PPC vector registers
61  * rather than memory.
62  */
63 #define MAX_PPC_TEMPS 3
64 
65 
66 /**
67  * Context/state used during code gen.
68  */
69 struct gen_context
70 {
71    struct ppc_function *f;
72    int inputs_reg;    /**< GP register pointing to input params */
73    int outputs_reg;   /**< GP register pointing to output params */
74    int temps_reg;     /**< GP register pointing to temporary "registers" */
75    int immed_reg;     /**< GP register pointing to immediates buffer */
76    int const_reg;     /**< GP register pointing to constants buffer */
77    int builtins_reg;  /**< GP register pointint to built-in constants */
78 
79    int offset_reg;    /**< used to reduce redundant li instructions */
80    int offset_value;
81 
82    int one_vec;       /**< vector register with {1.0, 1.0, 1.0, 1.0} */
83    int bit31_vec;     /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
84 
85    /**
86     * Map TGSI temps to PPC vector temps.
87     * We have 32 PPC vector regs.  Use 16 of them for storing 4 TGSI temps.
88     * XXX currently only do this for TGSI temps [0..MAX_PPC_TEMPS-1].
89     */
90    int temps_map[MAX_PPC_TEMPS][4];
91 
92    /**
93     * Cache of src registers.
94     * This is used to avoid redundant load instructions.
95     */
96    struct {
97       struct tgsi_full_src_register src;
98       uint chan;
99       uint vec;
100    } regs[12];  /* 3 src regs, 4 channels */
101    uint num_regs;
102 };
103 
104 
105 /**
106  * Initialize code generation context.
107  */
108 static void
init_gen_context(struct gen_context * gen,struct ppc_function * func)109 init_gen_context(struct gen_context *gen, struct ppc_function *func)
110 {
111    uint i;
112 
113    memset(gen, 0, sizeof(*gen));
114    gen->f = func;
115    gen->inputs_reg = ppc_reserve_register(func, 3);   /* first function param */
116    gen->outputs_reg = ppc_reserve_register(func, 4);  /* second function param */
117    gen->temps_reg = ppc_reserve_register(func, 5);    /* ... */
118    gen->immed_reg = ppc_reserve_register(func, 6);
119    gen->const_reg = ppc_reserve_register(func, 7);
120    gen->builtins_reg = ppc_reserve_register(func, 8);
121    gen->one_vec = -1;
122    gen->bit31_vec = -1;
123    gen->offset_reg = -1;
124    gen->offset_value = -9999999;
125    for (i = 0; i < MAX_PPC_TEMPS; i++) {
126       gen->temps_map[i][0] = ppc_allocate_vec_register(gen->f);
127       gen->temps_map[i][1] = ppc_allocate_vec_register(gen->f);
128       gen->temps_map[i][2] = ppc_allocate_vec_register(gen->f);
129       gen->temps_map[i][3] = ppc_allocate_vec_register(gen->f);
130    }
131 }
132 
133 
134 /**
135  * Is the given TGSI register stored as a real PPC vector register?
136  */
137 static boolean
is_ppc_vec_temporary(const struct tgsi_full_src_register * reg)138 is_ppc_vec_temporary(const struct tgsi_full_src_register *reg)
139 {
140    return (reg->Register.File == TGSI_FILE_TEMPORARY &&
141            reg->Register.Index < MAX_PPC_TEMPS);
142 }
143 
144 
145 /**
146  * Is the given TGSI register stored as a real PPC vector register?
147  */
148 static boolean
is_ppc_vec_temporary_dst(const struct tgsi_full_dst_register * reg)149 is_ppc_vec_temporary_dst(const struct tgsi_full_dst_register *reg)
150 {
151    return (reg->Register.File == TGSI_FILE_TEMPORARY &&
152            reg->Register.Index < MAX_PPC_TEMPS);
153 }
154 
155 
156 
157 /**
158  * All PPC vector load/store instructions form an effective address
159  * by adding the contents of two registers.  For example:
160  *    lvx v2,r8,r9   # v2 = memory[r8 + r9]
161  *    stvx v2,r8,r9  # memory[r8 + r9] = v2;
162  * So our lvx/stvx instructions are typically preceded by an 'li' instruction
163  * to load r9 (above) with an immediate (an offset).
164  * This code emits that 'li' instruction, but only if the offset value is
165  * different than the previous 'li'.
166  * This optimization seems to save about 10% in the instruction count.
167  * Note that we need to unconditionally emit an 'li' inside basic blocks
168  * (such as inside loops).
169  */
170 static int
emit_li_offset(struct gen_context * gen,int offset)171 emit_li_offset(struct gen_context *gen, int offset)
172 {
173    if (gen->offset_reg <= 0) {
174       /* allocate a GP register for storing load/store offset */
175       gen->offset_reg = ppc_allocate_register(gen->f);
176    }
177 
178    /* emit new 'li' if offset is changing */
179    if (gen->offset_value < 0 || gen->offset_value != offset) {
180       gen->offset_value = offset;
181       ppc_li(gen->f, gen->offset_reg, offset);
182    }
183 
184    return gen->offset_reg;
185 }
186 
187 
188 /**
189  * Forces subsequent emit_li_offset() calls to emit an 'li'.
190  * To be called at the top of basic blocks.
191  */
192 static void
reset_li_offset(struct gen_context * gen)193 reset_li_offset(struct gen_context *gen)
194 {
195    gen->offset_value = -9999999;
196 }
197 
198 
199 
200 /**
201  * Load the given vector register with {value, value, value, value}.
202  * The value must be in the ppu_builtin_constants[] array.
203  * We wouldn't need this if there was a simple way to load PPC vector
204  * registers with immediate values!
