1 /**************************************************************************
2 *
3 * Copyright � 2007 Red Hat Inc.
4 * Copyright � 2007-2012 Intel Corporation
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * The above copyright notice and this permission notice (including the
25 * next paragraph) shall be included in all copies or substantial portions
26 * of the Software.
27 *
28 *
29 **************************************************************************/
30 /*
31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33 * Eric Anholt <eric@anholt.net>
34 * Dave Airlie <airlied@linux.ie>
35 */
36
37 #ifdef HAVE_CONFIG_H
38 #include "config.h"
39 #endif
40
41 #include <xf86drm.h>
42 #include <xf86atomic.h>
43 #include <fcntl.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <assert.h>
49 #include <pthread.h>
50 #include <sys/ioctl.h>
51 #include <sys/stat.h>
52 #include <sys/types.h>
53 #include <stdbool.h>
54
55 #include "errno.h"
56 #ifndef ETIME
57 #define ETIME ETIMEDOUT
58 #endif
59 #include "libdrm.h"
60 #include "libdrm_lists.h"
61 #include "intel_bufmgr.h"
62 #include "intel_bufmgr_priv.h"
63 #include "intel_chipset.h"
64 #include "intel_aub.h"
65 #include "string.h"
66
67 #include "i915_drm.h"
68
69 #ifdef HAVE_VALGRIND
70 #include <valgrind.h>
71 #include <memcheck.h>
72 #define VG(x) x
73 #else
74 #define VG(x)
75 #endif
76
77 #define VG_CLEAR(s) VG(memset(&s, 0, sizeof(s)))
78
79 #define DBG(...) do { \
80 if (bufmgr_gem->bufmgr.debug) \
81 fprintf(stderr, __VA_ARGS__); \
82 } while (0)
83
84 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
85
86 typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
87
88 struct drm_intel_gem_bo_bucket {
89 drmMMListHead head;
90 unsigned long size;
91 };
92
93 typedef struct _drm_intel_bufmgr_gem {
94 drm_intel_bufmgr bufmgr;
95
96 atomic_t refcount;
97
98 int fd;
99
100 int max_relocs;
101
102 pthread_mutex_t lock;
103
104 struct drm_i915_gem_exec_object *exec_objects;
105 struct drm_i915_gem_exec_object2 *exec2_objects;
106 drm_intel_bo **exec_bos;
107 int exec_size;
108 int exec_count;
109
110 /** Array of lists of cached gem objects of power-of-two sizes */
111 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
112 int num_buckets;
113 time_t time;
114
115 drmMMListHead managers;
116
117 drmMMListHead named;
118 drmMMListHead vma_cache;
119 int vma_count, vma_open, vma_max;
120
121 uint64_t gtt_size;
122 int available_fences;
123 int pci_device;
124 int gen;
125 unsigned int has_bsd : 1;
126 unsigned int has_blt : 1;
127 unsigned int has_relaxed_fencing : 1;
128 unsigned int has_llc : 1;
129 unsigned int has_wait_timeout : 1;
130 unsigned int bo_reuse : 1;
131 unsigned int no_exec : 1;
132 unsigned int has_vebox : 1;
133 bool fenced_relocs;
134
135 char *aub_filename;
136 FILE *aub_file;
137 uint32_t aub_offset;
138 } drm_intel_bufmgr_gem;
139
140 #define DRM_INTEL_RELOC_FENCE (1<<0)
141
142 typedef struct _drm_intel_reloc_target_info {
143 drm_intel_bo *bo;
144 int flags;
145 } drm_intel_reloc_target;
146
147 struct _drm_intel_bo_gem {
148 drm_intel_bo bo;
149
150 atomic_t refcount;
151 uint32_t gem_handle;
152 const char *name;
153
154 /**
155 * Kenel-assigned global name for this object
156 *
157 * List contains both flink named and prime fd'd objects
158 */
159 unsigned int global_name;
160 drmMMListHead name_list;
161
162 /**
163 * Index of the buffer within the validation list while preparing a
164 * batchbuffer execution.
165 */
166 int validate_index;
167
168 /**
169 * Current tiling mode
170 */
171 uint32_t tiling_mode;
172 uint32_t swizzle_mode;
173 unsigned long stride;
174
175 time_t free_time;
176
177 /** Array passed to the DRM containing relocation information. */
178 struct drm_i915_gem_relocation_entry *relocs;
179 /**
180 * Array of info structs corresponding to relocs[i].target_handle etc
181 */
182 drm_intel_reloc_target *reloc_target_info;
183 /** Number of entries in relocs */
184 int reloc_count;
185 /** Mapped address for the buffer, saved across map/unmap cycles */
186 void *mem_virtual;
187 /** GTT virtual address for the buffer, saved across map/unmap cycles */
188 void *gtt_virtual;
189 /**
190 * Virtual address of the buffer allocated by user, used for userptr
191 * objects only.
192 */
193 void *user_virtual;
194 int map_count;
195 drmMMListHead vma_list;
196
197 /** BO cache list */
198 drmMMListHead head;
199
200 /**
201 * Boolean of whether this BO and its children have been included in
202 * the current drm_intel_bufmgr_check_aperture_space() total.
203 */
204 bool included_in_check_aperture;
205
206 /**
207 * Boolean of whether this buffer has been used as a relocation
208 * target and had its size accounted for, and thus can't have any
209 * further relocations added to it.
210 */
211 bool used_as_reloc_target;
212
213 /**
214 * Boolean of whether we have encountered an error whilst building the relocation tree.
215 */
216 bool has_error;
217
218 /**
219 * Boolean of whether this buffer can be re-used
220 */
221 bool reusable;
222
223 /**
224 * Boolean of whether the GPU is definitely not accessing the buffer.
225 *
226 * This is only valid when reusable, since non-reusable
227 * buffers are those that have been shared wth other
228 * processes, so we don't know their state.
229 */
230 bool idle;
231
232 /**
233 * Boolean of whether this buffer was allocated with userptr
234 */
235 bool is_userptr;
236
237 /**
238 * Size in bytes of this buffer and its relocation descendents.
239 *
240 * Used to avoid costly tree walking in
241 * drm_intel_bufmgr_check_aperture in the common case.
242 */
243 int reloc_tree_size;
244
245 /**
246 * Number of potential fence registers required by this buffer and its
247 * relocations.
248 */
249 int reloc_tree_fences;
250
251 /** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
252 bool mapped_cpu_write;
253
254 uint32_t aub_offset;
255
256 drm_intel_aub_annotation *aub_annotations;
257 unsigned aub_annotation_count;
258 };
259
260 static unsigned int
261 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
262
263 static unsigned int
264 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
265
266 static int
267 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
268 uint32_t * swizzle_mode);
269
270 static int
271 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
272 uint32_t tiling_mode,
273 uint32_t stride);
274
275 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
276 time_t time);
277
278 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
279
280 static void drm_intel_gem_bo_free(drm_intel_bo *bo);
281
282 static unsigned long
drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size,uint32_t * tiling_mode)283 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
284 uint32_t *tiling_mode)
285 {
286 unsigned long min_size, max_size;
287 unsigned long i;
288
289 if (*tiling_mode == I915_TILING_NONE)
290 return size;
291
292 /* 965+ just need multiples of page size for tiling */
293 if (bufmgr_gem->gen >= 4)
294 return ROUND_UP_TO(size, 4096);
295
296 /* Older chips need powers of two, of at least 512k or 1M */
297 if (bufmgr_gem->gen == 3) {
298 min_size = 1024*1024;
299 max_size = 128*1024*1024;
300 } else {
301 min_size = 512*1024;
302 max_size = 64*1024*1024;
303 }
304
305 if (size > max_size) {
306 *tiling_mode = I915_TILING_NONE;
307 return size;
308 }
309
310 /* Do we need to allocate every page for the fence? */
311 if (bufmgr_gem->has_relaxed_fencing)
312 return ROUND_UP_TO(size, 4096);
313
314 for (i = min_size; i < size; i <<= 1)
315 ;
316
317 return i;
318 }
319
320 /*
321 * Round a given pitch up to the minimum required for X tiling on a
322 * given chip. We use 512 as the minimum to allow for a later tiling
323 * change.
324 */
325 static unsigned long
drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long pitch,uint32_t * tiling_mode)326 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
327 unsigned long pitch, uint32_t *tiling_mode)
328 {
329 unsigned long tile_width;
330 unsigned long i;
331
332 /* If untiled, then just align it so that we can do rendering
333 * to it with the 3D engine.
334 */
335 if (*tiling_mode == I915_TILING_NONE)
336 return ALIGN(pitch, 64);
337
338 if (*tiling_mode == I915_TILING_X
339 || (IS_915(bufmgr_gem->pci_device)
340 && *tiling_mode == I915_TILING_Y))
341 tile_width = 512;
342 else
343 tile_width = 128;
344
345 /* 965 is flexible */
346 if (bufmgr_gem->gen >= 4)
347 return ROUND_UP_TO(pitch, tile_width);
348
349 /* The older hardware has a maximum pitch of 8192 with tiled
350 * surfaces, so fallback to untiled if it's too large.
351 */
352 if (pitch > 8192) {
353 *tiling_mode = I915_TILING_NONE;
354 return ALIGN(pitch, 64);
355 }
356
357 /* Pre-965 needs power of two tile width */
358 for (i = tile_width; i < pitch; i <<= 1)
359 ;
360
361 return i;
362 }
363
364 static struct drm_intel_gem_bo_bucket *
drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size)365 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
366 unsigned long size)
367 {
368 int i;
369
370 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
371 struct drm_intel_gem_bo_bucket *bucket =
372 &bufmgr_gem->cache_bucket[i];
373 if (bucket->size >= size) {
374 return bucket;
375 }
376 }
377
378 return NULL;
379 }
380
381 static void
drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem * bufmgr_gem)382 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
383 {
384 int i, j;
385
386 for (i = 0; i < bufmgr_gem->exec_count; i++) {
387 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
388 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
389
390 if (bo_gem->relocs == NULL) {
391 DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
392 bo_gem->name);
393 continue;
394 }
395
396 for (j = 0; j < bo_gem->reloc_count; j++) {
397 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
398 drm_intel_bo_gem *target_gem =
399 (drm_intel_bo_gem *) target_bo;
400
401 DBG("%2d: %d (%s)@0x%08llx -> "
402 "%d (%s)@0x%08lx + 0x%08x\n",
403 i,
404 bo_gem->gem_handle, bo_gem->name,
405 (unsigned long long)bo_gem->relocs[j].offset,
406 target_gem->gem_handle,
407 target_gem->name,
408 target_bo->offset64,
409 bo_gem->relocs[j].delta);
410 }
411 }
412 }
413
414 static inline void
drm_intel_gem_bo_reference(drm_intel_bo * bo)415 drm_intel_gem_bo_reference(drm_intel_bo *bo)
416 {
417 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
418
419 atomic_inc(&bo_gem->refcount);
420 }
421
422 /**
423 * Adds the given buffer to the list of buffers to be validated (moved into the
424 * appropriate memory type) with the next batch submission.
425 *
426 * If a buffer is validated multiple times in a batch submission, it ends up
427 * with the intersection of the memory type flags and the union of the
428 * access flags.
429 */
430 static void
drm_intel_add_validate_buffer(drm_intel_bo * bo)431 drm_intel_add_validate_buffer(drm_intel_bo *bo)
432 {
433 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
434 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
435 int index;
436
437 if (bo_gem->validate_index != -1)
438 return;
439
440 /* Extend the array of validation entries as necessary. */
441 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
442 int new_size = bufmgr_gem->exec_size * 2;
443
444 if (new_size == 0)
445 new_size = 5;
446
447 bufmgr_gem->exec_objects =
448 realloc(bufmgr_gem->exec_objects,
449 sizeof(*bufmgr_gem->exec_objects) * new_size);
450 bufmgr_gem->exec_bos =
451 realloc(bufmgr_gem->exec_bos,
452 sizeof(*bufmgr_gem->exec_bos) * new_size);
453 bufmgr_gem->exec_size = new_size;
454 }
455
456 index = bufmgr_gem->exec_count;
457 bo_gem->validate_index = index;
458 /* Fill in array entry */
459 bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
460 bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
461 bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
462 bufmgr_gem->exec_objects[index].alignment = 0;
463 bufmgr_gem->exec_objects[index].offset = 0;
464 bufmgr_gem->exec_bos[index] = bo;
465 bufmgr_gem->exec_count++;
466 }
467
468 static void
drm_intel_add_validate_buffer2(drm_intel_bo * bo,int need_fence)469 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
470 {
471 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
472 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
473 int index;
474
475 if (bo_gem->validate_index != -1) {
476 if (need_fence)
477 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |=
478 EXEC_OBJECT_NEEDS_FENCE;
479 return;
480 }
481
482 /* Extend the array of validation entries as necessary. */
483 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
484 int new_size = bufmgr_gem->exec_size * 2;
485
486 if (new_size == 0)
487 new_size = 5;
488
489 bufmgr_gem->exec2_objects =
490 realloc(bufmgr_gem->exec2_objects,
491 sizeof(*bufmgr_gem->exec2_objects) * new_size);
492 bufmgr_gem->exec_bos =
493 realloc(bufmgr_gem->exec_bos,
494 sizeof(*bufmgr_gem->exec_bos) * new_size);
495 bufmgr_gem->exec_size = new_size;
496 }
497
498 index = bufmgr_gem->exec_count;
499 bo_gem->validate_index = index;
500 /* Fill in array entry */
501 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
502 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
503 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
504 bufmgr_gem->exec2_objects[index].alignment = 0;
505 bufmgr_gem->exec2_objects[index].offset = 0;
506 bufmgr_gem->exec_bos[index] = bo;
507 bufmgr_gem->exec2_objects[index].flags = 0;
508 bufmgr_gem->exec2_objects[index].rsvd1 = 0;
509 bufmgr_gem->exec2_objects[index].rsvd2 = 0;
510 if (need_fence) {
511 bufmgr_gem->exec2_objects[index].flags |=
512 EXEC_OBJECT_NEEDS_FENCE;
513 }
514 bufmgr_gem->exec_count++;
515 }
516
517 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
518 sizeof(uint32_t))
519
520 static void
drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)521 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
522 drm_intel_bo_gem *bo_gem)
523 {
524 int size;
525
526 assert(!bo_gem->used_as_reloc_target);
527
528 /* The older chipsets are far-less flexible in terms of tiling,
529 * and require tiled buffer to be size aligned in the aperture.
