1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for metadata subclasses.
12 /// They represent the different flavors of metadata that live in LLVM.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_IR_METADATA_H
17 #define LLVM_IR_METADATA_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/MetadataTracking.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <type_traits>
28
29 namespace llvm {
30 class LLVMContext;
31 class Module;
32 template<typename ValueSubClass, typename ItemParentClass>
33 class SymbolTableListTraits;
34
35 enum LLVMConstants : uint32_t {
36 DEBUG_METADATA_VERSION = 3 // Current debug info version number.
37 };
38
39 /// \brief Root of the metadata hierarchy.
40 ///
41 /// This is a root class for typeless data in the IR.
42 class Metadata {
43 friend class ReplaceableMetadataImpl;
44
45 /// \brief RTTI.
46 const unsigned char SubclassID;
47
48 protected:
49 /// \brief Active type of storage.
50 enum StorageType { Uniqued, Distinct, Temporary };
51
52 /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
53 unsigned Storage : 2;
54 // TODO: expose remaining bits to subclasses.
55
56 unsigned short SubclassData16;
57 unsigned SubclassData32;
58
59 public:
60 enum MetadataKind {
61 MDTupleKind,
62 MDLocationKind,
63 GenericDebugNodeKind,
64 MDSubrangeKind,
65 MDEnumeratorKind,
66 MDBasicTypeKind,
67 MDDerivedTypeKind,
68 MDCompositeTypeKind,
69 MDSubroutineTypeKind,
70 MDFileKind,
71 MDCompileUnitKind,
72 MDSubprogramKind,
73 MDLexicalBlockKind,
74 MDLexicalBlockFileKind,
75 MDNamespaceKind,
76 MDTemplateTypeParameterKind,
77 MDTemplateValueParameterKind,
78 MDGlobalVariableKind,
79 MDLocalVariableKind,
80 MDExpressionKind,
81 MDObjCPropertyKind,
82 MDImportedEntityKind,
83 ConstantAsMetadataKind,
84 LocalAsMetadataKind,
85 MDStringKind
86 };
87
88 protected:
Metadata(unsigned ID,StorageType Storage)89 Metadata(unsigned ID, StorageType Storage)
90 : SubclassID(ID), Storage(Storage), SubclassData16(0), SubclassData32(0) {
91 }
92 ~Metadata() = default;
93
94 /// \brief Default handling of a changed operand, which asserts.
95 ///
96 /// If subclasses pass themselves in as owners to a tracking node reference,
97 /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)98 void handleChangedOperand(void *, Metadata *) {
99 llvm_unreachable("Unimplemented in Metadata subclass");
100 }
101
102 public:
getMetadataID()103 unsigned getMetadataID() const { return SubclassID; }
104
105 /// \brief User-friendly dump.
106 ///
107 /// If \c M is provided, metadata nodes will be numbered canonically;
108 /// otherwise, pointer addresses are substituted.
109 ///
110 /// Note: this uses an explicit overload instead of default arguments so that
111 /// the nullptr version is easy to call from a debugger.
112 ///
113 /// @{
114 void dump() const;
115 void dump(const Module *M) const;
116 /// @}
117
118 /// \brief Print.
119 ///
120 /// Prints definition of \c this.
121 ///
122 /// If \c M is provided, metadata nodes will be numbered canonically;
123 /// otherwise, pointer addresses are substituted.
124 void print(raw_ostream &OS, const Module *M = nullptr) const;
125
126 /// \brief Print as operand.
127 ///
128 /// Prints reference of \c this.
129 ///
130 /// If \c M is provided, metadata nodes will be numbered canonically;
131 /// otherwise, pointer addresses are substituted.
132 void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
133 };
134
135 #define HANDLE_METADATA(CLASS) class CLASS;
136 #include "llvm/IR/Metadata.def"
137
138 // Provide specializations of isa so that we don't need definitions of
139 // subclasses to see if the metadata is a subclass.
140 #define HANDLE_METADATA_LEAF(CLASS) \
141 template <> struct isa_impl<CLASS, Metadata> { \
142 static inline bool doit(const Metadata &MD) { \
143 return MD.getMetadataID() == Metadata::CLASS##Kind; \
144 } \
145 };
146 #include "llvm/IR/Metadata.def"
147
148 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
149 MD.print(OS);
150 return OS;
151 }
152
153 /// \brief Metadata wrapper in the Value hierarchy.
154 ///
155 /// A member of the \a Value hierarchy to represent a reference to metadata.
156 /// This allows, e.g., instrinsics to have metadata as operands.
157 ///
158 /// Notably, this is the only thing in either hierarchy that is allowed to
159 /// reference \a LocalAsMetadata.
