1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56
57 struct perf_callchain_entry {
58 __u64 nr;
59 __u64 ip[PERF_MAX_STACK_DEPTH];
60 };
61
62 struct perf_raw_record {
63 u32 size;
64 void *data;
65 };
66
67 /*
68 * branch stack layout:
69 * nr: number of taken branches stored in entries[]
70 *
71 * Note that nr can vary from sample to sample
72 * branches (to, from) are stored from most recent
73 * to least recent, i.e., entries[0] contains the most
74 * recent branch.
75 */
76 struct perf_branch_stack {
77 __u64 nr;
78 struct perf_branch_entry entries[0];
79 };
80
81 struct perf_regs_user {
82 __u64 abi;
83 struct pt_regs *regs;
84 };
85
86 struct task_struct;
87
88 /*
89 * extra PMU register associated with an event
90 */
91 struct hw_perf_event_extra {
92 u64 config; /* register value */
93 unsigned int reg; /* register address or index */
94 int alloc; /* extra register already allocated */
95 int idx; /* index in shared_regs->regs[] */
96 };
97
98 struct event_constraint;
99
100 /**
101 * struct hw_perf_event - performance event hardware details:
102 */
103 struct hw_perf_event {
104 #ifdef CONFIG_PERF_EVENTS
105 union {
106 struct { /* hardware */
107 u64 config;
108 u64 last_tag;
109 unsigned long config_base;
110 unsigned long event_base;
111 int event_base_rdpmc;
112 int idx;
113 int last_cpu;
114 int flags;
115
116 struct hw_perf_event_extra extra_reg;
117 struct hw_perf_event_extra branch_reg;
118
119 struct event_constraint *constraint;
120 };
121 struct { /* software */
122 struct hrtimer hrtimer;
123 };
124 struct { /* tracepoint */
125 struct task_struct *tp_target;
126 /* for tp_event->class */
127 struct list_head tp_list;
128 };
129 #ifdef CONFIG_HAVE_HW_BREAKPOINT
130 struct { /* breakpoint */
131 /*
132 * Crufty hack to avoid the chicken and egg
133 * problem hw_breakpoint has with context
134 * creation and event initalization.
135 */
136 struct task_struct *bp_target;
137 struct arch_hw_breakpoint info;
138 struct list_head bp_list;
139 };
140 #endif
141 };
142 int state;
143 local64_t prev_count;
144 u64 sample_period;
145 u64 last_period;
146 local64_t period_left;
147 u64 interrupts_seq;
148 u64 interrupts;
149
150 u64 freq_time_stamp;
151 u64 freq_count_stamp;
152 #endif
153 };
154
155 /*
156 * hw_perf_event::state flags
157 */
158 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
159 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
160 #define PERF_HES_ARCH 0x04
161
162 struct perf_event;
163
164 /*
165 * Common implementation detail of pmu::{start,commit,cancel}_txn
166 */
167 #define PERF_EVENT_TXN 0x1
168
169 /**
170 * struct pmu - generic performance monitoring unit
171 */
172 struct pmu {
173 struct list_head entry;
174
175 struct device *dev;
176 const struct attribute_group **attr_groups;
177 const char *name;
178 int type;
179
180 int * __percpu pmu_disable_count;
181 struct perf_cpu_context * __percpu pmu_cpu_context;
182 int task_ctx_nr;
183 int hrtimer_interval_ms;
184
185 /*
186 * Fully disable/enable this PMU, can be used to protect from the PMI
187 * as well as for lazy/batch writing of the MSRs.
188 */
189 void (*pmu_enable) (struct pmu *pmu); /* optional */
190 void (*pmu_disable) (struct pmu *pmu); /* optional */
191
192 /*
193 * Try and initialize the event for this PMU.
194 * Should return -ENOENT when the @event doesn't match this PMU.
195 */
196 int (*event_init) (struct perf_event *event);
197
198 #define PERF_EF_START 0x01 /* start the counter when adding */
199 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
200 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
201
202 /*
203 * Adds/Removes a counter to/from the PMU, can be done inside
204 * a transaction, see the ->*_txn() methods.
205 */
206 int (*add) (struct perf_event *event, int flags);
207 void (*del) (struct perf_event *event, int flags);
208
209 /*
210 * Starts/Stops a counter present on the PMU. The PMI handler
211 * should stop the counter when perf_event_overflow() returns
212 * !0. ->start() will be used to continue.
