1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5 // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11
12 #ifndef EIGEN_SPARSE_LU_H
13 #define EIGEN_SPARSE_LU_H
14
15 namespace Eigen {
16
17 template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::Index> > class SparseLU;
18 template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19 template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
21 /** \ingroup SparseLU_Module
22 * \class SparseLU
23 *
24 * \brief Sparse supernodal LU factorization for general matrices
25 *
26 * This class implements the supernodal LU factorization for general matrices.
27 * It uses the main techniques from the sequential SuperLU package
28 * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
29 * and complex arithmetics with single and double precision, depending on the
30 * scalar type of your input matrix.
31 * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
32 * It benefits directly from the built-in high-performant Eigen BLAS routines.
33 * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
34 * enable a better optimization from the compiler. For best performance,
35 * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
36 *
37 * An important parameter of this class is the ordering method. It is used to reorder the columns
38 * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
39 * numerical factorization. The cheapest method available is COLAMD.
40 * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
41 * built-in and external ordering methods.
42 *
43 * Simple example with key steps
44 * \code
45 * VectorXd x(n), b(n);
46 * SparseMatrix<double, ColMajor> A;
47 * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver;
48 * // fill A and b;
49 * // Compute the ordering permutation vector from the structural pattern of A
50 * solver.analyzePattern(A);
51 * // Compute the numerical factorization
52 * solver.factorize(A);
53 * //Use the factors to solve the linear system
54 * x = solver.solve(b);
55 * \endcode
56 *
57 * \warning The input matrix A should be in a \b compressed and \b column-major form.
58 * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
59 *
60 * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
61 * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
62 * If this is the case for your matrices, you can try the basic scaling method at
63 * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
64 *
65 * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
66 * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
67 *
68 *
69 * \sa \ref TutorialSparseDirectSolvers
70 * \sa \ref OrderingMethods_Module
71 */
72 template <typename _MatrixType, typename _OrderingType>
73 class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index>
74 {
75 public:
76 typedef _MatrixType MatrixType;
77 typedef _OrderingType OrderingType;
78 typedef typename MatrixType::Scalar Scalar;
79 typedef typename MatrixType::RealScalar RealScalar;
80 typedef typename MatrixType::Index Index;
81 typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix;
82 typedef internal::MappedSuperNodalMatrix<Scalar, Index> SCMatrix;
83 typedef Matrix<Scalar,Dynamic,1> ScalarVector;
84 typedef Matrix<Index,Dynamic,1> IndexVector;
85 typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
86 typedef internal::SparseLUImpl<Scalar, Index> Base;
87
88 public:
SparseLU()89 SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
90 {
91 initperfvalues();
92 }
SparseLU(const MatrixType & matrix)93 SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
94 {
95 initperfvalues();
96 compute(matrix);
97 }
98
~SparseLU()99 ~SparseLU()
100 {
101 // Free all explicit dynamic pointers
102 }
103
104 void analyzePattern (const MatrixType& matrix);
105 void factorize (const MatrixType& matrix);
106 void simplicialfactorize(const MatrixType& matrix);
107
108 /**
109 * Compute the symbolic and numeric factorization of the input sparse matrix.
110 * The input matrix should be in column-major storage.
111 */
compute(const MatrixType & matrix)112 void compute (const MatrixType& matrix)
113 {
114 // Analyze
115 analyzePattern(matrix);
116 //Factorize
117 factorize(matrix);
118 }
119
rows()120 inline Index rows() const { return m_mat.rows(); }
cols()121 inline Index cols() const { return m_mat.cols(); }
122 /** Indicate that the pattern of the input matrix is symmetric */
isSymmetric(bool sym)123 void isSymmetric(bool sym)
124 {
125 m_symmetricmode = sym;
126 }
127
128 /** \returns an expression of the matrix L, internally stored as supernodes
129 * The only operation available with this expression is the triangular solve
130 * \code
131 * y = b; matrixL().solveInPlace(y);
132 * \endcode
133 */
matrixL()134 SparseLUMatrixLReturnType<SCMatrix> matrixL() const
135 {
136 return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
137 }
138 /** \returns an expression of the matrix U,
139 * The only operation available with this expression is the triangular solve
140 * \code
141 * y = b; matrixU().solveInPlace(y);
142 * \endcode
143 */
matrixU()144 SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,Index> > matrixU() const
145 {
146 return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,Index> >(m_Lstore, m_Ustore);
147 }
148
149 /**
150 * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
151 * \sa colsPermutation()
152 */
rowsPermutation()153 inline const PermutationType& rowsPermutation() const
154 {
155 return m_perm_r;
156 }
157 /**
158 * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
159 * \sa rowsPermutation()
160 */
colsPermutation()161 inline const PermutationType& colsPermutation() const
162 {
163 return m_perm_c;
164 }
165 /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
setPivotThreshold(const RealScalar & thresh)166 void setPivotThreshold(const RealScalar& thresh)
167 {
168 m_diagpivotthresh = thresh;
169 }
170
171 /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
172 *
173 * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
174 *
175 * \sa compute()
176 */
177 template<typename Rhs>
solve(const MatrixBase<Rhs> & B)178 inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const
179 {
180 eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
181 eigen_assert(rows()==B.rows()
182 && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
183 return internal::solve_retval<SparseLU, Rhs>(*this, B.derived());
184 }
185
186 /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
187 *
188 * \sa compute()
189 */
190 template<typename Rhs>
solve(const SparseMatrixBase<Rhs> & B)191 inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
192 {
193 eigen_assert(m_factorizationIsOk && "SparseLU is not initialized.");
194 eigen_assert(rows()==B.rows()
195 && "SparseLU::solve(): invalid number of rows of the right hand side matrix B");
196 return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived());
197 }
198
199 /** \brief Reports whether previous computation was successful.
200 *
201 * \returns \c Success if computation was succesful,
202 * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
203 * \c InvalidInput if the input matrix is invalid
204 *
205 * \sa iparm()
206 */
info()207 ComputationInfo info() const
208 {
209 eigen_assert(m_isInitialized && "Decomposition is not initialized.");
210 return m_info;
211 }
212
213 /**
214 * \returns A string describing the type of error
215 */
lastErrorMessage()216 std::string lastErrorMessage() const
217 {
218 return m_lastError;
219 }
220
221 template<typename Rhs, typename Dest>
_solve(const MatrixBase<Rhs> & B,MatrixBase<Dest> & X_base)222 bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
223 {
224 Dest& X(X_base.derived());
225 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
226 EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
227 THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
228
229 // Permute the right hand side to form X = Pr*B
230 // on return, X is overwritten by the computed solution
231 X.resize(B.rows(),B.cols());
232
233 // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
234 for(Index j = 0; j < B.cols(); ++j)
235 X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
236
237 //Forward substitution with L
238 this->matrixL().solveInPlace(X);
239 this->matrixU().solveInPlace(X);
240
241 // Permute back the solution
242 for (Index j = 0; j < B.cols(); ++j)
243 X.col(j) = colsPermutation().inverse() * X.col(j);
244
245 return true;
246 }
247
248 /**
249 * \returns the absolute value of the determinant of the matrix of which
250 * *this is the QR decomposition.
251 *
252 * \warning a determinant can be very big or small, so for matrices
253 * of large enough dimension, there is a risk of overflow/underflow.
254 * One way to work around that is to use logAbsDeterminant() instead.
255 *
256 * \sa logAbsDeterminant(), signDeterminant()
257 */
absDeterminant()258 Scalar absDeterminant()
259 {
260 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
261 // Initialize with the determinant of the row matrix
262 Scalar det = Scalar(1.);
263 // Note that the diagonal blocks of U are stored in supernodes,
264 // which are available in the L part :)
265 for (Index j = 0; j < this->cols(); ++j)
266 {
267 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
268 {
269 if(it.index() == j)
270 {
271 det *= (std::abs)(it.value());
272 break;
273 }
274 }
275 }
276 return det;
277 }
278
279 /** \returns the natural log of the absolute value of the determinant of the matrix
280 * of which **this is the QR decomposition
281 *
282 * \note This method is useful to work around the risk of overflow/underflow that's
283 * inherent to the determinant computation.
284 *
285 * \sa absDeterminant(), signDeterminant()
286 */
logAbsDeterminant()287 Scalar logAbsDeterminant() const
288 {
289 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
290 Scalar det = Scalar(0.);
291 for (Index j = 0; j < this->cols(); ++j)
292 {
293 for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
294 {
295 if(it.row() < j) continue;
296 if(it.row() == j)
297 {
298 det += (std::log)((std::abs)(it.value()));
299 break;
300 }
301 }
302 }
303 return det;
304 }
305
306 /** \returns A number representing the sign of the determinant
307 *
308 * \sa absDeterminant(), logAbsDeterminant()
309 */
signDeterminant()310 Scalar signDeterminant()
311 {
312 eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
313 return Scalar(m_detPermR);
314 }
315
316 protected:
317 // Functions
initperfvalues()318 void initperfvalues()
319 {
320 m_perfv.panel_size = 1;
321 m_perfv.relax = 1;
322 m_perfv.maxsuper = 128;
323 m_perfv.rowblk = 16;
324 m_perfv.colblk = 8;
325 m_perfv.fillfactor = 20;
326 }
327
328 // Variables
329 mutable ComputationInfo m_info;
330 bool m_isInitialized;
331 bool m_factorizationIsOk;
332 bool m_analysisIsOk;
333 std::string m_lastError;
334 NCMatrix m_mat; // The input (permuted ) matrix
335 SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
336 MappedSparseMatrix<Scalar,ColMajor,Index> m_Ustore; // The upper triangular matrix
337 PermutationType m_perm_c; // Column permutation
338 PermutationType m_perm_r ; // Row permutation
339 IndexVector m_etree; // Column elimination tree
340
341 typename Base::GlobalLU_t m_glu;
342
343 // SparseLU options
344 bool m_symmetricmode;
345 // values for performance
346 internal::perfvalues<Index> m_perfv;
347 RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
348 Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
349 Index m_detPermR; // Determinant of the coefficient matrix
350 private:
351 // Disable copy constructor
352 SparseLU (const SparseLU& );
353
354 }; // End class SparseLU
355
356
357
358 // Functions needed by the anaysis phase
359 /**
360 * Compute the column permutation to minimize the fill-in
361 *
362 * - Apply this permutation to the input matrix -
363 *
364 * - Compute the column elimination tree on the permuted matrix
365 *
366 * - Postorder the elimination tree and the column permutation
367 *
368 */
369 template <typename MatrixType, typename OrderingType>
analyzePattern(const MatrixType & mat)370 void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
371 {
372
373 //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
374
375 OrderingType ord;
376 ord(mat,m_perm_c);
377
378 // Apply the permutation to the column of the input matrix
379 //First copy the whole input matrix.
380 m_mat = mat;
381 if (m_perm_c.size()) {
382 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
383 //Then, permute only the column pointers
384 const Index * outerIndexPtr;
385 if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr();
386 else
387 {
388 Index *outerIndexPtr_t = new Index[mat.cols()+1];
389 for(Index i = 0; i <= mat.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
390 outerIndexPtr = outerIndexPtr_t;
391 }
392 for (Index i = 0; i < mat.cols(); i++)
393 {
394 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
395 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
396 }
397 if(!mat.isCompressed()) delete[] outerIndexPtr;
398 }
399 // Compute the column elimination tree of the permuted matrix
400 IndexVector firstRowElt;
401 internal::coletree(m_mat, m_etree,firstRowElt);
402
403 // In symmetric mode, do not do postorder here
404 if (!m_symmetricmode) {
405 IndexVector post, iwork;
406 // Post order etree
407 internal::treePostorder(m_mat.cols(), m_etree, post);
408
409
410 // Renumber etree in postorder
411 Index m = m_mat.cols();
412 iwork.resize(m+1);
413 for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
414 m_etree = iwork;
415
416 // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
417 PermutationType post_perm(m);
418 for (Index i = 0; i < m; i++)
419 post_perm.indices()(i) = post(i);
420
421 // Combine the two permutations : postorder the permutation for future use
422 if(m_perm_c.size()) {
423 m_perm_c = post_perm * m_perm_c;
424 }
425
426 } // end postordering
427
428 m_analysisIsOk = true;
429 }
430
431 // Functions needed by the numerical factorization phase
432
433
434 /**
435 * - Numerical factorization
436 * - Interleaved with the symbolic factorization
437 * On exit, info is
438 *
439 * = 0: successful factorization
440 *
441 * > 0: if info = i, and i is
442 *
443 * <= A->ncol: U(i,i) is exactly zero. The factorization has
444 * been completed, but the factor U is exactly singular,
445 * and division by zero will occur if it is used to solve a
446 * system of equations.
447 *
448 * > A->ncol: number of bytes allocated when memory allocation
449 * failure occurred, plus A->ncol. If lwork = -1, it is
450 * the estimated amount of space needed, plus A->ncol.
451 */
452 template <typename MatrixType, typename OrderingType>
factorize(const MatrixType & matrix)453 void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
454 {
455 using internal::emptyIdxLU;
456 eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
457 eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
458
459 typedef typename IndexVector::Scalar Index;
460
461
462 // Apply the column permutation computed in analyzepattern()
463 // m_mat = matrix * m_perm_c.inverse();
464 m_mat = matrix;
465 if (m_perm_c.size())
466 {
467 m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
468 //Then, permute only the column pointers
469 const Index * outerIndexPtr;
470 if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
471 else
472 {
473 Index* outerIndexPtr_t = new Index[matrix.cols()+1];
474 for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
475 outerIndexPtr = outerIndexPtr_t;
476 }
477 for (Index i = 0; i < matrix.cols(); i++)
478 {
479 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
480 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
481 }
482 if(!matrix.isCompressed()) delete[] outerIndexPtr;
483 }
484 else
485 { //FIXME This should not be needed if the empty permutation is handled transparently
486 m_perm_c.resize(matrix.cols());
487 for(Index i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
488 }
489
490 Index m = m_mat.rows();
491 Index n = m_mat.cols();
492 Index nnz = m_mat.nonZeros();
493 Index maxpanel = m_perfv.panel_size * m;
494 // Allocate working storage common to the factor routines
495 Index lwork = 0;
496 Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
497 if (info)
498 {
499 m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
500 m_factorizationIsOk = false;
501 return ;
502 }
503
504 // Set up pointers for integer working arrays
505 IndexVector segrep(m); segrep.setZero();
506 IndexVector parent(m); parent.setZero();
507 IndexVector xplore(m); xplore.setZero();
508 IndexVector repfnz(maxpanel);
509 IndexVector panel_lsub(maxpanel);
510 IndexVector xprune(n); xprune.setZero();
511 IndexVector marker(m*internal::LUNoMarker); marker.setZero();
512
513 repfnz.setConstant(-1);
514 panel_lsub.setConstant(-1);
515
516 // Set up pointers for scalar working arrays
517 ScalarVector dense;
518 dense.setZero(maxpanel);
519 ScalarVector tempv;
520 tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
521
522 // Compute the inverse of perm_c
523 PermutationType iperm_c(m_perm_c.inverse());
524
525 // Identify initial relaxed snodes
526 IndexVector relax_end(n);
527 if ( m_symmetricmode == true )
528 Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
529 else
530 Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
531
532
533 m_perm_r.resize(m);
534 m_perm_r.indices().setConstant(-1);
535 marker.setConstant(-1);
536 m_detPermR = 1; // Record the determinant of the row permutation
537
538 m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
539 m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
540
541 // Work on one 'panel' at a time. A panel is one of the following :
542 // (a) a relaxed supernode at the bottom of the etree, or
543 // (b) panel_size contiguous columns, <panel_size> defined by the user
544 Index jcol;
545 IndexVector panel_histo(n);
546 Index pivrow; // Pivotal row number in the original row matrix
547 Index nseg1; // Number of segments in U-column above panel row jcol
548 Index nseg; // Number of segments in each U-column
549 Index irep;
550 Index i, k, jj;
551 for (jcol = 0; jcol < n; )
552 {
553 // Adjust panel size so that a panel won't overlap with the next relaxed snode.
554 Index panel_size = m_perfv.panel_size; // upper bound on panel width
555 for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
556 {
557 if (relax_end(k) != emptyIdxLU)
558 {
559 panel_size = k - jcol;
560 break;
561 }
562 }
563 if (k == n)
564 panel_size = n - jcol;
565
566 // Symbolic outer factorization on a panel of columns
567 Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
568
569 // Numeric sup-panel updates in topological order
570 Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
571
572 // Sparse LU within the panel, and below the panel diagonal
573 for ( jj = jcol; jj< jcol + panel_size; jj++)
574 {
575 k = (jj - jcol) * m; // Column index for w-wide arrays
576
577 nseg = nseg1; // begin after all the panel segments
578 //Depth-first-search for the current column
579 VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
580 VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
581 info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
582 if ( info )
583 {
584 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
585 m_info = NumericalIssue;
586 m_factorizationIsOk = false;
587 return;
588 }
589 // Numeric updates to this column
590 VectorBlock<ScalarVector> dense_k(dense, k, m);
591 VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
592 info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
593 if ( info )
594 {
595 m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
596 m_info = NumericalIssue;
597 m_factorizationIsOk = false;
598 return;
599 }
600
601 // Copy the U-segments to ucol(*)
602 info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
603 if ( info )
604 {
605 m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
606 m_info = NumericalIssue;
607 m_factorizationIsOk = false;
608 return;
609 }
610
611 // Form the L-segment
612 info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
613 if ( info )
614 {
615 m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
616 std::ostringstream returnInfo;
617 returnInfo << info;
618 m_lastError += returnInfo.str();
619 m_info = NumericalIssue;
620 m_factorizationIsOk = false;
621 return;
622 }
623
624 // Update the determinant of the row permutation matrix
625 if (pivrow != jj) m_detPermR *= -1;
626
627 // Prune columns (0:jj-1) using column jj
628 Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
629
630 // Reset repfnz for this column
631 for (i = 0; i < nseg; i++)
632 {
633 irep = segrep(i);
634 repfnz_k(irep) = emptyIdxLU;
635 }
636 } // end SparseLU within the panel
637 jcol += panel_size; // Move to the next panel
638 } // end for -- end elimination
639
640 // Count the number of nonzeros in factors
641 Base::countnz(n, m_nnzL, m_nnzU, m_glu);
642 // Apply permutation to the L subscripts
643 Base::fixupL(n, m_perm_r.indices(), m_glu);
644
645 // Create supernode matrix L
646 m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
647 // Create the column major upper sparse matrix U;
648 new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, Index> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
649
650 m_info = Success;
651 m_factorizationIsOk = true;
652 }
653
654 template<typename MappedSupernodalType>
655 struct SparseLUMatrixLReturnType : internal::no_assignment_operator
656 {
657 typedef typename MappedSupernodalType::Index Index;
658 typedef typename MappedSupernodalType::Scalar Scalar;
SparseLUMatrixLReturnTypeSparseLUMatrixLReturnType659 SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
660 { }
rowsSparseLUMatrixLReturnType661 Index rows() { return m_mapL.rows(); }
colsSparseLUMatrixLReturnType662 Index cols() { return m_mapL.cols(); }
663 template<typename Dest>
solveInPlaceSparseLUMatrixLReturnType664 void solveInPlace( MatrixBase<Dest> &X) const
665 {
666 m_mapL.solveInPlace(X);
667 }
668 const MappedSupernodalType& m_mapL;
669 };
670
671 template<typename MatrixLType, typename MatrixUType>
672 struct SparseLUMatrixUReturnType : internal::no_assignment_operator
673 {
674 typedef typename MatrixLType::Index Index;
675 typedef typename MatrixLType::Scalar Scalar;
SparseLUMatrixUReturnTypeSparseLUMatrixUReturnType676 SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
677 : m_mapL(mapL),m_mapU(mapU)
678 { }
rowsSparseLUMatrixUReturnType679 Index rows() { return m_mapL.rows(); }
colsSparseLUMatrixUReturnType680 Index cols() { return m_mapL.cols(); }
681
solveInPlaceSparseLUMatrixUReturnType682 template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
683 {
684 Index nrhs = X.cols();
685 Index n = X.rows();
686 // