1 
2 /*
3  * Copyright 2006 The Android Open Source Project
4  *
5  * Use of this source code is governed by a BSD-style license that can be
6  * found in the LICENSE file.
7  */
8 
9 
10 #ifndef SkRegionPriv_DEFINED
11 #define SkRegionPriv_DEFINED
12 
13 #include "SkRegion.h"
14 #include "SkThread.h"
15 
16 #define assert_sentinel(value, isSentinel) \
17     SkASSERT(((value) == SkRegion::kRunTypeSentinel) == isSentinel)
18 
19 //SkDEBUGCODE(extern int32_t gRgnAllocCounter;)
20 
21 #ifdef SK_DEBUG
22 // Given the first interval (just past the interval-count), compute the
23 // interval count, by search for the x-sentinel
24 //
compute_intervalcount(const SkRegion::RunType runs[])25 static int compute_intervalcount(const SkRegion::RunType runs[]) {
26     const SkRegion::RunType* curr = runs;
27     while (*curr < SkRegion::kRunTypeSentinel) {
28         SkASSERT(curr[0] < curr[1]);
29         SkASSERT(curr[1] < SkRegion::kRunTypeSentinel);
30         curr += 2;
31     }
32     return SkToInt((curr - runs) >> 1);
33 }
34 #endif
35 
36 struct SkRegion::RunHead {
37 private:
38 
39 public:
40     int32_t fRefCnt;
41     int32_t fRunCount;
42 
43     /**
44      *  Number of spans with different Y values. This does not count the initial
45      *  Top value, nor does it count the final Y-Sentinel value. In the logical
46      *  case of a rectangle, this would return 1, and an empty region would
47      *  return 0.
48      */
getYSpanCountRunHead49     int getYSpanCount() const {
50         return fYSpanCount;
51     }
52 
53     /**
54      *  Number of intervals in the entire region. This equals the number of
55      *  rects that would be returned by the Iterator. In the logical case of
56      *  a rect, this would return 1, and an empty region would return 0.
57      */
getIntervalCountRunHead58     int getIntervalCount() const {
59         return fIntervalCount;
60     }
61 
AllocRunHead62     static RunHead* Alloc(int count) {
63         //SkDEBUGCODE(sk_atomic_inc(&gRgnAllocCounter);)
64         //SkDEBUGF(("************** gRgnAllocCounter::alloc %d\n", gRgnAllocCounter));
65 
66         SkASSERT(count >= SkRegion::kRectRegionRuns);
67 
68         const int64_t size = sk_64_mul(count, sizeof(RunType)) + sizeof(RunHead);
69         if (count < 0 || !sk_64_isS32(size)) { SK_CRASH(); }
70 
71         RunHead* head = (RunHead*)sk_malloc_throw(size);
72         head->fRefCnt = 1;
73         head->fRunCount = count;
74         // these must be filled in later, otherwise we will be invalid
75         head->fYSpanCount = 0;
76         head->fIntervalCount = 0;
77         return head;
78     }
79 
AllocRunHead80     static RunHead* Alloc(int count, int yspancount, int intervalCount) {
81         SkASSERT(yspancount > 0);
82         SkASSERT(intervalCount > 1);
83 
84         RunHead* head = Alloc(count);
85         head->fYSpanCount = yspancount;
86         head->fIntervalCount = intervalCount;
87         return head;
88     }
89 
writable_runsRunHead90     SkRegion::RunType* writable_runs() {
91         SkASSERT(fRefCnt == 1);
92         return (SkRegion::RunType*)(this + 1);
93     }
94 
readonly_runsRunHead95     const SkRegion::RunType* readonly_runs() const {
96         return (const SkRegion::RunType*)(this + 1);
97     }
98 
ensureWritableRunHead99     RunHead* ensureWritable() {
100         RunHead* writable = this;
101         if (fRefCnt > 1) {
102             // We need to alloc & copy the current region before we call
103             // sk_atomic_dec because it could be freed in the meantime,
104             // otherwise.
105             writable = Alloc(fRunCount, fYSpanCount, fIntervalCount);
106             memcpy(writable->writable_runs(), this->readonly_runs(),
107                    fRunCount * sizeof(RunType));
108 
109             // fRefCount might have changed since we last checked.
110             // If we own the last reference at this point, we need to
111             // free the memory.