213 */
214 void (*start) (struct perf_event *event, int flags);
215 void (*stop) (struct perf_event *event, int flags);
216
217 /*
218 * Updates the counter value of the event.
219 */
220 void (*read) (struct perf_event *event);
221
222 /*
223 * Group events scheduling is treated as a transaction, add
224 * group events as a whole and perform one schedulability test.
225 * If the test fails, roll back the whole group
226 *
227 * Start the transaction, after this ->add() doesn't need to
228 * do schedulability tests.
229 */
230 void (*start_txn) (struct pmu *pmu); /* optional */
231 /*
232 * If ->start_txn() disabled the ->add() schedulability test
233 * then ->commit_txn() is required to perform one. On success
234 * the transaction is closed. On error the transaction is kept
235 * open until ->cancel_txn() is called.
236 */
237 int (*commit_txn) (struct pmu *pmu); /* optional */
238 /*
239 * Will cancel the transaction, assumes ->del() is called
240 * for each successful ->add() during the transaction.
241 */
242 void (*cancel_txn) (struct pmu *pmu); /* optional */
243
244 /*
245 * Will return the value for perf_event_mmap_page::index for this event,
246 * if no implementation is provided it will default to: event->hw.idx + 1.
247 */
248 int (*event_idx) (struct perf_event *event); /*optional */
249
250 /*
251 * flush branch stack on context-switches (needed in cpu-wide mode)
252 */
253 void (*flush_branch_stack) (void);
254 };
255
256 /**
257 * enum perf_event_active_state - the states of a event
258 */
259 enum perf_event_active_state {
260 PERF_EVENT_STATE_ERROR = -2,
261 PERF_EVENT_STATE_OFF = -1,
262 PERF_EVENT_STATE_INACTIVE = 0,
263 PERF_EVENT_STATE_ACTIVE = 1,
264 };
265
266 struct file;
267 struct perf_sample_data;
268
269 typedef void (*perf_overflow_handler_t)(struct perf_event *,
270 struct perf_sample_data *,
271 struct pt_regs *regs);
272
273 enum perf_group_flag {
274 PERF_GROUP_SOFTWARE = 0x1,
275 };
276
277 #define SWEVENT_HLIST_BITS 8
278 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
279
280 struct swevent_hlist {
281 struct hlist_head heads[SWEVENT_HLIST_SIZE];
282 struct rcu_head rcu_head;
283 };
284
285 #define PERF_ATTACH_CONTEXT 0x01
286 #define PERF_ATTACH_GROUP 0x02
287 #define PERF_ATTACH_TASK 0x04
288
289 struct perf_cgroup;
290 struct ring_buffer;
291
292 /**
293 * struct perf_event - performance event kernel representation:
294 */
295 struct perf_event {
296 #ifdef CONFIG_PERF_EVENTS
297 /*
298 * entry onto perf_event_context::event_list;
299 * modifications require ctx->lock
300 * RCU safe iterations.
301 */
302 struct list_head event_entry;
303
304 /*
305 * XXX: group_entry and sibling_list should be mutually exclusive;
306 * either you're a sibling on a group, or you're the group leader.
307 * Rework the code to always use the same list element.
308 *
309 * Locked for modification by both ctx->mutex and ctx->lock; holding
310 * either sufficies for read.
311 */
312 struct list_head group_entry;
313 struct list_head sibling_list;
314
315 /*
316 * We need storage to track the entries in perf_pmu_migrate_context; we
317 * cannot use the event_entry because of RCU and we want to keep the
318 * group in tact which avoids us using the other two entries.
319 */
320 struct list_head migrate_entry;
321
322 struct hlist_node hlist_entry;
323 int nr_siblings;
324 int group_flags;
325 struct perf_event *group_leader;
326 struct pmu *pmu;
327
328 enum perf_event_active_state state;
329 unsigned int attach_state;
330 local64_t count;
331 atomic64_t child_count;
332
333 /*
334 * These are the total time in nanoseconds that the event
335 * has been enabled (i.e. eligible to run, and the task has
336 * been scheduled in, if this is a per-task event)
337 * and running (scheduled onto the CPU), respectively.
338 *
339 * They are computed from tstamp_enabled, tstamp_running and
340 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
341 */
342 u64 total_time_enabled;
343 u64 total_time_running;
344
345 /*
346 * These are timestamps used for computing total_time_enabled
347 * and total_time_running when the event is in INACTIVE or
348 * ACTIVE state, measured in nanoseconds from an arbitrary point
349 * in time.