530 * This means that in the worst possible case we will need a hole
531 * twice as large as the object in order for it to fit into the
532 * aperture. Optimal packing is for wimps.
533 */
534 size = bo_gem->bo.size;
535 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
536 int min_size;
537
538 if (bufmgr_gem->has_relaxed_fencing) {
539 if (bufmgr_gem->gen == 3)
540 min_size = 1024*1024;
541 else
542 min_size = 512*1024;
543
544 while (min_size < size)
545 min_size *= 2;
546 } else
547 min_size = size;
548
549 /* Account for worst-case alignment. */
550 size = 2 * min_size;
551 }
552
553 bo_gem->reloc_tree_size = size;
554 }
555
556 static int
drm_intel_setup_reloc_list(drm_intel_bo * bo)557 drm_intel_setup_reloc_list(drm_intel_bo *bo)
558 {
559 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
560 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
561 unsigned int max_relocs = bufmgr_gem->max_relocs;
562
563 if (bo->size / 4 < max_relocs)
564 max_relocs = bo->size / 4;
565
566 bo_gem->relocs = malloc(max_relocs *
567 sizeof(struct drm_i915_gem_relocation_entry));
568 bo_gem->reloc_target_info = malloc(max_relocs *
569 sizeof(drm_intel_reloc_target));
570 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
571 bo_gem->has_error = true;
572
573 free (bo_gem->relocs);
574 bo_gem->relocs = NULL;
575
576 free (bo_gem->reloc_target_info);
577 bo_gem->reloc_target_info = NULL;
578
579 return 1;
580 }
581
582 return 0;
583 }
584
585 static int
drm_intel_gem_bo_busy(drm_intel_bo * bo)586 drm_intel_gem_bo_busy(drm_intel_bo *bo)
587 {
588 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
589 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
590 struct drm_i915_gem_busy busy;
591 int ret;
592
593 if (bo_gem->reusable && bo_gem->idle)
594 return false;
595
596 VG_CLEAR(busy);
597 busy.handle = bo_gem->gem_handle;
598
599 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
600 if (ret == 0) {
601 bo_gem->idle = !busy.busy;
602 return busy.busy;
603 } else {
604 return false;
605 }
606 return (ret == 0 && busy.busy);
607 }
608
609 static int
drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,int state)610 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
611 drm_intel_bo_gem *bo_gem, int state)
612 {
613 struct drm_i915_gem_madvise madv;
614
615 VG_CLEAR(madv);
616 madv.handle = bo_gem->gem_handle;
617 madv.madv = state;
618 madv.retained = 1;
619 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
620
621 return madv.retained;
622 }
623
624 static int
drm_intel_gem_bo_madvise(drm_intel_bo * bo,int madv)625 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
626 {
627 return drm_intel_gem_bo_madvise_internal
628 ((drm_intel_bufmgr_gem *) bo->bufmgr,
629 (drm_intel_bo_gem *) bo,
630 madv);
631 }
632
633 /* drop the oldest entries that have been purged by the kernel */
634 static void
drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem * bufmgr_gem,struct drm_intel_gem_bo_bucket * bucket)635 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
636 struct drm_intel_gem_bo_bucket *bucket)
637 {
638 while (!DRMLISTEMPTY(&bucket->head)) {
639 drm_intel_bo_gem *bo_gem;
640
641 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
642 bucket->head.next, head);
643 if (drm_intel_gem_bo_madvise_internal
644 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
645 break;
646
647 DRMLISTDEL(&bo_gem->head);
648 drm_intel_gem_bo_free(&bo_gem->bo);
649 }
650 }
651
652 static drm_intel_bo *
drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned long flags,uint32_t tiling_mode,unsigned long stride)653 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
654 const char *name,
655 unsigned long size,
656 unsigned long flags,
657 uint32_t tiling_mode,
658 unsigned long stride)
659 {
660 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
661 drm_intel_bo_gem *bo_gem;
662 unsigned int page_size = getpagesize();
663 int ret;
664 struct drm_intel_gem_bo_bucket *bucket;
665 bool alloc_from_cache;
666 unsigned long bo_size;
667 bool for_render = false;
668
669 if (flags & BO_ALLOC_FOR_RENDER)
670 for_render = true;
671
672 /* Round the allocated size up to a power of two number of pages. */
673 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
674
675 /* If we don't have caching at this size, don't actually round the
676 * allocation up.
677 */
678 if (bucket == NULL) {
679 bo_size = size;
680 if (bo_size < page_size)
681 bo_size = page_size;
682 } else {
683 bo_size = bucket->size;
684 }
685
686 pthread_mutex_lock(&bufmgr_gem->lock);
687 /* Get a buffer out of the cache if available */
688 retry:
689 alloc_from_cache = false;
690 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
691 if (for_render) {
692 /* Allocate new render-target BOs from the tail (MRU)
693 * of the list, as it will likely be hot in the GPU
694 * cache and in the aperture for us.
695 */
696 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
697 bucket->head.prev, head);
698 DRMLISTDEL(&bo_gem->head);
699 alloc_from_cache = true;
700 } else {
701 /* For non-render-target BOs (where we're probably
702 * going to map it first thing in order to fill it
703 * with data), check if the last BO in the cache is
704 * unbusy, and only reuse in that case. Otherwise,
705 * allocating a new buffer is probably faster than
706 * waiting for the GPU to finish.
707 */
708 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
709 bucket->head.next, head);
710 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
711 alloc_from_cache = true;
712 DRMLISTDEL(&bo_gem->head);
713 }
714 }
715
716 if (alloc_from_cache) {
717 if (!drm_intel_gem_bo_madvise_internal
718 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
719 drm_intel_gem_bo_free(&bo_gem->bo);
720 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
721 bucket);
722 goto retry;
723 }
724
725 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
726 tiling_mode,
727 stride)) {
728 drm_intel_gem_bo_free(&bo_gem->bo);
729 goto retry;
730 }
731 }
732 }
733 pthread_mutex_unlock(&bufmgr_gem->lock);
734
735 if (!alloc_from_cache) {
736 struct drm_i915_gem_create create;
737
738 bo_gem = calloc(1, sizeof(*bo_gem));
739 if (!bo_gem)
740 return NULL;
741
742 bo_gem->bo.size = bo_size;
743
744 VG_CLEAR(create);
745 create.size = bo_size;
746
747 ret = drmIoctl(bufmgr_gem->fd,
748 DRM_IOCTL_I915_GEM_CREATE,
749 &create);
750 bo_gem->gem_handle = create.handle;
751 bo_gem->bo.handle = bo_gem->gem_handle;
752 if (ret != 0) {
753 free(bo_gem);
754 return NULL;
755 }
756 bo_gem->bo.bufmgr = bufmgr;
757
758 bo_gem->tiling_mode = I915_TILING_NONE;
759 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
760 bo_gem->stride = 0;
761
762 /* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
763 list (vma_list), so better set the list head here */
764 DRMINITLISTHEAD(&bo_gem->name_list);
765 DRMINITLISTHEAD(&bo_gem->vma_list);
766 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
767 tiling_mode,
768 stride)) {
769 drm_intel_gem_bo_free(&bo_gem->bo);
770 return NULL;
771 }
772 }
773
774 bo_gem->name = name;
775 atomic_set(&bo_gem->refcount, 1);
776 bo_gem->validate_index = -1;
777 bo_gem->reloc_tree_fences = 0;
778 bo_gem->used_as_reloc_target = false;
779 bo_gem->has_error = false;
780 bo_gem->reusable = true;
781 bo_gem->aub_annotations = NULL;
782 bo_gem->aub_annotation_count = 0;
783
784 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
785
786 DBG("bo_create: buf %d (%s) %ldb\n",
787 bo_gem->gem_handle, bo_gem->name, size);
788
789 return &bo_gem->bo;
790 }
791
792 static drm_intel_bo *
drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)793 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
794 const char *name,
795 unsigned long size,
796 unsigned int alignment)
797 {
798 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
799 BO_ALLOC_FOR_RENDER,
800 I915_TILING_NONE, 0);
801 }
802
803 static drm_intel_bo *
drm_intel_gem_bo_alloc(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)804 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
805 const char *name,
806 unsigned long size,
807 unsigned int alignment)
808 {
809 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
810 I915_TILING_NONE, 0);
811 }
812
813 static drm_intel_bo *
drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr * bufmgr,const char * name,int x,int y,int cpp,uint32_t * tiling_mode,unsigned long * pitch,unsigned long flags)814 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
815 int x, int y, int cpp, uint32_t *tiling_mode,
816 unsigned long *pitch, unsigned long flags)
817 {
818 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
819 unsigned long size, stride;
820 uint32_t tiling;
821
822 do {
823 unsigned long aligned_y, height_alignment;
824
825 tiling = *tiling_mode;
826
827 /* If we're tiled, our allocations are in 8 or 32-row blocks,
828 * so failure to align our height means that we won't allocate
829 * enough pages.
830 *
831 * If we're untiled, we still have to align to 2 rows high
832 * because the data port accesses 2x2 blocks even if the
833 * bottom row isn't to be rendered, so failure to align means
834 * we could walk off the end of the GTT and fault. This is
835 * documented on 965, and may be the case on older chipsets
836 * too so we try to be careful.
837 */
838 aligned_y = y;
839 height_alignment = 2;
840
841 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
842 height_alignment = 16;
843 else if (tiling == I915_TILING_X
844 || (IS_915(bufmgr_gem->pci_device)
845 && tiling == I915_TILING_Y))
846 height_alignment = 8;
847 else if (tiling == I915_TILING_Y)
848 height_alignment = 32;
849 aligned_y = ALIGN(y, height_alignment);
850
851 stride = x * cpp;
852 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
853 size = stride * aligned_y;
854 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
855 } while (*tiling_mode != tiling);
856 *pitch = stride;
857
858 if (tiling == I915_TILING_NONE)
859 stride = 0;
860
861 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
862 tiling, stride);
863 }
864
865 static drm_intel_bo *
drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)866 drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
867 const char *name,
868 void *addr,
869 uint32_t tiling_mode,
870 uint32_t stride,
871 unsigned long size,
872 unsigned long flags)
873 {
874 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
875 drm_intel_bo_gem *bo_gem;
876 int ret;
877 struct drm_i915_gem_userptr userptr;
878
879 /* Tiling with userptr surfaces is not supported
880 * on all hardware so refuse it for time being.
881 */
882 if (tiling_mode != I915_TILING_NONE)
883 return NULL;
884
885 bo_gem = calloc(1, sizeof(*bo_gem));
886 if (!bo_gem)
887 return NULL;
888
889 bo_gem->bo.size = size;
890
891 VG_CLEAR(userptr);
892 userptr.user_ptr = (__u64)((unsigned long)addr);
893 userptr.user_size = size;
894 userptr.flags = flags;
895
896 ret = drmIoctl(bufmgr_gem->fd,
897 DRM_IOCTL_I915_GEM_USERPTR,
898 &userptr);
899 if (ret != 0) {
900 DBG("bo_create_userptr: "
901 "ioctl failed with user ptr %p size 0x%lx, "
902 "user flags 0x%lx\n", addr, size, flags);
903 free(bo_gem);
904 return NULL;
905 }
906
907 bo_gem->gem_handle = userptr.handle;
908 bo_gem->bo.handle = bo_gem->gem_handle;
909 bo_gem->bo.bufmgr = bufmgr;
910 bo_gem->is_userptr = true;
911 bo_gem->bo.virtual = addr;
912 /* Save the address provided by user */
913 bo_gem->user_virtual = addr;
914 bo_gem->tiling_mode = I915_TILING_NONE;
915 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
916 bo_gem->stride = 0;
917
918 DRMINITLISTHEAD(&bo_gem->name_list);
919 DRMINITLISTHEAD(&bo_gem->vma_list);
920
921 bo_gem->name = name;
922 atomic_set(&bo_gem->refcount, 1);
923 bo_gem->validate_index = -1;
924 bo_gem->reloc_tree_fences = 0;
925 bo_gem->used_as_reloc_target = false;
926 bo_gem->has_error = false;
927 bo_gem->reusable = false;
928
929 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
930
931 DBG("bo_create_userptr: "
932 "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
933 addr, bo_gem->gem_handle, bo_gem->name,
934 size, stride, tiling_mode);
935
936 return &bo_gem->bo;
937 }
938
939 /**
940 * Returns a drm_intel_bo wrapping the given buffer object handle.
941 *
942 * This can be used when one application needs to pass a buffer object
943 * to another.
944 */
945 drm_public drm_intel_bo *
drm_intel_bo_gem_create_from_name(drm_intel_bufmgr * bufmgr,const char * name,unsigned int handle)946 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
947 const char *name,
948 unsigned int handle)
949 {
950 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
951 drm_intel_bo_gem *bo_gem;
952 int ret;
953 struct drm_gem_open open_arg;
954 struct drm_i915_gem_get_tiling get_tiling;
955 drmMMListHead *list;
956
957 /* At the moment most applications only have a few named bo.
958 * For instance, in a DRI client only the render buffers passed
959 * between X and the client are named. And since X returns the
960 * alternating names for the front/back buffer a linear search
961 * provides a sufficiently fast match.