160 class MetadataAsValue : public Value {
161 friend class ReplaceableMetadataImpl;
162 friend class LLVMContextImpl;
163
164 Metadata *MD;
165
166 MetadataAsValue(Type *Ty, Metadata *MD);
167 ~MetadataAsValue() override;
168
169 /// \brief Drop use of metadata (during teardown).
dropUse()170 void dropUse() { MD = nullptr; }
171
172 public:
173 static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
174 static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
getMetadata()175 Metadata *getMetadata() const { return MD; }
176
classof(const Value * V)177 static bool classof(const Value *V) {
178 return V->getValueID() == MetadataAsValueVal;
179 }
180
181 private:
182 void handleChangedMetadata(Metadata *MD);
183 void track();
184 void untrack();
185 };
186
187 /// \brief Shared implementation of use-lists for replaceable metadata.
188 ///
189 /// Most metadata cannot be RAUW'ed. This is a shared implementation of
190 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
191 /// and \a TempMDNode).
192 class ReplaceableMetadataImpl {
193 friend class MetadataTracking;
194
195 public:
196 typedef MetadataTracking::OwnerTy OwnerTy;
197
198 private:
199 LLVMContext &Context;
200 uint64_t NextIndex;
201 SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
202
203 public:
ReplaceableMetadataImpl(LLVMContext & Context)204 ReplaceableMetadataImpl(LLVMContext &Context)
205 : Context(Context), NextIndex(0) {}
~ReplaceableMetadataImpl()206 ~ReplaceableMetadataImpl() {
207 assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
208 }
209
getContext()210 LLVMContext &getContext() const { return Context; }
211
212 /// \brief Replace all uses of this with MD.
213 ///
214 /// Replace all uses of this with \c MD, which is allowed to be null.
215 void replaceAllUsesWith(Metadata *MD);
216
217 /// \brief Resolve all uses of this.
218 ///
219 /// Resolve all uses of this, turning off RAUW permanently. If \c
220 /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
221 /// is resolved.
222 void resolveAllUses(bool ResolveUsers = true);
223
224 private:
225 void addRef(void *Ref, OwnerTy Owner);
226 void dropRef(void *Ref);
227 void moveRef(void *Ref, void *New, const Metadata &MD);
228
229 static ReplaceableMetadataImpl *get(Metadata &MD);
230 };
231
232 /// \brief Value wrapper in the Metadata hierarchy.
233 ///
234 /// This is a custom value handle that allows other metadata to refer to
235 /// classes in the Value hierarchy.
236 ///
237 /// Because of full uniquing support, each value is only wrapped by a single \a
238 /// ValueAsMetadata object, so the lookup maps are far more efficient than
239 /// those using ValueHandleBase.
240 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
241 friend class ReplaceableMetadataImpl;
242 friend class LLVMContextImpl;
243
244 Value *V;
245
246 /// \brief Drop users without RAUW (during teardown).
dropUsers()247 void dropUsers() {
248 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
249 }
250
251 protected:
ValueAsMetadata(unsigned ID,Value * V)252 ValueAsMetadata(unsigned ID, Value *V)
253 : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
254 assert(V && "Expected valid value");
255 }
256 ~ValueAsMetadata() = default;
257
258 public:
259 static ValueAsMetadata *get(Value *V);
getConstant(Value * C)260 static ConstantAsMetadata *getConstant(Value *C) {
261 return cast<ConstantAsMetadata>(get(C));
262 }
getLocal(Value * Local)263 static LocalAsMetadata *getLocal(Value *Local) {
264 return cast<LocalAsMetadata>(get(Local));
265 }
266
267 static ValueAsMetadata *getIfExists(Value *V);
getConstantIfExists(Value * C)268 static ConstantAsMetadata *getConstantIfExists(Value *C) {
269 return cast_or_null<ConstantAsMetadata>(getIfExists(C));
270 }
getLocalIfExists(Value * Local)271 static LocalAsMetadata *getLocalIfExists(Value *Local) {
272 return cast_or_null<LocalAsMetadata>(getIfExists(Local));
273 }
274
getValue()275 Value *getValue() const { return V; }
getType()276 Type *getType() const { return V->getType(); }
getContext()277 LLVMContext &getContext() const { return V->getContext(); }
278
279 static void handleDeletion(Value *V);
280 static void handleRAUW(Value *From, Value *To);
281
282 protected:
283 /// \brief Handle collisions after \a Value::replaceAllUsesWith().
284 ///
285 /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
286 /// \a Value gets RAUW'ed and the target already exists, this is used to
287 /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)288 void replaceAllUsesWith(Metadata *MD) {
289 ReplaceableMetadataImpl::replaceAllUsesWith(MD);
290 }
291
292 public:
classof(const Metadata * MD)293 static bool classof(const Metadata *MD) {
294 return MD->getMetadataID() == LocalAsMetadataKind ||
295 MD->getMetadataID() == ConstantAsMetadataKind;
296 }
297 };
298
299 class ConstantAsMetadata : public ValueAsMetadata {
300 friend class ValueAsMetadata;
301
ConstantAsMetadata(Constant * C)302 ConstantAsMetadata(Constant *C)
303 : ValueAsMetadata(ConstantAsMetadataKind, C) {}
304
305 public:
get(Constant * C)306 static ConstantAsMetadata *get(Constant *C) {
307 return ValueAsMetadata::getConstant(C);
308 }
getIfExists(Constant * C)309 static ConstantAsMetadata *getIfExists(Constant *C) {
310 return ValueAsMetadata::getConstantIfExists(C);
311 }
312
getValue()313 Constant *getValue() const {
314 return cast<Constant>(ValueAsMetadata::getValue());
315 }
316
classof(const Metadata * MD)317 static bool classof(const Metadata *MD) {
318 return MD->getMetadataID() == ConstantAsMetadataKind;
319 }
320 };
321
322 class LocalAsMetadata : public ValueAsMetadata {
323 friend class ValueAsMetadata;
324
LocalAsMetadata(Value * Local)325 LocalAsMetadata(Value *Local)
326 : ValueAsMetadata(LocalAsMetadataKind, Local) {
327 assert(!isa<Constant>(Local) && "Expected local value");
328 }
329
330 public:
get(Value * Local)331 static LocalAsMetadata *get(Value *Local) {
332 return ValueAsMetadata::getLocal(Local);
333 }
getIfExists(Value * Local)334 static LocalAsMetadata *getIfExists(Value *Local) {
335 return ValueAsMetadata::getLocalIfExists(Local);
336 }
337
classof(const Metadata * MD)338 static bool classof(const Metadata *MD) {
339 return MD->getMetadataID() == LocalAsMetadataKind;
340 }
341 };
342
343 /// \brief Transitional API for extracting constants from Metadata.
344 ///
345 /// This namespace contains transitional functions for metadata that points to
346 /// \a Constants.
347 ///
348 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
349 /// operands could refer to any \a Value. There's was a lot of code like this:
350 ///
351 /// \code
352 /// MDNode *N = ...;
353 /// auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
354 /// \endcode
355 ///
356 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
357 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
358 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
359 /// cast in the \a Value hierarchy. Besides creating boiler-plate, this
360 /// requires subtle control flow changes.
361 ///
362 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
363 /// so that metadata can refer to numbers without traversing a bridge to the \a
364 /// Value hierarchy. In this final state, the code above would look like this:
365 ///
366 /// \code
367 /// MDNode *N = ...;
368 /// auto *MI = dyn_cast<MDInt>(N->getOperand(2));
369 /// \endcode
370 ///
371 /// The API in this namespace supports the transition. \a MDInt doesn't exist
372 /// yet, and even once it does, changing each metadata schema to use it is its
373 /// own mini-project. In the meantime this API prevents us from introducing
374 /// complex and bug-prone control flow that will disappear in the end. In
375 /// particular, the above code looks like this:
376 ///
377 /// \code
378 /// MDNode *N = ...;
379 /// auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
380 /// \endcode
381 ///
382 /// The full set of provided functions includes:
383 ///
384 /// mdconst::hasa <=> isa
385 /// mdconst::extract <=> cast
386 /// mdconst::extract_or_null <=> cast_or_null
387 /// mdconst::dyn_extract <=> dyn_cast
388 /// mdconst::dyn_extract_or_null <=> dyn_cast_or_null
389 ///
390 /// The target of the cast must be a subclass of \a Constant.
391 namespace mdconst {
392
393 namespace detail {
394 template <class T> T &make();
395 template <class T, class Result> struct HasDereference {
396 typedef char Yes[1];
397 typedef char No[2];
398 template <size_t N> struct SFINAE {};
399
400 template <class U, class V>
401 static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
402 template <class U, class V> static No &hasDereference(...);
403
404 static const bool value =
405 sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
406 };
407 template <class V, class M> struct IsValidPointer {
408 static const bool value = std::is_base_of<Constant, V>::value &&
409 HasDereference<M, const Metadata &>::value;
410 };
411 template <class V, class M> struct IsValidReference {
412 static const bool value = std::is_base_of<Constant, V>::value &&
413 std::is_convertible<M, const Metadata &>::value;
414 };
415 } // end namespace detail
416
417 /// \brief Check whether Metadata has a Value.
418 ///
419 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
420 /// type \c X.
421 template <class X, class Y>
422 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
hasa(Y && MD)423 hasa(Y &&MD) {
424 assert(MD && "Null pointer sent into hasa");
425 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
426 return isa<X>(V->getValue());
427 return false;
428 }
429 template <class X, class Y>
430 inline
431 typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
hasa(Y & MD)432 hasa(Y &MD) {
433 return hasa(&MD);
434 }
435
436 /// \brief Extract a Value from Metadata.