350 * tstamp_enabled: the notional time when the event was enabled
351 * tstamp_running: the notional time when the event was scheduled on
352 * tstamp_stopped: in INACTIVE state, the notional time when the
353 * event was scheduled off.
354 */
355 u64 tstamp_enabled;
356 u64 tstamp_running;
357 u64 tstamp_stopped;
358
359 /*
360 * timestamp shadows the actual context timing but it can
361 * be safely used in NMI interrupt context. It reflects the
362 * context time as it was when the event was last scheduled in.
363 *
364 * ctx_time already accounts for ctx->timestamp. Therefore to
365 * compute ctx_time for a sample, simply add perf_clock().
366 */
367 u64 shadow_ctx_time;
368
369 struct perf_event_attr attr;
370 u16 header_size;
371 u16 id_header_size;
372 u16 read_size;
373 struct hw_perf_event hw;
374
375 struct perf_event_context *ctx;
376 atomic_long_t refcount;
377
378 /*
379 * These accumulate total time (in nanoseconds) that children
380 * events have been enabled and running, respectively.
381 */
382 atomic64_t child_total_time_enabled;
383 atomic64_t child_total_time_running;
384
385 /*
386 * Protect attach/detach and child_list:
387 */
388 struct mutex child_mutex;
389 struct list_head child_list;
390 struct perf_event *parent;
391
392 int oncpu;
393 int cpu;
394
395 struct list_head owner_entry;
396 struct task_struct *owner;
397
398 /* mmap bits */
399 struct mutex mmap_mutex;
400 atomic_t mmap_count;
401
402 struct ring_buffer *rb;
403 struct list_head rb_entry;
404
405 /* poll related */
406 wait_queue_head_t waitq;
407 struct fasync_struct *fasync;
408
409 /* delayed work for NMIs and such */
410 int pending_wakeup;
411 int pending_kill;
412 int pending_disable;
413 struct irq_work pending;
414
415 atomic_t event_limit;
416
417 void (*destroy)(struct perf_event *);
418 struct rcu_head rcu_head;
419
420 struct pid_namespace *ns;
421 u64 id;
422
423 perf_overflow_handler_t overflow_handler;
424 void *overflow_handler_context;
425
426 #ifdef CONFIG_EVENT_TRACING
427 struct ftrace_event_call *tp_event;
428 struct event_filter *filter;
429 #ifdef CONFIG_FUNCTION_TRACER
430 struct ftrace_ops ftrace_ops;
431 #endif
432 #endif
433
434 #ifdef CONFIG_CGROUP_PERF
435 struct perf_cgroup *cgrp; /* cgroup event is attach to */
436 int cgrp_defer_enabled;
437 #endif
438
439 #endif /* CONFIG_PERF_EVENTS */
440 };
441
442 enum perf_event_context_type {
443 task_context,
444 cpu_context,
445 };
446
447 /**
448 * struct perf_event_context - event context structure
449 *
450 * Used as a container for task events and CPU events as well:
451 */
452 struct perf_event_context {
453 struct pmu *pmu;
454 enum perf_event_context_type type;
455 /*
456 * Protect the states of the events in the list,
457 * nr_active, and the list:
458 */
459 raw_spinlock_t lock;
460 /*
461 * Protect the list of events. Locking either mutex or lock
462 * is sufficient to ensure the list doesn't change; to change
463 * the list you need to lock both the mutex and the spinlock.
464 */
465 struct mutex mutex;
466
467 struct list_head pinned_groups;
468 struct list_head flexible_groups;
469 struct list_head event_list;
470 int nr_events;
471 int nr_active;
472 int is_active;
473 int nr_stat;
474 int nr_freq;
475 int rotate_disable;
476 atomic_t refcount;
477 struct task_struct *task;
478
479 /*
480 * Context clock, runs when context enabled.
481 */
482 u64 time;
483 u64 timestamp;
484
485 /*
486 * These fields let us detect when two contexts have both
487 * been cloned (inherited) from a common ancestor.
488 */
489 struct perf_event_context *parent_ctx;
490 u64 parent_gen;
491 u64 generation;
492 int pin_count;
493 int nr_cgroups; /* cgroup evts */
494 int nr_branch_stack; /* branch_stack evt */
495 struct rcu_head rcu_head;
496 };
497
498 /*
499 * Number of contexts where an event can trigger:
500 * task, softirq, hardirq, nmi.
