1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include <algorithm>
32
33 #include <google_breakpad/processor/minidump.h>
34
35 #include <v8.h>
36
37 namespace {
38
39 using google_breakpad::Minidump;
40 using google_breakpad::MinidumpContext;
41 using google_breakpad::MinidumpThread;
42 using google_breakpad::MinidumpThreadList;
43 using google_breakpad::MinidumpException;
44 using google_breakpad::MinidumpMemoryRegion;
45
InstanceTypeToString(int type)46 const char* InstanceTypeToString(int type) {
47 static char const* names[v8::internal::LAST_TYPE] = {0};
48 if (names[v8::internal::STRING_TYPE] == NULL) {
49 using namespace v8::internal;
50 #define SET(type) names[type] = #type;
51 INSTANCE_TYPE_LIST(SET)
52 #undef SET
53 }
54 return names[type];
55 }
56
57
ReadPointedValue(MinidumpMemoryRegion * region,u_int64_t base,int offset)58 u_int32_t ReadPointedValue(MinidumpMemoryRegion* region,
59 u_int64_t base,
60 int offset) {
61 u_int32_t ptr = 0;
62 CHECK(region->GetMemoryAtAddress(base + 4 * offset, &ptr));
63 u_int32_t value = 0;
64 CHECK(region->GetMemoryAtAddress(ptr, &value));
65 return value;
66 }
67
68
ReadArray(MinidumpMemoryRegion * region,u_int64_t array_ptr,int size,int * output)69 void ReadArray(MinidumpMemoryRegion* region,
70 u_int64_t array_ptr,
71 int size,
72 int* output) {
73 for (int i = 0; i < size; i++) {
74 u_int32_t value;
75 CHECK(region->GetMemoryAtAddress(array_ptr + 4 * i, &value));
76 output[i] = value;
77 }
78 }
79
80
ReadArrayFrom(MinidumpMemoryRegion * region,u_int64_t base,int offset,int size,int * output)81 u_int32_t ReadArrayFrom(MinidumpMemoryRegion* region,
82 u_int64_t base,
83 int offset,
84 int size,
85 int* output) {
86 u_int32_t ptr = 0;
87 CHECK(region->GetMemoryAtAddress(base + 4 * offset, &ptr));
88 ReadArray(region, ptr, size, output);
89 }
90
91
toM(int size)92 double toM(int size) {
93 return size / (1024. * 1024.);
94 }
95
96
97 class IndirectSorter {
98 public:
IndirectSorter(int * a)99 explicit IndirectSorter(int* a) : a_(a) { }
100
operator ()(int i0,int i1)101 bool operator() (int i0, int i1) {
102 return a_[i0] > a_[i1];
103 }
104
105 private:
106 int* a_;
107 };
108
109
DumpHeapStats(const char * minidump_file)110 void DumpHeapStats(const char *minidump_file) {
111 Minidump minidump(minidump_file);
112 CHECK(minidump.Read());
113
114 MinidumpException *exception = minidump.GetException();
115 CHECK(exception);
116
117 MinidumpContext* crash_context = exception->GetContext();
118 CHECK(crash_context);
119
120 u_int32_t exception_thread_id = 0;
121 CHECK(exception->GetThreadID(&exception_thread_id));
122
123 MinidumpThreadList* thread_list = minidump.GetThreadList();
124 CHECK(thread_list);
125
126 MinidumpThread* exception_thread =
127 thread_list->GetThreadByID(exception_thread_id);
128 CHECK(exception_thread);
129
130 // Currently only 32-bit Windows minidumps are supported.
131 CHECK_EQ(MD_CONTEXT_X86, crash_context->GetContextCPU());
132
133 const MDRawContextX86* contextX86 = crash_context->GetContextX86();
134 CHECK(contextX86);
135
136 const u_int32_t esp = contextX86->esp;
137
138 MinidumpMemoryRegion* memory_region = exception_thread->GetMemory();
139 CHECK(memory_region);
140
141 const u_int64_t last = memory_region->GetBase() + memory_region->GetSize();
142
143 u_int64_t heap_stats_addr = 0;
144 for (u_int64_t addr = esp; addr < last; addr += 4) {
145 u_int32_t value = 0;
146 CHECK(memory_region->GetMemoryAtAddress(addr, &value));
147 if (value >= esp && value < last) {
148 u_int32_t value2 = 0;
149 CHECK(memory_region->GetMemoryAtAddress(value, &value2));
150 if (value2 == v8::internal::HeapStats::kStartMarker) {
151 heap_stats_addr = addr;
152 break;
153 }
154 }
155 }
156 CHECK(heap_stats_addr);
157
158 // Read heap stats.
159
160 #define READ_FIELD(offset) \
161 ReadPointedValue(memory_region, heap_stats_addr, offset)
162
163 CHECK(READ_FIELD(0) == v8::internal::HeapStats::kStartMarker);
164 CHECK(READ_FIELD(24) == v8::internal::HeapStats::kEndMarker);
165
166 const int new_space_size = READ_FIELD(1);
167 const int new_space_capacity = READ_FIELD(2);
168 const int old_pointer_space_size = READ_FIELD(3);
169 const int old_pointer_space_capacity = READ_FIELD(4);
170 const int old_data_space_size = READ_FIELD(5);
171 const int old_data_space_capacity = READ_FIELD(6);
172 const int code_space_size = READ_FIELD(7);
173 const int code_space_capacity = READ_FIELD(8);
174 const int map_space_size = READ_FIELD(9);
175 const int map_space_capacity = READ_FIELD(10);
176 const int cell_space_size = READ_FIELD(11);
177 const int cell_space_capacity = READ_FIELD(12);
178 const int lo_space_size = READ_FIELD(13);
179 const int global_handle_count = READ_FIELD(14);
180 const int weak_global_handle_count = READ_FIELD(15);
181 const int pending_global_handle_count = READ_FIELD(16);
182 const int near_death_global_handle_count = READ_FIELD(17);
183 const int destroyed_global_handle_count = READ_FIELD(18);
184 const int memory_allocator_size = READ_FIELD(19);
185 const int memory_allocator_capacity = READ_FIELD(20);
186 const int os_error = READ_FIELD(23);
187 #undef READ_FIELD
188
189 int objects_per_type[v8::internal::LAST_TYPE + 1] = {0};
190 ReadArrayFrom(memory_region, heap_stats_addr, 21,
191 v8::internal::LAST_TYPE + 1, objects_per_type);
192
193 int size_per_type[v8::internal::LAST_TYPE + 1] = {0};
194 ReadArrayFrom(memory_region, heap_stats_addr, 22, v8::internal::LAST_TYPE + 1,
195 size_per_type);
196
197 int js_global_objects =
198 objects_per_type[v8::internal::JS_GLOBAL_OBJECT_TYPE];
199 int js_builtins_objects =
200 objects_per_type[v8::internal::JS_BUILTINS_OBJECT_TYPE];
201 int js_global_proxies =
202 objects_per_type[v8::internal::JS_GLOBAL_PROXY_TYPE];
203
204 int indices[v8::internal::LAST_TYPE + 1];
205 for (int i = 0; i <= v8::internal::LAST_TYPE; i++) {
206 indices[i] = i;
207 }
208
209 std::stable_sort(indices, indices + sizeof(indices)/sizeof(indices[0]),
210 IndirectSorter(size_per_type));
211
212 int total_size = 0;
213 for (int i = 0; i <= v8::internal::LAST_TYPE; i++) {
214 total_size += size_per_type[i];
215 }
216
217 // Print heap stats.
218
219 printf("exception thread ID: %" PRIu32 " (%#" PRIx32 ")\n",
220 exception_thread_id, exception_thread_id);
221 printf("heap stats address: %#" PRIx64 "\n", heap_stats_addr);
222 #define PRINT_INT_STAT(stat) \
223 printf("\t%-25s\t% 10d\n", #stat ":", stat);
224 #define PRINT_MB_STAT(stat) \
225 printf("\t%-25s\t% 10.3f MB\n", #stat ":", toM(stat));
226 PRINT_MB_STAT(new_space_size);
227 PRINT_MB_STAT(new_space_capacity);
228 PRINT_MB_STAT(old_pointer_space_size);
229 PRINT_MB_STAT(old_pointer_space_capacity);
230 PRINT_MB_STAT(old_data_space_size);
231 PRINT_MB_STAT(old_data_space_capacity);
232 PRINT_MB_STAT(code_space_size);
233 PRINT_MB_STAT(code_space_capacity);
234 PRINT_MB_STAT(map_space_size);
235 PRINT_MB_STAT(map_space_capacity);
236 PRINT_MB_STAT(cell_space_size);
237 PRINT_MB_STAT(cell_space_capacity);
238 PRINT_MB_STAT(lo_space_size);
239 PRINT_INT_STAT(global_handle_count);
240 PRINT_INT_STAT(weak_global_handle_count);
241 PRINT_INT_STAT(pending_global_handle_count);
242 PRINT_INT_STAT(near_death_global_handle_count);
243 PRINT_INT_STAT(destroyed_global_handle_count);
244 PRINT_MB_STAT(memory_allocator_size);
245 PRINT_MB_STAT(memory_allocator_capacity);
246 PRINT_INT_STAT(os_error);
247 #undef PRINT_STAT
248
249 printf("\n");
250
251 printf(
252 "\tJS_GLOBAL_OBJECT_TYPE/JS_BUILTINS_OBJECT_TYPE/JS_GLOBAL_PROXY_TYPE: "
253 "%d/%d/%d\n\n",
254 js_global_objects, js_builtins_objects, js_global_proxies);
255
256 int running_size = 0;
257 for (int i = 0; i <= v8::internal::LAST_TYPE; i++) {
258 int type = indices[i];
259 const char* name = InstanceTypeToString(type);
260 if (name == NULL) {
261 // Unknown instance type. Check that there is no objects of that type.
262 CHECK_EQ(0, objects_per_type[type]);
263 CHECK_EQ(0, size_per_type[type]);
264 continue;
265 }
266 int size = size_per_type[type];
267 running_size += size;
268 printf("\t%-37s% 9d% 11.3f MB% 10.3f%%% 10.3f%%\n",
269 name, objects_per_type[type], toM(size),
270 100. * size / total_size, 100. * running_size / total_size);
271 }
272 printf("\t%-37s% 9d% 11.3f MB% 10.3f%%% 10.3f%%\n",
273 "total", 0, toM(total_size), 100., 100.);
274 }
275
276 } // namespace
277
main(int argc,char ** argv)278 int main(int argc, char **argv) {
279 if (argc != 2) {
280 fprintf(stderr, "usage: %s <minidump>\n", argv[0]);
281 return 1;
282 }
283
284 DumpHeapStats(argv[1]);
285
286 return 0;
287 }
288