962 */
963 pthread_mutex_lock(&bufmgr_gem->lock);
964 for (list = bufmgr_gem->named.next;
965 list != &bufmgr_gem->named;
966 list = list->next) {
967 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
968 if (bo_gem->global_name == handle) {
969 drm_intel_gem_bo_reference(&bo_gem->bo);
970 pthread_mutex_unlock(&bufmgr_gem->lock);
971 return &bo_gem->bo;
972 }
973 }
974
975 VG_CLEAR(open_arg);
976 open_arg.name = handle;
977 ret = drmIoctl(bufmgr_gem->fd,
978 DRM_IOCTL_GEM_OPEN,
979 &open_arg);
980 if (ret != 0) {
981 DBG("Couldn't reference %s handle 0x%08x: %s\n",
982 name, handle, strerror(errno));
983 pthread_mutex_unlock(&bufmgr_gem->lock);
984 return NULL;
985 }
986 /* Now see if someone has used a prime handle to get this
987 * object from the kernel before by looking through the list
988 * again for a matching gem_handle
989 */
990 for (list = bufmgr_gem->named.next;
991 list != &bufmgr_gem->named;
992 list = list->next) {
993 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
994 if (bo_gem->gem_handle == open_arg.handle) {
995 drm_intel_gem_bo_reference(&bo_gem->bo);
996 pthread_mutex_unlock(&bufmgr_gem->lock);
997 return &bo_gem->bo;
998 }
999 }
1000
1001 bo_gem = calloc(1, sizeof(*bo_gem));
1002 if (!bo_gem) {
1003 pthread_mutex_unlock(&bufmgr_gem->lock);
1004 return NULL;
1005 }
1006
1007 bo_gem->bo.size = open_arg.size;
1008 bo_gem->bo.offset = 0;
1009 bo_gem->bo.offset64 = 0;
1010 bo_gem->bo.virtual = NULL;
1011 bo_gem->bo.bufmgr = bufmgr;
1012 bo_gem->name = name;
1013 atomic_set(&bo_gem->refcount, 1);
1014 bo_gem->validate_index = -1;
1015 bo_gem->gem_handle = open_arg.handle;
1016 bo_gem->bo.handle = open_arg.handle;
1017 bo_gem->global_name = handle;
1018 bo_gem->reusable = false;
1019
1020 VG_CLEAR(get_tiling);
1021 get_tiling.handle = bo_gem->gem_handle;
1022 ret = drmIoctl(bufmgr_gem->fd,
1023 DRM_IOCTL_I915_GEM_GET_TILING,
1024 &get_tiling);
1025 if (ret != 0) {
1026 drm_intel_gem_bo_unreference(&bo_gem->bo);
1027 pthread_mutex_unlock(&bufmgr_gem->lock);
1028 return NULL;
1029 }
1030 bo_gem->tiling_mode = get_tiling.tiling_mode;
1031 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1032 /* XXX stride is unknown */
1033 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
1034
1035 DRMINITLISTHEAD(&bo_gem->vma_list);
1036 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
1037 pthread_mutex_unlock(&bufmgr_gem->lock);
1038 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1039
1040 return &bo_gem->bo;
1041 }
1042
1043 static void
drm_intel_gem_bo_free(drm_intel_bo * bo)1044 drm_intel_gem_bo_free(drm_intel_bo *bo)
1045 {
1046 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1047 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1048 struct drm_gem_close close;
1049 int ret;
1050
1051 DRMLISTDEL(&bo_gem->vma_list);
1052 if (bo_gem->mem_virtual) {
1053 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1054 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1055 bufmgr_gem->vma_count--;
1056 }
1057 if (bo_gem->gtt_virtual) {
1058 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1059 bufmgr_gem->vma_count--;
1060 }
1061
1062 /* Close this object */
1063 VG_CLEAR(close);
1064 close.handle = bo_gem->gem_handle;
1065 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1066 if (ret != 0) {
1067 DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1068 bo_gem->gem_handle, bo_gem->name, strerror(errno));
1069 }
1070 free(bo_gem->aub_annotations);
1071 free(bo);
1072 }
1073
1074 static void
drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo * bo)1075 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1076 {
1077 #if HAVE_VALGRIND
1078 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1079
1080 if (bo_gem->mem_virtual)
1081 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1082
1083 if (bo_gem->gtt_virtual)
1084 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1085 #endif
1086 }
1087
1088 /** Frees all cached buffers significantly older than @time. */
1089 static void
drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem * bufmgr_gem,time_t time)1090 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1091 {
1092 int i;
1093
1094 if (bufmgr_gem->time == time)
1095 return;
1096
1097 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1098 struct drm_intel_gem_bo_bucket *bucket =
1099 &bufmgr_gem->cache_bucket[i];
1100
1101 while (!DRMLISTEMPTY(&bucket->head)) {
1102 drm_intel_bo_gem *bo_gem;
1103
1104 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1105 bucket->head.next, head);
1106 if (time - bo_gem->free_time <= 1)
1107 break;
1108
1109 DRMLISTDEL(&bo_gem->head);
1110
1111 drm_intel_gem_bo_free(&bo_gem->bo);
1112 }
1113 }
1114
1115 bufmgr_gem->time = time;
1116 }
1117
drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem * bufmgr_gem)1118 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1119 {
1120 int limit;
1121
1122 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1123 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1124
1125 if (bufmgr_gem->vma_max < 0)
1126 return;
1127
1128 /* We may need to evict a few entries in order to create new mmaps */
1129 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1130 if (limit < 0)
1131 limit = 0;
1132
1133 while (bufmgr_gem->vma_count > limit) {
1134 drm_intel_bo_gem *bo_gem;
1135
1136 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1137 bufmgr_gem->vma_cache.next,
1138 vma_list);
1139 assert(bo_gem->map_count == 0);
1140 DRMLISTDELINIT(&bo_gem->vma_list);
1141
1142 if (bo_gem->mem_virtual) {
1143 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1144 bo_gem->mem_virtual = NULL;
1145 bufmgr_gem->vma_count--;
1146 }
1147 if (bo_gem->gtt_virtual) {
1148 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1149 bo_gem->gtt_virtual = NULL;
1150 bufmgr_gem->vma_count--;
1151 }
1152 }
1153 }
1154
drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1155 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1156 drm_intel_bo_gem *bo_gem)
1157 {
1158 bufmgr_gem->vma_open--;
1159 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1160 if (bo_gem->mem_virtual)
1161 bufmgr_gem->vma_count++;
1162 if (bo_gem->gtt_virtual)
1163 bufmgr_gem->vma_count++;
1164 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1165 }
1166
drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1167 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1168 drm_intel_bo_gem *bo_gem)
1169 {
1170 bufmgr_gem->vma_open++;
1171 DRMLISTDEL(&bo_gem->vma_list);
1172 if (bo_gem->mem_virtual)
1173 bufmgr_gem->vma_count--;
1174 if (bo_gem->gtt_virtual)
1175 bufmgr_gem->vma_count--;
1176 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1177 }
1178
1179 static void
drm_intel_gem_bo_unreference_final(drm_intel_bo * bo,time_t time)1180 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1181 {
1182 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1183 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1184 struct drm_intel_gem_bo_bucket *bucket;
1185 int i;
1186
1187 /* Unreference all the target buffers */
1188 for (i = 0; i < bo_gem->reloc_count; i++) {
1189 if (bo_gem->reloc_target_info[i].bo != bo) {
1190 drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1191 reloc_target_info[i].bo,
1192 time);
1193 }
1194 }
1195 bo_gem->reloc_count = 0;
1196 bo_gem->used_as_reloc_target = false;
1197
1198 DBG("bo_unreference final: %d (%s)\n",
1199 bo_gem->gem_handle, bo_gem->name);
1200
1201 /* release memory associated with this object */
1202 if (bo_gem->reloc_target_info) {
1203 free(bo_gem->reloc_target_info);
1204 bo_gem->reloc_target_info = NULL;
1205 }
1206 if (bo_gem->relocs) {
1207 free(bo_gem->relocs);
1208 bo_gem->relocs = NULL;
1209 }
1210
1211 /* Clear any left-over mappings */
1212 if (bo_gem->map_count) {
1213 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1214 bo_gem->map_count = 0;
1215 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1216 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1217 }
1218
1219 DRMLISTDEL(&bo_gem->name_list);
1220
1221 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1222 /* Put the buffer into our internal cache for reuse if we can. */
1223 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1224 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1225 I915_MADV_DONTNEED)) {
1226 bo_gem->free_time = time;
1227
1228 bo_gem->name = NULL;
1229 bo_gem->validate_index = -1;
1230
1231 DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1232 } else {
1233 drm_intel_gem_bo_free(bo);
1234 }
1235 }
1236
drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo * bo,time_t time)1237 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1238 time_t time)
1239 {
1240 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1241
1242 assert(atomic_read(&bo_gem->refcount) > 0);
1243 if (atomic_dec_and_test(&bo_gem->refcount))
1244 drm_intel_gem_bo_unreference_final(bo, time);
1245 }
1246
drm_intel_gem_bo_unreference(drm_intel_bo * bo)1247 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1248 {
1249 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1250
1251 assert(atomic_read(&bo_gem->refcount) > 0);
1252
1253 if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1254 drm_intel_bufmgr_gem *bufmgr_gem =
1255 (drm_intel_bufmgr_gem *) bo->bufmgr;
1256 struct timespec time;
1257
1258 clock_gettime(CLOCK_MONOTONIC, &time);
1259
1260 pthread_mutex_lock(&bufmgr_gem->lock);
1261
1262 if (atomic_dec_and_test(&bo_gem->refcount)) {
1263 drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1264 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1265 }
1266
1267 pthread_mutex_unlock(&bufmgr_gem->lock);
1268 }
1269 }
1270
drm_intel_gem_bo_map(drm_intel_bo * bo,int write_enable)1271 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1272 {
1273 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1274 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1275 struct drm_i915_gem_set_domain set_domain;
1276 int ret;
1277
1278 if (bo_gem->is_userptr) {
1279 /* Return the same user ptr */
1280 bo->virtual = bo_gem->user_virtual;
1281 return 0;
1282 }
1283
1284 pthread_mutex_lock(&bufmgr_gem->lock);
1285
1286 if (bo_gem->map_count++ == 0)
1287 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1288
1289 if (!bo_gem->mem_virtual) {
1290 struct drm_i915_gem_mmap mmap_arg;
1291
1292 DBG("bo_map: %d (%s), map_count=%d\n",
1293 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1294
1295 VG_CLEAR(mmap_arg);
1296 mmap_arg.handle = bo_gem->gem_handle;
1297 mmap_arg.offset = 0;
1298 mmap_arg.size = bo->size;
1299 ret = drmIoctl(bufmgr_gem->fd,
1300 DRM_IOCTL_I915_GEM_MMAP,
1301 &mmap_arg);
1302 if (ret != 0) {
1303 ret = -errno;
1304 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1305 __FILE__, __LINE__, bo_gem->gem_handle,
1306 bo_gem->name, strerror(errno));
1307 if (--bo_gem->map_count == 0)
1308 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1309 pthread_mutex_unlock(&bufmgr_gem->lock);
1310 return ret;
1311 }
1312 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1313 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1314 }
1315 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1316 bo_gem->mem_virtual);
1317 bo->virtual = bo_gem->mem_virtual;
1318
1319 VG_CLEAR(set_domain);
1320 set_domain.handle = bo_gem->gem_handle;
1321 set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1322 if (write_enable)
1323 set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1324 else
1325 set_domain.write_domain = 0;
1326 ret = drmIoctl(bufmgr_gem->fd,
1327 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1328 &set_domain);
1329 if (ret != 0) {
1330 DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1331 __FILE__, __LINE__, bo_gem->gem_handle,
1332 strerror(errno));
1333 }
1334
1335 if (write_enable)
1336 bo_gem->mapped_cpu_write = true;
1337
1338 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1339 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1340 pthread_mutex_unlock(&bufmgr_gem->lock);
1341
1342 return 0;
1343 }
1344
1345 static int
map_gtt(drm_intel_bo * bo)1346 map_gtt(drm_intel_bo *bo)
1347 {
1348 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1349 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1350 int ret;
1351
1352 if (bo_gem->is_userptr)
1353 return -EINVAL;
1354
1355 if (bo_gem->map_count++ == 0)
1356 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1357
1358 /* Get a mapping of the buffer if we haven't before. */
1359 if (bo_gem->gtt_virtual == NULL) {
1360 struct drm_i915_gem_mmap_gtt mmap_arg;
1361
1362 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1363 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1364
1365 VG_CLEAR(mmap_arg);
1366 mmap_arg.handle = bo_gem->gem_handle;
1367
1368 /* Get the fake offset back... */
1369 ret = drmIoctl(bufmgr_gem->fd,
1370 DRM_IOCTL_I915_GEM_MMAP_GTT,
1371 &mmap_arg);
1372 if (ret != 0) {
1373 ret = -errno;
1374 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1375 __FILE__, __LINE__,
1376 bo_gem->gem_handle, bo_gem->name,
1377 strerror(errno));
1378 if (--bo_gem->map_count == 0)
1379 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1380 return ret;
1381 }
1382
1383 /* and mmap it */
1384 bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1385 MAP_SHARED, bufmgr_gem->fd,
1386 mmap_arg.offset);
1387 if (bo_gem->gtt_virtual == MAP_FAILED) {
1388 bo_gem->gtt_virtual = NULL;
1389 ret = -errno;
1390 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1391 __FILE__, __LINE__,
1392 bo_gem->gem_handle, bo_gem->name,
1393 strerror(errno));
1394 if (--bo_gem->map_count == 0)
1395 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1396 return ret;
1397 }
1398 }
1399
1400 bo->virtual = bo_gem->gtt_virtual;
1401
1402 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1403 bo_gem->gtt_virtual);
1404
1405 return 0;
1406 }
1407
1408 drm_public int
drm_intel_gem_bo_map_gtt(drm_intel_bo * bo)1409 drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1410 {
1411 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1412 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1413 struct drm_i915_gem_set_domain set_domain;
1414 int ret;
1415
1416 pthread_mutex_lock(&bufmgr_gem->lock);
1417
1418 ret = map_gtt(bo);
1419 if (ret) {
1420 pthread_mutex_unlock(&bufmgr_gem->lock);
1421 return ret;
1422 }
1423
1424 /* Now move it to the GTT domain so that the GPU and CPU
1425 * caches are flushed and the GPU isn't actively using the
1426 * buffer.
