1 /*
2 * EAP peer state machines (RFC 4137)
3 * Copyright (c) 2004-2014, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 *
8 * This file implements the Peer State Machine as defined in RFC 4137. The used
9 * states and state transitions match mostly with the RFC. However, there are
10 * couple of additional transitions for working around small issues noticed
11 * during testing. These exceptions are explained in comments within the
12 * functions in this file. The method functions, m.func(), are similar to the
13 * ones used in RFC 4137, but some small changes have used here to optimize
14 * operations and to add functionality needed for fast re-authentication
15 * (session resumption).
16 */
17
18 #include "includes.h"
19
20 #include "common.h"
21 #include "pcsc_funcs.h"
22 #include "state_machine.h"
23 #include "ext_password.h"
24 #include "crypto/crypto.h"
25 #include "crypto/tls.h"
26 #include "crypto/sha256.h"
27 #include "common/wpa_ctrl.h"
28 #include "eap_common/eap_wsc_common.h"
29 #include "eap_i.h"
30 #include "eap_config.h"
31
32 #define STATE_MACHINE_DATA struct eap_sm
33 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
34
35 #define EAP_MAX_AUTH_ROUNDS 50
36 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
37
38
39 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
40 EapType method);
41 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
42 static void eap_sm_processIdentity(struct eap_sm *sm,
43 const struct wpabuf *req);
44 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
45 static struct wpabuf * eap_sm_buildNotify(int id);
46 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
47 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
48 static const char * eap_sm_method_state_txt(EapMethodState state);
49 static const char * eap_sm_decision_txt(EapDecision decision);
50 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
51
52
53
eapol_get_bool(struct eap_sm * sm,enum eapol_bool_var var)54 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
55 {
56 return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
57 }
58
59
eapol_set_bool(struct eap_sm * sm,enum eapol_bool_var var,Boolean value)60 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
61 Boolean value)
62 {
63 sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
64 }
65
66
eapol_get_int(struct eap_sm * sm,enum eapol_int_var var)67 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
68 {
69 return sm->eapol_cb->get_int(sm->eapol_ctx, var);
70 }
71
72
eapol_set_int(struct eap_sm * sm,enum eapol_int_var var,unsigned int value)73 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
74 unsigned int value)
75 {
76 sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
77 }
78
79
eapol_get_eapReqData(struct eap_sm * sm)80 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
81 {
82 return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
83 }
84
85
eap_notify_status(struct eap_sm * sm,const char * status,const char * parameter)86 static void eap_notify_status(struct eap_sm *sm, const char *status,
87 const char *parameter)
88 {
89 wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)",
90 status, parameter);
91 if (sm->eapol_cb->notify_status)
92 sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter);
93 }
94
95
eap_sm_free_key(struct eap_sm * sm)96 static void eap_sm_free_key(struct eap_sm *sm)
97 {
98 if (sm->eapKeyData) {
99 bin_clear_free(sm->eapKeyData, sm->eapKeyDataLen);
100 sm->eapKeyData = NULL;
101 }
102 }
103
104
eap_deinit_prev_method(struct eap_sm * sm,const char * txt)105 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
106 {
107 ext_password_free(sm->ext_pw_buf);
108 sm->ext_pw_buf = NULL;
109
110 if (sm->m == NULL || sm->eap_method_priv == NULL)
111 return;
112
113 wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
114 "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
115 sm->m->deinit(sm, sm->eap_method_priv);
116 sm->eap_method_priv = NULL;
117 sm->m = NULL;
118 }
119
120
121 /**
122 * eap_allowed_method - Check whether EAP method is allowed
123 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
124 * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
125 * @method: EAP type
126 * Returns: 1 = allowed EAP method, 0 = not allowed
127 */
eap_allowed_method(struct eap_sm * sm,int vendor,u32 method)128 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
129 {
130 struct eap_peer_config *config = eap_get_config(sm);
131 int i;
132 struct eap_method_type *m;
133
134 if (config == NULL || config->eap_methods == NULL)
135 return 1;
136
137 m = config->eap_methods;
138 for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
139 m[i].method != EAP_TYPE_NONE; i++) {
140 if (m[i].vendor == vendor && m[i].method == method)
141 return 1;
142 }
143 return 0;
144 }
145
146
147 /*
148 * This state initializes state machine variables when the machine is
149 * activated (portEnabled = TRUE). This is also used when re-starting
150 * authentication (eapRestart == TRUE).
151 */
SM_STATE(EAP,INITIALIZE)152 SM_STATE(EAP, INITIALIZE)
153 {
154 SM_ENTRY(EAP, INITIALIZE);
155 if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
156 sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
157 !sm->prev_failure &&
158 sm->last_config == eap_get_config(sm)) {
159 wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
160 "fast reauthentication");
161 sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
162 } else {
163 sm->last_config = eap_get_config(sm);
164 eap_deinit_prev_method(sm, "INITIALIZE");
165 }
166 sm->selectedMethod = EAP_TYPE_NONE;
167 sm->methodState = METHOD_NONE;
168 sm->allowNotifications = TRUE;
169 sm->decision = DECISION_FAIL;
170 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
171 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
172 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
173 eapol_set_bool(sm, EAPOL_eapFail, FALSE);
174 eap_sm_free_key(sm);
175 os_free(sm->eapSessionId);
176 sm->eapSessionId = NULL;
177 sm->eapKeyAvailable = FALSE;
178 eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
179 sm->lastId = -1; /* new session - make sure this does not match with
180 * the first EAP-Packet */
181 /*
182 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
183 * seemed to be able to trigger cases where both were set and if EAPOL
184 * state machine uses eapNoResp first, it may end up not sending a real
185 * reply correctly. This occurred when the workaround in FAIL state set
186 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
187 * something else(?)
188 */
189 eapol_set_bool(sm, EAPOL_eapResp, FALSE);
190 eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
191 sm->num_rounds = 0;
192 sm->prev_failure = 0;
193 sm->expected_failure = 0;
194 sm->reauthInit = FALSE;
195 sm->erp_seq = (u32) -1;
196 }
197
198
199 /*
200 * This state is reached whenever service from the lower layer is interrupted
201 * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
202 * occurs when the port becomes enabled.
203 */
SM_STATE(EAP,DISABLED)204 SM_STATE(EAP, DISABLED)
205 {
206 SM_ENTRY(EAP, DISABLED);
207 sm->num_rounds = 0;
208 /*
209 * RFC 4137 does not describe clearing of idleWhile here, but doing so
210 * allows the timer tick to be stopped more quickly when EAP is not in
211 * use.
212 */
213 eapol_set_int(sm, EAPOL_idleWhile, 0);
214 }
215
216
217 /*
218 * The state machine spends most of its time here, waiting for something to
219 * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
220 * SEND_RESPONSE states.
221 */
SM_STATE(EAP,IDLE)222 SM_STATE(EAP, IDLE)
223 {
224 SM_ENTRY(EAP, IDLE);
225 }
226
227
228 /*
229 * This state is entered when an EAP packet is received (eapReq == TRUE) to
230 * parse the packet header.
231 */
SM_STATE(EAP,RECEIVED)232 SM_STATE(EAP, RECEIVED)
233 {
234 const struct wpabuf *eapReqData;
235
236 SM_ENTRY(EAP, RECEIVED);
237 eapReqData = eapol_get_eapReqData(sm);
238 /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
239 eap_sm_parseEapReq(sm, eapReqData);
240 sm->num_rounds++;
241 }
242
243
244 /*
245 * This state is entered when a request for a new type comes in. Either the
246 * correct method is started, or a Nak response is built.
247 */
SM_STATE(EAP,GET_METHOD)248 SM_STATE(EAP, GET_METHOD)
249 {
250 int reinit;
251 EapType method;
252 const struct eap_method *eap_method;
253
254 SM_ENTRY(EAP, GET_METHOD);
255
256 if (sm->reqMethod == EAP_TYPE_EXPANDED)
257 method = sm->reqVendorMethod;
258 else
259 method = sm->reqMethod;
260
261 eap_method = eap_peer_get_eap_method(sm->reqVendor, method);
262
263 if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
264 wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
265 sm->reqVendor, method);
266 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
267 "vendor=%u method=%u -> NAK",
268 sm->reqVendor, method);
269 eap_notify_status(sm, "refuse proposed method",
270 eap_method ? eap_method->name : "unknown");
271 goto nak;
272 }
273
274 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
275 "vendor=%u method=%u", sm->reqVendor, method);
276
277 eap_notify_status(sm, "accept proposed method",
278 eap_method ? eap_method->name : "unknown");
279 /*
280 * RFC 4137 does not define specific operation for fast
281 * re-authentication (session resumption). The design here is to allow
282 * the previously used method data to be maintained for
283 * re-authentication if the method support session resumption.
284 * Otherwise, the previously used method data is freed and a new method
285 * is allocated here.
286 */
287 if (sm->fast_reauth &&
288 sm->m && sm->m->vendor == sm->reqVendor &&
289 sm->m->method == method &&
290 sm->m->has_reauth_data &&
291 sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
292 wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
293 " for fast re-authentication");
294 reinit = 1;
295 } else {
296 eap_deinit_prev_method(sm, "GET_METHOD");
297 reinit = 0;
298 }
299
300 sm->selectedMethod = sm->reqMethod;
301 if (sm->m == NULL)
302 sm->m = eap_method;
303 if (!sm->m) {
304 wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
305 "vendor %d method %d",
306 sm->reqVendor, method);
307 goto nak;
308 }
309
310 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
311
312 wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
313 "vendor %u method %u (%s)",
314 sm->reqVendor, method, sm->m->name);
315 if (reinit)
316 sm->eap_method_priv = sm->m->init_for_reauth(
317 sm, sm->eap_method_priv);
318 else
319 sm->eap_method_priv = sm->m->init(sm);
320
321 if (sm->eap_method_priv == NULL) {
322 struct eap_peer_config *config = eap_get_config(sm);
323 wpa_msg(sm->msg_ctx, MSG_INFO,
324 "EAP: Failed to initialize EAP method: vendor %u "
325 "method %u (%s)",
326 sm->reqVendor, method, sm->m->name);
327 sm->m = NULL;
328 sm->methodState = METHOD_NONE;
329 sm->selectedMethod = EAP_TYPE_NONE;
330 if (sm->reqMethod == EAP_TYPE_TLS && config &&
331 (config->pending_req_pin ||
332 config->pending_req_passphrase)) {
333 /*
334 * Return without generating Nak in order to allow
335 * entering of PIN code or passphrase to retry the
336 * current EAP packet.
337 */
338 wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
339 "request - skip Nak");
340 return;
341 }
342
343 goto nak;
344 }
345
346 sm->methodState = METHOD_INIT;
347 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
348 "EAP vendor %u method %u (%s) selected",
349 sm->reqVendor, method, sm->m->name);
350 return;
351
352 nak:
353 wpabuf_free(sm->eapRespData);
354 sm->eapRespData = NULL;
355 sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
356 }
357
358
359 #ifdef CONFIG_ERP
360
eap_home_realm(struct eap_sm * sm)361 static char * eap_home_realm(struct eap_sm *sm)
362 {
363 struct eap_peer_config *config = eap_get_config(sm);
364 char *realm;
365 size_t i, realm_len;
366
367 if (!config)
368 return NULL;
369
370 if (config->identity) {
371 for (i = 0; i < config->identity_len; i++) {
372 if (config->identity[i] == '@')
373 break;
374 }
375 if (i < config->identity_len) {
376 realm_len = config->identity_len - i - 1;
377 realm = os_malloc(realm_len + 1);
378 if (realm == NULL)
379 return NULL;
380 os_memcpy(realm, &config->identity[i + 1], realm_len);
381 realm[realm_len] = '\0';
382 return realm;
383 }
384 }
385
386 if (config->anonymous_identity) {
387 for (i = 0; i < config->anonymous_identity_len; i++) {
388 if (config->anonymous_identity[i] == '@')
389 break;
390 }
391 if (i < config->anonymous_identity_len) {
392 realm_len = config->anonymous_identity_len - i - 1;
393 realm = os_malloc(realm_len + 1);
394 if (realm == NULL)
395 return NULL;
396 os_memcpy(realm, &config->anonymous_identity[i + 1],
397 realm_len);
398 realm[realm_len] = '\0';
399 return realm;
400 }
401 }
402
403 return os_strdup("");
404 }
405
406
407 static struct eap_erp_key *
eap_erp_get_key(struct eap_sm * sm,const char * realm)408 eap_erp_get_key(struct eap_sm *sm, const char *realm)
409 {
410 struct eap_erp_key *erp;
411
412 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
413 char *pos;
414
415 pos = os_strchr(erp->keyname_nai, '@');
416 if (!pos)
417 continue;
418 pos++;
419 if (os_strcmp(pos, realm) == 0)
420 return erp;
421 }
422
423 return NULL;
424 }
425
426
427 static struct eap_erp_key *
eap_erp_get_key_nai(struct eap_sm * sm,const char * nai)428 eap_erp_get_key_nai(struct eap_sm *sm, const char *nai)
429 {
430 struct eap_erp_key *erp;
431
432 dl_list_for_each(erp, &sm->erp_keys, struct eap_erp_key, list) {
433 if (os_strcmp(erp->keyname_nai, nai) == 0)
434 return erp;
435 }
436
437 return NULL;
438 }
439
440
eap_peer_erp_free_key(struct eap_erp_key * erp)441 static void eap_peer_erp_free_key(struct eap_erp_key *erp)
442 {
443 dl_list_del(&erp->list);
444 bin_clear_free(erp, sizeof(*erp));
445 }
446
447
eap_erp_remove_keys_realm(struct eap_sm * sm,const char * realm)448 static void eap_erp_remove_keys_realm(struct eap_sm *sm, const char *realm)
449 {
450 struct eap_erp_key *erp;
451
452 while ((erp = eap_erp_get_key(sm, realm)) != NULL) {
453 wpa_printf(MSG_DEBUG, "EAP: Delete old ERP key %s",
454 erp->keyname_nai);
455 eap_peer_erp_free_key(erp);
456 }
457 }
458
459 #endif /* CONFIG_ERP */
460
461
eap_peer_erp_free_keys(struct eap_sm * sm)462 void eap_peer_erp_free_keys(struct eap_sm *sm)
463 {
464 #ifdef CONFIG_ERP
465 struct eap_erp_key *erp, *tmp;
466
467 dl_list_for_each_safe(erp, tmp, &sm->erp_keys, struct eap_erp_key, list)
468 eap_peer_erp_free_key(erp);
469 #endif /* CONFIG_ERP */
470 }
471
472
eap_peer_erp_init(struct eap_sm * sm)473 static void eap_peer_erp_init(struct eap_sm *sm)
474 {
475 #ifdef CONFIG_ERP
476 u8 *emsk = NULL;
477 size_t emsk_len = 0;
478 u8 EMSKname[EAP_EMSK_NAME_LEN];
479 u8 len[2];
480 char *realm;
481 size_t realm_len, nai_buf_len;
482 struct eap_erp_key *erp = NULL;
483 int pos;
484
485 realm = eap_home_realm(sm);
486 if (!realm)
487 return;
488 realm_len = os_strlen(realm);
489 wpa_printf(MSG_DEBUG, "EAP: Realm for ERP keyName-NAI: %s", realm);
490 eap_erp_remove_keys_realm(sm, realm);
491
492 nai_buf_len = 2 * EAP_EMSK_NAME_LEN + 1 + realm_len;
493 if (nai_buf_len > 253) {
494 /*
495 * keyName-NAI has a maximum length of 253 octet to fit in
496 * RADIUS attributes.
497 */
498 wpa_printf(MSG_DEBUG,
499 "EAP: Too long realm for ERP keyName-NAI maximum length");
500 goto fail;
501 }
502 nai_buf_len++; /* null termination */
503 erp = os_zalloc(sizeof(*erp) + nai_buf_len);
504 if (erp == NULL)
505 goto fail;
506
507 emsk = sm->m->get_emsk(sm, sm->eap_method_priv, &emsk_len);
508 if (!emsk || emsk_len == 0 || emsk_len > ERP_MAX_KEY_LEN) {
509 wpa_printf(MSG_DEBUG,
510 "EAP: No suitable EMSK available for ERP");
511 goto fail;
512 }
513
514 wpa_hexdump_key(MSG_DEBUG, "EAP: EMSK", emsk, emsk_len);
515
516 WPA_PUT_BE16(len, 8);
517 if (hmac_sha256_kdf(sm->eapSessionId, sm->eapSessionIdLen, "EMSK",
518 len, sizeof(len),
519 EMSKname, EAP_EMSK_NAME_LEN) < 0) {
520 wpa_printf(MSG_DEBUG, "EAP: Could not derive EMSKname");
521 goto fail;
522 }
523 wpa_hexdump(MSG_DEBUG, "EAP: EMSKname", EMSKname, EAP_EMSK_NAME_LEN);
524
525 pos = wpa_snprintf_hex(erp->keyname_nai, nai_buf_len,
526 EMSKname, EAP_EMSK_NAME_LEN);
527 erp->keyname_nai[pos] = '@';
528 os_memcpy(&erp->keyname_nai[pos + 1], realm, realm_len);
529
530 WPA_PUT_BE16(len, emsk_len);
531 if (hmac_sha256_kdf(emsk, emsk_len,
532 "EAP Re-authentication Root Key@ietf.org",
533 len, sizeof(len), erp->rRK, emsk_len) < 0) {
534 wpa_printf(MSG_DEBUG, "EAP: Could not derive rRK for ERP");
535 goto fail;
536 }
537 erp->rRK_len = emsk_len;
538 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rRK", erp->rRK, erp->rRK_len);
539
540 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
541 "EAP Re-authentication Integrity Key@ietf.org",
542 len, sizeof(len), erp->rIK, erp->rRK_len) < 0) {
543 wpa_printf(MSG_DEBUG, "EAP: Could not derive rIK for ERP");
544 goto fail;
545 }
546 erp->rIK_len = erp->rRK_len;
547 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rIK", erp->rIK, erp->rIK_len);
548
549 wpa_printf(MSG_DEBUG, "EAP: Stored ERP keys %s", erp->keyname_nai);
550 dl_list_add(&sm->erp_keys, &erp->list);
551 erp = NULL;
552 fail:
553 bin_clear_free(emsk, emsk_len);
554 bin_clear_free(erp, sizeof(*erp));
555 os_free(realm);
556 #endif /* CONFIG_ERP */
557 }
558
559
560 #ifdef CONFIG_ERP
eap_peer_erp_reauth_start(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)561 static int eap_peer_erp_reauth_start(struct eap_sm *sm,
562 const struct eap_hdr *hdr, size_t len)
563 {
564 char *realm;
565 struct eap_erp_key *erp;
566 struct wpabuf *msg;
567 u8 hash[SHA256_MAC_LEN];
568
569 realm = eap_home_realm(sm);
570 if (!realm)
571 return -1;
572
573 erp = eap_erp_get_key(sm, realm);
574 os_free(realm);
575 realm = NULL;
576 if (!erp)
577 return -1;
578
579 if (erp->next_seq >= 65536)
580 return -1; /* SEQ has range of 0..65535 */
581
582 /* TODO: check rRK lifetime expiration */
583
584 wpa_printf(MSG_DEBUG, "EAP: Valid ERP key found %s (SEQ=%u)",
585 erp->keyname_nai, erp->next_seq);
586
587 msg = eap_msg_alloc(EAP_VENDOR_IETF, EAP_ERP_TYPE_REAUTH,
588 1 + 2 + 2 + os_strlen(erp->keyname_nai) + 1 + 16,
589 EAP_CODE_INITIATE, hdr->identifier);
590 if (msg == NULL)
591 return -1;
592
593 wpabuf_put_u8(msg, 0x20); /* Flags: R=0 B=0 L=1 */
594 wpabuf_put_be16(msg, erp->next_seq);
595
596 wpabuf_put_u8(msg, EAP_ERP_TLV_KEYNAME_NAI);
597 wpabuf_put_u8(msg, os_strlen(erp->keyname_nai));
598 wpabuf_put_str(msg, erp->keyname_nai);
599
600 wpabuf_put_u8(msg, EAP_ERP_CS_HMAC_SHA256_128); /* Cryptosuite */
601
602 if (hmac_sha256(erp->rIK, erp->rIK_len,
603 wpabuf_head(msg), wpabuf_len(msg), hash) < 0) {
604 wpabuf_free(msg);
605 return -1;
606 }
607 wpabuf_put_data(msg, hash, 16);
608
609 wpa_printf(MSG_DEBUG, "EAP: Sending EAP-Initiate/Re-auth");
610 sm->erp_seq = erp->next_seq;
611 erp->next_seq++;
612 wpabuf_free(sm->eapRespData);
613 sm->eapRespData = msg;
614 sm->reauthInit = TRUE;
615 return 0;
616 }
617 #endif /* CONFIG_ERP */
618
619
620 /*
621 * The method processing happens here. The request from the authenticator is
622 * processed, and an appropriate response packet is built.
623 */
SM_STATE(EAP,METHOD)624 SM_STATE(EAP, METHOD)
625 {
626 struct wpabuf *eapReqData;
627 struct eap_method_ret ret;
628 int min_len = 1;
629
630 SM_ENTRY(EAP, METHOD);
631 if (sm->m == NULL) {
632 wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
633 return;
634 }
635
636 eapReqData = eapol_get_eapReqData(sm);
637 if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP)
638 min_len = 0; /* LEAP uses EAP-Success without payload */
639 if (!eap_hdr_len_valid(eapReqData, min_len))
640 return;
641
642 /*
643 * Get ignore, methodState, decision, allowNotifications, and
644 * eapRespData. RFC 4137 uses three separate method procedure (check,
645 * process, and buildResp) in this state. These have been combined into
646 * a single function call to m->process() in order to optimize EAP
647 * method implementation interface a bit. These procedures are only
648 * used from within this METHOD state, so there is no need to keep
649 * these as separate C functions.
650 *
651 * The RFC 4137 procedures return values as follows:
652 * ignore = m.check(eapReqData)
653 * (methodState, decision, allowNotifications) = m.process(eapReqData)
654 * eapRespData = m.buildResp(reqId)
655 */
656 os_memset(&ret, 0, sizeof(ret));
657 ret.ignore = sm->ignore;
658 ret.methodState = sm->methodState;
659 ret.decision = sm->decision;
660 ret.allowNotifications = sm->allowNotifications;
661 wpabuf_free(sm->eapRespData);
662 sm->eapRespData = NULL;
663 sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
664 eapReqData);
665 wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
666 "methodState=%s decision=%s eapRespData=%p",
667 ret.ignore ? "TRUE" : "FALSE",
668 eap_sm_method_state_txt(ret.methodState),
669 eap_sm_decision_txt(ret.decision),
670 sm->eapRespData);
671
672 sm->ignore = ret.ignore;
673 if (sm->ignore)
674 return;
675 sm->methodState = ret.methodState;
676 sm->decision = ret.decision;
677 sm->allowNotifications = ret.allowNotifications;
678
679 if (sm->m->isKeyAvailable && sm->m->getKey &&
680 sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
681 struct eap_peer_config *config = eap_get_config(sm);
682
683 eap_sm_free_key(sm);
684 sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
685 &sm->eapKeyDataLen);
686 os_free(sm->eapSessionId);
687 sm->eapSessionId = NULL;
688 if (sm->m->getSessionId) {
689 sm->eapSessionId = sm->m->getSessionId(
690 sm, sm->eap_method_priv,
691 &sm->eapSessionIdLen);
692 wpa_hexdump(MSG_DEBUG, "EAP: Session-Id",
693 sm->eapSessionId, sm->eapSessionIdLen);
694 }
695 if (config->erp && sm->m->get_emsk && sm->eapSessionId)
696 eap_peer_erp_init(sm);
697 }
698 }
699
700
701 /*
702 * This state signals the lower layer that a response packet is ready to be
703 * sent.
704 */
SM_STATE(EAP,SEND_RESPONSE)705 SM_STATE(EAP, SEND_RESPONSE)
706 {
707 SM_ENTRY(EAP, SEND_RESPONSE);
708 wpabuf_free(sm->lastRespData);
709 if (sm->eapRespData) {
710 if (sm->workaround)
711 os_memcpy(sm->last_md5, sm->req_md5, 16);
712 sm->lastId = sm->reqId;
713 sm->lastRespData = wpabuf_dup(sm->eapRespData);
714 eapol_set_bool(sm, EAPOL_eapResp, TRUE);
715 } else {
716 wpa_printf(MSG_DEBUG, "EAP: No eapRespData available");
717 sm->lastRespData = NULL;
718 }
719 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
720 eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
721 sm->reauthInit = FALSE;
722 }
723
724
725 /*
726 * This state signals the lower layer that the request was discarded, and no
727 * response packet will be sent at this time.
728 */
SM_STATE(EAP,DISCARD)729 SM_STATE(EAP, DISCARD)
730 {
731 SM_ENTRY(EAP, DISCARD);
732 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
733 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
734 }
735
736
737 /*
738 * Handles requests for Identity method and builds a response.
739 */
SM_STATE(EAP,IDENTITY)740 SM_STATE(EAP, IDENTITY)
741 {
742 const struct wpabuf *eapReqData;
743
744 SM_ENTRY(EAP, IDENTITY);
745 eapReqData = eapol_get_eapReqData(sm);
746 if (!eap_hdr_len_valid(eapReqData, 1))
747 return;
748 eap_sm_processIdentity(sm, eapReqData);
749 wpabuf_free(sm->eapRespData);
750 sm->eapRespData = NULL;
751 sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
752 }
753
754
755 /*
756 * Handles requests for Notification method and builds a response.
757 */
SM_STATE(EAP,NOTIFICATION)758 SM_STATE(EAP, NOTIFICATION)
759 {
760 const struct wpabuf *eapReqData;
761
762 SM_ENTRY(EAP, NOTIFICATION);
763 eapReqData = eapol_get_eapReqData(sm);
764 if (!eap_hdr_len_valid(eapReqData, 1))
765 return;
766 eap_sm_processNotify(sm, eapReqData);
767 wpabuf_free(sm->eapRespData);
768 sm->eapRespData = NULL;
769 sm->eapRespData = eap_sm_buildNotify(sm->reqId);
770 }
771
772
773 /*
774 * This state retransmits the previous response packet.
775 */
SM_STATE(EAP,RETRANSMIT)776 SM_STATE(EAP, RETRANSMIT)
777 {
778 SM_ENTRY(EAP, RETRANSMIT);
779 wpabuf_free(sm->eapRespData);
780 if (sm->lastRespData)
781 sm->eapRespData = wpabuf_dup(sm->lastRespData);
782 else
783 sm->eapRespData = NULL;
784 }
785
786
787 /*
788 * This state is entered in case of a successful completion of authentication
789 * and state machine waits here until port is disabled or EAP authentication is
790 * restarted.
791 */
SM_STATE(EAP,SUCCESS)792 SM_STATE(EAP, SUCCESS)
793 {
794 SM_ENTRY(EAP, SUCCESS);
795 if (sm->eapKeyData != NULL)
796 sm->eapKeyAvailable = TRUE;
797 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
798
799 /*
800 * RFC 4137 does not clear eapReq here, but this seems to be required
801 * to avoid processing the same request twice when state machine is
802 * initialized.
803 */
804 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
805
806 /*
807 * RFC 4137 does not set eapNoResp here, but this seems to be required
808 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
809 * addition, either eapResp or eapNoResp is required to be set after
810 * processing the received EAP frame.
811 */
812 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
813
814 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
815 "EAP authentication completed successfully");
816 }
817
818
819 /*
820 * This state is entered in case of a failure and state machine waits here
821 * until port is disabled or EAP authentication is restarted.
822 */
SM_STATE(EAP,FAILURE)823 SM_STATE(EAP, FAILURE)
824 {
825 SM_ENTRY(EAP, FAILURE);
826 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
827
828 /*
829 * RFC 4137 does not clear eapReq here, but this seems to be required
830 * to avoid processing the same request twice when state machine is
831 * initialized.
832 */
833 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
834
835 /*
836 * RFC 4137 does not set eapNoResp here. However, either eapResp or
837 * eapNoResp is required to be set after processing the received EAP
838 * frame.
839 */
840 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
841
842 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
843 "EAP authentication failed");
844
845 sm->prev_failure = 1;
846 }
847
848
eap_success_workaround(struct eap_sm * sm,int reqId,int lastId)849 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
850 {
851 /*
852 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
853 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
854 * RFC 4137 require that reqId == lastId. In addition, it looks like
855 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
856 *
857 * Accept this kind of Id if EAP workarounds are enabled. These are
858 * unauthenticated plaintext messages, so this should have minimal
859 * security implications (bit easier to fake EAP-Success/Failure).
860 */
861 if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
862 reqId == ((lastId + 2) & 0xff))) {
863 wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
864 "identifier field in EAP Success: "
865 "reqId=%d lastId=%d (these are supposed to be "
866 "same)", reqId, lastId);
867 return 1;
868 }
869 wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
870 "lastId=%d", reqId, lastId);
871 return 0;
872 }
873
874
875 /*
876 * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
877 */
878
eap_peer_sm_step_idle(struct eap_sm * sm)879 static void eap_peer_sm_step_idle(struct eap_sm *sm)
880 {
881 /*
882 * The first three transitions are from RFC 4137. The last two are
883 * local additions to handle special cases with LEAP and PEAP server
884 * not sending EAP-Success in some cases.
885 */
886 if (eapol_get_bool(sm, EAPOL_eapReq))
887 SM_ENTER(EAP, RECEIVED);
888 else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
889 sm->decision != DECISION_FAIL) ||
890 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
891 sm->decision == DECISION_UNCOND_SUCC))
892 SM_ENTER(EAP, SUCCESS);
893 else if (eapol_get_bool(sm, EAPOL_altReject) ||
894 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
895 sm->decision != DECISION_UNCOND_SUCC) ||
896 (eapol_get_bool(sm, EAPOL_altAccept) &&
897 sm->methodState != METHOD_CONT &&
898 sm->decision == DECISION_FAIL))
899 SM_ENTER(EAP, FAILURE);
900 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
901 sm->leap_done && sm->decision != DECISION_FAIL &&
902 sm->methodState == METHOD_DONE)
903 SM_ENTER(EAP, SUCCESS);
904 else if (sm->selectedMethod == EAP_TYPE_PEAP &&
905 sm->peap_done && sm->decision != DECISION_FAIL &&
906 sm->methodState == METHOD_DONE)
907 SM_ENTER(EAP, SUCCESS);
908 }
909
910
eap_peer_req_is_duplicate(struct eap_sm * sm)911 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
912 {
913 int duplicate;
914
915 duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
916 if (sm->workaround && duplicate &&
917 os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
918 /*
919 * RFC 4137 uses (reqId == lastId) as the only verification for
920 * duplicate EAP requests. However, this misses cases where the
921 * AS is incorrectly using the same id again; and
922 * unfortunately, such implementations exist. Use MD5 hash as
923 * an extra verification for the packets being duplicate to
924 * workaround these issues.
925 */
926 wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
927 "EAP packets were not identical");
928 wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
929 "duplicate packet");
930 duplicate = 0;
931 }
932
933 return duplicate;
934 }
935
936
eap_peer_sm_allow_canned(struct eap_sm * sm)937 static int eap_peer_sm_allow_canned(struct eap_sm *sm)
938 {
939 struct eap_peer_config *config = eap_get_config(sm);
940
941 return config && config->phase1 &&
942 os_strstr(config->phase1, "allow_canned_success=1");
943 }
944
945
eap_peer_sm_step_received(struct eap_sm * sm)946 static void eap_peer_sm_step_received(struct eap_sm *sm)
947 {
948 int duplicate = eap_peer_req_is_duplicate(sm);
949
950 /*
951 * Two special cases below for LEAP are local additions to work around
952 * odd LEAP behavior (EAP-Success in the middle of authentication and
953 * then swapped roles). Other transitions are based on RFC 4137.
954 */
955 if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
956 (sm->reqId == sm->lastId ||
957 eap_success_workaround(sm, sm->reqId, sm->lastId)))
958 SM_ENTER(EAP, SUCCESS);
959 else if (sm->workaround && sm->lastId == -1 && sm->rxSuccess &&
960 !sm->rxFailure && !sm->rxReq && eap_peer_sm_allow_canned(sm))
961 SM_ENTER(EAP, SUCCESS); /* EAP-Success prior any EAP method */
962 else if (sm->workaround && sm->lastId == -1 && sm->rxFailure &&
963 !sm->rxReq && sm->methodState != METHOD_CONT &&
964 eap_peer_sm_allow_canned(sm))
965 SM_ENTER(EAP, FAILURE); /* EAP-Failure prior any EAP method */
966 else if (sm->workaround && sm->rxSuccess && !sm->rxFailure &&
967 !sm->rxReq && sm->methodState != METHOD_CONT &&
968 eap_peer_sm_allow_canned(sm))
969 SM_ENTER(EAP, SUCCESS); /* EAP-Success after Identity */
970 else if (sm->methodState != METHOD_CONT &&
971 ((sm->rxFailure &&
972 sm->decision != DECISION_UNCOND_SUCC) ||
973 (sm->rxSuccess && sm->decision == DECISION_FAIL &&
974 (sm->selectedMethod != EAP_TYPE_LEAP ||
975 sm->methodState != METHOD_MAY_CONT))) &&
976 (sm->reqId == sm->lastId ||
977 eap_success_workaround(sm, sm->reqId, sm->lastId)))
978 SM_ENTER(EAP, FAILURE);
979 else if (sm->rxReq && duplicate)
980 SM_ENTER(EAP, RETRANSMIT);
981 else if (sm->rxReq && !duplicate &&
982 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
983 sm->allowNotifications)
984 SM_ENTER(EAP, NOTIFICATION);
985 else if (sm->rxReq && !duplicate &&
986 sm->selectedMethod == EAP_TYPE_NONE &&
987 sm->reqMethod == EAP_TYPE_IDENTITY)
988 SM_ENTER(EAP, IDENTITY);
989 else if (sm->rxReq && !duplicate &&
990 sm->selectedMethod == EAP_TYPE_NONE &&
991 sm->reqMethod != EAP_TYPE_IDENTITY &&
992 sm->reqMethod != EAP_TYPE_NOTIFICATION)
993 SM_ENTER(EAP, GET_METHOD);
994 else if (sm->rxReq && !duplicate &&
995 sm->reqMethod == sm->selectedMethod &&
996 sm->methodState != METHOD_DONE)
997 SM_ENTER(EAP, METHOD);
998 else if (sm->selectedMethod == EAP_TYPE_LEAP &&
999 (sm->rxSuccess || sm->rxResp))
1000 SM_ENTER(EAP, METHOD);
1001 else if (sm->reauthInit)
1002 SM_ENTER(EAP, SEND_RESPONSE);
1003 else
1004 SM_ENTER(EAP, DISCARD);
1005 }
1006
1007
eap_peer_sm_step_local(struct eap_sm * sm)1008 static void eap_peer_sm_step_local(struct eap_sm *sm)
1009 {
1010 switch (sm->EAP_state) {
1011 case EAP_INITIALIZE:
1012 SM_ENTER(EAP, IDLE);
1013 break;
1014 case EAP_DISABLED:
1015 if (eapol_get_bool(sm, EAPOL_portEnabled) &&
1016 !sm->force_disabled)
1017 SM_ENTER(EAP, INITIALIZE);
1018 break;
1019 case EAP_IDLE:
1020 eap_peer_sm_step_idle(sm);
1021 break;
1022 case EAP_RECEIVED:
1023 eap_peer_sm_step_received(sm);
1024 break;
1025 case EAP_GET_METHOD:
1026 if (sm->selectedMethod == sm->reqMethod)
1027 SM_ENTER(EAP, METHOD);
1028 else
1029 SM_ENTER(EAP, SEND_RESPONSE);
1030 break;
1031 case EAP_METHOD:
1032 /*
1033 * Note: RFC 4137 uses methodState == DONE && decision == FAIL
1034 * as the condition. eapRespData == NULL here is used to allow
1035 * final EAP method response to be sent without having to change
1036 * all methods to either use methodState MAY_CONT or leaving
1037 * decision to something else than FAIL in cases where the only
1038 * expected response is EAP-Failure.
1039 */
1040 if (sm->ignore)
1041 SM_ENTER(EAP, DISCARD);
1042 else if (sm->methodState == METHOD_DONE &&
1043 sm->decision == DECISION_FAIL && !sm->eapRespData)
1044 SM_ENTER(EAP, FAILURE);
1045 else
1046 SM_ENTER(EAP, SEND_RESPONSE);
1047 break;
1048 case EAP_SEND_RESPONSE:
1049 SM_ENTER(EAP, IDLE);
1050 break;
1051 case EAP_DISCARD:
1052 SM_ENTER(EAP, IDLE);
1053 break;
1054 case EAP_IDENTITY:
1055 SM_ENTER(EAP, SEND_RESPONSE);
1056 break;
1057 case EAP_NOTIFICATION:
1058 SM_ENTER(EAP, SEND_RESPONSE);
1059 break;
1060 case EAP_RETRANSMIT:
1061 SM_ENTER(EAP, SEND_RESPONSE);
1062 break;
1063 case EAP_SUCCESS:
1064 break;
1065 case EAP_FAILURE:
1066 break;
1067 }
1068 }
1069
1070
SM_STEP(EAP)1071 SM_STEP(EAP)
1072 {
1073 /* Global transitions */
1074 if (eapol_get_bool(sm, EAPOL_eapRestart) &&
1075 eapol_get_bool(sm, EAPOL_portEnabled))
1076 SM_ENTER_GLOBAL(EAP, INITIALIZE);
1077 else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
1078 SM_ENTER_GLOBAL(EAP, DISABLED);
1079 else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
1080 /* RFC 4137 does not place any limit on number of EAP messages
1081 * in an authentication session. However, some error cases have
1082 * ended up in a state were EAP messages were sent between the
1083 * peer and server in a loop (e.g., TLS ACK frame in both
1084 * direction). Since this is quite undesired outcome, limit the
1085 * total number of EAP round-trips and abort authentication if
1086 * this limit is exceeded.