205  */
206 static void
load_constant_vec(struct gen_context * gen,int dst_vec,float value)207 load_constant_vec(struct gen_context *gen, int dst_vec, float value)
208 {
209    uint pos;
210    for (pos = 0; pos < Elements(ppc_builtin_constants); pos++) {
211       if (ppc_builtin_constants[pos] == value) {
212          int offset = pos * 4;
213          int offset_reg = emit_li_offset(gen, offset);
214 
215          /* Load 4-byte word into vector register.
216           * The vector slot depends on the effective address we load from.
217           * We know that our builtins start at a 16-byte boundary so we
218           * know that 'swizzle' tells us which vector slot will have the
219           * loaded word.  The other vector slots will be undefined.
220           */
221          ppc_lvewx(gen->f, dst_vec, gen->builtins_reg, offset_reg);
222          /* splat word[pos % 4] across the vector reg */
223          ppc_vspltw(gen->f, dst_vec, dst_vec, pos % 4);
224          return;
225       }
226    }
227    assert(0 && "Need to add new constant to ppc_builtin_constants array");
228 }
229 
230 
231 /**
232  * Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
233  */
234 static int
gen_one_vec(struct gen_context * gen)235 gen_one_vec(struct gen_context *gen)
236 {
237    if (gen->one_vec < 0) {
238       gen->one_vec = ppc_allocate_vec_register(gen->f);
239       load_constant_vec(gen, gen->one_vec, 1.0f);
240    }
241    return gen->one_vec;
242 }
243 
244 /**
245  * Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
246  */
247 static int
gen_get_bit31_vec(struct gen_context * gen)248 gen_get_bit31_vec(struct gen_context *gen)
249 {
250    if (gen->bit31_vec < 0) {
251       gen->bit31_vec = ppc_allocate_vec_register(gen->f);
252       ppc_vspltisw(gen->f, gen->bit31_vec, -1);
253       ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
254    }
255    return gen->bit31_vec;
256 }
257 
258 
259 /**
260  * Register fetch.  Return PPC vector register with result.
261  */
262 static int
emit_fetch(struct gen_context * gen,const struct tgsi_full_src_register * reg,const unsigned chan_index)263 emit_fetch(struct gen_context *gen,
264            const struct tgsi_full_src_register *reg,
265            const unsigned chan_index)
266 {
267    uint swizzle = tgsi_util_get_full_src_register_swizzle(reg, chan_index);
268    int dst_vec = -1;
269 
270    switch (swizzle) {
271    case TGSI_SWIZZLE_X:
272    case TGSI_SWIZZLE_Y:
273    case TGSI_SWIZZLE_Z:
274    case TGSI_SWIZZLE_W:
275       switch (reg->Register.File) {
276       case TGSI_FILE_INPUT:
277          {
278             int offset = (reg->Register.Index * 4 + swizzle) * 16;
279             int offset_reg = emit_li_offset(gen, offset);
280             dst_vec = ppc_allocate_vec_register(gen->f);
281             ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
282          }
283          break;
284       case TGSI_FILE_SYSTEM_VALUE:
285          assert(!"unhandled system value in tgsi_ppc.c");
286          break;
287       case TGSI_FILE_TEMPORARY:
288          if (is_ppc_vec_temporary(reg)) {
289             /* use PPC vec register */
290             dst_vec = gen->temps_map[reg->Register.Index][swizzle];
291          }
292          else {
293             /* use memory-based temp register "file" */
294             int offset = (reg->Register.Index * 4 + swizzle) * 16;
295             int offset_reg = emit_li_offset(gen, offset);
296             dst_vec = ppc_allocate_vec_register(gen->f);
297             ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
298          }
299          break;
300       case TGSI_FILE_IMMEDIATE:
301          {
302             int offset = (reg->Register.Index * 4 + swizzle) * 4;
303             int offset_reg = emit_li_offset(gen, offset);
304             dst_vec = ppc_allocate_vec_register(gen->f);
305             /* Load 4-byte word into vector register.
306              * The vector slot depends on the effective address we load from.
307              * We know that our immediates start at a 16-byte boundary so we
308              * know that 'swizzle' tells us which vector slot will have the
309              * loaded word.  The other vector slots will be undefined.
310              */
311             ppc_lvewx(gen->f, dst_vec, gen->immed_reg, offset_reg);
312             /* splat word[swizzle] across the vector reg */
313             ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
314          }
315          break;
316       case TGSI_FILE_CONSTANT:
317          {
318             int offset = (reg->Register.Index * 4 + swizzle) * 4;
319             int offset_reg = emit_li_offset(gen, offset);
320             dst_vec = ppc_allocate_vec_register(gen->f);
321             /* Load 4-byte word into vector register.
322              * The vector slot depends on the effective address we load from.
323              * We know that our constants start at a 16-byte boundary so we
324              * know that 'swizzle' tells us which vector slot will have the
325              * loaded word.  The other vector slots will be undefined.
326              */
327             ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
328             /* splat word[swizzle] across the vector reg */
329             ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
330          }
331          break;
332       default:
333          assert( 0 );
334       }
335       break;
336    default:
337       assert( 0 );
338    }
339 
340    assert(dst_vec >= 0);
341 
342    {
343       uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
344       if (sign_op != TGSI_UTIL_SIGN_KEEP) {
345          int bit31_vec = gen_get_bit31_vec(gen);
346          int dst_vec2;
347 
348          if (is_ppc_vec_temporary(reg)) {
349             /* need to use a new temp */
350             dst_vec2 = ppc_allocate_vec_register(gen->f);
351          }
352          else {
353             dst_vec2 = dst_vec;
354          }
355 
356          switch (sign_op) {
357          case TGSI_UTIL_SIGN_CLEAR:
358             /* vec = vec & ~bit31 */
359             ppc_vandc(gen->f, dst_vec2, dst_vec, bit31_vec);
360             break;
361          case TGSI_UTIL_SIGN_SET:
362             /* vec = vec | bit31 */
363             ppc_vor(gen->f, dst_vec2, dst_vec, bit31_vec);
364             break;
365          case TGSI_UTIL_SIGN_TOGGLE:
366             /* vec = vec ^ bit31 */
367             ppc_vxor(gen->f, dst_vec2, dst_vec, bit31_vec);
368             break;
369          default:
370             assert(0);
371          }
372          return dst_vec2;
373       }
374    }
375 
376    return dst_vec;
377 }
378 
379 
380 
381 /**
382  * Test if two TGSI src registers refer to the same memory location.