1427 *
1428 * The pagefault handler does this domain change for us when
1429 * it has unbound the BO from the GTT, but it's up to us to
1430 * tell it when we're about to use things if we had done
1431 * rendering and it still happens to be bound to the GTT.
1432 */
1433 VG_CLEAR(set_domain);
1434 set_domain.handle = bo_gem->gem_handle;
1435 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1436 set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1437 ret = drmIoctl(bufmgr_gem->fd,
1438 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1439 &set_domain);
1440 if (ret != 0) {
1441 DBG("%s:%d: Error setting domain %d: %s\n",
1442 __FILE__, __LINE__, bo_gem->gem_handle,
1443 strerror(errno));
1444 }
1445
1446 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1447 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1448 pthread_mutex_unlock(&bufmgr_gem->lock);
1449
1450 return 0;
1451 }
1452
1453 /**
1454 * Performs a mapping of the buffer object like the normal GTT
1455 * mapping, but avoids waiting for the GPU to be done reading from or
1456 * rendering to the buffer.
1457 *
1458 * This is used in the implementation of GL_ARB_map_buffer_range: The
1459 * user asks to create a buffer, then does a mapping, fills some
1460 * space, runs a drawing command, then asks to map it again without
1461 * synchronizing because it guarantees that it won't write over the
1462 * data that the GPU is busy using (or, more specifically, that if it
1463 * does write over the data, it acknowledges that rendering is
1464 * undefined).
1465 */
1466
1467 drm_public int
drm_intel_gem_bo_map_unsynchronized(drm_intel_bo * bo)1468 drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1469 {
1470 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1471 #ifdef HAVE_VALGRIND
1472 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1473 #endif
1474 int ret;
1475
1476 /* If the CPU cache isn't coherent with the GTT, then use a
1477 * regular synchronized mapping. The problem is that we don't
1478 * track where the buffer was last used on the CPU side in
1479 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1480 * we would potentially corrupt the buffer even when the user
1481 * does reasonable things.
1482 */
1483 if (!bufmgr_gem->has_llc)
1484 return drm_intel_gem_bo_map_gtt(bo);
1485
1486 pthread_mutex_lock(&bufmgr_gem->lock);
1487
1488 ret = map_gtt(bo);
1489 if (ret == 0) {
1490 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1491 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1492 }
1493
1494 pthread_mutex_unlock(&bufmgr_gem->lock);
1495
1496 return ret;
1497 }
1498
drm_intel_gem_bo_unmap(drm_intel_bo * bo)1499 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1500 {
1501 drm_intel_bufmgr_gem *bufmgr_gem;
1502 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1503 int ret = 0;
1504
1505 if (bo == NULL)
1506 return 0;
1507
1508 if (bo_gem->is_userptr)
1509 return 0;
1510
1511 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1512
1513 pthread_mutex_lock(&bufmgr_gem->lock);
1514
1515 if (bo_gem->map_count <= 0) {
1516 DBG("attempted to unmap an unmapped bo\n");
1517 pthread_mutex_unlock(&bufmgr_gem->lock);
1518 /* Preserve the old behaviour of just treating this as a
1519 * no-op rather than reporting the error.
1520 */
1521 return 0;
1522 }
1523
1524 if (bo_gem->mapped_cpu_write) {
1525 struct drm_i915_gem_sw_finish sw_finish;
1526
1527 /* Cause a flush to happen if the buffer's pinned for
1528 * scanout, so the results show up in a timely manner.
1529 * Unlike GTT set domains, this only does work if the
1530 * buffer should be scanout-related.
1531 */
1532 VG_CLEAR(sw_finish);
1533 sw_finish.handle = bo_gem->gem_handle;
1534 ret = drmIoctl(bufmgr_gem->fd,
1535 DRM_IOCTL_I915_GEM_SW_FINISH,
1536 &sw_finish);
1537 ret = ret == -1 ? -errno : 0;
1538
1539 bo_gem->mapped_cpu_write = false;
1540 }
1541
1542 /* We need to unmap after every innovation as we cannot track
1543 * an open vma for every bo as that will exhaasut the system
1544 * limits and cause later failures.
1545 */
1546 if (--bo_gem->map_count == 0) {
1547 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1548 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1549 bo->virtual = NULL;
1550 }
1551 pthread_mutex_unlock(&bufmgr_gem->lock);
1552
1553 return ret;
1554 }
1555
1556 drm_public int
drm_intel_gem_bo_unmap_gtt(drm_intel_bo * bo)1557 drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1558 {
1559 return drm_intel_gem_bo_unmap(bo);
1560 }
1561
1562 static int
drm_intel_gem_bo_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,const void * data)1563 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1564 unsigned long size, const void *data)
1565 {
1566 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1567 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1568 struct drm_i915_gem_pwrite pwrite;
1569 int ret;
1570
1571 if (bo_gem->is_userptr)
1572 return -EINVAL;
1573
1574 VG_CLEAR(pwrite);
1575 pwrite.handle = bo_gem->gem_handle;
1576 pwrite.offset = offset;
1577 pwrite.size = size;
1578 pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1579 ret = drmIoctl(bufmgr_gem->fd,
1580 DRM_IOCTL_I915_GEM_PWRITE,
1581 &pwrite);
1582 if (ret != 0) {
1583 ret = -errno;
1584 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1585 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1586 (int)size, strerror(errno));
1587 }
1588
1589 return ret;
1590 }
1591
1592 static int
drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr * bufmgr,int crtc_id)1593 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1594 {
1595 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1596 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1597 int ret;
1598
1599 VG_CLEAR(get_pipe_from_crtc_id);
1600 get_pipe_from_crtc_id.crtc_id = crtc_id;
1601 ret = drmIoctl(bufmgr_gem->fd,
1602 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1603 &get_pipe_from_crtc_id);
1604 if (ret != 0) {
1605 /* We return -1 here to signal that we don't
1606 * know which pipe is associated with this crtc.
1607 * This lets the caller know that this information
1608 * isn't available; using the wrong pipe for
1609 * vblank waiting can cause the chipset to lock up
1610 */
1611 return -1;
1612 }
1613
1614 return get_pipe_from_crtc_id.pipe;
1615 }
1616
1617 static int
drm_intel_gem_bo_get_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,void * data)1618 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1619 unsigned long size, void *data)
1620 {
1621 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1622 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1623 struct drm_i915_gem_pread pread;
1624 int ret;
1625
1626 if (bo_gem->is_userptr)
1627 return -EINVAL;
1628
1629 VG_CLEAR(pread);
1630 pread.handle = bo_gem->gem_handle;
1631 pread.offset = offset;
1632 pread.size = size;
1633 pread.data_ptr = (uint64_t) (uintptr_t) data;
1634 ret = drmIoctl(bufmgr_gem->fd,
1635 DRM_IOCTL_I915_GEM_PREAD,
1636 &pread);
1637 if (ret != 0) {
1638 ret = -errno;
1639 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1640 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1641 (int)size, strerror(errno));
1642 }
1643
1644 return ret;
1645 }
1646
1647 /** Waits for all GPU rendering with the object to have completed. */
1648 static void
drm_intel_gem_bo_wait_rendering(drm_intel_bo * bo)1649 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1650 {
1651 drm_intel_gem_bo_start_gtt_access(bo, 1);
1652 }
1653
1654 /**
1655 * Waits on a BO for the given amount of time.
1656 *
1657 * @bo: buffer object to wait for
1658 * @timeout_ns: amount of time to wait in nanoseconds.
1659 * If value is less than 0, an infinite wait will occur.
1660 *
1661 * Returns 0 if the wait was successful ie. the last batch referencing the
1662 * object has completed within the allotted time. Otherwise some negative return
1663 * value describes the error. Of particular interest is -ETIME when the wait has
1664 * failed to yield the desired result.
1665 *
1666 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1667 * the operation to give up after a certain amount of time. Another subtle
1668 * difference is the internal locking semantics are different (this variant does
1669 * not hold the lock for the duration of the wait). This makes the wait subject
1670 * to a larger userspace race window.
1671 *
1672 * The implementation shall wait until the object is no longer actively
1673 * referenced within a batch buffer at the time of the call. The wait will
1674 * not guarantee that the buffer is re-issued via another thread, or an flinked
1675 * handle. Userspace must make sure this race does not occur if such precision
1676 * is important.
1677 */
1678 drm_public int
drm_intel_gem_bo_wait(drm_intel_bo * bo,int64_t timeout_ns)1679 drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1680 {
1681 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1682 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1683 struct drm_i915_gem_wait wait;
1684 int ret;
1685
1686 if (!bufmgr_gem->has_wait_timeout) {
1687 DBG("%s:%d: Timed wait is not supported. Falling back to "
1688 "infinite wait\n", __FILE__, __LINE__);
1689 if (timeout_ns) {
1690 drm_intel_gem_bo_wait_rendering(bo);
1691 return 0;
1692 } else {
1693 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1694 }
1695 }
1696
1697 wait.bo_handle = bo_gem->gem_handle;
1698 wait.timeout_ns = timeout_ns;
1699 wait.flags = 0;
1700 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1701 if (ret == -1)
1702 return -errno;
1703
1704 return ret;
1705 }
1706
1707 /**
1708 * Sets the object to the GTT read and possibly write domain, used by the X
1709 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1710 *
1711 * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1712 * can do tiled pixmaps this way.
1713 */
1714 drm_public void
drm_intel_gem_bo_start_gtt_access(drm_intel_bo * bo,int write_enable)1715 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1716 {
1717 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1718 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1719 struct drm_i915_gem_set_domain set_domain;
1720 int ret;
1721
1722 VG_CLEAR(set_domain);
1723 set_domain.handle = bo_gem->gem_handle;
1724 set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1725 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1726 ret = drmIoctl(bufmgr_gem->fd,
1727 DRM_IOCTL_I915_GEM_SET_DOMAIN,
1728 &set_domain);
1729 if (ret != 0) {
1730 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1731 __FILE__, __LINE__, bo_gem->gem_handle,
1732 set_domain.read_domains, set_domain.write_domain,
1733 strerror(errno));
1734 }
1735 }
1736
1737 static void
drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr * bufmgr)1738 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1739 {
1740 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1741 int i;
1742
1743 free(bufmgr_gem->exec2_objects);
1744 free(bufmgr_gem->exec_objects);
1745 free(bufmgr_gem->exec_bos);
1746 free(bufmgr_gem->aub_filename);
1747
1748 pthread_mutex_destroy(&bufmgr_gem->lock);
1749
1750 /* Free any cached buffer objects we were going to reuse */
1751 for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1752 struct drm_intel_gem_bo_bucket *bucket =
1753 &bufmgr_gem->cache_bucket[i];
1754 drm_intel_bo_gem *bo_gem;
1755
1756 while (!DRMLISTEMPTY(&bucket->head)) {
1757 bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1758 bucket->head.next, head);
1759 DRMLISTDEL(&bo_gem->head);
1760
1761 drm_intel_gem_bo_free(&bo_gem->bo);
1762 }
1763 }
1764
1765 free(bufmgr);
1766 }
1767
1768 /**
1769 * Adds the target buffer to the validation list and adds the relocation
1770 * to the reloc_buffer's relocation list.
1771 *
1772 * The relocation entry at the given offset must already contain the
1773 * precomputed relocation value, because the kernel will optimize out
1774 * the relocation entry write when the buffer hasn't moved from the
1775 * last known offset in target_bo.
1776 */
1777 static int
do_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain,bool need_fence)1778 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1779 drm_intel_bo *target_bo, uint32_t target_offset,
1780 uint32_t read_domains, uint32_t write_domain,
1781 bool need_fence)
1782 {
1783 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1784 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1785 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1786 bool fenced_command;
1787
1788 if (bo_gem->has_error)
1789 return -ENOMEM;
1790
1791 if (target_bo_gem->has_error) {
1792 bo_gem->has_error = true;
1793 return -ENOMEM;
1794 }
1795
1796 /* We never use HW fences for rendering on 965+ */
1797 if (bufmgr_gem->gen >= 4)
1798 need_fence = false;
1799
1800 fenced_command = need_fence;
1801 if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1802 need_fence = false;
1803
1804 /* Create a new relocation list if needed */
1805 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1806 return -ENOMEM;
1807
1808 /* Check overflow */
1809 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1810
1811 /* Check args */
1812 assert(offset <= bo->size - 4);
1813 assert((write_domain & (write_domain - 1)) == 0);
1814
1815 /* An object needing a fence is a tiled buffer, so it won't have
1816 * relocs to other buffers.
1817 */
1818 if (need_fence) {
1819 assert(target_bo_gem->reloc_count == 0);
1820 target_bo_gem->reloc_tree_fences = 1;
1821 }
1822
1823 /* Make sure that we're not adding a reloc to something whose size has
1824 * already been accounted for.
1825 */
1826 assert(!bo_gem->used_as_reloc_target);
1827 if (target_bo_gem != bo_gem) {
1828 target_bo_gem->used_as_reloc_target = true;
1829 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
1830 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
1831 }
1832
1833 bo_gem->relocs[bo_gem->reloc_count].offset = offset;
1834 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
1835 bo_gem->relocs[bo_gem->reloc_count].target_handle =
1836 target_bo_gem->gem_handle;
1837 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
1838 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
1839 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
1840
1841 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
1842 if (target_bo != bo)
1843 drm_intel_gem_bo_reference(target_bo);
1844 if (fenced_command)
1845 bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
1846 DRM_INTEL_RELOC_FENCE;
1847 else
1848 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
1849
1850 bo_gem->reloc_count++;
1851
1852 return 0;
1853 }
1854
1855 static int
drm_intel_gem_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)1856 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1857 drm_intel_bo *target_bo, uint32_t target_offset,
1858 uint32_t read_domains, uint32_t write_domain)
1859 {
1860 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
1861
1862 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1863 read_domains, write_domain,
1864 !bufmgr_gem->fenced_relocs);
1865 }
1866
1867 static int
drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)1868 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
1869 drm_intel_bo *target_bo,
1870 uint32_t target_offset,
1871 uint32_t read_domains, uint32_t write_domain)
1872 {
1873 return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
1874 read_domains, write_domain, true);
1875 }
1876
1877 drm_public int
drm_intel_gem_bo_get_reloc_count(drm_intel_bo * bo)1878 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
1879 {
1880 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1881
1882 return bo_gem->reloc_count;
1883 }
1884
1885 /**
1886 * Removes existing relocation entries in the BO after "start".
1887 *
1888 * This allows a user to avoid a two-step process for state setup with
1889 * counting up all the buffer objects and doing a
1890 * drm_intel_bufmgr_check_aperture_space() before emitting any of the
1891 * relocations for the state setup. Instead, save the state of the
1892 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
1893 * state, and then check if it still fits in the aperture.
1894 *
1895 * Any further drm_intel_bufmgr_check_aperture_space() queries
1896 * involving this buffer in the tree are undefined after this call.
1897 */
1898 drm_public void
drm_intel_gem_bo_clear_relocs(drm_intel_bo * bo,int start)1899 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
1900 {
1901 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1902 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1903 int i;
1904 struct timespec time;
1905
1906 clock_gettime(CLOCK_MONOTONIC, &time);
1907
1908 assert(bo_gem->reloc_count >= start);
1909
1910 /* Unreference the cleared target buffers */
1911 pthread_mutex_lock(&bufmgr_gem->lock);
1912
1913 for (i = start; i < bo_gem->reloc_count; i++) {
1914 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
1915 if (&target_bo_gem->bo != bo) {
1916 bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
1917 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
1918 time.tv_sec);
1919 }
1920 }
1921 bo_gem->reloc_count = start;
1922
1923 pthread_mutex_unlock(&bufmgr_gem->lock);
1924
1925 }
1926
1927 /**
1928 * Walk the tree of relocations rooted at BO and accumulate the list of
1929 * validations to be performed and update the relocation buffers with
1930 * index values into the validation list.
1931 */
1932 static void
drm_intel_gem_bo_process_reloc(drm_intel_bo * bo)1933 drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
1934 {
1935 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1936 int i;
1937
1938 if (bo_gem->relocs == NULL)
1939 return;
1940
1941 for (i = 0; i < bo_gem->reloc_count; i++) {
1942 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1943
1944 if (target_bo == bo)
1945 continue;
1946
1947 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1948
1949 /* Continue walking the tree depth-first. */
1950 drm_intel_gem_bo_process_reloc(target_bo);
1951
1952 /* Add the target to the validate list */
1953 drm_intel_add_validate_buffer(target_bo);
1954 }
1955 }
1956
1957 static void
drm_intel_gem_bo_process_reloc2(drm_intel_bo * bo)1958 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
1959 {
1960 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
1961 int i;
1962
1963 if (bo_gem->relocs == NULL)
1964 return;
1965
1966 for (i = 0; i < bo_gem->reloc_count; i++) {
1967 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
1968 int need_fence;
1969
1970 if (target_bo == bo)
1971 continue;
1972
1973 drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1974
1975 /* Continue walking the tree depth-first. */
1976 drm_intel_gem_bo_process_reloc2(target_bo);
1977
1978 need_fence = (bo_gem->reloc_target_info[i].flags &
1979 DRM_INTEL_RELOC_FENCE);
1980
1981 /* Add the target to the validate list */
1982 drm_intel_add_validate_buffer2(target_bo, need_fence);
1983 }
1984 }
1985
1986
1987 static void
drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem * bufmgr_gem)1988 drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
1989 {
1990 int i;
1991
1992 for (i = 0; i < bufmgr_gem->exec_count; i++) {
1993 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
1994 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1995
1996 /* Update the buffer offset */
1997 if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
1998 DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
1999 bo_gem->gem_handle, bo_gem->name, bo->offset64,
2000 (unsigned long long)bufmgr_gem->exec_objects[i].
2001 offset);
2002 bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2003 bo->offset = bufmgr_gem->exec_objects[i].offset;
2004 }
2005 }
2006 }
2007
2008 static void
drm_intel_update_buffer_offsets2(drm_intel_bufmgr_gem * bufmgr_gem)2009 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2010 {
2011 int i;
2012
2013 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2014 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2015 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2016
2017 /* Update the buffer offset */
2018 if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2019 DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
2020 bo_gem->gem_handle, bo_gem->name, bo->offset64,
2021 (unsigned long long)bufmgr_gem->exec2_objects[i].offset);
2022 bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2023 bo->offset = bufmgr_gem->exec2_objects[i].offset;
2024 }
2025 }
2026 }
2027
2028 static void
aub_out(drm_intel_bufmgr_gem * bufmgr_gem,uint32_t data)2029 aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data)
2030 {
2031 fwrite(&data, 1, 4, bufmgr_gem->aub_file);
2032 }
2033
2034 static void
aub_out_data(drm_intel_bufmgr_gem * bufmgr_gem,void * data,size_t size)2035 aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size)
2036 {
2037 fwrite(data, 1, size, bufmgr_gem->aub_file);
2038 }
2039
2040 static void
aub_write_bo_data(drm_intel_bo * bo,uint32_t offset,uint32_t size)2041 aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size)
2042 {
2043 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2044 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2045 uint32_t *data;
2046 unsigned int i;
2047
2048 data = malloc(bo->size);
2049 drm_intel_bo_get_subdata(bo, offset, size, data);
2050
2051 /* Easy mode: write out bo with no relocations */
2052 if (!bo_gem->reloc_count) {
2053 aub_out_data(bufmgr_gem, data, size);
2054 free(data);
2055 return;
2056 }
2057
2058 /* Otherwise, handle the relocations while writing. */
2059 for (i = 0; i < size / 4; i++) {
2060 int r;
2061 for (r = 0; r < bo_gem->reloc_count; r++) {
2062 struct drm_i915_gem_relocation_entry *reloc;
2063 drm_intel_reloc_target *info;
2064
2065 reloc = &bo_gem->relocs[r];
2066 info = &bo_gem->reloc_target_info[r];
2067
2068 if (reloc->offset == offset + i * 4) {
2069 drm_intel_bo_gem *target_gem;
2070 uint32_t val;
2071
2072 target_gem = (drm_intel_bo_gem *)info->bo;
2073
2074 val = reloc->delta;
2075 val += target_gem->aub_offset;
2076
2077 aub_out(bufmgr_gem, val);
2078 data[i] = val;
2079 break;
2080 }
2081 }
2082 if (r == bo_gem->reloc_count) {
2083 /* no relocation, just the data */
2084 aub_out(bufmgr_gem, data[i]);
2085 }
2086 }
2087
2088 free(data);
2089 }
2090
2091 static void
aub_bo_get_address(drm_intel_bo * bo)2092 aub_bo_get_address(drm_intel_bo *bo)
2093 {
2094 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2095 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2096
2097 /* Give the object a graphics address in the AUB file. We
2098 * don't just use the GEM object address because we do AUB
2099 * dumping before execution -- we want to successfully log
2100 * when the hardware might hang, and we might even want to aub
2101 * capture for a driver trying to execute on a different
2102 * generation of hardware by disabling the actual kernel exec
2103 * call.
2104 */
2105 bo_gem->aub_offset = bufmgr_gem->aub_offset;
2106 bufmgr_gem->aub_offset += bo->size;
2107 /* XXX: Handle aperture overflow. */
2108 assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024);
2109 }
2110
2111 static void
aub_write_trace_block(drm_intel_bo * bo,uint32_t type,uint32_t subtype,uint32_t offset,uint32_t size)2112 aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
2113 uint32_t offset, uint32_t size)
2114 {
2115 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2116 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2117
2118 aub_out(bufmgr_gem,
2119 CMD_AUB_TRACE_HEADER_BLOCK |
2120 ((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2121 aub_out(bufmgr_gem,
2122 AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE);
2123 aub_out(bufmgr_gem, subtype);
2124 aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2125 aub_out(bufmgr_gem, size);
2126 if (bufmgr_gem->gen >= 8)
2127 aub_out(bufmgr_gem, 0);
2128 aub_write_bo_data(bo, offset, size);
2129 }
2130
2131 /**
2132 * Break up large objects into multiple writes. Otherwise a 128kb VBO
2133 * would overflow the 16 bits of size field in the packet header and
2134 * everything goes badly after that.
2135 */
2136 static void
aub_write_large_trace_block(drm_intel_bo * bo,uint32_t type,uint32_t subtype,uint32_t offset,uint32_t size)2137 aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
2138 uint32_t offset, uint32_t size)
2139 {
2140 uint32_t block_size;
2141 uint32_t sub_offset;
2142
2143 for (sub_offset = 0; sub_offset < size; sub_offset += block_size) {
2144 block_size = size - sub_offset;
2145
2146 if (block_size > 8 * 4096)
2147 block_size = 8 * 4096;
2148
2149 aub_write_trace_block(bo, type, subtype, offset + sub_offset,
2150 block_size);
2151 }
2152 }
2153
2154 static void
aub_write_bo(drm_intel_bo * bo)2155 aub_write_bo(drm_intel_bo *bo)
2156 {
2157 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2158 uint32_t offset = 0;
2159 unsigned i;
2160
2161 aub_bo_get_address(bo);
2162
2163 /* Write out each annotated section separately. */
2164 for (i = 0; i < bo_gem->aub_annotation_count; ++i) {
2165 drm_intel_aub_annotation *annotation =
2166 &bo_gem->aub_annotations[i];
2167 uint32_t ending_offset = annotation->ending_offset;
2168 if (ending_offset > bo->size)
2169 ending_offset = bo->size;
2170 if (ending_offset > offset) {
2171 aub_write_large_trace_block(bo, annotation->type,
2172 annotation->subtype,
2173 offset,
2174 ending_offset - offset);
2175 offset = ending_offset;
2176 }
2177 }
2178
2179 /* Write out any remaining unannotated data */
2180 if (offset < bo->size) {
2181 aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0,
2182 offset, bo->size - offset);
2183 }
2184 }
2185
2186 /*
2187 * Make a ringbuffer on fly and dump it
2188 */
2189 static void
aub_build_dump_ringbuffer(drm_intel_bufmgr_gem * bufmgr_gem,uint32_t batch_buffer,int ring_flag)2190 aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem,
2191 uint32_t batch_buffer, int ring_flag)
2192 {
2193 uint32_t ringbuffer[4096];
2194 int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */
2195 int ring_count = 0;
2196
2197 if (ring_flag == I915_EXEC_BSD)
2198 ring = AUB_TRACE_TYPE_RING_PRB1;
2199 else if (ring_flag == I915_EXEC_BLT)
2200 ring = AUB_TRACE_TYPE_RING_PRB2;
2201
2202 /* Make a ring buffer to execute our batchbuffer. */
2203 memset(ringbuffer, 0, sizeof(ringbuffer));
2204 if (bufmgr_gem->gen >= 8) {
2205 ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START | (3 - 2);
2206 ringbuffer[ring_count++] = batch_buffer;
2207 ringbuffer[ring_count++] = 0;
2208 } else {
2209 ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START;
2210 ringbuffer[ring_count++] = batch_buffer;
2211 }
2212
2213 /* Write out the ring. This appears to trigger execution of
2214 * the ring in the simulator.
2215 */
2216 aub_out(bufmgr_gem,
2217 CMD_AUB_TRACE_HEADER_BLOCK |
2218 ((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
2219 aub_out(bufmgr_gem,
2220 AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
2221 aub_out(bufmgr_gem, 0); /* general/surface subtype */
2222 aub_out(bufmgr_gem, bufmgr_gem->aub_offset);
2223 aub_out(bufmgr_gem, ring_count * 4);
2224 if (bufmgr_gem->gen >= 8)
2225 aub_out(bufmgr_gem, 0);
2226
2227 /* FIXME: Need some flush operations here? */
2228 aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4);
2229
2230 /* Update offset pointer */
2231 bufmgr_gem->aub_offset += 4096;
2232 }
2233
2234 drm_public void
drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo * bo,int x1,int y1,int width,int height,enum aub_dump_bmp_format format,int pitch,int offset)2235 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2236 int x1, int y1, int width, int height,
2237 enum aub_dump_bmp_format format,
2238 int pitch, int offset)
2239 {
2240 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2241 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2242 uint32_t cpp;
2243
2244 switch (format) {
2245 case AUB_DUMP_BMP_FORMAT_8BIT:
2246 cpp = 1;
2247 break;
2248 case AUB_DUMP_BMP_FORMAT_ARGB_4444:
2249 cpp = 2;
2250 break;
2251 case AUB_DUMP_BMP_FORMAT_ARGB_0888:
2252 case AUB_DUMP_BMP_FORMAT_ARGB_8888:
2253 cpp = 4;
2254 break;
2255 default:
2256 printf("Unknown AUB dump format %d\n", format);
2257 return;
2258 }
2259
2260 if (!bufmgr_gem->aub_file)
2261 return;
2262
2263 aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4);
2264 aub_out(bufmgr_gem, (y1 << 16) | x1);
2265 aub_out(bufmgr_gem,
2266 (format << 24) |
2267 (cpp << 19) |
2268 pitch / 4);
2269 aub_out(bufmgr_gem, (height << 16) | width);
2270 aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
2271 aub_out(bufmgr_gem,
2272 ((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) |
2273 ((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0));
2274 }
2275
2276 static void
aub_exec(drm_intel_bo * bo,int ring_flag,int used)2277 aub_exec(drm_intel_bo *bo, int ring_flag, int used)
2278 {
2279 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2280 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2281 int i;
2282 bool batch_buffer_needs_annotations;
2283
2284 if (!bufmgr_gem->aub_file)
2285 return;
2286
2287 /* If batch buffer is not annotated, annotate it the best we
2288 * can.
2289 */
2290 batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0;
2291 if (batch_buffer_needs_annotations) {
2292 drm_intel_aub_annotation annotations[2] = {
2293 { AUB_TRACE_TYPE_BATCH, 0, used },
2294 { AUB_TRACE_TYPE_NOTYPE, 0, bo->size }
2295 };
2296 drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2);
2297 }
2298
2299 /* Write out all buffers to AUB memory */
2300 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2301 aub_write_bo(bufmgr_gem->exec_bos[i]);
2302 }
2303
2304 /* Remove any annotations we added */
2305 if (batch_buffer_needs_annotations)
2306 drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0);
2307
2308 /* Dump ring buffer */
2309 aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag);
2310
2311 fflush(bufmgr_gem->aub_file);
2312
2313 /*
2314 * One frame has been dumped. So reset the aub_offset for the next frame.
2315 *
2316 * FIXME: Can we do this?
2317 */
2318 bufmgr_gem->aub_offset = 0x10000;
2319 }
2320
2321 static int
drm_intel_gem_bo_exec(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2322 drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2323 drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2324 {
2325 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2326 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2327 struct drm_i915_gem_execbuffer execbuf;
2328 int ret, i;
2329
2330 if (bo_gem->has_error)
2331 return -ENOMEM;
2332
2333 pthread_mutex_lock(&bufmgr_gem->lock);
2334 /* Update indices and set up the validate list. */
2335 drm_intel_gem_bo_process_reloc(bo);
2336
2337 /* Add the batch buffer to the validation list. There are no
2338 * relocations pointing to it.
2339 */
2340 drm_intel_add_validate_buffer(bo);
2341
2342 VG_CLEAR(execbuf);
2343 execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2344 execbuf.buffer_count = bufmgr_gem->exec_count;
2345 execbuf.batch_start_offset = 0;
2346 execbuf.batch_len = used;
2347 execbuf.cliprects_ptr = (uintptr_t) cliprects;
2348 execbuf.num_cliprects = num_cliprects;
2349 execbuf.DR1 = 0;
2350 execbuf.DR4 = DR4;
2351
2352 ret = drmIoctl(bufmgr_gem->fd,
2353 DRM_IOCTL_I915_GEM_EXECBUFFER,
2354 &execbuf);
2355 if (ret != 0) {
2356 ret = -errno;
2357 if (errno == ENOSPC) {
2358 DBG("Execbuffer fails to pin. "
2359 "Estimate: %u. Actual: %u. Available: %u\n",
2360 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2361 bufmgr_gem->
2362 exec_count),
2363 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2364 bufmgr_gem->
2365 exec_count),
2366 (unsigned int)bufmgr_gem->gtt_size);
2367 }
2368 }
2369 drm_intel_update_buffer_offsets(bufmgr_gem);
2370
2371 if (bufmgr_gem->bufmgr.debug)
2372 drm_intel_gem_dump_validation_list(bufmgr_gem);
2373
2374 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2375 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2376 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2377
2378 bo_gem->idle = false;
2379
2380 /* Disconnect the buffer from the validate list */
2381 bo_gem->validate_index = -1;
2382 bufmgr_gem->exec_bos[i] = NULL;
2383 }
2384 bufmgr_gem->exec_count = 0;
2385 pthread_mutex_unlock(&bufmgr_gem->lock);
2386
2387 return ret;
2388 }
2389
2390 static int
do_exec2(drm_intel_bo * bo,int used,drm_intel_context * ctx,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2391 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2392 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2393 unsigned int flags)
2394 {
2395 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2396 struct drm_i915_gem_execbuffer2 execbuf;
2397 int ret = 0;
2398 int i;
2399
2400 switch (flags & 0x7) {
2401 default:
2402 return -EINVAL;
2403 case I915_EXEC_BLT:
2404 if (!bufmgr_gem->has_blt)
2405 return -EINVAL;
2406 break;
2407 case I915_EXEC_BSD:
2408 if (!bufmgr_gem->has_bsd)
2409 return -EINVAL;
2410 break;
2411 case I915_EXEC_VEBOX:
2412 if (!bufmgr_gem->has_vebox)
2413 return -EINVAL;
2414 break;
2415 case I915_EXEC_RENDER:
2416 case I915_EXEC_DEFAULT:
2417 break;
2418 }
2419
2420 pthread_mutex_lock(&bufmgr_gem->lock);
2421 /* Update indices and set up the validate list. */
2422 drm_intel_gem_bo_process_reloc2(bo);
2423
2424 /* Add the batch buffer to the validation list. There are no relocations
2425 * pointing to it.
2426 */
2427 drm_intel_add_validate_buffer2(bo, 0);
2428
2429 VG_CLEAR(execbuf);
2430 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2431 execbuf.buffer_count = bufmgr_gem->exec_count;
2432 execbuf.batch_start_offset = 0;
2433 execbuf.batch_len = used;
2434 execbuf.cliprects_ptr = (uintptr_t)cliprects;
2435 execbuf.num_cliprects = num_cliprects;
2436 execbuf.DR1 = 0;
2437 execbuf.DR4 = DR4;
2438 execbuf.flags = flags;
2439 if (ctx == NULL)
2440 i915_execbuffer2_set_context_id(execbuf, 0);
2441 else
2442 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2443 execbuf.rsvd2 = 0;
2444
2445 aub_exec(bo, flags, used);
2446
2447 if (bufmgr_gem->no_exec)
2448 goto skip_execution;
2449
2450 ret = drmIoctl(bufmgr_gem->fd,
2451 DRM_IOCTL_I915_GEM_EXECBUFFER2,
2452 &execbuf);
2453 if (ret != 0) {
2454 ret = -errno;
2455 if (ret == -ENOSPC) {
2456 DBG("Execbuffer fails to pin. "
2457 "Estimate: %u. Actual: %u. Available: %u\n",
2458 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2459 bufmgr_gem->exec_count),
2460 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2461 bufmgr_gem->exec_count),
2462 (unsigned int) bufmgr_gem->gtt_size);
2463 }
2464 }
2465 drm_intel_update_buffer_offsets2(bufmgr_gem);
2466
2467 skip_execution:
2468 if (bufmgr_gem->bufmgr.debug)
2469 drm_intel_gem_dump_validation_list(bufmgr_gem);
2470
2471 for (i = 0; i < bufmgr_gem->exec_count; i++) {
2472 drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2473 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2474
2475 bo_gem->idle = false;
2476
2477 /* Disconnect the buffer from the validate list */
2478 bo_gem->validate_index = -1;
2479 bufmgr_gem->exec_bos[i] = NULL;
2480 }
2481 bufmgr_gem->exec_count = 0;
2482 pthread_mutex_unlock(&bufmgr_gem->lock);
2483
2484 return ret;
2485 }
2486
2487 static int
drm_intel_gem_bo_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2488 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2489 drm_clip_rect_t *cliprects, int num_cliprects,
2490 int DR4)
2491 {
2492 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2493 I915_EXEC_RENDER);
2494 }
2495
2496 static int
drm_intel_gem_bo_mrb_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2497 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2498 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2499 unsigned int flags)
2500 {
2501 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2502 flags);
2503 }
2504
2505 drm_public int
drm_intel_gem_bo_context_exec(drm_intel_bo * bo,drm_intel_context * ctx,int used,unsigned int flags)2506 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2507 int used, unsigned int flags)
2508 {
2509 return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
2510 }
2511
2512 static int
drm_intel_gem_bo_pin(drm_intel_bo * bo,uint32_t alignment)2513 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2514 {
2515 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2516 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2517 struct drm_i915_gem_pin pin;
2518 int ret;
2519
2520 VG_CLEAR(pin);
2521 pin.handle = bo_gem->gem_handle;
2522 pin.alignment = alignment;
2523
2524 ret = drmIoctl(bufmgr_gem->fd,
2525 DRM_IOCTL_I915_GEM_PIN,
2526 &pin);
2527 if (ret != 0)
2528 return -errno;
2529
2530 bo->offset64 = pin.offset;
2531 bo->offset = pin.offset;
2532 return 0;
2533 }
2534
2535 static int
drm_intel_gem_bo_unpin(drm_intel_bo * bo)2536 drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2537 {
2538 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2539 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2540 struct drm_i915_gem_unpin unpin;
2541 int ret;
2542
2543 VG_CLEAR(unpin);
2544 unpin.handle = bo_gem->gem_handle;
2545
2546 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2547 if (ret != 0)
2548 return -errno;
2549
2550 return 0;
2551 }
2552
2553 static int
drm_intel_gem_bo_set_tiling_internal(drm_intel_bo * bo,uint32_t tiling_mode,uint32_t stride)2554 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2555 uint32_t tiling_mode,
2556 uint32_t stride)
2557 {
2558 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2559 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2560 struct drm_i915_gem_set_tiling set_tiling;
2561 int ret;
2562
2563 if (bo_gem->global_name == 0 &&
2564 tiling_mode == bo_gem->tiling_mode &&
2565 stride == bo_gem->stride)
2566 return 0;
2567
2568 memset(&set_tiling, 0, sizeof(set_tiling));
2569 do {
2570 /* set_tiling is slightly broken and overwrites the
2571 * input on the error path, so we have to open code
2572 * rmIoctl.
2573 */
2574 set_tiling.handle = bo_gem->gem_handle;
2575 set_tiling.tiling_mode = tiling_mode;
2576 set_tiling.stride = stride;
2577
2578 ret = ioctl(bufmgr_gem->fd,
2579 DRM_IOCTL_I915_GEM_SET_TILING,
2580 &set_tiling);
2581 } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2582 if (ret == -1)
2583 return -errno;
2584
2585 bo_gem->tiling_mode = set_tiling.tiling_mode;
2586 bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2587 bo_gem->stride = set_tiling.stride;
2588 return 0;
2589 }
2590
2591 static int
drm_intel_gem_bo_set_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t stride)2592 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2593 uint32_t stride)
2594 {
2595 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2596 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2597 int ret;
2598
2599 /* Tiling with userptr surfaces is not supported
2600 * on all hardware so refuse it for time being.
2601 */
2602 if (bo_gem->is_userptr)
2603 return -EINVAL;
2604
2605 /* Linear buffers have no stride. By ensuring that we only ever use
2606 * stride 0 with linear buffers, we simplify our code.
2607 */
2608 if (*tiling_mode == I915_TILING_NONE)
2609 stride = 0;
2610
2611 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2612 if (ret == 0)
2613 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2614
2615 *tiling_mode = bo_gem->tiling_mode;
2616 return ret;
2617 }
2618
2619 static int
drm_intel_gem_bo_get_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t * swizzle_mode)2620 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2621 uint32_t * swizzle_mode)
2622 {
2623 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2624
2625 *tiling_mode = bo_gem->tiling_mode;
2626 *swizzle_mode = bo_gem->swizzle_mode;
2627 return 0;
2628 }
2629
2630 drm_public drm_intel_bo *
drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr * bufmgr,int prime_fd,int size)2631 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2632 {
2633 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2634 int ret;
2635 uint32_t handle;
2636 drm_intel_bo_gem *bo_gem;
2637 struct drm_i915_gem_get_tiling get_tiling;
2638 drmMMListHead *list;
2639
2640 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2641
2642 /*
2643 * See if the kernel has already returned this buffer to us. Just as
2644 * for named buffers, we must not create two bo's pointing at the same
2645 * kernel object
2646 */
2647 pthread_mutex_lock(&bufmgr_gem->lock);
2648 for (list = bufmgr_gem->named.next;
2649 list != &bufmgr_gem->named;
2650 list = list->next) {
2651 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
2652 if (bo_gem->gem_handle == handle) {
2653 drm_intel_gem_bo_reference(&bo_gem->bo);
2654 pthread_mutex_unlock(&bufmgr_gem->lock);
2655 return &bo_gem->bo;
2656 }
2657 }
2658
2659 if (ret) {
2660 fprintf(stderr,"ret is %d %d\n", ret, errno);
2661 pthread_mutex_unlock(&bufmgr_gem->lock);
2662 return NULL;
2663 }
2664
2665 bo_gem = calloc(1, sizeof(*bo_gem));
2666 if (!bo_gem) {
2667 pthread_mutex_unlock(&bufmgr_gem->lock);
2668 return NULL;
2669 }
2670 /* Determine size of bo. The fd-to-handle ioctl really should
2671 * return the size, but it doesn't. If we have kernel 3.12 or
2672 * later, we can lseek on the prime fd to get the size. Older
2673 * kernels will just fail, in which case we fall back to the
2674 * provided (estimated or guess size). */
2675 ret = lseek(prime_fd, 0, SEEK_END);
2676 if (ret != -1)
2677 bo_gem->bo.size = ret;
2678 else
2679 bo_gem->bo.size = size;
2680
2681 bo_gem->bo.handle = handle;
2682 bo_gem->bo.bufmgr = bufmgr;
2683
2684 bo_gem->gem_handle = handle;
2685
2686 atomic_set(&bo_gem->refcount, 1);
2687
2688 bo_gem->name = "prime";
2689 bo_gem->validate_index = -1;
2690 bo_gem->reloc_tree_fences = 0;
2691 bo_gem->used_as_reloc_target = false;
2692 bo_gem->has_error = false;
2693 bo_gem->reusable = false;
2694
2695 DRMINITLISTHEAD(&bo_gem->vma_list);
2696 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2697 pthread_mutex_unlock(&bufmgr_gem->lock);
2698
2699 VG_CLEAR(get_tiling);
2700 get_tiling.handle = bo_gem->gem_handle;
2701 ret = drmIoctl(bufmgr_gem->fd,
2702 DRM_IOCTL_I915_GEM_GET_TILING,
2703 &get_tiling);
2704 if (ret != 0) {
2705 drm_intel_gem_bo_unreference(&bo_gem->bo);
2706 return NULL;
2707 }
2708 bo_gem->tiling_mode = get_tiling.tiling_mode;
2709 bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2710 /* XXX stride is unknown */
2711 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
2712
2713 return &bo_gem->bo;
2714 }
2715
2716 drm_public int
drm_intel_bo_gem_export_to_prime(drm_intel_bo * bo,int * prime_fd)2717 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2718 {
2719 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2720 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2721
2722 pthread_mutex_lock(&bufmgr_gem->lock);
2723 if (DRMLISTEMPTY(&bo_gem->name_list))
2724 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2725 pthread_mutex_unlock(&bufmgr_gem->lock);
2726
2727 if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2728 DRM_CLOEXEC, prime_fd) != 0)
2729 return -errno;
2730
2731 bo_gem->reusable = false;
2732
2733 return 0;
2734 }
2735
2736 static int
drm_intel_gem_bo_flink(drm_intel_bo * bo,uint32_t * name)2737 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2738 {
2739 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2740 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2741 int ret;
2742
2743 if (!bo_gem->global_name) {
2744 struct drm_gem_flink flink;
2745
2746 VG_CLEAR(flink);
2747 flink.handle = bo_gem->gem_handle;
2748
2749 pthread_mutex_lock(&bufmgr_gem->lock);
2750
2751 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
2752 if (ret != 0) {
2753 pthread_mutex_unlock(&bufmgr_gem->lock);
2754 return -errno;
2755 }
2756
2757 bo_gem->global_name = flink.name;
2758 bo_gem->reusable = false;
2759
2760 if (DRMLISTEMPTY(&bo_gem->name_list))
2761 DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
2762 pthread_mutex_unlock(&bufmgr_gem->lock);
2763 }
2764
2765 *name = bo_gem->global_name;
2766 return 0;
2767 }
2768
2769 /**
2770 * Enables unlimited caching of buffer objects for reuse.