437 ///
438 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
439 template <class X, class Y>
440 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract(Y && MD)441 extract(Y &&MD) {
442 return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
443 }
444 template <class X, class Y>
445 inline
446 typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
extract(Y & MD)447 extract(Y &MD) {
448 return extract(&MD);
449 }
450
451 /// \brief Extract a Value from Metadata, allowing null.
452 ///
453 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
454 /// from \c MD, allowing \c MD to be null.
455 template <class X, class Y>
456 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
extract_or_null(Y && MD)457 extract_or_null(Y &&MD) {
458 if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
459 return cast<X>(V->getValue());
460 return nullptr;
461 }
462
463 /// \brief Extract a Value from Metadata, if any.
464 ///
465 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
466 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
467 /// Value it does contain is of the wrong subclass.
468 template <class X, class Y>
469 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract(Y && MD)470 dyn_extract(Y &&MD) {
471 if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
472 return dyn_cast<X>(V->getValue());
473 return nullptr;
474 }
475
476 /// \brief Extract a Value from Metadata, if any, allowing null.
477 ///
478 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
479 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
480 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
481 template <class X, class Y>
482 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
dyn_extract_or_null(Y && MD)483 dyn_extract_or_null(Y &&MD) {
484 if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
485 return dyn_cast<X>(V->getValue());
486 return nullptr;
487 }
488
489 } // end namespace mdconst
490
491 //===----------------------------------------------------------------------===//
492 /// \brief A single uniqued string.
493 ///
494 /// These are used to efficiently contain a byte sequence for metadata.
495 /// MDString is always unnamed.
496 class MDString : public Metadata {
497 friend class StringMapEntry<MDString>;
498
499 MDString(const MDString &) = delete;
500 MDString &operator=(MDString &&) = delete;
501 MDString &operator=(const MDString &) = delete;
502
503 StringMapEntry<MDString> *Entry;
MDString()504 MDString() : Metadata(MDStringKind, Uniqued), Entry(nullptr) {}
MDString(MDString &&)505 MDString(MDString &&) : Metadata(MDStringKind, Uniqued) {}
506
507 public:
508 static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)509 static MDString *get(LLVMContext &Context, const char *Str) {
510 return get(Context, Str ? StringRef(Str) : StringRef());
511 }
512
513 StringRef getString() const;
514
getLength()515 unsigned getLength() const { return (unsigned)getString().size(); }
516
517 typedef StringRef::iterator iterator;
518
519 /// \brief Pointer to the first byte of the string.
begin()520 iterator begin() const { return getString().begin(); }
521
522 /// \brief Pointer to one byte past the end of the string.
end()523 iterator end() const { return getString().end(); }
524
bytes_begin()525 const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()526 const unsigned char *bytes_end() const { return getString().bytes_end(); }
527
528 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)529 static bool classof(const Metadata *MD) {
530 return MD->getMetadataID() == MDStringKind;
531 }
532 };
533
534 /// \brief A collection of metadata nodes that might be associated with a
535 /// memory access used by the alias-analysis infrastructure.
536 struct AAMDNodes {
537 explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
538 MDNode *N = nullptr)
TBAAAAMDNodes539 : TBAA(T), Scope(S), NoAlias(N) {}
540
541 bool operator==(const AAMDNodes &A) const {
542 return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
543 }
544
545 bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
546
547 explicit operator bool() const { return TBAA || Scope || NoAlias; }
548
549 /// \brief The tag for type-based alias analysis.
550 MDNode *TBAA;
551
552 /// \brief The tag for alias scope specification (used with noalias).
553 MDNode *Scope;
554
555 /// \brief The tag specifying the noalias scope.
556 MDNode *NoAlias;
557 };
558
559 // Specialize DenseMapInfo for AAMDNodes.
560 template<>
561 struct DenseMapInfo<AAMDNodes> {
562 static inline AAMDNodes getEmptyKey() {
563 return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(), 0, 0);
564 }
565 static inline AAMDNodes getTombstoneKey() {
566 return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(), 0, 0);
567 }
568 static unsigned getHashValue(const AAMDNodes &Val) {
569 return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
570 DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
571 DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
572 }
573 static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
574 return LHS == RHS;
575 }
576 };
577
578 /// \brief Tracking metadata reference owned by Metadata.
579 ///
580 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
581 /// of \a Metadata, which has the option of registering itself for callbacks to
582 /// re-unique itself.
583 ///
584 /// In particular, this is used by \a MDNode.
585 class MDOperand {
586 MDOperand(MDOperand &&) = delete;
587 MDOperand(const MDOperand &) = delete;
588 MDOperand &operator=(MDOperand &&) = delete;
589 MDOperand &operator=(const MDOperand &) = delete;
590
591 Metadata *MD;
592
593 public:
594 MDOperand() : MD(nullptr) {}
595 ~MDOperand() { untrack(); }
596
597 Metadata *get() const { return MD; }
598 operator Metadata *() const { return get(); }
599 Metadata *operator->() const { return get(); }
600 Metadata &operator*() const { return *get(); }
601
602 void reset() {
603 untrack();
604 MD = nullptr;
605 }
606 void reset(Metadata *MD, Metadata *Owner) {
607 untrack();
608 this->MD = MD;
609 track(Owner);
610 }
611
612 private:
613 void track(Metadata *Owner) {
614 if (MD) {
615 if (Owner)
616 MetadataTracking::track(this, *MD, *Owner);
617 else
618 MetadataTracking::track(MD);
619 }
620 }
621 void untrack() {
622 assert(static_cast<void *>(this) == &MD && "Expected same address");
623 if (MD)
624 MetadataTracking::untrack(MD);
625 }
626 };
627
628 template <> struct simplify_type<MDOperand> {
629 typedef Metadata *SimpleType;
630 static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
631 };
632
633 template <> struct simplify_type<const MDOperand> {
634 typedef Metadata *SimpleType;
635 static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
636 };
637
638 /// \brief Pointer to the context, with optional RAUW support.
639 ///
640 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
641 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
642 class ContextAndReplaceableUses {
643 PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
644
645 ContextAndReplaceableUses() = delete;
646 ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
647 ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
648 ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
649 ContextAndReplaceableUses &
650 operator=(const ContextAndReplaceableUses &) = delete;
651
652 public:
653 ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
654 ContextAndReplaceableUses(
655 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
656 : Ptr(ReplaceableUses.release()) {
657 assert(getReplaceableUses() && "Expected non-null replaceable uses");
658 }
659 ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
660
661 operator LLVMContext &() { return getContext(); }
662
663 /// \brief Whether this contains RAUW support.
664 bool hasReplaceableUses() const {
665 return Ptr.is<ReplaceableMetadataImpl *>();
666 }
667 LLVMContext &getContext() const {
668 if (hasReplaceableUses())
669 return getReplaceableUses()->getContext();
670 return *Ptr.get<LLVMContext *>();
671 }
672 ReplaceableMetadataImpl *getReplaceableUses() const {
673 if (hasReplaceableUses())
674 return Ptr.get<ReplaceableMetadataImpl *>();
675 return nullptr;
676 }
677
678 /// \brief Assign RAUW support to this.
679 ///
680 /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
681 /// not be null).
682 void
683 makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
684 assert(ReplaceableUses && "Expected non-null replaceable uses");
685 assert(&ReplaceableUses->getContext() == &getContext() &&
686 "Expected same context");
687 delete getReplaceableUses();
688 Ptr = ReplaceableUses.release();
689 }
690
691 /// \brief Drop RAUW support.
692 ///
693 /// Cede ownership of RAUW support, returning it.
694 std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
695 assert(hasReplaceableUses() && "Expected to own replaceable uses");
696 std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
697 getReplaceableUses());
698 Ptr = &ReplaceableUses->getContext();
699 return ReplaceableUses;
700 }
701 };
702
703 struct TempMDNodeDeleter {
704 inline void operator()(MDNode *Node) const;
705 };
706
707 #define HANDLE_MDNODE_LEAF(CLASS) \
708 typedef std::unique_ptr<CLASS, TempMDNodeDeleter> Temp##CLASS;
709 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
710 #include "llvm/IR/Metadata.def"
711
712 /// \brief Metadata node.
713 ///
714 /// Metadata nodes can be uniqued, like constants, or distinct. Temporary
715 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
716 /// until forward references are known. The basic metadata node is an \a
717 /// MDTuple.
718 ///
719 /// There is limited support for RAUW at construction time. At construction
720 /// time, if any operand is a temporary node (or an unresolved uniqued node,
721 /// which indicates a transitive temporary operand), the node itself will be
722 /// unresolved. As soon as all operands become resolved, it will drop RAUW
723 /// support permanently.
724 ///
725 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
726 /// to be called on some member of the cycle once all temporary nodes have been
727 /// replaced.
728 class MDNode : public Metadata {
729 friend class ReplaceableMetadataImpl;
730 friend class LLVMContextImpl;
731
732 MDNode(const MDNode &) = delete;
733 void operator=(const MDNode &) = delete;
734 void *operator new(size_t) = delete;
735
736 unsigned NumOperands;
737 unsigned NumUnresolved;
738
739 protected:
740 ContextAndReplaceableUses Context;
741
742 void *operator new(size_t Size, unsigned NumOps);
743 void operator delete(void *Mem);
744
745 /// \brief Required by std, but never called.
746 void operator delete(void *, unsigned) {
747 llvm_unreachable("Constructor throws?");
748 }
749
750 /// \brief Required by std, but never called.
751 void operator delete(void *, unsigned, bool) {
752 llvm_unreachable("Constructor throws?");
753 }
754
755 MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
756 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
757 ~MDNode() = default;
758
759 void dropAllReferences();
760
761 MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
762 MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
763
764 typedef iterator_range<MDOperand *> mutable_op_range;
765 mutable_op_range mutable_operands() {
766 return mutable_op_range(mutable_begin(), mutable_end());
767 }
768
769 public:
770 static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
771 static inline MDTuple *getIfExists(LLVMContext &Context,
772 ArrayRef<Metadata *> MDs);
773 static inline MDTuple *getDistinct(LLVMContext &Context,
774 ArrayRef<Metadata *> MDs);
775 static inline TempMDTuple getTemporary(LLVMContext &Context,
776 ArrayRef<Metadata *> MDs);
777
778 /// \brief Create a (temporary) clone of this.
779 TempMDNode clone() const;
780
781 /// \brief Deallocate a node created by getTemporary.
782 ///
783 /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
784 /// references will be reset.
785 static void deleteTemporary(MDNode *N);
786
787 LLVMContext &getContext() const { return Context.getContext(); }
788
789 /// \brief Replace a specific operand.
790 void replaceOperandWith(unsigned I, Metadata *New);
791
792 /// \brief Check if node is fully resolved.
793 ///
794 /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
795 /// this always returns \c true.
796 ///
797 /// If \a isUniqued(), returns \c true if this has already dropped RAUW
798 /// support (because all operands are resolved).
799 ///
800 /// As forward declarations are resolved, their containers should get
801 /// resolved automatically. However, if this (or one of its operands) is
802 /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
803 bool isResolved() const { return !Context.hasReplaceableUses(); }
804
805 bool isUniqued() const { return Storage == Uniqued; }
806 bool isDistinct() const { return Storage == Distinct; }
807 bool isTemporary() const { return Storage == Temporary; }
808
809 /// \brief RAUW a temporary.
810 ///
811 /// \pre \a isTemporary() must be \c true.
812 void replaceAllUsesWith(Metadata *MD) {
813 assert(isTemporary() && "Expected temporary node");
814 assert(!isResolved() && "Expected RAUW support");
815 Context.getReplaceableUses()->replaceAllUsesWith(MD);
816 }
817
818 /// \brief Resolve cycles.
819 ///
820 /// Once all forward declarations have been resolved, force cycles to be
821 /// resolved.
822 ///
823 /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
824 void resolveCycles();
825
826 /// \brief Replace a temporary node with a permanent one.
827 ///
828 /// Try to create a uniqued version of \c N -- in place, if possible -- and
829 /// return it. If \c N cannot be uniqued, return a distinct node instead.
830 template <class T>
831 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
832 replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
833 return cast<T>(N.release()->replaceWithPermanentImpl());
834 }
835
836 /// \brief Replace a temporary node with a uniqued one.
837 ///
838 /// Create a uniqued version of \c N -- in place, if possible -- and return
839 /// it. Takes ownership of the temporary node.
840 ///
841 /// \pre N does not self-reference.
842 template <class T>
843 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
844 replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
845 return cast<T>(N.release()->replaceWithUniquedImpl());
846 }
847
848 /// \brief Replace a temporary node with a distinct one.
849 ///
850 /// Create a distinct version of \c N -- in place, if possible -- and return
851 /// it. Takes ownership of the temporary node.
852 template <class T>
853 static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
854 replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
855 return cast<T>(N.release()->replaceWithDistinctImpl());
856 }
857
858 private:
859 MDNode *replaceWithPermanentImpl();
860 MDNode *replaceWithUniquedImpl();
861 MDNode *replaceWithDistinctImpl();
862
863 protected:
864 /// \brief Set an operand.
865 ///
866 /// Sets the operand directly, without worrying about uniquing.
867 void setOperand(unsigned I, Metadata *New);
868
869 void storeDistinctInContext();
870 template <class T, class StoreT>
871 static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
872
873 private:
874 void handleChangedOperand(void *Ref, Metadata *New);
875
876 void resolve();
877 void resolveAfterOperandChange(Metadata *Old, Metadata *New);
878 void decrementUnresolvedOperandCount();
879 unsigned countUnresolvedOperands();
880
881 /// \brief Mutate this to be "uniqued".
882 ///
883 /// Mutate this so that \a isUniqued().
884 /// \pre \a isTemporary().
885 /// \pre already added to uniquing set.
886 void makeUniqued();
887
888 /// \brief Mutate this to be "distinct".
889 ///
890 /// Mutate this so that \a isDistinct().
891 /// \pre \a isTemporary().
892 void makeDistinct();
893
894 void deleteAsSubclass();
895 MDNode *uniquify();
896 void eraseFromStore();
897
898 template <class NodeTy> struct HasCachedHash;
899 template <class NodeTy>
900 static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
901 N->recalculateHash();
902 }
903 template <class NodeTy>
904 static void dispatchRecalculateHash(NodeTy *N, std::false_type) {}
905 template <class NodeTy>
906 static void dispatchResetHash(NodeTy *N, std::true_type) {
907 N->setHash(0);
908 }
909 template <class NodeTy>
910 static void dispatchResetHash(NodeTy *N, std::false_type) {}
911
912 public:
913 typedef const MDOperand *op_iterator;
914 typedef iterator_range<op_iterator> op_range;
915
916 op_iterator op_begin() const {
917 return const_cast<MDNode *>(this)->mutable_begin();
918 }
919 op_iterator op_end() const {
920 return const_cast<MDNode *>(this)->mutable_end();
921 }
922 op_range operands() const { return op_range(op_begin(), op_end()); }
923
924 const MDOperand &getOperand(unsigned I) const {
925 assert(I < NumOperands && "Out of range");
926 return op_begin()[I];
927 }
928
929 /// \brief Return number of MDNode operands.
930 unsigned getNumOperands() const { return NumOperands; }
931
932 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
933 static bool classof(const Metadata *MD) {
934 switch (MD->getMetadataID()) {
935 default:
936 return false;
937 #define HANDLE_MDNODE_LEAF(CLASS) \
938 case CLASS##Kind: \
939 return true;
940 #include "llvm/IR/Metadata.def"
941 }
942 }
943
944 /// \brief Check whether MDNode is a vtable access.
945 bool isTBAAVtableAccess() const;
946
947 /// \brief Methods for metadata merging.
948 static MDNode *concatenate(MDNode *A, MDNode *B);
949 static MDNode *intersect(MDNode *A, MDNode *B);
950 static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
951 static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
952 static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
953 static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
954 };
955
956 /// \brief Tuple of metadata.
957 ///
958 /// This is the simple \a MDNode arbitrary tuple. Nodes are uniqued by
959 /// default based on their operands.
960 class MDTuple : public MDNode {
961 friend class LLVMContextImpl;
962 friend class MDNode;
963
964 MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
965 ArrayRef<Metadata *> Vals)
966 : MDNode(C, MDTupleKind, Storage, Vals) {
967 setHash(Hash);
968 }
969 ~MDTuple() { dropAllReferences(); }
970
971 void setHash(unsigned Hash) { SubclassData32 = Hash; }
972 void recalculateHash();
973
974 static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
975 StorageType Storage, bool ShouldCreate = true);
976
977 TempMDTuple cloneImpl() const {
978 return getTemporary(getContext(),
979 SmallVector<Metadata *, 4>(op_begin(), op_end()));
980 }
981
982 public:
983 /// \brief Get the hash, if any.
984 unsigned getHash() const { return SubclassData32; }
985
986 static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
987 return getImpl(Context, MDs, Uniqued);
988 }
989 static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
990 return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
991 }
992
993 /// \brief Return a distinct node.
994 ///
995 /// Return a distinct node -- i.e., a node that is not uniqued.
996 static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
997 return getImpl(Context, MDs, Distinct);
998 }
999
1000 /// \brief Return a temporary node.
1001 ///
1002 /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1003 /// not uniqued, may be RAUW'd, and must be manually deleted with
1004 /// deleteTemporary.
1005 static TempMDTuple getTemporary(LLVMContext &Context,
1006 ArrayRef<Metadata *> MDs) {
1007 return TempMDTuple(getImpl(Context, MDs, Temporary));
1008 }
1009
1010 /// \brief Return a (temporary) clone of this.
1011 TempMDTuple clone() const { return cloneImpl(); }
1012
1013 static bool classof(const Metadata *MD) {
1014 return MD->getMetadataID() == MDTupleKind;
1015 }
1016 };
1017
1018 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1019 return MDTuple::get(Context, MDs);
1020 }
1021 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1022 return MDTuple::getIfExists(Context, MDs);
1023 }
1024 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1025 return MDTuple::getDistinct(Context, MDs);
1026 }
1027 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1028 ArrayRef<Metadata *> MDs) {
1029 return MDTuple::getTemporary(Context, MDs);
1030 }
1031
1032 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1033 MDNode::deleteTemporary(Node);
1034 }
1035
1036 /// \brief Typed iterator through MDNode operands.
1037 ///
1038 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1039 /// particular Metadata subclass.
1040 template <class T>
1041 class TypedMDOperandIterator
1042 : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
1043 MDNode::op_iterator I = nullptr;
1044
1045 public:
1046 TypedMDOperandIterator() = default;
1047 explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1048 T *operator*() const { return cast_or_null<T>(*I); }
1049 TypedMDOperandIterator &operator++() {
1050 ++I;
1051 return *this;
1052 }
1053 TypedMDOperandIterator operator++(int) {
1054 TypedMDOperandIterator Temp(*this);
1055 ++I;
1056 return Temp;
1057 }
1058 bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1059 bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1060 };
1061
1062 /// \brief Typed, array-like tuple of metadata.
1063 ///
1064 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1065 /// particular type of metadata.
1066 template <class T> class MDTupleTypedArrayWrapper {
1067 const MDTuple *N = nullptr;
1068
1069 public:
1070 MDTupleTypedArrayWrapper() = default;
1071 MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1072
1073 template <class U>
1074 MDTupleTypedArrayWrapper(
1075 const MDTupleTypedArrayWrapper<U> &Other,
1076 typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1077 nullptr)
1078 : N(Other.get()) {}
1079
1080 template <class U>
1081 explicit MDTupleTypedArrayWrapper(
1082 const MDTupleTypedArrayWrapper<U> &Other,
1083 typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1084 nullptr)
1085 : N(Other.get()) {}
1086
1087 explicit operator bool() const { return get(); }
1088 explicit operator MDTuple *() const { return get(); }
1089
1090 MDTuple *get() const { return const_cast<MDTuple *>(N); }
1091 MDTuple *operator->() const { return get(); }
1092 MDTuple &operator*() const { return *get(); }
1093
1094 // FIXME: Fix callers and remove condition on N.
1095 unsigned size() const { return N ? N->getNumOperands() : 0u; }
1096 T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1097
1098 // FIXME: Fix callers and remove condition on N.
1099 typedef TypedMDOperandIterator<T> iterator;
1100 iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1101 iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1102 };
1103
1104 #define HANDLE_METADATA(CLASS) \
1105 typedef MDTupleTypedArrayWrapper<CLASS> CLASS##Array;
1106 #include "llvm/IR/Metadata.def"
1107
1108 //===----------------------------------------------------------------------===//
1109 /// \brief A tuple of MDNodes.
1110 ///
1111 /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
1112 /// to modules, have names, and contain lists of MDNodes.
1113 ///
1114 /// TODO: Inherit from Metadata.
1115 class NamedMDNode : public ilist_node<NamedMDNode> {
1116 friend class SymbolTableListTraits<NamedMDNode, Module>;
1117 friend struct ilist_traits<NamedMDNode>;
1118 friend class LLVMContextImpl;
1119 friend class Module;
1120 NamedMDNode(const NamedMDNode &) = delete;
1121
1122 std::string Name;
1123 Module *Parent;
1124 void *Operands; // SmallVector<TrackingMDRef, 4>
1125
1126 void setParent(Module *M) { Parent = M; }
1127
1128 explicit NamedMDNode(const Twine &N);
1129
1130 template<class T1, class T2>
1131 class op_iterator_impl :
1132 public std::iterator<std::bidirectional_iterator_tag, T2> {
1133 const NamedMDNode *Node;
1134 unsigned Idx;
1135 op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) { }
1136
1137 friend class NamedMDNode;
1138
1139 public:
1140 op_iterator_impl() : Node(nullptr), Idx(0) { }
1141
1142 bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1143 bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1144 op_iterator_impl &operator++() {
1145 ++Idx;
1146 return *this;
1147 }
1148 op_iterator_impl operator++(int) {
1149 op_iterator_impl tmp(*this);
1150 operator++();
1151 return tmp;
1152 }
1153 op_iterator_impl &operator--() {
1154 --Idx;
1155 return *this;
1156 }
1157 op_iterator_impl operator--(int) {
1158 op_iterator_impl tmp(*this);
1159 operator--();
1160 return tmp;
1161 }
1162
1163 T1 operator*() const { return Node->getOperand(Idx); }
1164 };
1165
1166 public:
1167 /// \brief Drop all references and remove the node from parent module.
1168 void eraseFromParent();
1169
1170 /// \brief Remove all uses and clear node vector.
1171 void dropAllReferences();
1172
1173 ~NamedMDNode();
1174
1175 /// \brief Get the module that holds this named metadata collection.
1176 inline Module *getParent() { return Parent; }
1177 inline const Module *getParent() const { return Parent; }
1178
1179 MDNode *getOperand(unsigned i) const;
1180 unsigned getNumOperands() const;
1181 void addOperand(MDNode *M);
1182 void setOperand(unsigned I, MDNode *New);
1183 StringRef getName() const;
1184 void print(raw_ostream &ROS) const;
1185 void dump() const;
1186
1187 // ---------------------------------------------------------------------------
1188 // Operand Iterator interface...
1189 //
1190 typedef op_iterator_impl<MDNode *, MDNode> op_iterator;
1191 op_iterator op_begin() { return op_iterator(this, 0); }
1192 op_iterator op_end() { return op_iterator(this, getNumOperands()); }
1193
1194 typedef op_iterator_impl<const MDNode *, MDNode> const_op_iterator;
1195 const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1196 const_op_iterator op_end() const { return const_op_iterator(this, getNumOperands()); }
1197
1198 inline iterator_range<op_iterator> operands() {
1199 return iterator_range<op_iterator>(op_begin(), op_end());
1200 }
1201 inline iterator_range<const_op_iterator> operands() const {
1202 return iterator_range<const_op_iterator>(op_begin(), op_end());
1203 }
1204 };
1205
1206 } // end llvm namespace
1207
1208 #endif
1209