383  * We use this to avoid redundant register loads.
384  */
385 static boolean
equal_src_locs(const struct tgsi_full_src_register * a,uint chan_a,const struct tgsi_full_src_register * b,uint chan_b)386 equal_src_locs(const struct tgsi_full_src_register *a, uint chan_a,
387                const struct tgsi_full_src_register *b, uint chan_b)
388 {
389    int swz_a, swz_b;
390    int sign_a, sign_b;
391    if (a->Register.File != b->Register.File)
392       return FALSE;
393    if (a->Register.Index != b->Register.Index)
394       return FALSE;
395    swz_a = tgsi_util_get_full_src_register_swizzle(a, chan_a);
396    swz_b = tgsi_util_get_full_src_register_swizzle(b, chan_b);
397    if (swz_a != swz_b)
398       return FALSE;
399    sign_a = tgsi_util_get_full_src_register_sign_mode(a, chan_a);
400    sign_b = tgsi_util_get_full_src_register_sign_mode(b, chan_b);
401    if (sign_a != sign_b)
402       return FALSE;
403    return TRUE;
404 }
405 
406 
407 /**
408  * Given a TGSI src register and channel index, return the PPC vector
409  * register containing the value.  We use a cache to prevent re-loading
410  * the same register multiple times.
411  * \return index of PPC vector register with the desired src operand
412  */
413 static int
get_src_vec(struct gen_context * gen,struct tgsi_full_instruction * inst,int src_reg,uint chan)414 get_src_vec(struct gen_context *gen,
415             struct tgsi_full_instruction *inst, int src_reg, uint chan)
416 {
417    const const struct tgsi_full_src_register *src =
418       &inst->Src[src_reg];
419    int vec;
420    uint i;
421 
422    /* check the cache */
423    for (i = 0; i < gen->num_regs; i++) {
424       if (equal_src_locs(&gen->regs[i].src, gen->regs[i].chan, src, chan)) {
425          /* cache hit */
426          assert(gen->regs[i].vec >= 0);
427          return gen->regs[i].vec;
428       }
429    }
430 
431    /* cache miss: allocate new vec reg and emit fetch/load code */
432    vec = emit_fetch(gen, src, chan);
433    gen->regs[gen->num_regs].src = *src;
434    gen->regs[gen->num_regs].chan = chan;
435    gen->regs[gen->num_regs].vec = vec;
436    gen->num_regs++;
437 
438    assert(gen->num_regs <= Elements(gen->regs));
439 
440    assert(vec >= 0);
441 
442    return vec;
443 }
444 
445 
446 /**
447  * Clear the src operand cache.  To be called at the end of each emit function.
448  */
449 static void
release_src_vecs(struct gen_context * gen)450 release_src_vecs(struct gen_context *gen)
451 {
452    uint i;
453    for (i = 0; i < gen->num_regs; i++) {
454       const const struct tgsi_full_src_register src = gen->regs[i].src;
455       if (!is_ppc_vec_temporary(&src)) {
456          ppc_release_vec_register(gen->f, gen->regs[i].vec);
457       }
458    }
459    gen->num_regs = 0;
460 }
461 
462 
463 
464 static int
get_dst_vec(struct gen_context * gen,const struct tgsi_full_instruction * inst,unsigned chan_index)465 get_dst_vec(struct gen_context *gen,
466             const struct tgsi_full_instruction *inst,
467             unsigned chan_index)
468 {
469    const struct tgsi_full_dst_register *reg = &inst->Dst[0];
470 
471    if (is_ppc_vec_temporary_dst(reg)) {
472       int vec = gen->temps_map[reg->Register.Index][chan_index];
473       return vec;
474    }
475    else {
476       return ppc_allocate_vec_register(gen->f);
477    }
478 }
479 
480 
481 /**
482  * Register store.  Store 'src_vec' at location indicated by 'reg'.
483  * \param free_vec  Should the src_vec be released when done?