2771 *
2772 * This is potentially very memory expensive, as the cache at each bucket
2773 * size is only bounded by how many buffers of that size we've managed to have
2774 * in flight at once.
2775 */
2776 drm_public void
drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr * bufmgr)2777 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2778 {
2779 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2780
2781 bufmgr_gem->bo_reuse = true;
2782 }
2783
2784 /**
2785 * Enable use of fenced reloc type.
2786 *
2787 * New code should enable this to avoid unnecessary fence register
2788 * allocation. If this option is not enabled, all relocs will have fence
2789 * register allocated.
2790 */
2791 drm_public void
drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr * bufmgr)2792 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2793 {
2794 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2795
2796 if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2797 bufmgr_gem->fenced_relocs = true;
2798 }
2799
2800 /**
2801 * Return the additional aperture space required by the tree of buffer objects
2802 * rooted at bo.
2803 */
2804 static int
drm_intel_gem_bo_get_aperture_space(drm_intel_bo * bo)2805 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2806 {
2807 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2808 int i;
2809 int total = 0;
2810
2811 if (bo == NULL || bo_gem->included_in_check_aperture)
2812 return 0;
2813
2814 total += bo->size;
2815 bo_gem->included_in_check_aperture = true;
2816
2817 for (i = 0; i < bo_gem->reloc_count; i++)
2818 total +=
2819 drm_intel_gem_bo_get_aperture_space(bo_gem->
2820 reloc_target_info[i].bo);
2821
2822 return total;
2823 }
2824
2825 /**
2826 * Count the number of buffers in this list that need a fence reg
2827 *
2828 * If the count is greater than the number of available regs, we'll have
2829 * to ask the caller to resubmit a batch with fewer tiled buffers.
2830 *
2831 * This function over-counts if the same buffer is used multiple times.
2832 */
2833 static unsigned int
drm_intel_gem_total_fences(drm_intel_bo ** bo_array,int count)2834 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2835 {
2836 int i;
2837 unsigned int total = 0;
2838
2839 for (i = 0; i < count; i++) {
2840 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2841
2842 if (bo_gem == NULL)
2843 continue;
2844
2845 total += bo_gem->reloc_tree_fences;
2846 }
2847 return total;
2848 }
2849
2850 /**
2851 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2852 * for the next drm_intel_bufmgr_check_aperture_space() call.
2853 */
2854 static void
drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo * bo)2855 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2856 {
2857 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2858 int i;
2859
2860 if (bo == NULL || !bo_gem->included_in_check_aperture)
2861 return;
2862
2863 bo_gem->included_in_check_aperture = false;
2864
2865 for (i = 0; i < bo_gem->reloc_count; i++)
2866 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2867 reloc_target_info[i].bo);
2868 }
2869
2870 /**
2871 * Return a conservative estimate for the amount of aperture required
2872 * for a collection of buffers. This may double-count some buffers.
2873 */
2874 static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array,int count)2875 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2876 {
2877 int i;
2878 unsigned int total = 0;
2879
2880 for (i = 0; i < count; i++) {
2881 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2882 if (bo_gem != NULL)
2883 total += bo_gem->reloc_tree_size;
2884 }
2885 return total;
2886 }
2887
2888 /**
2889 * Return the amount of aperture needed for a collection of buffers.
2890 * This avoids double counting any buffers, at the cost of looking
2891 * at every buffer in the set.
2892 */
2893 static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array,int count)2894 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2895 {
2896 int i;
2897 unsigned int total = 0;
2898
2899 for (i = 0; i < count; i++) {
2900 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2901 /* For the first buffer object in the array, we get an
2902 * accurate count back for its reloc_tree size (since nothing
2903 * had been flagged as being counted yet). We can save that
2904 * value out as a more conservative reloc_tree_size that
2905 * avoids double-counting target buffers. Since the first
2906 * buffer happens to usually be the batch buffer in our
2907 * callers, this can pull us back from doing the tree
2908 * walk on every new batch emit.
2909 */
2910 if (i == 0) {
2911 drm_intel_bo_gem *bo_gem =
2912 (drm_intel_bo_gem *) bo_array[i];
2913 bo_gem->reloc_tree_size = total;
2914 }
2915 }
2916
2917 for (i = 0; i < count; i++)
2918 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2919 return total;
2920 }
2921
2922 /**
2923 * Return -1 if the batchbuffer should be flushed before attempting to
2924 * emit rendering referencing the buffers pointed to by bo_array.
2925 *
2926 * This is required because if we try to emit a batchbuffer with relocations
2927 * to a tree of buffers that won't simultaneously fit in the aperture,
2928 * the rendering will return an error at a point where the software is not
2929 * prepared to recover from it.
2930 *
2931 * However, we also want to emit the batchbuffer significantly before we reach
2932 * the limit, as a series of batchbuffers each of which references buffers
2933 * covering almost all of the aperture means that at each emit we end up
2934 * waiting to evict a buffer from the last rendering, and we get synchronous
2935 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to
2936 * get better parallelism.
2937 */
2938 static int
drm_intel_gem_check_aperture_space(drm_intel_bo ** bo_array,int count)2939 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2940 {
2941 drm_intel_bufmgr_gem *bufmgr_gem =
2942 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2943 unsigned int total = 0;
2944 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2945 int total_fences;
2946
2947 /* Check for fence reg constraints if necessary */
2948 if (bufmgr_gem->available_fences) {
2949 total_fences = drm_intel_gem_total_fences(bo_array, count);
2950 if (total_fences > bufmgr_gem->available_fences)
2951 return -ENOSPC;
2952 }
2953
2954 total = drm_intel_gem_estimate_batch_space(bo_array, count);
2955
2956 if (total > threshold)
2957 total = drm_intel_gem_compute_batch_space(bo_array, count);
2958
2959 if (total > threshold) {
2960 DBG("check_space: overflowed available aperture, "
2961 "%dkb vs %dkb\n",
2962 total / 1024, (int)bufmgr_gem->gtt_size / 1024);
2963 return -ENOSPC;
2964 } else {
2965 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
2966 (int)bufmgr_gem->gtt_size / 1024);
2967 return 0;
2968 }
2969 }
2970
2971 /*
2972 * Disable buffer reuse for objects which are shared with the kernel
2973 * as scanout buffers
2974 */
2975 static int
drm_intel_gem_bo_disable_reuse(drm_intel_bo * bo)2976 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
2977 {
2978 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2979
2980 bo_gem->reusable = false;
2981 return 0;
2982 }
2983
2984 static int
drm_intel_gem_bo_is_reusable(drm_intel_bo * bo)2985 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
2986 {
2987 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2988
2989 return bo_gem->reusable;
2990 }
2991
2992 static int
_drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)2993 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
2994 {
2995 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2996 int i;
2997
2998 for (i = 0; i < bo_gem->reloc_count; i++) {
2999 if (bo_gem->reloc_target_info[i].bo == target_bo)
3000 return 1;
3001 if (bo == bo_gem->reloc_target_info[i].bo)
3002 continue;
3003 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3004 target_bo))
3005 return 1;
3006 }
3007
3008 return 0;
3009 }
3010
3011 /** Return true if target_bo is referenced by bo's relocation tree. */
3012 static int
drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)3013 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3014 {
3015 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3016
3017 if (bo == NULL || target_bo == NULL)
3018 return 0;
3019 if (target_bo_gem->used_as_reloc_target)
3020 return _drm_intel_gem_bo_references(bo, target_bo);
3021 return 0;
3022 }
3023
3024 static void
add_bucket(drm_intel_bufmgr_gem * bufmgr_gem,int size)3025 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3026 {
3027 unsigned int i = bufmgr_gem->num_buckets;
3028
3029 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3030
3031 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3032 bufmgr_gem->cache_bucket[i].size = size;
3033 bufmgr_gem->num_buckets++;
3034 }
3035
3036 static void
init_cache_buckets(drm_intel_bufmgr_gem * bufmgr_gem)3037 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3038 {
3039 unsigned long size, cache_max_size = 64 * 1024 * 1024;
3040
3041 /* OK, so power of two buckets was too wasteful of memory.
3042 * Give 3 other sizes between each power of two, to hopefully
3043 * cover things accurately enough. (The alternative is
3044 * probably to just go for exact matching of sizes, and assume
3045 * that for things like composited window resize the tiled
3046 * width/height alignment and rounding of sizes to pages will
3047 * get us useful cache hit rates anyway)
3048 */
3049 add_bucket(bufmgr_gem, 4096);
3050 add_bucket(bufmgr_gem, 4096 * 2);
3051 add_bucket(bufmgr_gem, 4096 * 3);
3052
3053 /* Initialize the linked lists for BO reuse cache. */
3054 for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3055 add_bucket(bufmgr_gem, size);
3056
3057 add_bucket(bufmgr_gem, size + size * 1 / 4);
3058 add_bucket(bufmgr_gem, size + size * 2 / 4);
3059 add_bucket(bufmgr_gem, size + size * 3 / 4);
3060 }
3061 }
3062
3063 drm_public void
drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr * bufmgr,int limit)3064 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3065 {
3066 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3067
3068 bufmgr_gem->vma_max = limit;
3069
3070 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3071 }
3072
3073 /**
3074 * Get the PCI ID for the device. This can be overridden by setting the
3075 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3076 */
3077 static int
get_pci_device_id(drm_intel_bufmgr_gem * bufmgr_gem)3078 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3079 {
3080 char *devid_override;
3081 int devid;
3082 int ret;
3083 drm_i915_getparam_t gp;
3084
3085 if (geteuid() == getuid()) {
3086 devid_override = getenv("INTEL_DEVID_OVERRIDE");
3087 if (devid_override) {
3088 bufmgr_gem->no_exec = true;
3089 return strtod(devid_override, NULL);
3090 }
3091 }
3092
3093 VG_CLEAR(devid);
3094 VG_CLEAR(gp);
3095 gp.param = I915_PARAM_CHIPSET_ID;
3096 gp.value = &devid;
3097 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3098 if (ret) {
3099 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3100 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3101 }
3102 return devid;
3103 }
3104
3105 drm_public int
drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr * bufmgr)3106 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3107 {
3108 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3109
3110 return bufmgr_gem->pci_device;
3111 }
3112
3113 /**
3114 * Sets the AUB filename.
3115 *
3116 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3117 * for it to have any effect.
3118 */
3119 drm_public void
drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr * bufmgr,const char * filename)3120 drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3121 const char *filename)
3122 {
3123 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3124
3125 free(bufmgr_gem->aub_filename);
3126 if (filename)
3127 bufmgr_gem->aub_filename = strdup(filename);
3128 }
3129
3130 /**
3131 * Sets up AUB dumping.
3132 *
3133 * This is a trace file format that can be used with the simulator.
3134 * Packets are emitted in a format somewhat like GPU command packets.
3135 * You can set up a GTT and upload your objects into the referenced
3136 * space, then send off batchbuffers and get BMPs out the other end.