501 */
502 #define PERF_NR_CONTEXTS 4
503
504 /**
505 * struct perf_event_cpu_context - per cpu event context structure
506 */
507 struct perf_cpu_context {
508 struct perf_event_context ctx;
509 struct perf_event_context *task_ctx;
510 int active_oncpu;
511 int exclusive;
512 struct hrtimer hrtimer;
513 ktime_t hrtimer_interval;
514 struct list_head rotation_list;
515 struct pmu *unique_pmu;
516 struct perf_cgroup *cgrp;
517 };
518
519 struct perf_output_handle {
520 struct perf_event *event;
521 struct ring_buffer *rb;
522 unsigned long wakeup;
523 unsigned long size;
524 void *addr;
525 int page;
526 };
527
528 #ifdef CONFIG_PERF_EVENTS
529
530 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
531 extern void perf_pmu_unregister(struct pmu *pmu);
532
533 extern int perf_num_counters(void);
534 extern const char *perf_pmu_name(void);
535 extern void __perf_event_task_sched_in(struct task_struct *prev,
536 struct task_struct *task);
537 extern void __perf_event_task_sched_out(struct task_struct *prev,
538 struct task_struct *next);
539 extern int perf_event_init_task(struct task_struct *child);
540 extern void perf_event_exit_task(struct task_struct *child);
541 extern void perf_event_free_task(struct task_struct *task);
542 extern void perf_event_delayed_put(struct task_struct *task);
543 extern void perf_event_print_debug(void);
544 extern void perf_pmu_disable(struct pmu *pmu);
545 extern void perf_pmu_enable(struct pmu *pmu);
546 extern int perf_event_task_disable(void);
547 extern int perf_event_task_enable(void);
548 extern int perf_event_refresh(struct perf_event *event, int refresh);
549 extern void perf_event_update_userpage(struct perf_event *event);
550 extern int perf_event_release_kernel(struct perf_event *event);
551 extern struct perf_event *
552 perf_event_create_kernel_counter(struct perf_event_attr *attr,
553 int cpu,
554 struct task_struct *task,
555 perf_overflow_handler_t callback,
556 void *context);
557 extern void perf_pmu_migrate_context(struct pmu *pmu,
558 int src_cpu, int dst_cpu);
559 extern u64 perf_event_read_value(struct perf_event *event,
560 u64 *enabled, u64 *running);
561
562
563 struct perf_sample_data {
564 u64 type;
565
566 u64 ip;
567 struct {
568 u32 pid;
569 u32 tid;
570 } tid_entry;
571 u64 time;
572 u64 addr;
573 u64 id;
574 u64 stream_id;
575 struct {
576 u32 cpu;
577 u32 reserved;
578 } cpu_entry;
579 u64 period;
580 union perf_mem_data_src data_src;
581 struct perf_callchain_entry *callchain;
582 struct perf_raw_record *raw;
583 struct perf_branch_stack *br_stack;
584 struct perf_regs_user regs_user;
585 u64 stack_user_size;
586 u64 weight;
587 };
588
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)589 static inline void perf_sample_data_init(struct perf_sample_data *data,
590 u64 addr, u64 period)
591 {
592 /* remaining struct members initialized in perf_prepare_sample() */
593 data->addr = addr;
594 data->raw = NULL;
595 data->br_stack = NULL;
596 data->period = period;
597 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
598 data->regs_user.regs = NULL;
599 data->stack_user_size = 0;
600 data->weight = 0;
601 data->data_src.val = 0;
602 }
603
604 extern void perf_output_sample(struct perf_output_handle *handle,
605 struct perf_event_header *header,
606 struct perf_sample_data *data,
607 struct perf_event *event);
608 extern void perf_prepare_sample(struct perf_event_header *header,
609 struct perf_sample_data *data,
610 struct perf_event *event,
611 struct pt_regs *regs);
612
613 extern int perf_event_overflow(struct perf_event *event,
614 struct perf_sample_data *data,
615 struct pt_regs *regs);
616
is_sampling_event(struct perf_event * event)617 static inline bool is_sampling_event(struct perf_event *event)
618 {
619 return event->attr.sample_period != 0;
620 }
621
622 /*
623 * Return 1 for a software event, 0 for a hardware event
624 */
is_software_event(struct perf_event * event)625 static inline int is_software_event(struct perf_event *event)
626 {
627 return event->pmu->task_ctx_nr == perf_sw_context;
628 }
629
630 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
631
632 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
633
634 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)635 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
636 #endif
637
638 /*
639 * Take a snapshot of the regs. Skip ip and frame pointer to
640 * the nth caller. We only need a few of the regs:
641 * - ip for PERF_SAMPLE_IP
642 * - cs for user_mode() tests
643 * - bp for callchains
644 * - eflags, for future purposes, just in case
645 */
perf_fetch_caller_regs(struct pt_regs * regs)646 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
647 {
648 memset(regs, 0, sizeof(*regs));
649
650 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
651 }
652
653 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)654 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
655 {
656 struct pt_regs hot_regs;
657
658 if (static_key_false(&perf_swevent_enabled[event_id])) {
659 if (!regs) {
660 perf_fetch_caller_regs(&hot_regs);
661 regs = &hot_regs;
662 }
663 __perf_sw_event(event_id, nr, regs, addr);
664 }
665 }
666
667 extern struct static_key_deferred perf_sched_events;
668
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)669 static inline void perf_event_task_sched_in(struct task_struct *prev,
670 struct task_struct *task)
671 {
672 if (static_key_false(&perf_sched_events.key))
673 __perf_event_task_sched_in(prev, task);
674 }
675
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)676 static inline void perf_event_task_sched_out(struct task_struct *prev,
677 struct task_struct *next)
678 {
679 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
680
681 if (static_key_false(&perf_sched_events.key))
682 __perf_event_task_sched_out(prev, next);
683 }
684
685 extern void perf_event_mmap(struct vm_area_struct *vma);
686 extern struct perf_guest_info_callbacks *perf_guest_cbs;
687 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
688 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
689
690 extern void perf_event_comm(struct task_struct *tsk);
691 extern void perf_event_fork(struct task_struct *tsk);
692
693 /* Callchains */
694 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
695
696 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
697 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
698
perf_callchain_store(struct perf_callchain_entry * entry,u64 ip)699 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
700 {
701 if (entry->nr < PERF_MAX_STACK_DEPTH)
702 entry->ip[entry->nr++] = ip;
703 }
704
705 extern int sysctl_perf_event_paranoid;
706 extern int sysctl_perf_event_mlock;
707 extern int sysctl_perf_event_sample_rate;
708 extern int sysctl_perf_cpu_time_max_percent;
709
710 extern void perf_sample_event_took(u64 sample_len_ns);
711
712 extern int perf_proc_update_handler(struct ctl_table *table, int write,
713 void __user *buffer, size_t *lenp,
714 loff_t *ppos);
715 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
716 void __user *buffer, size_t *lenp,
717 loff_t *ppos);
718
719
perf_paranoid_tracepoint_raw(void)720 static inline bool perf_paranoid_tracepoint_raw(void)
721 {
722 return sysctl_perf_event_paranoid > -1;
723 }
724
perf_paranoid_cpu(void)725 static inline bool perf_paranoid_cpu(void)
726 {
727 return sysctl_perf_event_paranoid > 0;
728 }
729
perf_paranoid_kernel(void)730 static inline bool perf_paranoid_kernel(void)
731 {
732 return sysctl_perf_event_paranoid > 1;
733 }
734
735 extern void perf_event_init(void);
736 extern void perf_tp_event(u64 addr, u64 count, void *record,
737 int entry_size, struct pt_regs *regs,
738 struct hlist_head *head, int rctx,
739 struct task_struct *task);
740 extern void perf_bp_event(struct perf_event *event, void *data);
741
742 #ifndef perf_misc_flags
743 # define perf_misc_flags(regs) \
744 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
745 # define perf_instruction_pointer(regs) instruction_pointer(regs)
746 #endif
747
has_branch_stack(struct perf_event * event)748 static inline bool has_branch_stack(struct perf_event *event)
749 {
750 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
751 }
752
753 extern int perf_output_begin(struct perf_output_handle *handle,
754 struct perf_event *event, unsigned int size);
755 extern void perf_output_end(struct perf_output_handle *handle);
756 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
757 const void *buf, unsigned int len);
758 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
759 unsigned int len);
760 extern int perf_swevent_get_recursion_context(void);
761 extern void perf_swevent_put_recursion_context(int rctx);
762 extern u64 perf_swevent_set_period(struct perf_event *event);
763 extern void perf_event_enable(struct perf_event *event);
764 extern void perf_event_disable(struct perf_event *event);
765 extern int __perf_event_disable(void *info);
766 extern void perf_event_task_tick(void);
767 #else
768 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)769 perf_event_task_sched_in(struct task_struct *prev,
770 struct task_struct *task) { }
771 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)772 perf_event_task_sched_out(struct task_struct *prev,
773 struct task_struct *next) { }
perf_event_init_task(struct task_struct * child)774 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
perf_event_exit_task(struct task_struct * child)775 static inline void perf_event_exit_task(struct task_struct *child) { }
perf_event_free_task(struct task_struct * task)776 static inline void perf_event_free_task(struct task_struct *task) { }
perf_event_delayed_put(struct task_struct * task)777 static inline void perf_event_delayed_put(struct task_struct *task) { }
perf_event_print_debug(void)778 static inline void perf_event_print_debug(void) { }
perf_event_task_disable(void)779 static inline int perf_event_task_disable(void) { return -EINVAL; }
perf_event_task_enable(void)780 static inline int perf_event_task_enable(void) { return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)781 static inline int perf_event_refresh(struct perf_event *event, int refresh)
782 {
783 return -EINVAL;
784 }
785
786 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)787 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
788 static inline void
perf_bp_event(struct perf_event * event,void * data)789 perf_bp_event(struct perf_event *event, void *data) { }
790
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)791 static inline int perf_register_guest_info_callbacks
792 (struct perf_guest_info_callbacks *callbacks) { return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)793 static inline int perf_unregister_guest_info_callbacks
794 (struct perf_guest_info_callbacks *callbacks) { return 0; }
795
perf_event_mmap(struct vm_area_struct * vma)796 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
perf_event_comm(struct task_struct * tsk)797 static inline void perf_event_comm(struct task_struct *tsk) { }
perf_event_fork(struct task_struct * tsk)798 static inline void perf_event_fork(struct task_struct *tsk) { }
perf_event_init(void)799 static inline void perf_event_init(void) { }
perf_swevent_get_recursion_context(void)800 static inline int perf_swevent_get_recursion_context(void) { return -1; }
perf_swevent_put_recursion_context(int rctx)801 static inline void perf_swevent_put_recursion_context(int rctx) { }
perf_swevent_set_period(struct perf_event * event)802 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
perf_event_enable(struct perf_event * event)803 static inline void perf_event_enable(struct perf_event *event) { }
perf_event_disable(struct perf_event * event)804 static inline void perf_event_disable(struct perf_event *event) { }
__perf_event_disable(void * info)805 static inline int __perf_event_disable(void *info) { return -1; }
perf_event_task_tick(void)806 static inline void perf_event_task_tick(void) { }
807 #endif
808
809 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
810 extern bool perf_event_can_stop_tick(void);
811 #else
perf_event_can_stop_tick(void)812 static inline bool perf_event_can_stop_tick(void) { return true; }
813 #endif
814
815 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
816 extern void perf_restore_debug_store(void);
817 #else
perf_restore_debug_store(void)818 static inline void perf_restore_debug_store(void) { }
819 #endif
820
821 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
822
823 /*
824 * This has to have a higher priority than migration_notifier in sched/core.c.
825 */
826 #define perf_cpu_notifier(fn) \
827 do { \
828 static struct notifier_block fn##_nb = \
829 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
830 unsigned long cpu = smp_processor_id(); \
831 unsigned long flags; \
832 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
833 (void *)(unsigned long)cpu); \
834 local_irq_save(flags); \
835 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
836 (void *)(unsigned long)cpu); \
837 local_irq_restore(flags); \
838 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
839 (void *)(unsigned long)cpu); \
840 register_cpu_notifier(&fn##_nb); \
841 } while (0)
842
843
844 struct perf_pmu_events_attr {
845 struct device_attribute attr;
846 u64 id;
847 const char *event_str;
848 };
849
850 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
851 static struct perf_pmu_events_attr _var = { \
852 .attr = __ATTR(_name, 0444, _show, NULL), \
853 .id = _id, \
854 };
855
856 #define PMU_FORMAT_ATTR(_name, _format) \
857 static ssize_t \
858 _name##_show(struct device *dev, \
859 struct device_attribute *attr, \
860 char *page) \
861 { \
862 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
863 return sprintf(page, _format "\n"); \
864 } \
865 \
866 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
867
868 #endif /* _LINUX_PERF_EVENT_H */
869