484  */
485 static void
emit_store(struct gen_context * gen,int src_vec,const struct tgsi_full_instruction * inst,unsigned chan_index,boolean free_vec)486 emit_store(struct gen_context *gen,
487            int src_vec,
488            const struct tgsi_full_instruction *inst,
489            unsigned chan_index,
490            boolean free_vec)
491 {
492    const struct tgsi_full_dst_register *reg = &inst->Dst[0];
493 
494    switch (reg->Register.File) {
495    case TGSI_FILE_OUTPUT:
496       {
497          int offset = (reg->Register.Index * 4 + chan_index) * 16;
498          int offset_reg = emit_li_offset(gen, offset);
499          ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
500       }
501       break;
502    case TGSI_FILE_TEMPORARY:
503       if (is_ppc_vec_temporary_dst(reg)) {
504          if (!free_vec) {
505             int dst_vec = gen->temps_map[reg->Register.Index][chan_index];
506             if (dst_vec != src_vec)
507                ppc_vmove(gen->f, dst_vec, src_vec);
508          }
509          free_vec = FALSE;
510       }
511       else {
512          int offset = (reg->Register.Index * 4 + chan_index) * 16;
513          int offset_reg = emit_li_offset(gen, offset);
514          ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
515       }
516       break;
517 #if 0
518    case TGSI_FILE_ADDRESS:
519       emit_addrs(
520          func,
521          xmm,
522          reg->Register.Index,
523          chan_index );
524       break;
525 #endif
526    default:
527       assert( 0 );
528    }
529 
530 #if 0
531    switch( inst->Instruction.Saturate ) {
532    case TGSI_SAT_NONE:
533       break;
534 
535    case TGSI_SAT_ZERO_ONE:
536       /* assert( 0 ); */
537       break;
538 
539    case TGSI_SAT_MINUS_PLUS_ONE:
540       assert( 0 );
541       break;
542    }
543 #endif
544 
545    if (free_vec)
546       ppc_release_vec_register(gen->f, src_vec);
547 }
548 
549 
550 static void
emit_scalar_unaryop(struct gen_context * gen,struct tgsi_full_instruction * inst)551 emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
552 {
553    int v0, v1;
554    uint chan_index;
555 
556    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
557    v1 = ppc_allocate_vec_register(gen->f);
558 
559    switch (inst->Instruction.Opcode) {
560    case TGSI_OPCODE_RSQ:
561       /* v1 = 1.0 / sqrt(v0) */
562       ppc_vrsqrtefp(gen->f, v1, v0);
563       break;
564    case TGSI_OPCODE_RCP:
565       /* v1 = 1.0 / v0 */
566       ppc_vrefp(gen->f, v1, v0);
567       break;
568    default:
569       assert(0);
570    }
571 
572    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
573       emit_store(gen, v1, inst, chan_index, FALSE);
574    }
575 
576    release_src_vecs(gen);
577    ppc_release_vec_register(gen->f, v1);
578 }
579 
580 
581 static void
emit_unaryop(struct gen_context * gen,struct tgsi_full_instruction * inst)582 emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
583 {
584    uint chan_index;
585 
586    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
587       int v0 = get_src_vec(gen, inst, 0, chan_index);   /* v0 = srcreg[0] */
588       int v1 = get_dst_vec(gen, inst, chan_index);
589       switch (inst->Instruction.Opcode) {
590       case TGSI_OPCODE_ABS:
591          /* turn off the most significant bit of each vector float word */
592          {
593             int bit31_vec = gen_get_bit31_vec(gen);
594             ppc_vandc(gen->f, v1, v0, bit31_vec); /* v1 = v0 & ~bit31 */
595          }
596          break;
597       case TGSI_OPCODE_FLR:
598          ppc_vrfim(gen->f, v1, v0);         /* v1 = floor(v0) */
599          break;
600       case TGSI_OPCODE_FRC:
601          ppc_vrfim(gen->f, v1, v0);      /* tmp = floor(v0) */
602          ppc_vsubfp(gen->f, v1, v0, v1); /* v1 = v0 - v1 */
603          break;
604       case TGSI_OPCODE_EX2:
605          ppc_vexptefp(gen->f, v1, v0);     /* v1 = 2^v0 */
606          break;
607       case TGSI_OPCODE_LG2:
608          /* XXX this may be broken! */
609          ppc_vlogefp(gen->f, v1, v0);      /* v1 = log2(v0) */
610          break;
611       case TGSI_OPCODE_MOV:
612          if (v0 != v1)
613             ppc_vmove(gen->f, v1, v0);
614          break;
615       default:
616          assert(0);
617       }
618       emit_store(gen, v1, inst, chan_index, TRUE);  /* store v0 */
619    }
620 
621    release_src_vecs(gen);
622 }
623 
624 
625 static void
emit_binop(struct gen_context * gen,struct tgsi_full_instruction * inst)626 emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
627 {
628    int zero_vec = -1;
629    uint chan;
630 
631    if (inst->Instruction.Opcode == TGSI_OPCODE_MUL) {
632       zero_vec = ppc_allocate_vec_register(gen->f);
633       ppc_vzero(gen->f, zero_vec);
634    }
635 
636    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
637       /* fetch src operands */
638       int v0 = get_src_vec(gen, inst, 0, chan);
639       int v1 = get_src_vec(gen, inst, 1, chan);
640       int v2 = get_dst_vec(gen, inst, chan);
641 
642       /* emit binop */
643       switch (inst->Instruction.Opcode) {
644       case TGSI_OPCODE_ADD:
645          ppc_vaddfp(gen->f, v2, v0, v1);
646          break;
647       case TGSI_OPCODE_SUB:
648          ppc_vsubfp(gen->f, v2, v0, v1);
649          break;
650       case TGSI_OPCODE_MUL:
651          ppc_vmaddfp(gen->f, v2, v0, v1, zero_vec);
652          break;
653       case TGSI_OPCODE_MIN:
654          ppc_vminfp(gen->f, v2, v0, v1);
655          break;
656       case TGSI_OPCODE_MAX:
657          ppc_vmaxfp(gen->f, v2, v0, v1);
658          break;
659       default:
660          assert(0);
661       }
662 
663       /* store v2 */
664       emit_store(gen, v2, inst, chan, TRUE);
665    }
666 
667    if (inst->Instruction.Opcode == TGSI_OPCODE_MUL)
668       ppc_release_vec_register(gen->f, zero_vec);
669 
670    release_src_vecs(gen);
671 }
672 
673 
674 static void
emit_triop(struct gen_context * gen,struct tgsi_full_instruction * inst)675 emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
676 {
677    uint chan;
678 
679    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
680       /* fetch src operands */
681       int v0 = get_src_vec(gen, inst, 0, chan);
682       int v1 = get_src_vec(gen, inst, 1, chan);
683       int v2 = get_src_vec(gen, inst, 2, chan);
684       int v3 = get_dst_vec(gen, inst, chan);
685 
686       /* emit ALU */
687       switch (inst->Instruction.Opcode) {
688       case TGSI_OPCODE_MAD:
689          ppc_vmaddfp(gen->f, v3, v0, v1, v2);   /* v3 = v0 * v1 + v2 */
690          break;
691       case TGSI_OPCODE_LRP:
692          ppc_vsubfp(gen->f, v3, v1, v2);        /* v3 = v1 - v2 */
693          ppc_vmaddfp(gen->f, v3, v0, v3, v2);   /* v3 = v0 * v3 + v2 */
694          break;
695       default:
696          assert(0);
697       }
698 
699       /* store v3 */
700       emit_store(gen, v3, inst, chan, TRUE);
701    }
702 
703    release_src_vecs(gen);
704 }
705 
706 
707 /**
708  * Vector comparisons, resulting in 1.0 or 0.0 values.
709  */
710 static void
emit_inequality(struct gen_context * gen,struct tgsi_full_instruction * inst)711 emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
712 {
713    uint chan;
714    int one_vec = gen_one_vec(gen);
715 
716    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
717       /* fetch src operands */
718       int v0 = get_src_vec(gen, inst, 0, chan);
719       int v1 = get_src_vec(gen, inst, 1, chan);
720       int v2 = get_dst_vec(gen, inst, chan);
721       boolean complement = FALSE;
722 
723       switch (inst->Instruction.Opcode) {
724       case TGSI_OPCODE_SNE:
725          complement = TRUE;
726          /* fall-through */
727       case TGSI_OPCODE_SEQ:
728          ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
729          break;
730 
731       case TGSI_OPCODE_SGE:
732          complement = TRUE;
733          /* fall-through */
734       case TGSI_OPCODE_SLT:
735          ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
736          break;
737 
738       case TGSI_OPCODE_SLE:
739          complement = TRUE;
740          /* fall-through */
741       case TGSI_OPCODE_SGT:
742          ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
743          break;
744       default:
745          assert(0);
746       }
747 
748       /* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
749 
750       if (complement)
751          ppc_vandc(gen->f, v2, one_vec, v2);    /* v2 = one_vec & ~v2 */
752       else
753          ppc_vand(gen->f, v2, one_vec, v2);     /* v2 = one_vec & v2 */
754 
755       /* store v2 */
756       emit_store(gen, v2, inst, chan, TRUE);
757    }
758 
759    release_src_vecs(gen);
760 }
761 
762 
763 static void
emit_dotprod(struct gen_context * gen,struct tgsi_full_instruction * inst)764 emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
765 {
766    int v0, v1, v2;
767    uint chan_index;
768 
769    v2 = ppc_allocate_vec_register(gen->f);
770 
771    ppc_vzero(gen->f, v2);                  /* v2 = {0, 0, 0, 0} */
772 
773    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X); /* v0 = src0.XXXX */
774    v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_X); /* v1 = src1.XXXX */
775    ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
776 
777    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Y); /* v0 = src0.YYYY */
778    v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Y); /* v1 = src1.YYYY */
779    ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
780 
781    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Z); /* v0 = src0.ZZZZ */
782    v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Z); /* v1 = src1.ZZZZ */
783    ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
784 
785    if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
786       v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_W); /* v0 = src0.WWWW */
787       v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
788       ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
789    }
790    else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
791       v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
792       ppc_vaddfp(gen->f, v2, v2, v1);         /* v2 = v2 + v1 */
793    }
794 
795    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
796       emit_store(gen, v2, inst, chan_index, FALSE);  /* store v2, free v2 later */
797    }
798 
799    release_src_vecs(gen);
800 
801    ppc_release_vec_register(gen->f, v2);
802 }
803 
804 
805 /** Approximation for vr = pow(va, vb) */
806 static void
ppc_vec_pow(struct ppc_function * f,int vr,int va,int vb)807 ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
808 {
809    /* pow(a,b) ~= exp2(log2(a) * b) */
810    int t_vec = ppc_allocate_vec_register(f);
811    int zero_vec = ppc_allocate_vec_register(f);
812 
813    ppc_vzero(f, zero_vec);
814 
815    ppc_vlogefp(f, t_vec, va);                   /* t = log2(va) */
816    ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec);  /* t = t * vb + zero */
817    ppc_vexptefp(f, vr, t_vec);                  /* vr = 2^t */
818 
819    ppc_release_vec_register(f, t_vec);
820    ppc_release_vec_register(f, zero_vec);
821 }
822 
823 
824 static void
emit_lit(struct gen_context * gen,struct tgsi_full_instruction * inst)825 emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
826 {
827    int one_vec = gen_one_vec(gen);
828 
829    /* Compute X */
830    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
831       emit_store(gen, one_vec, inst, TGSI_CHAN_X, FALSE);
832    }
833 
834    /* Compute Y, Z */
835    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
836       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
837       int x_vec;
838       int zero_vec = ppc_allocate_vec_register(gen->f);
839 
840       x_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);  /* x_vec = src[0].x */
841 
842       ppc_vzero(gen->f, zero_vec);                /* zero = {0,0,0,0} */
843       ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
844 
845       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
846          emit_store(gen, x_vec, inst, TGSI_CHAN_Y, FALSE);
847       }
848 
849       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
850          int y_vec, w_vec;
851          int z_vec = ppc_allocate_vec_register(gen->f);
852          int pow_vec = ppc_allocate_vec_register(gen->f);
853          int pos_vec = ppc_allocate_vec_register(gen->f);
854          int p128_vec = ppc_allocate_vec_register(gen->f);
855          int n128_vec = ppc_allocate_vec_register(gen->f);
856 
857          y_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y);  /* y_vec = src[0].y */
858          ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
859 
860          w_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_W);  /* w_vec = src[0].w */
861 
862          /* clamp W to [-128, 128] */
863          load_constant_vec(gen, p128_vec, 128.0f);
864          load_constant_vec(gen, n128_vec, -128.0f);