112             if (sk_atomic_dec(&fRefCnt) == 1) {
113                 sk_free(this);
114             }
115         }
116         return writable;
117     }
118 
119     /**
120      *  Given a scanline (including its Bottom value at runs[0]), return the next
121      *  scanline. Asserts that there is one (i.e. runs[0] < Sentinel)
122      */
SkipEntireScanlineRunHead123     static SkRegion::RunType* SkipEntireScanline(const SkRegion::RunType runs[]) {
124         // we are not the Y Sentinel
125         SkASSERT(runs[0] < SkRegion::kRunTypeSentinel);
126 
127         const int intervals = runs[1];
128         SkASSERT(runs[2 + intervals * 2] == SkRegion::kRunTypeSentinel);
129 #ifdef SK_DEBUG
130         {
131             int n = compute_intervalcount(&runs[2]);
132             SkASSERT(n == intervals);
133         }
134 #endif
135 
136         // skip the entire line [B N [L R] S]
137         runs += 1 + 1 + intervals * 2 + 1;
138         return const_cast<SkRegion::RunType*>(runs);
139     }
140 
141 
142     /**
143      *  Return the scanline that contains the Y value. This requires that the Y
144      *  value is already known to be contained within the bounds of the region,
145      *  and so this routine never returns NULL.
146      *
147      *  It returns the beginning of the scanline, starting with its Bottom value.
148      */
findScanlineRunHead149     SkRegion::RunType* findScanline(int y) const {
150         const RunType* runs = this->readonly_runs();
151 
152         // if the top-check fails, we didn't do a quick check on the bounds
153         SkASSERT(y >= runs[0]);
154 
155         runs += 1;  // skip top-Y
156         for (;;) {
157             int bottom = runs[0];
158             // If we hit this, we've walked off the region, and our bounds check
159             // failed.
160             SkASSERT(bottom < SkRegion::kRunTypeSentinel);
161             if (y < bottom) {
162                 break;
163             }
164             runs = SkipEntireScanline(runs);
165         }
166         return const_cast<SkRegion::RunType*>(runs);
167     }
168 
169     // Copy src runs into us, computing interval counts and bounds along the way
computeRunBoundsRunHead170     void computeRunBounds(SkIRect* bounds) {
171         RunType* runs = this->writable_runs();
172         bounds->fTop = *runs++;
173 
174         int bot;
175         int ySpanCount = 0;
176         int intervalCount = 0;
177         int left = SK_MaxS32;
178         int rite = SK_MinS32;
179 
180         do {
181             bot = *runs++;
182             SkASSERT(bot < SkRegion::kRunTypeSentinel);
183             ySpanCount += 1;
184 
185             const int intervals = *runs++;
186             SkASSERT(intervals >= 0);
187             SkASSERT(intervals < SkRegion::kRunTypeSentinel);
188 
189             if (intervals > 0) {
190 #ifdef SK_DEBUG
191                 {
192                     int n = compute_intervalcount(runs);
193                     SkASSERT(n == intervals);
194                 }
195 #endif
196                 RunType L = runs[0];
197                 SkASSERT(L < SkRegion::kRunTypeSentinel);
198                 if (left > L) {
199                     left = L;
200                 }
201 
202                 runs += intervals * 2;
203                 RunType R = runs[-1];
204                 SkASSERT(R < SkRegion::kRunTypeSentinel);
205                 if (rite < R) {
206                     rite = R;
207                 }
208 
209                 intervalCount += intervals;
210             }
211             SkASSERT(SkRegion::kRunTypeSentinel == *runs);
212             runs += 1;  // skip x-sentinel
213 
214             // test Y-sentinel
215         } while (SkRegion::kRunTypeSentinel > *runs);
216 
217 #ifdef SK_DEBUG
218         // +1 to skip the last Y-sentinel
219         int runCount = SkToInt(runs - this->writable_runs() + 1);
220         SkASSERT(runCount == fRunCount);
221 #endif
222 
223         fYSpanCount = ySpanCount;
224         fIntervalCount = intervalCount;
225 
226         bounds->fLeft = left;
227         bounds->fRight = rite;
228         bounds->fBottom = bot;
229     }
230 
231 private:
232     int32_t fYSpanCount;
233     int32_t fIntervalCount;
234 };
235 
236 #endif
237