1087 */
1088 if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
1089 wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
1090 "authentication rounds - abort",
1091 EAP_MAX_AUTH_ROUNDS);
1092 sm->num_rounds++;
1093 SM_ENTER_GLOBAL(EAP, FAILURE);
1094 }
1095 } else {
1096 /* Local transitions */
1097 eap_peer_sm_step_local(sm);
1098 }
1099 }
1100
1101
eap_sm_allowMethod(struct eap_sm * sm,int vendor,EapType method)1102 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
1103 EapType method)
1104 {
1105 if (!eap_allowed_method(sm, vendor, method)) {
1106 wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
1107 "vendor %u method %u", vendor, method);
1108 return FALSE;
1109 }
1110 if (eap_peer_get_eap_method(vendor, method))
1111 return TRUE;
1112 wpa_printf(MSG_DEBUG, "EAP: not included in build: "
1113 "vendor %u method %u", vendor, method);
1114 return FALSE;
1115 }
1116
1117
eap_sm_build_expanded_nak(struct eap_sm * sm,int id,const struct eap_method * methods,size_t count)1118 static struct wpabuf * eap_sm_build_expanded_nak(
1119 struct eap_sm *sm, int id, const struct eap_method *methods,
1120 size_t count)
1121 {
1122 struct wpabuf *resp;
1123 int found = 0;
1124 const struct eap_method *m;
1125
1126 wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
1127
1128 /* RFC 3748 - 5.3.2: Expanded Nak */
1129 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
1130 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
1131 if (resp == NULL)
1132 return NULL;
1133
1134 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1135 wpabuf_put_be32(resp, EAP_TYPE_NAK);
1136
1137 for (m = methods; m; m = m->next) {
1138 if (sm->reqVendor == m->vendor &&
1139 sm->reqVendorMethod == m->method)
1140 continue; /* do not allow the current method again */
1141 if (eap_allowed_method(sm, m->vendor, m->method)) {
1142 wpa_printf(MSG_DEBUG, "EAP: allowed type: "
1143 "vendor=%u method=%u",
1144 m->vendor, m->method);
1145 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1146 wpabuf_put_be24(resp, m->vendor);
1147 wpabuf_put_be32(resp, m->method);
1148
1149 found++;
1150 }
1151 }
1152 if (!found) {
1153 wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
1154 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1155 wpabuf_put_be24(resp, EAP_VENDOR_IETF);
1156 wpabuf_put_be32(resp, EAP_TYPE_NONE);
1157 }
1158
1159 eap_update_len(resp);
1160
1161 return resp;
1162 }
1163
1164
eap_sm_buildNak(struct eap_sm * sm,int id)1165 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
1166 {
1167 struct wpabuf *resp;
1168 u8 *start;
1169 int found = 0, expanded_found = 0;
1170 size_t count;
1171 const struct eap_method *methods, *m;
1172
1173 wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
1174 "vendor=%u method=%u not allowed)", sm->reqMethod,
1175 sm->reqVendor, sm->reqVendorMethod);
1176 methods = eap_peer_get_methods(&count);
1177 if (methods == NULL)
1178 return NULL;
1179 if (sm->reqMethod == EAP_TYPE_EXPANDED)
1180 return eap_sm_build_expanded_nak(sm, id, methods, count);
1181
1182 /* RFC 3748 - 5.3.1: Legacy Nak */
1183 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
1184 sizeof(struct eap_hdr) + 1 + count + 1,
1185 EAP_CODE_RESPONSE, id);
1186 if (resp == NULL)
1187 return NULL;
1188
1189 start = wpabuf_put(resp, 0);
1190 for (m = methods; m; m = m->next) {
1191 if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
1192 continue; /* do not allow the current method again */
1193 if (eap_allowed_method(sm, m->vendor, m->method)) {
1194 if (m->vendor != EAP_VENDOR_IETF) {
1195 if (expanded_found)
1196 continue;
1197 expanded_found = 1;
1198 wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
1199 } else
1200 wpabuf_put_u8(resp, m->method);
1201 found++;
1202 }
1203 }
1204 if (!found)
1205 wpabuf_put_u8(resp, EAP_TYPE_NONE);
1206 wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
1207
1208 eap_update_len(resp);
1209
1210 return resp;
1211 }
1212
1213
eap_sm_processIdentity(struct eap_sm * sm,const struct wpabuf * req)1214 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
1215 {
1216 const u8 *pos;
1217 size_t msg_len;
1218
1219 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
1220 "EAP authentication started");
1221 eap_notify_status(sm, "started", "");
1222
1223 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req,
1224 &msg_len);
1225 if (pos == NULL)
1226 return;
1227
1228 /*
1229 * RFC 3748 - 5.1: Identity
1230 * Data field may contain a displayable message in UTF-8. If this
1231 * includes NUL-character, only the data before that should be
1232 * displayed. Some EAP implementasitons may piggy-back additional
1233 * options after the NUL.
1234 */
1235 /* TODO: could save displayable message so that it can be shown to the
1236 * user in case of interaction is required */
1237 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
1238 pos, msg_len);
1239 }
1240
1241
1242 #ifdef PCSC_FUNCS
1243
1244 /*
1245 * Rules for figuring out MNC length based on IMSI for SIM cards that do not
1246 * include MNC length field.
1247 */
mnc_len_from_imsi(const char * imsi)1248 static int mnc_len_from_imsi(const char *imsi)
1249 {
1250 char mcc_str[4];
1251 unsigned int mcc;
1252
1253 os_memcpy(mcc_str, imsi, 3);
1254 mcc_str[3] = '\0';
1255 mcc = atoi(mcc_str);
1256
1257 if (mcc == 228)
1258 return 2; /* Networks in Switzerland use 2-digit MNC */
1259 if (mcc == 244)
1260 return 2; /* Networks in Finland use 2-digit MNC */
1261
1262 return -1;
1263 }
1264
1265
eap_sm_append_3gpp_realm(struct eap_sm * sm,char * imsi,size_t max_len,size_t * imsi_len)1266 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
1267 size_t max_len, size_t *imsi_len)
1268 {
1269 int mnc_len;
1270 char *pos, mnc[4];
1271
1272 if (*imsi_len + 36 > max_len) {
1273 wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
1274 return -1;
1275 }
1276
1277 /* MNC (2 or 3 digits) */
1278 mnc_len = scard_get_mnc_len(sm->scard_ctx);
1279 if (mnc_len < 0)
1280 mnc_len = mnc_len_from_imsi(imsi);
1281 if (mnc_len < 0) {
1282 wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
1283 "assuming 3");
1284 mnc_len = 3;
1285 }
1286
1287 if (mnc_len == 2) {
1288 mnc[0] = '0';
1289 mnc[1] = imsi[3];
1290 mnc[2] = imsi[4];
1291 } else if (mnc_len == 3) {
1292 mnc[0] = imsi[3];
1293 mnc[1] = imsi[4];
1294 mnc[2] = imsi[5];
1295 }
1296 mnc[3] = '\0';
1297
1298 pos = imsi + *imsi_len;
1299 pos += os_snprintf(pos, imsi + max_len - pos,
1300 "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
1301 mnc, imsi[0], imsi[1], imsi[2]);
1302 *imsi_len = pos - imsi;
1303
1304 return 0;
1305 }
1306
1307
eap_sm_imsi_identity(struct eap_sm * sm,struct eap_peer_config * conf)1308 static int eap_sm_imsi_identity(struct eap_sm *sm,
1309 struct eap_peer_config *conf)
1310 {
1311 enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM;
1312 char imsi[100];
1313 size_t imsi_len;
1314 struct eap_method_type *m = conf->eap_methods;
1315 int i;
1316
1317 imsi_len = sizeof(imsi);
1318 if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
1319 wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
1320 return -1;
1321 }
1322
1323 wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
1324
1325 if (imsi_len < 7) {
1326 wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
1327 return -1;
1328 }
1329
1330 if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
1331 wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
1332 return -1;
1333 }
1334 wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
1335
1336 for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
1337 m[i].method != EAP_TYPE_NONE); i++) {
1338 if (m[i].vendor == EAP_VENDOR_IETF &&
1339 m[i].method == EAP_TYPE_AKA_PRIME) {
1340 method = EAP_SM_AKA_PRIME;
1341 break;
1342 }
1343
1344 if (m[i].vendor == EAP_VENDOR_IETF &&
1345 m[i].method == EAP_TYPE_AKA) {
1346 method = EAP_SM_AKA;
1347 break;
1348 }
1349 }
1350
1351 os_free(conf->identity);
1352 conf->identity = os_malloc(1 + imsi_len);
1353 if (conf->identity == NULL) {
1354 wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
1355 "IMSI-based identity");
1356 return -1;
1357 }
1358
1359 switch (method) {
1360 case EAP_SM_SIM:
1361 conf->identity[0] = '1';
1362 break;
1363 case EAP_SM_AKA:
1364 conf->identity[0] = '0';
1365 break;
1366 case EAP_SM_AKA_PRIME:
1367 conf->identity[0] = '6';
1368 break;
1369 }
1370 os_memcpy(conf->identity + 1, imsi, imsi_len);
1371 conf->identity_len = 1 + imsi_len;
1372
1373 return 0;
1374 }
1375
1376 #endif /* PCSC_FUNCS */
1377
1378
eap_sm_set_scard_pin(struct eap_sm * sm,struct eap_peer_config * conf)1379 static int eap_sm_set_scard_pin(struct eap_sm *sm,
1380 struct eap_peer_config *conf)
1381 {
1382 #ifdef PCSC_FUNCS
1383 if (scard_set_pin(sm->scard_ctx, conf->pin)) {
1384 /*
1385 * Make sure the same PIN is not tried again in order to avoid
1386 * blocking SIM.
1387 */
1388 os_free(conf->pin);
1389 conf->pin = NULL;
1390
1391 wpa_printf(MSG_WARNING, "PIN validation failed");
1392 eap_sm_request_pin(sm);
1393 return -1;
1394 }
1395 return 0;
1396 #else /* PCSC_FUNCS */
1397 return -1;
1398 #endif /* PCSC_FUNCS */
1399 }
1400
eap_sm_get_scard_identity(struct eap_sm * sm,struct eap_peer_config * conf)1401 static int eap_sm_get_scard_identity(struct eap_sm *sm,
1402 struct eap_peer_config *conf)
1403 {
1404 #ifdef PCSC_FUNCS
1405 if (eap_sm_set_scard_pin(sm, conf))
1406 return -1;
1407
1408 return eap_sm_imsi_identity(sm, conf);
1409 #else /* PCSC_FUNCS */
1410 return -1;
1411 #endif /* PCSC_FUNCS */
1412 }
1413
1414
1415 /**
1416 * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
1417 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1418 * @id: EAP identifier for the packet
1419 * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
1420 * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
1421 * failure
1422 *
1423 * This function allocates and builds an EAP-Identity/Response packet for the
1424 * current network. The caller is responsible for freeing the returned data.
1425 */
eap_sm_buildIdentity(struct eap_sm * sm,int id,int encrypted)1426 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
1427 {
1428 struct eap_peer_config *config = eap_get_config(sm);
1429 struct wpabuf *resp;
1430 const u8 *identity;
1431 size_t identity_len;
1432
1433 if (config == NULL) {
1434 wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
1435 "was not available");
1436 return NULL;
1437 }
1438
1439 if (sm->m && sm->m->get_identity &&
1440 (identity = sm->m->get_identity(sm, sm->eap_method_priv,
1441 &identity_len)) != NULL) {
1442 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
1443 "identity", identity, identity_len);
1444 } else if (!encrypted && config->anonymous_identity) {
1445 identity = config->anonymous_identity;
1446 identity_len = config->anonymous_identity_len;
1447 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
1448 identity, identity_len);
1449 } else {
1450 identity = config->identity;
1451 identity_len = config->identity_len;
1452 wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
1453 identity, identity_len);
1454 }
1455
1456 if (identity == NULL) {
1457 wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
1458 "configuration was not available");
1459 if (config->pcsc) {
1460 if (eap_sm_get_scard_identity(sm, config) < 0)
1461 return NULL;
1462 identity = config->identity;
1463 identity_len = config->identity_len;
1464 wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
1465 "IMSI", identity, identity_len);
1466 } else {
1467 eap_sm_request_identity(sm);
1468 return NULL;
1469 }
1470 } else if (config->pcsc) {
1471 if (eap_sm_set_scard_pin(sm, config) < 0)
1472 return NULL;
1473 }
1474
1475 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
1476 EAP_CODE_RESPONSE, id);
1477 if (resp == NULL)
1478 return NULL;
1479
1480 wpabuf_put_data(resp, identity, identity_len);
1481
1482 return resp;
1483 }
1484
1485
eap_sm_processNotify(struct eap_sm * sm,const struct wpabuf * req)1486 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
1487 {
1488 const u8 *pos;
1489 char *msg;
1490 size_t i, msg_len;
1491
1492 pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
1493 &msg_len);
1494 if (pos == NULL)
1495 return;
1496 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
1497 pos, msg_len);
1498
1499 msg = os_malloc(msg_len + 1);
1500 if (msg == NULL)
1501 return;
1502 for (i = 0; i < msg_len; i++)
1503 msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
1504 msg[msg_len] = '\0';
1505 wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
1506 WPA_EVENT_EAP_NOTIFICATION, msg);
1507 os_free(msg);
1508 }
1509
1510
eap_sm_buildNotify(int id)1511 static struct wpabuf * eap_sm_buildNotify(int id)
1512 {
1513 struct wpabuf *resp;
1514
1515 wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
1516 resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
1517 EAP_CODE_RESPONSE, id);
1518 if (resp == NULL)
1519 return NULL;
1520
1521 return resp;
1522 }
1523
1524
eap_peer_initiate(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1525 static void eap_peer_initiate(struct eap_sm *sm, const struct eap_hdr *hdr,
1526 size_t len)
1527 {
1528 #ifdef CONFIG_ERP
1529 const u8 *pos = (const u8 *) (hdr + 1);
1530 const u8 *end = ((const u8 *) hdr) + len;
1531 struct erp_tlvs parse;
1532
1533 if (len < sizeof(*hdr) + 1) {
1534 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Initiate");
1535 return;
1536 }
1537
1538 if (*pos != EAP_ERP_TYPE_REAUTH_START) {
1539 wpa_printf(MSG_DEBUG,
1540 "EAP: Ignored unexpected EAP-Initiate Type=%u",
1541 *pos);
1542 return;
1543 }
1544
1545 pos++;
1546 if (pos >= end) {
1547 wpa_printf(MSG_DEBUG,
1548 "EAP: Too short EAP-Initiate/Re-auth-Start");
1549 return;
1550 }
1551 pos++; /* Reserved */
1552 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Initiate/Re-auth-Start TVs/TLVs",
1553 pos, end - pos);
1554
1555 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1556 goto invalid;
1557
1558 if (parse.domain) {
1559 wpa_hexdump_ascii(MSG_DEBUG,
1560 "EAP: EAP-Initiate/Re-auth-Start - Domain name",
1561 parse.domain, parse.domain_len);
1562 /* TODO: Derivation of domain specific keys for local ER */
1563 }
1564
1565 if (eap_peer_erp_reauth_start(sm, hdr, len) == 0)
1566 return;
1567
1568 invalid:
1569 #endif /* CONFIG_ERP */
1570 wpa_printf(MSG_DEBUG,
1571 "EAP: EAP-Initiate/Re-auth-Start - No suitable ERP keys available - try to start full EAP authentication");
1572 eapol_set_bool(sm, EAPOL_eapTriggerStart, TRUE);
1573 }
1574
1575
eap_peer_finish(struct eap_sm * sm,const struct eap_hdr * hdr,size_t len)1576 static void eap_peer_finish(struct eap_sm *sm, const struct eap_hdr *hdr,
1577 size_t len)
1578 {
1579 #ifdef CONFIG_ERP
1580 const u8 *pos = (const u8 *) (hdr + 1);
1581 const u8 *end = ((const u8 *) hdr) + len;
1582 const u8 *start;
1583 struct erp_tlvs parse;
1584 u8 flags;
1585 u16 seq;
1586 u8 hash[SHA256_MAC_LEN];
1587 size_t hash_len;
1588 struct eap_erp_key *erp;
1589 int max_len;
1590 char nai[254];
1591 u8 seed[4];
1592 int auth_tag_ok = 0;
1593
1594 if (len < sizeof(*hdr) + 1) {
1595 wpa_printf(MSG_DEBUG, "EAP: Ignored too short EAP-Finish");
1596 return;
1597 }
1598
1599 if (*pos != EAP_ERP_TYPE_REAUTH) {
1600 wpa_printf(MSG_DEBUG,
1601 "EAP: Ignored unexpected EAP-Finish Type=%u", *pos);
1602 return;
1603 }
1604
1605 if (len < sizeof(*hdr) + 4) {
1606 wpa_printf(MSG_DEBUG,
1607 "EAP: Ignored too short EAP-Finish/Re-auth");
1608 return;
1609 }
1610
1611 pos++;
1612 flags = *pos++;
1613 seq = WPA_GET_BE16(pos);
1614 pos += 2;
1615 wpa_printf(MSG_DEBUG, "EAP: Flags=0x%x SEQ=%u", flags, seq);
1616
1617 if (seq != sm->erp_seq) {
1618 wpa_printf(MSG_DEBUG,
1619 "EAP: Unexpected EAP-Finish/Re-auth SEQ=%u", seq);
1620 return;
1621 }
1622
1623 /*
1624 * Parse TVs/TLVs. Since we do not yet know the length of the
1625 * Authentication Tag, stop parsing if an unknown TV/TLV is seen and
1626 * just try to find the keyName-NAI first so that we can check the
1627 * Authentication Tag.
1628 */
1629 if (erp_parse_tlvs(pos, end, &parse, 1) < 0)
1630 return;
1631
1632 if (!parse.keyname) {
1633 wpa_printf(MSG_DEBUG,
1634 "EAP: No keyName-NAI in EAP-Finish/Re-auth Packet");
1635 return;
1636 }
1637
1638 wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Finish/Re-auth - keyName-NAI",
1639 parse.keyname, parse.keyname_len);
1640 if (parse.keyname_len > 253) {
1641 wpa_printf(MSG_DEBUG,
1642 "EAP: Too long keyName-NAI in EAP-Finish/Re-auth");
1643 return;
1644 }
1645 os_memcpy(nai, parse.keyname, parse.keyname_len);
1646 nai[parse.keyname_len] = '\0';
1647
1648 erp = eap_erp_get_key_nai(sm, nai);
1649 if (!erp) {
1650 wpa_printf(MSG_DEBUG, "EAP: No matching ERP key found for %s",
1651 nai);
1652 return;
1653 }
1654
1655 /* Is there enough room for Cryptosuite and Authentication Tag? */
1656 start = parse.keyname + parse.keyname_len;
1657 max_len = end - start;
1658 hash_len = 16;
1659 if (max_len < 1 + (int) hash_len) {
1660 wpa_printf(MSG_DEBUG,
1661 "EAP: Not enough room for Authentication Tag");
1662 if (flags & 0x80)
1663 goto no_auth_tag;
1664 return;
1665 }
1666 if (end[-17] != EAP_ERP_CS_HMAC_SHA256_128) {
1667 wpa_printf(MSG_DEBUG, "EAP: Different Cryptosuite used");
1668 if (flags & 0x80)
1669 goto no_auth_tag;
1670 return;
1671 }
1672
1673 if (hmac_sha256(erp->rIK, erp->rIK_len, (const u8 *) hdr,
1674 end - ((const u8 *) hdr) - hash_len, hash) < 0)
1675 return;
1676 if (os_memcmp(end - hash_len, hash, hash_len) != 0) {
1677 wpa_printf(MSG_DEBUG,
1678 "EAP: Authentication Tag mismatch");
1679 return;
1680 }
1681 auth_tag_ok = 1;
1682 end -= 1 + hash_len;
1683
1684 no_auth_tag:
1685 /*
1686 * Parse TVs/TLVs again now that we know the exact part of the buffer
1687 * that contains them.
1688 */
1689 wpa_hexdump(MSG_DEBUG, "EAP: EAP-Finish/Re-Auth TVs/TLVs",
1690 pos, end - pos);
1691 if (erp_parse_tlvs(pos, end, &parse, 0) < 0)
1692 return;
1693
1694 if (flags & 0x80 || !auth_tag_ok) {
1695 wpa_printf(MSG_DEBUG,
1696 "EAP: EAP-Finish/Re-auth indicated failure");
1697 eapol_set_bool(sm, EAPOL_eapFail, TRUE);
1698 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1699 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1700 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
1701 "EAP authentication failed");
1702 sm->prev_failure = 1;
1703 wpa_printf(MSG_DEBUG,
1704 "EAP: Drop ERP key to try full authentication on next attempt");
1705 eap_peer_erp_free_key(erp);
1706 return;
1707 }
1708
1709 eap_sm_free_key(sm);
1710 sm->eapKeyDataLen = 0;
1711 sm->eapKeyData = os_malloc(erp->rRK_len);
1712 if (!sm->eapKeyData)
1713 return;
1714 sm->eapKeyDataLen = erp->rRK_len;
1715
1716 WPA_PUT_BE16(seed, seq);
1717 WPA_PUT_BE16(&seed[2], erp->rRK_len);
1718 if (hmac_sha256_kdf(erp->rRK, erp->rRK_len,
1719 "Re-authentication Master Session Key@ietf.org",
1720 seed, sizeof(seed),
1721 sm->eapKeyData, erp->rRK_len) < 0) {
1722 wpa_printf(MSG_DEBUG, "EAP: Could not derive rMSK for ERP");
1723 eap_sm_free_key(sm);
1724 return;
1725 }
1726 wpa_hexdump_key(MSG_DEBUG, "EAP: ERP rMSK",
1727 sm->eapKeyData, sm->eapKeyDataLen);
1728 sm->eapKeyAvailable = TRUE;
1729 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
1730 eapol_set_bool(sm, EAPOL_eapReq, FALSE);
1731 eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
1732 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
1733 "EAP re-authentication completed successfully");
1734 #endif /* CONFIG_ERP */
1735 }
1736
1737
eap_sm_parseEapReq(struct eap_sm * sm,const struct wpabuf * req)1738 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
1739 {
1740 const struct eap_hdr *hdr;
1741 size_t plen;
1742 const u8 *pos;
1743
1744 sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
1745 sm->reqId = 0;
1746 sm->reqMethod = EAP_TYPE_NONE;
1747 sm->reqVendor = EAP_VENDOR_IETF;
1748 sm->reqVendorMethod = EAP_TYPE_NONE;
1749
1750 if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
1751 return;
1752
1753 hdr = wpabuf_head(req);
1754 plen = be_to_host16(hdr->length);
1755 if (plen > wpabuf_len(req)) {
1756 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
1757 "(len=%lu plen=%lu)",
1758 (unsigned long) wpabuf_len(req),
1759 (unsigned long) plen);
1760 return;
1761 }
1762
1763 sm->reqId = hdr->identifier;
1764
1765 if (sm->workaround) {
1766 const u8 *addr[1];
1767 addr[0] = wpabuf_head(req);
1768 md5_vector(1, addr, &plen, sm->req_md5);
1769 }
1770
1771 switch (hdr->code) {
1772 case EAP_CODE_REQUEST:
1773 if (plen < sizeof(*hdr) + 1) {
1774 wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
1775 "no Type field");
1776 return;
1777 }
1778 sm->rxReq = TRUE;
1779 pos = (const u8 *) (hdr + 1);
1780 sm->reqMethod = *pos++;
1781 if (sm->reqMethod == EAP_TYPE_EXPANDED) {
1782 if (plen < sizeof(*hdr) + 8) {
1783 wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
1784 "expanded EAP-Packet (plen=%lu)",
1785 (unsigned long) plen);
1786 return;
1787 }
1788 sm->reqVendor = WPA_GET_BE24(pos);
1789 pos += 3;
1790 sm->reqVendorMethod = WPA_GET_BE32(pos);
1791 }
1792 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
1793 "method=%u vendor=%u vendorMethod=%u",
1794 sm->reqId, sm->reqMethod, sm->reqVendor,
1795 sm->reqVendorMethod);
1796 break;
1797 case EAP_CODE_RESPONSE:
1798 if (sm->selectedMethod == EAP_TYPE_LEAP) {
1799 /*
1800 * LEAP differs from RFC 4137 by using reversed roles
1801 * for mutual authentication and because of this, we
1802 * need to accept EAP-Response frames if LEAP is used.
1803 */
1804 if (plen < sizeof(*hdr) + 1) {
1805 wpa_printf(MSG_DEBUG, "EAP: Too short "
1806 "EAP-Response - no Type field");
1807 return;
1808 }
1809 sm->rxResp = TRUE;
1810 pos = (const u8 *) (hdr + 1);
1811 sm->reqMethod = *pos;
1812 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
1813 "LEAP method=%d id=%d",
1814 sm->reqMethod, sm->reqId);
1815 break;
1816 }
1817 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
1818 break;
1819 case EAP_CODE_SUCCESS:
1820 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
1821 eap_notify_status(sm, "completion", "success");
1822 sm->rxSuccess = TRUE;
1823 break;
1824 case EAP_CODE_FAILURE:
1825 wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
1826 eap_notify_status(sm, "completion", "failure");
1827 sm->rxFailure = TRUE;
1828 break;
1829 case EAP_CODE_INITIATE:
1830 eap_peer_initiate(sm, hdr, plen);
1831 break;
1832 case EAP_CODE_FINISH:
1833 eap_peer_finish(sm, hdr, plen);
1834 break;
1835 default:
1836 wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
1837 "code %d", hdr->code);
1838 break;
1839 }
1840 }
1841
1842
eap_peer_sm_tls_event(void * ctx,enum tls_event ev,union tls_event_data * data)1843 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
1844 union tls_event_data *data)
1845 {
1846 struct eap_sm *sm = ctx;
1847 char *hash_hex = NULL;
1848
1849 switch (ev) {
1850 case TLS_CERT_CHAIN_SUCCESS:
1851 eap_notify_status(sm, "remote certificate verification",
1852 "success");
1853 break;
1854 case TLS_CERT_CHAIN_FAILURE:
1855 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
1856 "reason=%d depth=%d subject='%s' err='%s'",
1857 data->cert_fail.reason,
1858 data->cert_fail.depth,
1859 data->cert_fail.subject,
1860 data->cert_fail.reason_txt);
1861 eap_notify_status(sm, "remote certificate verification",
1862 data->cert_fail.reason_txt);
1863 break;
1864 case TLS_PEER_CERTIFICATE:
1865 if (!sm->eapol_cb->notify_cert)
1866 break;
1867
1868 if (data->peer_cert.hash) {
1869 size_t len = data->peer_cert.hash_len * 2 + 1;
1870 hash_hex = os_malloc(len);
1871 if (hash_hex) {
1872 wpa_snprintf_hex(hash_hex, len,
1873 data->peer_cert.hash,
1874 data->peer_cert.hash_len);
1875 }
1876 }
1877
1878 sm->eapol_cb->notify_cert(sm->eapol_ctx,
1879 data->peer_cert.depth,
1880 data->peer_cert.subject,
1881 data->peer_cert.altsubject,
1882 data->peer_cert.num_altsubject,
1883 hash_hex, data->peer_cert.cert);
1884 break;
1885 case TLS_ALERT:
1886 if (data->alert.is_local)
1887 eap_notify_status(sm, "local TLS alert",
1888 data->alert.description);
1889 else
1890 eap_notify_status(sm, "remote TLS alert",
1891 data->alert.description);
1892 break;
1893 }
1894
1895 os_free(hash_hex);
1896 }
1897
1898
1899 /**
1900 * eap_peer_sm_init - Allocate and initialize EAP peer state machine
1901 * @eapol_ctx: Context data to be used with eapol_cb calls
1902 * @eapol_cb: Pointer to EAPOL callback functions
1903 * @msg_ctx: Context data for wpa_msg() calls
1904 * @conf: EAP configuration
1905 * Returns: Pointer to the allocated EAP state machine or %NULL on failure
1906 *
1907 * This function allocates and initializes an EAP state machine. In addition,
1908 * this initializes TLS library for the new EAP state machine. eapol_cb pointer
1909 * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
1910 * state machine. Consequently, the caller must make sure that this data
1911 * structure remains alive while the EAP state machine is active.
1912 */
eap_peer_sm_init(void * eapol_ctx,const struct eapol_callbacks * eapol_cb,void * msg_ctx,struct eap_config * conf)1913 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
1914 const struct eapol_callbacks *eapol_cb,
1915 void *msg_ctx, struct eap_config *conf)
1916 {
1917 struct eap_sm *sm;
1918 struct tls_config tlsconf;
1919
1920 sm = os_zalloc(sizeof(*sm));
1921 if (sm == NULL)
1922 return NULL;
1923 sm->eapol_ctx = eapol_ctx;
1924 sm->eapol_cb = eapol_cb;
1925 sm->msg_ctx = msg_ctx;
1926 sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
1927 sm->wps = conf->wps;
1928 dl_list_init(&sm->erp_keys);
1929
1930 os_memset(&tlsconf, 0, sizeof(tlsconf));
1931 tlsconf.opensc_engine_path = conf->opensc_engine_path;
1932 tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
1933 tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
1934 tlsconf.openssl_ciphers = conf->openssl_ciphers;
1935 #ifdef CONFIG_FIPS
1936 tlsconf.fips_mode = 1;
1937 #endif /* CONFIG_FIPS */
1938 tlsconf.event_cb = eap_peer_sm_tls_event;
1939 tlsconf.cb_ctx = sm;
1940 tlsconf.cert_in_cb = conf->cert_in_cb;
1941 sm->ssl_ctx = tls_init(&tlsconf);
1942 if (sm->ssl_ctx == NULL) {
1943 wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
1944 "context.");
1945 os_free(sm);
1946 return NULL;
1947 }
1948
1949 sm->ssl_ctx2 = tls_init(&tlsconf);
1950 if (sm->ssl_ctx2 == NULL) {
1951 wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS "
1952 "context (2).");
1953 /* Run without separate TLS context within TLS tunnel */
1954 }
1955
1956 return sm;
1957 }
1958
1959
1960 /**
1961 * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
1962 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1963 *
1964 * This function deinitializes EAP state machine and frees all allocated
1965 * resources.
1966 */
eap_peer_sm_deinit(struct eap_sm * sm)1967 void eap_peer_sm_deinit(struct eap_sm *sm)
1968 {
1969 if (sm == NULL)
1970 return;
1971 eap_deinit_prev_method(sm, "EAP deinit");
1972 eap_sm_abort(sm);
1973 if (sm->ssl_ctx2)
1974 tls_deinit(sm->ssl_ctx2);
1975 tls_deinit(sm->ssl_ctx);
1976 eap_peer_erp_free_keys(sm);
1977 os_free(sm);
1978 }
1979
1980
1981 /**
1982 * eap_peer_sm_step - Step EAP peer state machine
1983 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
1984 * Returns: 1 if EAP state was changed or 0 if not
1985 *
1986 * This function advances EAP state machine to a new state to match with the
1987 * current variables. This should be called whenever variables used by the EAP
1988 * state machine have changed.
1989 */
eap_peer_sm_step(struct eap_sm * sm)1990 int eap_peer_sm_step(struct eap_sm *sm)
1991 {
1992 int res = 0;
1993 do {
1994 sm->changed = FALSE;
1995 SM_STEP_RUN(EAP);
1996 if (sm->changed)
1997 res = 1;
1998 } while (sm->changed);
1999 return res;
2000 }
2001
2002
2003 /**
2004 * eap_sm_abort - Abort EAP authentication
2005 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2006 *
2007 * Release system resources that have been allocated for the authentication
2008 * session without fully deinitializing the EAP state machine.
2009 */
eap_sm_abort(struct eap_sm * sm)2010 void eap_sm_abort(struct eap_sm *sm)
2011 {
2012 wpabuf_free(sm->lastRespData);
2013 sm->lastRespData = NULL;
2014 wpabuf_free(sm->eapRespData);
2015 sm->eapRespData = NULL;
2016 eap_sm_free_key(sm);
2017 os_free(sm->eapSessionId);
2018 sm->eapSessionId = NULL;
2019
2020 /* This is not clearly specified in the EAP statemachines draft, but
2021 * it seems necessary to make sure that some of the EAPOL variables get
2022 * cleared for the next authentication. */
2023 eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
2024 }
2025
2026
2027 #ifdef CONFIG_CTRL_IFACE
eap_sm_state_txt(int state)2028 static const char * eap_sm_state_txt(int state)
2029 {
2030 switch (state) {
2031 case EAP_INITIALIZE:
2032 return "INITIALIZE";
2033 case EAP_DISABLED:
2034 return "DISABLED";
2035 case EAP_IDLE:
2036 return "IDLE";
2037 case EAP_RECEIVED:
2038 return "RECEIVED";
2039 case EAP_GET_METHOD:
2040 return "GET_METHOD";
2041 case EAP_METHOD:
2042 return "METHOD";
2043 case EAP_SEND_RESPONSE:
2044 return "SEND_RESPONSE";
2045 case EAP_DISCARD:
2046 return "DISCARD";
2047 case EAP_IDENTITY:
2048 return "IDENTITY";
2049 case EAP_NOTIFICATION:
2050 return "NOTIFICATION";
2051 case EAP_RETRANSMIT:
2052 return "RETRANSMIT";
2053 case EAP_SUCCESS:
2054 return "SUCCESS";
2055 case EAP_FAILURE:
2056 return "FAILURE";
2057 default:
2058 return "UNKNOWN";
2059 }
2060 }
2061 #endif /* CONFIG_CTRL_IFACE */
2062
2063
2064 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_method_state_txt(EapMethodState state)2065 static const char * eap_sm_method_state_txt(EapMethodState state)
2066 {
2067 switch (state) {
2068 case METHOD_NONE:
2069 return "NONE";
2070 case METHOD_INIT:
2071 return "INIT";
2072 case METHOD_CONT:
2073 return "CONT";
2074 case METHOD_MAY_CONT:
2075 return "MAY_CONT";
2076 case METHOD_DONE:
2077 return "DONE";
2078 default:
2079 return "UNKNOWN";
2080 }
2081 }
2082
2083
eap_sm_decision_txt(EapDecision decision)2084 static const char * eap_sm_decision_txt(EapDecision decision)
2085 {
2086 switch (decision) {
2087 case DECISION_FAIL:
2088 return "FAIL";
2089 case DECISION_COND_SUCC:
2090 return "COND_SUCC";
2091 case DECISION_UNCOND_SUCC:
2092 return "UNCOND_SUCC";
2093 default:
2094 return "UNKNOWN";
2095 }
2096 }
2097 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2098
2099
2100 #ifdef CONFIG_CTRL_IFACE
2101
2102 /**
2103 * eap_sm_get_status - Get EAP state machine status
2104 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2105 * @buf: Buffer for status information
2106 * @buflen: Maximum buffer length
2107 * @verbose: Whether to include verbose status information
2108 * Returns: Number of bytes written to buf.
2109 *
2110 * Query EAP state machine for status information. This function fills in a
2111 * text area with current status information from the EAPOL state machine. If
2112 * the buffer (buf) is not large enough, status information will be truncated
2113 * to fit the buffer.
2114 */
eap_sm_get_status(struct eap_sm * sm,char * buf,size_t buflen,int verbose)2115 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
2116 {
2117 int len, ret;
2118
2119 if (sm == NULL)
2120 return 0;
2121
2122 len = os_snprintf(buf, buflen,
2123 "EAP state=%s\n",
2124 eap_sm_state_txt(sm->EAP_state));
2125 if (os_snprintf_error(buflen, len))
2126 return 0;
2127
2128 if (sm->selectedMethod != EAP_TYPE_NONE) {
2129 const char *name;
2130 if (sm->m) {
2131 name = sm->m->name;
2132 } else {
2133 const struct eap_method *m =
2134 eap_peer_get_eap_method(EAP_VENDOR_IETF,
2135 sm->selectedMethod);
2136 if (m)
2137 name = m->name;
2138 else
2139 name = "?";
2140 }
2141 ret = os_snprintf(buf + len, buflen - len,
2142 "selectedMethod=%d (EAP-%s)\n",
2143 sm->selectedMethod, name);
2144 if (os_snprintf_error(buflen - len, ret))
2145 return len;
2146 len += ret;
2147
2148 if (sm->m && sm->m->get_status) {
2149 len += sm->m->get_status(sm, sm->eap_method_priv,
2150 buf + len, buflen - len,
2151 verbose);
2152 }
2153 }
2154
2155 if (verbose) {
2156 ret = os_snprintf(buf + len, buflen - len,
2157 "reqMethod=%d\n"
2158 "methodState=%s\n"
2159 "decision=%s\n"
2160 "ClientTimeout=%d\n",
2161 sm->reqMethod,
2162 eap_sm_method_state_txt(sm->methodState),
2163 eap_sm_decision_txt(sm->decision),
2164 sm->ClientTimeout);
2165 if (os_snprintf_error(buflen - len, ret))
2166 return len;
2167 len += ret;
2168 }
2169
2170 return len;
2171 }
2172 #endif /* CONFIG_CTRL_IFACE */
2173
2174
2175 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
eap_sm_request(struct eap_sm * sm,enum wpa_ctrl_req_type field,const char * msg,size_t msglen)2176 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
2177 const char *msg, size_t msglen)
2178 {
2179 struct eap_peer_config *config;
2180 const char *txt = NULL;
2181 char *tmp;
2182
2183 if (sm == NULL)
2184 return;
2185 config = eap_get_config(sm);
2186 if (config == NULL)
2187 return;
2188
2189 switch (field) {
2190 case WPA_CTRL_REQ_EAP_IDENTITY:
2191 config->pending_req_identity++;
2192 break;
2193 case WPA_CTRL_REQ_EAP_PASSWORD:
2194 config->pending_req_password++;
2195 break;
2196 case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
2197 config->pending_req_new_password++;
2198 break;
2199 case WPA_CTRL_REQ_EAP_PIN:
2200 config->pending_req_pin++;
2201 break;
2202 case WPA_CTRL_REQ_EAP_OTP:
2203 if (msg) {
2204 tmp = os_malloc(msglen + 3);
2205 if (tmp == NULL)
2206 return;
2207 tmp[0] = '[';
2208 os_memcpy(tmp + 1, msg, msglen);
2209 tmp[msglen + 1] = ']';
2210 tmp[msglen + 2] = '\0';
2211 txt = tmp;
2212 os_free(config->pending_req_otp);
2213 config->pending_req_otp = tmp;
2214 config->pending_req_otp_len = msglen + 3;
2215 } else {
2216 if (config->pending_req_otp == NULL)
2217 return;
2218 txt = config->pending_req_otp;
2219 }
2220 break;
2221 case WPA_CTRL_REQ_EAP_PASSPHRASE:
2222 config->pending_req_passphrase++;
2223 break;
2224 case WPA_CTRL_REQ_SIM:
2225 txt = msg;
2226 break;
2227 default:
2228 return;
2229 }
2230
2231 if (sm->eapol_cb->eap_param_needed)
2232 sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
2233 }
2234 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2235 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
2236 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
2237
eap_sm_get_method_name(struct eap_sm * sm)2238 const char * eap_sm_get_method_name(struct eap_sm *sm)
2239 {
2240 if (sm->m == NULL)
2241 return "UNKNOWN";
2242 return sm->m->name;
2243 }
2244
2245
2246 /**
2247 * eap_sm_request_identity - Request identity from user (ctrl_iface)
2248 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2249 *
2250 * EAP methods can call this function to request identity information for the
2251 * current network. This is normally called when the identity is not included
2252 * in the network configuration. The request will be sent to monitor programs
2253 * through the control interface.
2254 */
eap_sm_request_identity(struct eap_sm * sm)2255 void eap_sm_request_identity(struct eap_sm *sm)
2256 {
2257 eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
2258 }
2259
2260
2261 /**
2262 * eap_sm_request_password - Request password from user (ctrl_iface)
2263 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2264 *
2265 * EAP methods can call this function to request password information for the
2266 * current network. This is normally called when the password is not included
2267 * in the network configuration. The request will be sent to monitor programs
2268 * through the control interface.
2269 */
eap_sm_request_password(struct eap_sm * sm)2270 void eap_sm_request_password(struct eap_sm *sm)
2271 {
2272 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
2273 }
2274
2275
2276 /**
2277 * eap_sm_request_new_password - Request new password from user (ctrl_iface)
2278 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2279 *
2280 * EAP methods can call this function to request new password information for
2281 * the current network. This is normally called when the EAP method indicates
2282 * that the current password has expired and password change is required. The
2283 * request will be sent to monitor programs through the control interface.
2284 */
eap_sm_request_new_password(struct eap_sm * sm)2285 void eap_sm_request_new_password(struct eap_sm *sm)
2286 {
2287 eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
2288 }
2289
2290
2291 /**
2292 * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
2293 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2294 *
2295 * EAP methods can call this function to request SIM or smart card PIN
2296 * information for the current network. This is normally called when the PIN is
2297 * not included in the network configuration. The request will be sent to
2298 * monitor programs through the control interface.
2299 */
eap_sm_request_pin(struct eap_sm * sm)2300 void eap_sm_request_pin(struct eap_sm *sm)
2301 {
2302 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
2303 }
2304
2305
2306 /**
2307 * eap_sm_request_otp - Request one time password from user (ctrl_iface)
2308 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2309 * @msg: Message to be displayed to the user when asking for OTP
2310 * @msg_len: Length of the user displayable message
2311 *
2312 * EAP methods can call this function to request open time password (OTP) for
2313 * the current network. The request will be sent to monitor programs through
2314 * the control interface.
2315 */
eap_sm_request_otp(struct eap_sm * sm,const char * msg,size_t msg_len)2316 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
2317 {
2318 eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
2319 }
2320
2321
2322 /**
2323 * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
2324 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2325 *
2326 * EAP methods can call this function to request passphrase for a private key
2327 * for the current network. This is normally called when the passphrase is not
2328 * included in the network configuration. The request will be sent to monitor
2329 * programs through the control interface.
2330 */
eap_sm_request_passphrase(struct eap_sm * sm)2331 void eap_sm_request_passphrase(struct eap_sm *sm)
2332 {
2333 eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
2334 }
2335
2336
2337 /**
2338 * eap_sm_request_sim - Request external SIM processing
2339 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2340 * @req: EAP method specific request
2341 */
eap_sm_request_sim(struct eap_sm * sm,const char * req)2342 void eap_sm_request_sim(struct eap_sm *sm, const char *req)
2343 {
2344 eap_sm_request(sm, WPA_CTRL_REQ_SIM, req, os_strlen(req));
2345 }
2346
2347
2348 /**
2349 * eap_sm_notify_ctrl_attached - Notification of attached monitor
2350 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2351 *
2352 * Notify EAP state machines that a monitor was attached to the control
2353 * interface to trigger re-sending of pending requests for user input.
2354 */
eap_sm_notify_ctrl_attached(struct eap_sm * sm)2355 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
2356 {
2357 struct eap_peer_config *config = eap_get_config(sm);
2358
2359 if (config == NULL)
2360 return;
2361
2362 /* Re-send any pending requests for user data since a new control
2363 * interface was added. This handles cases where the EAP authentication
2364 * starts immediately after system startup when the user interface is
2365 * not yet running. */
2366 if (config->pending_req_identity)
2367 eap_sm_request_identity(sm);
2368 if (config->pending_req_password)
2369 eap_sm_request_password(sm);
2370 if (config->pending_req_new_password)
2371 eap_sm_request_new_password(sm);
2372 if (config->pending_req_otp)
2373 eap_sm_request_otp(sm, NULL, 0);
2374 if (config->pending_req_pin)
2375 eap_sm_request_pin(sm);
2376 if (config->pending_req_passphrase)
2377 eap_sm_request_passphrase(sm);
2378 }
2379
2380
eap_allowed_phase2_type(int vendor,int type)2381 static int eap_allowed_phase2_type(int vendor, int type)
2382 {
2383 if (vendor != EAP_VENDOR_IETF)
2384 return 0;
2385 return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
2386 type != EAP_TYPE_FAST;
2387 }
2388
2389
2390 /**
2391 * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
2392 * @name: EAP method name, e.g., MD5
2393 * @vendor: Buffer for returning EAP Vendor-Id
2394 * Returns: EAP method type or %EAP_TYPE_NONE if not found
2395 *
2396 * This function maps EAP type names into EAP type numbers that are allowed for
2397 * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
2398 * EAP-PEAP, EAP-TTLS, and EAP-FAST.
2399 */
eap_get_phase2_type(const char * name,int * vendor)2400 u32 eap_get_phase2_type(const char *name, int *vendor)
2401 {
2402 int v;
2403 u32 type = eap_peer_get_type(name, &v);
2404 if (eap_allowed_phase2_type(v, type)) {
2405 *vendor = v;
2406 return type;
2407 }
2408 *vendor = EAP_VENDOR_IETF;
2409 return EAP_TYPE_NONE;
2410 }
2411
2412
2413 /**
2414 * eap_get_phase2_types - Get list of allowed EAP phase 2 types
2415 * @config: Pointer to a network configuration
2416 * @count: Pointer to a variable to be filled with number of returned EAP types
2417 * Returns: Pointer to allocated type list or %NULL on failure
2418 *
2419 * This function generates an array of allowed EAP phase 2 (tunneled) types for
2420 * the given network configuration.
2421 */
eap_get_phase2_types(struct eap_peer_config * config,size_t * count)2422 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
2423 size_t *count)
2424 {
2425 struct eap_method_type *buf;
2426 u32 method;
2427 int vendor;
2428 size_t mcount;
2429 const struct eap_method *methods, *m;
2430
2431 methods = eap_peer_get_methods(&mcount);
2432 if (methods == NULL)
2433 return NULL;
2434 *count = 0;
2435 buf = os_malloc(mcount * sizeof(struct eap_method_type));
2436 if (buf == NULL)
2437 return NULL;
2438
2439 for (m = methods; m; m = m->next) {
2440 vendor = m->vendor;
2441 method = m->method;
2442 if (eap_allowed_phase2_type(vendor, method)) {
2443 if (vendor == EAP_VENDOR_IETF &&
2444 method == EAP_TYPE_TLS && config &&
2445 config->private_key2 == NULL)
2446 continue;
2447 buf[*count].vendor = vendor;
2448 buf[*count].method = method;
2449 (*count)++;
2450 }
2451 }
2452
2453 return buf;
2454 }
2455
2456
2457 /**
2458 * eap_set_fast_reauth - Update fast_reauth setting
2459 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2460 * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
2461 */
eap_set_fast_reauth(struct eap_sm * sm,int enabled)2462 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
2463 {
2464 sm->fast_reauth = enabled;
2465 }
2466
2467
2468 /**
2469 * eap_set_workaround - Update EAP workarounds setting
2470 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2471 * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
2472 */
eap_set_workaround(struct eap_sm * sm,unsigned int workaround)2473 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
2474 {
2475 sm->workaround = workaround;
2476 }
2477
2478
2479 /**
2480 * eap_get_config - Get current network configuration
2481 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2482 * Returns: Pointer to the current network configuration or %NULL if not found
2483 *
2484 * EAP peer methods should avoid using this function if they can use other
2485 * access functions, like eap_get_config_identity() and
2486 * eap_get_config_password(), that do not require direct access to
2487 * struct eap_peer_config.
2488 */
eap_get_config(struct eap_sm * sm)2489 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
2490 {
2491 return sm->eapol_cb->get_config(sm->eapol_ctx);
2492 }
2493
2494
2495 /**
2496 * eap_get_config_identity - Get identity from the network configuration
2497 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2498 * @len: Buffer for the length of the identity
2499 * Returns: Pointer to the identity or %NULL if not found
2500 */
eap_get_config_identity(struct eap_sm * sm,size_t * len)2501 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
2502 {
2503 struct eap_peer_config *config = eap_get_config(sm);
2504 if (config == NULL)
2505 return NULL;
2506 *len = config->identity_len;
2507 return config->identity;
2508 }
2509
2510
eap_get_ext_password(struct eap_sm * sm,struct eap_peer_config * config)2511 static int eap_get_ext_password(struct eap_sm *sm,
2512 struct eap_peer_config *config)
2513 {
2514 char *name;
2515
2516 if (config->password == NULL)
2517 return -1;
2518
2519 name = os_zalloc(config->password_len + 1);
2520 if (name == NULL)
2521 return -1;
2522 os_memcpy(name, config->password, config->password_len);
2523
2524 ext_password_free(sm->ext_pw_buf);
2525 sm->ext_pw_buf = ext_password_get(sm->ext_pw, name);
2526 os_free(name);
2527
2528 return sm->ext_pw_buf == NULL ? -1 : 0;
2529 }
2530
2531
2532 /**
2533 * eap_get_config_password - Get password from the network configuration
2534 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2535 * @len: Buffer for the length of the password
2536 * Returns: Pointer to the password or %NULL if not found
2537 */
eap_get_config_password(struct eap_sm * sm,size_t * len)2538 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
2539 {
2540 struct eap_peer_config *config = eap_get_config(sm);
2541 if (config == NULL)
2542 return NULL;
2543
2544 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2545 if (eap_get_ext_password(sm, config) < 0)
2546 return NULL;
2547 *len = wpabuf_len(sm->ext_pw_buf);
2548 return wpabuf_head(sm->ext_pw_buf);
2549 }
2550
2551 *len = config->password_len;
2552 return config->password;
2553 }
2554
2555
2556 /**
2557 * eap_get_config_password2 - Get password from the network configuration
2558 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2559 * @len: Buffer for the length of the password
2560 * @hash: Buffer for returning whether the password is stored as a
2561 * NtPasswordHash instead of plaintext password; can be %NULL if this
2562 * information is not needed
2563 * Returns: Pointer to the password or %NULL if not found
2564 */
eap_get_config_password2(struct eap_sm * sm,size_t * len,int * hash)2565 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
2566 {
2567 struct eap_peer_config *config = eap_get_config(sm);
2568 if (config == NULL)
2569 return NULL;
2570
2571 if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) {
2572 if (eap_get_ext_password(sm, config) < 0)
2573 return NULL;
2574 if (hash)
2575 *hash = 0;
2576 *len = wpabuf_len(sm->ext_pw_buf);
2577 return wpabuf_head(sm->ext_pw_buf);
2578 }
2579
2580 *len = config->password_len;
2581 if (hash)
2582 *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
2583 return config->password;
2584 }
2585
2586
2587 /**
2588 * eap_get_config_new_password - Get new password from network configuration
2589 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2590 * @len: Buffer for the length of the new password
2591 * Returns: Pointer to the new password or %NULL if not found
2592 */
eap_get_config_new_password(struct eap_sm * sm,size_t * len)2593 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
2594 {
2595 struct eap_peer_config *config = eap_get_config(sm);
2596 if (config == NULL)
2597 return NULL;
2598 *len = config->new_password_len;
2599 return config->new_password;
2600 }
2601
2602
2603 /**
2604 * eap_get_config_otp - Get one-time password from the network configuration
2605 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2606 * @len: Buffer for the length of the one-time password
2607 * Returns: Pointer to the one-time password or %NULL if not found
2608 */
eap_get_config_otp(struct eap_sm * sm,size_t * len)2609 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
2610 {
2611 struct eap_peer_config *config = eap_get_config(sm);
2612 if (config == NULL)
2613 return NULL;
2614 *len = config->otp_len;
2615 return config->otp;
2616 }
2617
2618
2619 /**
2620 * eap_clear_config_otp - Clear used one-time password
2621 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2622 *
2623 * This function clears a used one-time password (OTP) from the current network
2624 * configuration. This should be called when the OTP has been used and is not
2625 * needed anymore.
2626 */
eap_clear_config_otp(struct eap_sm * sm)2627 void eap_clear_config_otp(struct eap_sm *sm)
2628 {
2629 struct eap_peer_config *config = eap_get_config(sm);
2630 if (config == NULL)
2631 return;
2632 os_memset(config->otp, 0, config->otp_len);
2633 os_free(config->otp);
2634 config->otp = NULL;
2635 config->otp_len = 0;
2636 }
2637
2638
2639 /**
2640 * eap_get_config_phase1 - Get phase1 data from the network configuration
2641 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2642 * Returns: Pointer to the phase1 data or %NULL if not found
2643 */
eap_get_config_phase1(struct eap_sm * sm)2644 const char * eap_get_config_phase1(struct eap_sm *sm)
2645 {
2646 struct eap_peer_config *config = eap_get_config(sm);
2647 if (config == NULL)
2648 return NULL;
2649 return config->phase1;
2650 }
2651
2652
2653 /**
2654 * eap_get_config_phase2 - Get phase2 data from the network configuration
2655 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2656 * Returns: Pointer to the phase1 data or %NULL if not found
2657 */
eap_get_config_phase2(struct eap_sm * sm)2658 const char * eap_get_config_phase2(struct eap_sm *sm)
2659 {
2660 struct eap_peer_config *config = eap_get_config(sm);
2661 if (config == NULL)
2662 return NULL;
2663 return config->phase2;
2664 }
2665
2666
eap_get_config_fragment_size(struct eap_sm * sm)2667 int eap_get_config_fragment_size(struct eap_sm *sm)
2668 {
2669 struct eap_peer_config *config = eap_get_config(sm);
2670 if (config == NULL)
2671 return -1;
2672 return config->fragment_size;
2673 }
2674
2675
2676 /**
2677 * eap_key_available - Get key availability (eapKeyAvailable variable)
2678 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2679 * Returns: 1 if EAP keying material is available, 0 if not
2680 */
eap_key_available(struct eap_sm * sm)2681 int eap_key_available(struct eap_sm *sm)
2682 {
2683 return sm ? sm->eapKeyAvailable : 0;
2684 }
2685
2686
2687 /**
2688 * eap_notify_success - Notify EAP state machine about external success trigger
2689 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2690 *
2691 * This function is called when external event, e.g., successful completion of
2692 * WPA-PSK key handshake, is indicating that EAP state machine should move to
2693 * success state. This is mainly used with security modes that do not use EAP
2694 * state machine (e.g., WPA-PSK).
2695 */
eap_notify_success(struct eap_sm * sm)2696 void eap_notify_success(struct eap_sm *sm)
2697 {
2698 if (sm) {
2699 sm->decision = DECISION_COND_SUCC;
2700 sm->EAP_state = EAP_SUCCESS;
2701 }
2702 }
2703
2704
2705 /**
2706 * eap_notify_lower_layer_success - Notification of lower layer success
2707 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2708 *
2709 * Notify EAP state machines that a lower layer has detected a successful
2710 * authentication. This is used to recover from dropped EAP-Success messages.
2711 */
eap_notify_lower_layer_success(struct eap_sm * sm)2712 void eap_notify_lower_layer_success(struct eap_sm *sm)
2713 {
2714 if (sm == NULL)
2715 return;
2716
2717 if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
2718 sm->decision == DECISION_FAIL ||
2719 (sm->methodState != METHOD_MAY_CONT &&
2720 sm->methodState != METHOD_DONE))
2721 return;
2722
2723 if (sm->eapKeyData != NULL)
2724 sm->eapKeyAvailable = TRUE;
2725 eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
2726 wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
2727 "EAP authentication completed successfully (based on lower "
2728 "layer success)");
2729 }
2730
2731
2732 /**
2733 * eap_get_eapSessionId - Get Session-Id from EAP state machine
2734 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2735 * @len: Pointer to variable that will be set to number of bytes in the session
2736 * Returns: Pointer to the EAP Session-Id or %NULL on failure
2737 *
2738 * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available
2739 * only after a successful authentication. EAP state machine continues to manage
2740 * the Session-Id and the caller must not change or free the returned data.
2741 */
eap_get_eapSessionId(struct eap_sm * sm,size_t * len)2742 const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len)
2743 {
2744 if (sm == NULL || sm->eapSessionId == NULL) {
2745 *len = 0;
2746 return NULL;
2747 }
2748
2749 *len = sm->eapSessionIdLen;
2750 return sm->eapSessionId;
2751 }
2752
2753
2754 /**
2755 * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
2756 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2757 * @len: Pointer to variable that will be set to number of bytes in the key
2758 * Returns: Pointer to the EAP keying data or %NULL on failure
2759 *
2760 * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
2761 * key is available only after a successful authentication. EAP state machine
2762 * continues to manage the key data and the caller must not change or free the
2763 * returned data.
2764 */
eap_get_eapKeyData(struct eap_sm * sm,size_t * len)2765 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
2766 {
2767 if (sm == NULL || sm->eapKeyData == NULL) {
2768 *len = 0;
2769 return NULL;
2770 }
2771
2772 *len = sm->eapKeyDataLen;
2773 return sm->eapKeyData;
2774 }
2775
2776
2777 /**
2778 * eap_get_eapKeyData - Get EAP response data
2779 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2780 * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
2781 *
2782 * Fetch EAP response (eapRespData) from the EAP state machine. This data is
2783 * available when EAP state machine has processed an incoming EAP request. The
2784 * EAP state machine does not maintain a reference to the response after this
2785 * function is called and the caller is responsible for freeing the data.
2786 */
eap_get_eapRespData(struct eap_sm * sm)2787 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
2788 {
2789 struct wpabuf *resp;
2790
2791 if (sm == NULL || sm->eapRespData == NULL)
2792 return NULL;
2793
2794 resp = sm->eapRespData;
2795 sm->eapRespData = NULL;
2796
2797 return resp;
2798 }
2799
2800
2801 /**
2802 * eap_sm_register_scard_ctx - Notification of smart card context
2803 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2804 * @ctx: Context data for smart card operations
2805 *
2806 * Notify EAP state machines of context data for smart card operations. This
2807 * context data will be used as a parameter for scard_*() functions.
2808 */
eap_register_scard_ctx(struct eap_sm * sm,void * ctx)2809 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
2810 {
2811 if (sm)
2812 sm->scard_ctx = ctx;
2813 }
2814
2815
2816 /**
2817 * eap_set_config_blob - Set or add a named configuration blob
2818 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2819 * @blob: New value for the blob
2820 *
2821 * Adds a new configuration blob or replaces the current value of an existing
2822 * blob.
2823 */
eap_set_config_blob(struct eap_sm * sm,struct wpa_config_blob * blob)2824 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
2825 {
2826 #ifndef CONFIG_NO_CONFIG_BLOBS
2827 sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
2828 #endif /* CONFIG_NO_CONFIG_BLOBS */
2829 }
2830
2831
2832 /**
2833 * eap_get_config_blob - Get a named configuration blob
2834 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2835 * @name: Name of the blob
2836 * Returns: Pointer to blob data or %NULL if not found
2837 */
eap_get_config_blob(struct eap_sm * sm,const char * name)2838 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
2839 const char *name)
2840 {
2841 #ifndef CONFIG_NO_CONFIG_BLOBS
2842 return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
2843 #else /* CONFIG_NO_CONFIG_BLOBS */
2844 return NULL;
2845 #endif /* CONFIG_NO_CONFIG_BLOBS */
2846 }
2847
2848
2849 /**
2850 * eap_set_force_disabled - Set force_disabled flag
2851 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2852 * @disabled: 1 = EAP disabled, 0 = EAP enabled
2853 *
2854 * This function is used to force EAP state machine to be disabled when it is
2855 * not in use (e.g., with WPA-PSK or plaintext connections).
2856 */
eap_set_force_disabled(struct eap_sm * sm,int disabled)2857 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
2858 {
2859 sm->force_disabled = disabled;
2860 }
2861
2862
2863 /**
2864 * eap_set_external_sim - Set external_sim flag
2865 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2866 * @external_sim: Whether external SIM/USIM processing is used
2867 */
eap_set_external_sim(struct eap_sm * sm,int external_sim)2868 void eap_set_external_sim(struct eap_sm *sm, int external_sim)
2869 {
2870 sm->external_sim = external_sim;
2871 }
2872
2873
2874 /**
2875 * eap_notify_pending - Notify that EAP method is ready to re-process a request
2876 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2877 *
2878 * An EAP method can perform a pending operation (e.g., to get a response from
2879 * an external process). Once the response is available, this function can be
2880 * used to request EAPOL state machine to retry delivering the previously
2881 * received (and still unanswered) EAP request to EAP state machine.
2882 */
eap_notify_pending(struct eap_sm * sm)2883 void eap_notify_pending(struct eap_sm *sm)
2884 {
2885 sm->eapol_cb->notify_pending(sm->eapol_ctx);
2886 }
2887
2888
2889 /**
2890 * eap_invalidate_cached_session - Mark cached session data invalid
2891 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2892 */
eap_invalidate_cached_session(struct eap_sm * sm)2893 void eap_invalidate_cached_session(struct eap_sm *sm)
2894 {
2895 if (sm)
2896 eap_deinit_prev_method(sm, "invalidate");
2897 }
2898
2899
eap_is_wps_pbc_enrollee(struct eap_peer_config * conf)2900 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
2901 {
2902 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2903 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2904 return 0; /* Not a WPS Enrollee */
2905
2906 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
2907 return 0; /* Not using PBC */
2908
2909 return 1;
2910 }
2911
2912
eap_is_wps_pin_enrollee(struct eap_peer_config * conf)2913 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
2914 {
2915 if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
2916 os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
2917 return 0; /* Not a WPS Enrollee */
2918
2919 if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
2920 return 0; /* Not using PIN */
2921
2922 return 1;
2923 }
2924
2925
eap_sm_set_ext_pw_ctx(struct eap_sm * sm,struct ext_password_data * ext)2926 void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext)
2927 {
2928 ext_password_free(sm->ext_pw_buf);
2929 sm->ext_pw_buf = NULL;
2930 sm->ext_pw = ext;
2931 }
2932
2933
2934 /**
2935 * eap_set_anon_id - Set or add anonymous identity
2936 * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
2937 * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear
2938 * @len: Length of anonymous identity in octets
2939 */
eap_set_anon_id(struct eap_sm * sm,const u8 * id,size_t len)2940 void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len)
2941 {
2942 if (sm->eapol_cb->set_anon_id)
2943 sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len);
2944 }
2945
2946
eap_peer_was_failure_expected(struct eap_sm * sm)2947 int eap_peer_was_failure_expected(struct eap_sm *sm)
2948 {
2949 return sm->expected_failure;
2950 }
2951