865          ppc_vmaxfp(gen->f, w_vec, w_vec, n128_vec); /* w = max(w, -128) */
866          ppc_vminfp(gen->f, w_vec, w_vec, p128_vec); /* w = min(w, 128) */
867 
868          /* if temp.x > 0
869           *    z = pow(tmp.y, tmp.w)
870           * else
871           *    z = 0.0
872           */
873          ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec);      /* pow = pow(y, w) */
874          ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
875          ppc_vand(gen->f, z_vec, pow_vec, pos_vec);       /* z = pow & pos */
876 
877          emit_store(gen, z_vec, inst, TGSI_CHAN_Z, FALSE);
878 
879          ppc_release_vec_register(gen->f, z_vec);
880          ppc_release_vec_register(gen->f, pow_vec);
881          ppc_release_vec_register(gen->f, pos_vec);
882          ppc_release_vec_register(gen->f, p128_vec);
883          ppc_release_vec_register(gen->f, n128_vec);
884       }
885 
886       ppc_release_vec_register(gen->f, zero_vec);
887    }
888 
889    /* Compute W */
890    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
891       emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
892    }
893 
894    release_src_vecs(gen);
895 }
896 
897 
898 static void
emit_exp(struct gen_context * gen,struct tgsi_full_instruction * inst)899 emit_exp(struct gen_context *gen, struct tgsi_full_instruction *inst)
900 {
901    const int one_vec = gen_one_vec(gen);
902    int src_vec;
903 
904    /* get src arg */
905    src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
906 
907    /* Compute X = 2^floor(src) */
908    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
909       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_X);
910       int tmp_vec = ppc_allocate_vec_register(gen->f);
911       ppc_vrfim(gen->f, tmp_vec, src_vec);             /* tmp = floor(src); */
912       ppc_vexptefp(gen->f, dst_vec, tmp_vec);          /* dst = 2 ^ tmp */
913       emit_store(gen, dst_vec, inst, TGSI_CHAN_X, TRUE);
914       ppc_release_vec_register(gen->f, tmp_vec);
915    }
916 
917    /* Compute Y = src - floor(src) */
918    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
919       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Y);
920       int tmp_vec = ppc_allocate_vec_register(gen->f);
921       ppc_vrfim(gen->f, tmp_vec, src_vec);             /* tmp = floor(src); */
922       ppc_vsubfp(gen->f, dst_vec, src_vec, tmp_vec);   /* dst = src - tmp */
923       emit_store(gen, dst_vec, inst, TGSI_CHAN_Y, TRUE);
924       ppc_release_vec_register(gen->f, tmp_vec);
925    }
926 
927    /* Compute Z = RoughApprox2ToX(src) */
928    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
929       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
930       ppc_vexptefp(gen->f, dst_vec, src_vec);          /* dst = 2 ^ src */
931       emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
932    }
933 
934    /* Compute W = 1.0 */
935    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
936       emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
937    }
938 
939    release_src_vecs(gen);
940 }
941 
942 
943 static void
emit_log(struct gen_context * gen,struct tgsi_full_instruction * inst)944 emit_log(struct gen_context *gen, struct tgsi_full_instruction *inst)
945 {
946    const int bit31_vec = gen_get_bit31_vec(gen);
947    const int one_vec = gen_one_vec(gen);
948    int src_vec, abs_vec;
949 
950    /* get src arg */
951    src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
952 
953    /* compute abs(src) */
954    abs_vec = ppc_allocate_vec_register(gen->f);
955    ppc_vandc(gen->f, abs_vec, src_vec, bit31_vec);     /* abs = src & ~bit31 */
956 
957    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) &&
958       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
959 
960       /* compute tmp = floor(log2(abs)) */
961       int tmp_vec = ppc_allocate_vec_register(gen->f);
962       ppc_vlogefp(gen->f, tmp_vec, abs_vec);           /* tmp = log2(abs) */
963       ppc_vrfim(gen->f, tmp_vec, tmp_vec);             /* tmp = floor(tmp); */
964 
965       /* Compute X = tmp */
966       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
967          emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
968       }
969 
970       /* Compute Y = abs / 2^tmp */
971       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
972          const int zero_vec = ppc_allocate_vec_register(gen->f);
973          ppc_vzero(gen->f, zero_vec);
974          ppc_vexptefp(gen->f, tmp_vec, tmp_vec);       /* tmp = 2 ^ tmp */
975          ppc_vrefp(gen->f, tmp_vec, tmp_vec);          /* tmp = 1 / tmp */
976          /* tmp = abs * tmp + zero */
977          ppc_vmaddfp(gen->f, tmp_vec, abs_vec, tmp_vec, zero_vec);
978          emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
979          ppc_release_vec_register(gen->f, zero_vec);
980       }
981 
982       ppc_release_vec_register(gen->f, tmp_vec);
983    }
984 
985    /* Compute Z = RoughApproxLog2(abs) */
986    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
987       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
988       ppc_vlogefp(gen->f, dst_vec, abs_vec);           /* dst = log2(abs) */
989       emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
990    }
991 
992    /* Compute W = 1.0 */
993    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
994       emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
995    }
996 
997    ppc_release_vec_register(gen->f, abs_vec);
998    release_src_vecs(gen);
999 }
1000 
1001 
1002 static void
emit_pow(struct gen_context * gen,struct tgsi_full_instruction * inst)1003 emit_pow(struct gen_context *gen, struct tgsi_full_instruction *inst)
1004 {
1005    int s0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
1006    int s1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
1007    int pow_vec = ppc_allocate_vec_register(gen->f);
1008    int chan;
1009 
1010    ppc_vec_pow(gen->f, pow_vec, s0_vec, s1_vec);
1011 
1012    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
1013       emit_store(gen, pow_vec, inst, chan, FALSE);
1014    }
1015 
1016    ppc_release_vec_register(gen->f, pow_vec);
1017 
1018    release_src_vecs(gen);
1019 }
1020 
1021 
1022 static void
emit_xpd(struct gen_context * gen,struct tgsi_full_instruction * inst)1023 emit_xpd(struct gen_context *gen, struct tgsi_full_instruction *inst)
1024 {
1025    int x0_vec, y0_vec, z0_vec;
1026    int x1_vec, y1_vec, z1_vec;
1027    int zero_vec, tmp_vec;
1028    int tmp2_vec;
1029 
1030    zero_vec = ppc_allocate_vec_register(gen->f);
1031    ppc_vzero(gen->f, zero_vec);
1032 
1033    tmp_vec = ppc_allocate_vec_register(gen->f);
1034    tmp2_vec = ppc_allocate_vec_register(gen->f);
1035 
1036    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
1037       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
1038       x0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
1039       x1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
1040    }
1041    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
1042       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
1043       y0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y);
1044       y1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Y);
1045    }
1046    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
1047       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
1048       z0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Z);
1049       z1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Z);
1050    }
1051 
1052    TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) {
1053       /* tmp = y0 * z1 */
1054       ppc_vmaddfp(gen->f, tmp_vec, y0_vec, z1_vec, zero_vec);
1055       /* tmp = tmp - z0 * y1*/
1056       ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, z0_vec, y1_vec);
1057       emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
1058    }
1059    TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) {
1060       /* tmp = z0 * x1 */
1061       ppc_vmaddfp(gen->f, tmp_vec, z0_vec, x1_vec, zero_vec);
1062       /* tmp = tmp - x0 * z1 */
1063       ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, x0_vec, z1_vec);
1064       emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
1065    }
1066    TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z) {
1067       /* tmp = x0 * y1 */
1068       ppc_vmaddfp(gen->f, tmp_vec, x0_vec, y1_vec, zero_vec);
1069       /* tmp = tmp - y0 * x1 */
1070       ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, y0_vec, x1_vec);
1071       emit_store(gen, tmp_vec, inst, TGSI_CHAN_Z, FALSE);
1072    }
1073    /* W is undefined */
1074 
1075    ppc_release_vec_register(gen->f, tmp_vec);
1076    ppc_release_vec_register(gen->f, zero_vec);
1077    release_src_vecs(gen);
1078 }
1079 
1080 static int
emit_instruction(struct gen_context * gen,struct tgsi_full_instruction * inst)1081 emit_instruction(struct gen_context *gen,
1082                  struct tgsi_full_instruction *inst)
1083 {
1084 
1085    /* we don't handle saturation/clamping yet */
1086    if (inst->Instruction.Saturate != TGSI_SAT_NONE)
1087       return 0;
1088 
1089    /* need to use extra temps to fix SOA dependencies : */
1090    if (tgsi_check_soa_dependencies(inst))
1091       return FALSE;
1092 
1093    switch (inst->Instruction.Opcode) {
1094    case TGSI_OPCODE_MOV:
1095    case TGSI_OPCODE_ABS:
1096    case TGSI_OPCODE_FLR:
1097    case TGSI_OPCODE_FRC:
1098    case TGSI_OPCODE_EX2:
1099    case TGSI_OPCODE_LG2:
1100       emit_unaryop(gen, inst);
1101       break;
1102    case TGSI_OPCODE_RSQ:
1103    case TGSI_OPCODE_RCP:
1104       emit_scalar_unaryop(gen, inst);
1105       break;
1106    case TGSI_OPCODE_ADD:
1107    case TGSI_OPCODE_SUB:
1108    case TGSI_OPCODE_MUL:
1109    case TGSI_OPCODE_MIN:
1110    case TGSI_OPCODE_MAX:
1111       emit_binop(gen, inst);
1112       break;
1113    case TGSI_OPCODE_SEQ:
1114    case TGSI_OPCODE_SNE:
1115    case TGSI_OPCODE_SLT:
1116    case TGSI_OPCODE_SGT:
1117    case TGSI_OPCODE_SLE:
1118    case TGSI_OPCODE_SGE:
1119       emit_inequality(gen, inst);
1120       break;
1121    case TGSI_OPCODE_MAD:
1122    case TGSI_OPCODE_LRP:
1123       emit_triop(gen, inst);
1124       break;
1125    case TGSI_OPCODE_DP3:
1126    case TGSI_OPCODE_DP4:
1127    case TGSI_OPCODE_DPH:
1128       emit_dotprod(gen, inst);
1129       break;
1130    case TGSI_OPCODE_LIT:
1131       emit_lit(gen, inst);
1132       break;
1133    case TGSI_OPCODE_LOG:
1134       emit_log(gen, inst);
1135       break;
1136    case TGSI_OPCODE_EXP:
1137       emit_exp(gen, inst);
1138       break;
1139    case TGSI_OPCODE_POW:
1140       emit_pow(gen, inst);
1141       break;
1142    case TGSI_OPCODE_XPD:
1143       emit_xpd(gen, inst);
1144       break;
1145    case TGSI_OPCODE_END:
1146       /* normal end */
1147       return 1;
1148    default:
1149       return 0;
1150    }
1151    return 1;
1152 }
1153 
1154 
1155 static void
emit_declaration(struct ppc_function * func,struct tgsi_full_declaration * decl)1156 emit_declaration(
1157    struct ppc_function *func,
1158    struct tgsi_full_declaration *decl )
1159 {
1160    if( decl->Declaration.File == TGSI_FILE_INPUT ||
1161        decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE ) {
1162 #if 0
1163       unsigned first, last, mask;
1164       unsigned i, j;
1165 
1166       first = decl->Range.First;
1167       last = decl->Range.Last;
1168       mask = decl->Declaration.UsageMask;
1169 
1170       for( i = first; i <= last; i++ ) {
1171          for( j = 0; j < NUM_CHANNELS; j++ ) {
1172             if( mask & (1 << j) ) {
1173                switch( decl->Interp.Interpolate ) {
1174                case TGSI_INTERPOLATE_CONSTANT:
1175                   emit_coef_a0( func, 0, i, j );
1176                   emit_inputs( func, 0, i, j );
1177                   break;
1178 
1179                case TGSI_INTERPOLATE_LINEAR:
1180                   emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1181                   emit_coef_dadx( func, 1, i, j );
1182                   emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1183                   emit_coef_dady( func, 3, i, j );
1184                   emit_mul( func, 0, 1 );    /* x * dadx */
1185                   emit_coef_a0( func, 4, i, j );
1186                   emit_mul( func, 2, 3 );    /* y * dady */
1187                   emit_add( func, 0, 4 );    /* x * dadx + a0 */
1188                   emit_add( func, 0, 2 );    /* x * dadx + y * dady + a0 */
1189                   emit_inputs( func, 0, i, j );
1190                   break;
1191 
1192                case TGSI_INTERPOLATE_PERSPECTIVE:
1193                   emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
1194                   emit_coef_dadx( func, 1, i, j );
1195                   emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
1196                   emit_coef_dady( func, 3, i, j );
1197                   emit_mul( func, 0, 1 );    /* x * dadx */
1198                   emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
1199                   emit_coef_a0( func, 5, i, j );
1200                   emit_rcp( func, 4, 4 );    /* 1.0 / w */
1201                   emit_mul( func, 2, 3 );    /* y * dady */
1202                   emit_add( func, 0, 5 );    /* x * dadx + a0 */
1203                   emit_add( func, 0, 2 );    /* x * dadx + y * dady + a0 */
1204                   emit_mul( func, 0, 4 );    /* (x * dadx + y * dady + a0) / w */
1205                   emit_inputs( func, 0, i, j );
1206                   break;
1207 
1208                default:
1209                   assert( 0 );
1210 		  break;
1211                }
1212             }
1213          }
1214       }
1215 #endif
1216    }
1217 }
1218 
1219 
1220 
1221 static void
emit_prologue(struct ppc_function * func)1222 emit_prologue(struct ppc_function *func)
1223 {
1224    /* XXX set up stack frame */
1225 }
1226 
1227 
1228 static void
emit_epilogue(struct ppc_function * func)1229 emit_epilogue(struct ppc_function *func)
1230 {
1231    ppc_comment(func, -4, "Epilogue:");
1232    ppc_return(func);
1233    /* XXX restore prev stack frame */
1234 #if 0
1235    debug_printf("PPC: Emitted %u instructions\n", func->num_inst);
1236 #endif
1237 }
1238 
1239 
1240 
1241 /**
1242  * Translate a TGSI vertex/fragment shader to PPC code.
1243  *
1244  * \param tokens  the TGSI input shader
1245  * \param func  the output PPC code/function
1246  * \param immediates  buffer to place immediates, later passed to PPC func
1247  * \return TRUE for success, FALSE if translation failed
1248  */
1249 boolean
tgsi_emit_ppc(const struct tgsi_token * tokens,struct ppc_function * func,float (* immediates)[4],boolean do_swizzles)1250 tgsi_emit_ppc(const struct tgsi_token *tokens,
1251               struct ppc_function *func,
1252               float (*immediates)[4],
1253               boolean do_swizzles )
1254 {
1255    static int use_ppc_asm = -1;
1256    struct tgsi_parse_context parse;
1257    /*boolean instruction_phase = FALSE;*/
1258    unsigned ok = 1;
1259    uint num_immediates = 0;
1260    struct gen_context gen;
1261    uint ic = 0;
1262 
1263    if (use_ppc_asm < 0) {
1264       /* If GALLIUM_NOPPC is set, don't use PPC codegen */
1265       use_ppc_asm = !debug_get_bool_option("GALLIUM_NOPPC", FALSE);
1266    }
1267    if (!use_ppc_asm)
1268       return FALSE;
1269 
1270    if (0) {
1271       debug_printf("\n********* TGSI->PPC ********\n");
1272       tgsi_dump(tokens, 0);
1273    }
1274 
1275    util_init_math();
1276 
1277    init_gen_context(&gen, func);
1278 
1279    emit_prologue(func);
1280 
1281    tgsi_parse_init( &parse, tokens );
1282 
1283    while (!tgsi_parse_end_of_tokens(&parse) && ok) {
1284       tgsi_parse_token(&parse);
1285 
1286       switch (parse.FullToken.Token.Type) {
1287       case TGSI_TOKEN_TYPE_DECLARATION:
1288          if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
1289             emit_declaration(func, &parse.FullToken.FullDeclaration );
1290          }
1291          break;
1292 
1293       case TGSI_TOKEN_TYPE_INSTRUCTION:
1294          if (func->print) {
1295             _debug_printf("# ");
1296             ic++;
1297             tgsi_dump_instruction(&parse.FullToken.FullInstruction, ic);
1298          }
1299 
1300          ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
1301 
1302 	 if (!ok) {
1303             uint opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
1304 	    debug_printf("failed to translate tgsi opcode %d (%s) to PPC (%s)\n",
1305 			 opcode,
1306                          tgsi_get_opcode_name(opcode),
1307                          parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
1308                          "vertex shader" : "fragment shader");
1309 	 }
1310          break;
1311 
1312       case TGSI_TOKEN_TYPE_IMMEDIATE:
1313          /* splat each immediate component into a float[4] vector for SoA */
1314          {
1315             const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
1316             uint i;
1317             assert(size <= 4);
1318             assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
1319             for (i = 0; i < size; i++) {
1320                immediates[num_immediates][i] =
1321 		  parse.FullToken.FullImmediate.u[i].Float;
1322             }
1323             num_immediates++;
1324          }
1325          break;
1326 
1327       case TGSI_TOKEN_TYPE_PROPERTY:
1328          break;
1329 
1330       default:
1331 	 ok = 0;
1332          assert( 0 );
1333       }
1334    }
1335 
1336    emit_epilogue(func);
1337 
1338    tgsi_parse_free( &parse );
1339 
1340    if (ppc_num_instructions(func) == 0) {
1341       /* ran out of memory for instructions */
1342       ok = FALSE;
1343    }
1344 
1345    if (!ok)
1346       debug_printf("TGSI->PPC translation failed\n");
1347 
1348    return ok;
1349 }
1350 
1351 #else
1352 
1353 void ppc_dummy_func(void);
1354 
ppc_dummy_func(void)1355 void ppc_dummy_func(void)
1356 {
1357 }
1358 
1359 #endif /* PIPE_ARCH_PPC */
1360