3137 */
3138 drm_public void
drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr * bufmgr,int enable)3139 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3140 {
3141 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3142 int entry = 0x200003;
3143 int i;
3144 int gtt_size = 0x10000;
3145 const char *filename;
3146
3147 if (!enable) {
3148 if (bufmgr_gem->aub_file) {
3149 fclose(bufmgr_gem->aub_file);
3150 bufmgr_gem->aub_file = NULL;
3151 }
3152 return;
3153 }
3154
3155 if (geteuid() != getuid())
3156 return;
3157
3158 if (bufmgr_gem->aub_filename)
3159 filename = bufmgr_gem->aub_filename;
3160 else
3161 filename = "intel.aub";
3162 bufmgr_gem->aub_file = fopen(filename, "w+");
3163 if (!bufmgr_gem->aub_file)
3164 return;
3165
3166 /* Start allocating objects from just after the GTT. */
3167 bufmgr_gem->aub_offset = gtt_size;
3168
3169 /* Start with a (required) version packet. */
3170 aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2));
3171 aub_out(bufmgr_gem,
3172 (4 << AUB_HEADER_MAJOR_SHIFT) |
3173 (0 << AUB_HEADER_MINOR_SHIFT));
3174 for (i = 0; i < 8; i++) {
3175 aub_out(bufmgr_gem, 0); /* app name */
3176 }
3177 aub_out(bufmgr_gem, 0); /* timestamp */
3178 aub_out(bufmgr_gem, 0); /* timestamp */
3179 aub_out(bufmgr_gem, 0); /* comment len */
3180
3181 /* Set up the GTT. The max we can handle is 256M */
3182 aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | ((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
3183 /* Need to use GTT_ENTRY type for recent emulator */
3184 aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_GTT_ENTRY | 0 | AUB_TRACE_OP_DATA_WRITE);
3185 aub_out(bufmgr_gem, 0); /* subtype */
3186 aub_out(bufmgr_gem, 0); /* offset */
3187 aub_out(bufmgr_gem, gtt_size); /* size */
3188 if (bufmgr_gem->gen >= 8)
3189 aub_out(bufmgr_gem, 0);
3190 for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) {
3191 aub_out(bufmgr_gem, entry);
3192 }
3193 }
3194
3195 drm_public drm_intel_context *
drm_intel_gem_context_create(drm_intel_bufmgr * bufmgr)3196 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3197 {
3198 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3199 struct drm_i915_gem_context_create create;
3200 drm_intel_context *context = NULL;
3201 int ret;
3202
3203 context = calloc(1, sizeof(*context));
3204 if (!context)
3205 return NULL;
3206
3207 VG_CLEAR(create);
3208 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3209 if (ret != 0) {
3210 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3211 strerror(errno));
3212 free(context);
3213 return NULL;
3214 }
3215
3216 context->ctx_id = create.ctx_id;
3217 context->bufmgr = bufmgr;
3218
3219 return context;
3220 }
3221
3222 drm_public void
drm_intel_gem_context_destroy(drm_intel_context * ctx)3223 drm_intel_gem_context_destroy(drm_intel_context *ctx)
3224 {
3225 drm_intel_bufmgr_gem *bufmgr_gem;
3226 struct drm_i915_gem_context_destroy destroy;
3227 int ret;
3228
3229 if (ctx == NULL)
3230 return;
3231
3232 VG_CLEAR(destroy);
3233
3234 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3235 destroy.ctx_id = ctx->ctx_id;
3236 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3237 &destroy);
3238 if (ret != 0)
3239 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3240 strerror(errno));
3241
3242 free(ctx);
3243 }
3244
3245 drm_public int
drm_intel_get_reset_stats(drm_intel_context * ctx,uint32_t * reset_count,uint32_t * active,uint32_t * pending)3246 drm_intel_get_reset_stats(drm_intel_context *ctx,
3247 uint32_t *reset_count,
3248 uint32_t *active,
3249 uint32_t *pending)
3250 {
3251 drm_intel_bufmgr_gem *bufmgr_gem;
3252 struct drm_i915_reset_stats stats;
3253 int ret;
3254
3255 if (ctx == NULL)
3256 return -EINVAL;
3257
3258 memset(&stats, 0, sizeof(stats));
3259
3260 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3261 stats.ctx_id = ctx->ctx_id;
3262 ret = drmIoctl(bufmgr_gem->fd,
3263 DRM_IOCTL_I915_GET_RESET_STATS,
3264 &stats);
3265 if (ret == 0) {
3266 if (reset_count != NULL)
3267 *reset_count = stats.reset_count;
3268
3269 if (active != NULL)
3270 *active = stats.batch_active;
3271
3272 if (pending != NULL)
3273 *pending = stats.batch_pending;
3274 }
3275
3276 return ret;
3277 }
3278
3279 drm_public int
drm_intel_reg_read(drm_intel_bufmgr * bufmgr,uint32_t offset,uint64_t * result)3280 drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3281 uint32_t offset,
3282 uint64_t *result)
3283 {
3284 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3285 struct drm_i915_reg_read reg_read;
3286 int ret;
3287
3288 VG_CLEAR(reg_read);
3289 reg_read.offset = offset;
3290
3291 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, ®_read);
3292
3293 *result = reg_read.val;
3294 return ret;
3295 }
3296
3297
3298 /**
3299 * Annotate the given bo for use in aub dumping.
3300 *
3301 * \param annotations is an array of drm_intel_aub_annotation objects
3302 * describing the type of data in various sections of the bo. Each
3303 * element of the array specifies the type and subtype of a section of
3304 * the bo, and the past-the-end offset of that section. The elements
3305 * of \c annotations must be sorted so that ending_offset is
3306 * increasing.
3307 *
3308 * \param count is the number of elements in the \c annotations array.
3309 * If \c count is zero, then \c annotations will not be dereferenced.
3310 *
3311 * Annotations are copied into a private data structure, so caller may
3312 * re-use the memory pointed to by \c annotations after the call
3313 * returns.
3314 *
3315 * Annotations are stored for the lifetime of the bo; to reset to the
3316 * default state (no annotations), call this function with a \c count
3317 * of zero.
3318 */
3319 drm_public void
drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo * bo,drm_intel_aub_annotation * annotations,unsigned count)3320 drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3321 drm_intel_aub_annotation *annotations,
3322 unsigned count)
3323 {
3324 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3325 unsigned size = sizeof(*annotations) * count;
3326 drm_intel_aub_annotation *new_annotations =
3327 count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL;
3328 if (new_annotations == NULL) {
3329 free(bo_gem->aub_annotations);
3330 bo_gem->aub_annotations = NULL;
3331 bo_gem->aub_annotation_count = 0;
3332 return;
3333 }
3334 memcpy(new_annotations, annotations, size);
3335 bo_gem->aub_annotations = new_annotations;
3336 bo_gem->aub_annotation_count = count;
3337 }
3338
3339 static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3340 static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3341
3342 static drm_intel_bufmgr_gem *
drm_intel_bufmgr_gem_find(int fd)3343 drm_intel_bufmgr_gem_find(int fd)
3344 {
3345 drm_intel_bufmgr_gem *bufmgr_gem;
3346
3347 DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3348 if (bufmgr_gem->fd == fd) {
3349 atomic_inc(&bufmgr_gem->refcount);
3350 return bufmgr_gem;
3351 }
3352 }
3353
3354 return NULL;
3355 }
3356
3357 static void
drm_intel_bufmgr_gem_unref(drm_intel_bufmgr * bufmgr)3358 drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3359 {
3360 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3361
3362 if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3363 pthread_mutex_lock(&bufmgr_list_mutex);
3364
3365 if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3366 DRMLISTDEL(&bufmgr_gem->managers);
3367 drm_intel_bufmgr_gem_destroy(bufmgr);
3368 }
3369
3370 pthread_mutex_unlock(&bufmgr_list_mutex);
3371 }
3372 }
3373
3374 static bool
has_userptr(drm_intel_bufmgr_gem * bufmgr_gem)3375 has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
3376 {
3377 int ret;
3378 void *ptr;
3379 long pgsz;
3380 struct drm_i915_gem_userptr userptr;
3381 struct drm_gem_close close_bo;
3382
3383 pgsz = sysconf(_SC_PAGESIZE);
3384 assert(pgsz > 0);
3385
3386 ret = posix_memalign(&ptr, pgsz, pgsz);
3387 if (ret) {
3388 DBG("Failed to get a page (%ld) for userptr detection!\n",
3389 pgsz);
3390 return false;
3391 }
3392
3393 memset(&userptr, 0, sizeof(userptr));
3394 userptr.user_ptr = (__u64)(unsigned long)ptr;
3395 userptr.user_size = pgsz;
3396
3397 retry:
3398 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
3399 if (ret) {
3400 if (errno == ENODEV && userptr.flags == 0) {
3401 userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
3402 goto retry;
3403 }
3404 free(ptr);
3405 return false;
3406 }
3407
3408 close_bo.handle = userptr.handle;
3409 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
3410 free(ptr);
3411 if (ret) {
3412 fprintf(stderr, "Failed to release test userptr object! (%d) "
3413 "i915 kernel driver may not be sane!\n", errno);
3414 return false;
3415 }
3416
3417 return true;
3418 }
3419
3420 /**
3421 * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3422 * and manage map buffer objections.
3423 *
3424 * \param fd File descriptor of the opened DRM device.
3425 */
3426 drm_public drm_intel_bufmgr *
drm_intel_bufmgr_gem_init(int fd,int batch_size)3427 drm_intel_bufmgr_gem_init(int fd, int batch_size)
3428 {
3429 drm_intel_bufmgr_gem *bufmgr_gem;
3430 struct drm_i915_gem_get_aperture aperture;
3431 drm_i915_getparam_t gp;
3432 int ret, tmp;
3433 bool exec2 = false;
3434
3435 pthread_mutex_lock(&bufmgr_list_mutex);
3436
3437 bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3438 if (bufmgr_gem)
3439 goto exit;
3440
3441 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3442 if (bufmgr_gem == NULL)
3443 goto exit;
3444
3445 bufmgr_gem->fd = fd;
3446 atomic_set(&bufmgr_gem->refcount, 1);
3447
3448 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3449 free(bufmgr_gem);
3450 bufmgr_gem = NULL;
3451 goto exit;
3452 }
3453
3454 ret = drmIoctl(bufmgr_gem->fd,
3455 DRM_IOCTL_I915_GEM_GET_APERTURE,
3456 &aperture);
3457
3458 if (ret == 0)
3459 bufmgr_gem->gtt_size = aperture.aper_available_size;
3460 else {
3461 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3462 strerror(errno));
3463 bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3464 fprintf(stderr, "Assuming %dkB available aperture size.\n"
3465 "May lead to reduced performance or incorrect "
3466 "rendering.\n",
3467 (int)bufmgr_gem->gtt_size / 1024);
3468 }
3469
3470 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3471
3472 if (IS_GEN2(bufmgr_gem->pci_device))
3473 bufmgr_gem->gen = 2;
3474 else if (IS_GEN3(bufmgr_gem->pci_device))
3475 bufmgr_gem->gen = 3;
3476 else if (IS_GEN4(bufmgr_gem->pci_device))
3477 bufmgr_gem->gen = 4;
3478 else if (IS_GEN5(bufmgr_gem->pci_device))
3479 bufmgr_gem->gen = 5;
3480 else if (IS_GEN6(bufmgr_gem->pci_device))
3481 bufmgr_gem->gen = 6;
3482 else if (IS_GEN7(bufmgr_gem->pci_device))
3483 bufmgr_gem->gen = 7;
3484 else if (IS_GEN8(bufmgr_gem->pci_device))
3485 bufmgr_gem->gen = 8;
3486 else if (IS_GEN9(bufmgr_gem->pci_device))
3487 bufmgr_gem->gen = 9;
3488 else {
3489 free(bufmgr_gem);
3490 bufmgr_gem = NULL;
3491 goto exit;
3492 }
3493
3494 if (IS_GEN3(bufmgr_gem->pci_device) &&
3495 bufmgr_gem->gtt_size > 256*1024*1024) {
3496 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3497 * be used for tiled blits. To simplify the accounting, just
3498 * substract the unmappable part (fixed to 256MB on all known
3499 * gen3 devices) if the kernel advertises it. */
3500 bufmgr_gem->gtt_size -= 256*1024*1024;
3501 }
3502
3503 VG_CLEAR(gp);
3504 gp.value = &tmp;
3505
3506 gp.param = I915_PARAM_HAS_EXECBUF2;
3507 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3508 if (!ret)
3509 exec2 = true;
3510
3511 gp.param = I915_PARAM_HAS_BSD;
3512 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3513 bufmgr_gem->has_bsd = ret == 0;
3514
3515 gp.param = I915_PARAM_HAS_BLT;
3516 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3517 bufmgr_gem->has_blt = ret == 0;
3518
3519 gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3520 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3521 bufmgr_gem->has_relaxed_fencing = ret == 0;
3522
3523 if (has_userptr(bufmgr_gem))
3524 bufmgr_gem->bufmgr.bo_alloc_userptr =
3525 drm_intel_gem_bo_alloc_userptr;
3526
3527 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3528 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3529 bufmgr_gem->has_wait_timeout = ret == 0;
3530
3531 gp.param = I915_PARAM_HAS_LLC;
3532 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3533 if (ret != 0) {
3534 /* Kernel does not supports HAS_LLC query, fallback to GPU
3535 * generation detection and assume that we have LLC on GEN6/7
3536 */
3537 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3538 IS_GEN7(bufmgr_gem->pci_device));
3539 } else
3540 bufmgr_gem->has_llc = *gp.value;
3541
3542 gp.param = I915_PARAM_HAS_VEBOX;
3543 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3544 bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3545
3546 if (bufmgr_gem->gen < 4) {
3547 gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3548 gp.value = &bufmgr_gem->available_fences;
3549 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3550 if (ret) {
3551 fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3552 errno);
3553 fprintf(stderr, "param: %d, val: %d\n", gp.param,
3554 *gp.value);
3555 bufmgr_gem->available_fences = 0;
3556 } else {
3557 /* XXX The kernel reports the total number of fences,
3558 * including any that may be pinned.
3559 *
3560 * We presume that there will be at least one pinned
3561 * fence for the scanout buffer, but there may be more
3562 * than one scanout and the user may be manually
3563 * pinning buffers. Let's move to execbuffer2 and
3564 * thereby forget the insanity of using fences...
3565 */
3566 bufmgr_gem->available_fences -= 2;
3567 if (bufmgr_gem->available_fences < 0)
3568 bufmgr_gem->available_fences = 0;
3569 }
3570 }
3571
3572 /* Let's go with one relocation per every 2 dwords (but round down a bit
3573 * since a power of two will mean an extra page allocation for the reloc
3574 * buffer).
3575 *
3576 * Every 4 was too few for the blender benchmark.
3577 */
3578 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3579
3580 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3581 bufmgr_gem->bufmgr.bo_alloc_for_render =
3582 drm_intel_gem_bo_alloc_for_render;
3583 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3584 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3585 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3586 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3587 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3588 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3589 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3590 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3591 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3592 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3593 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3594 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3595 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3596 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3597 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3598 /* Use the new one if available */
3599 if (exec2) {
3600 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3601 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3602 } else
3603 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3604 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3605 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3606 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3607 bufmgr_gem->bufmgr.debug = 0;
3608 bufmgr_gem->bufmgr.check_aperture_space =
3609 drm_intel_gem_check_aperture_space;
3610 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3611 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3612 bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3613 drm_intel_gem_get_pipe_from_crtc_id;
3614 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3615
3616 DRMINITLISTHEAD(&bufmgr_gem->named);
3617 init_cache_buckets(bufmgr_gem);
3618
3619 DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3620 bufmgr_gem->vma_max = -1; /* unlimited by default */
3621
3622 DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3623
3624 exit:
3625 pthread_mutex_unlock(&bufmgr_list_mutex);
3626
3627 return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3628 }
3629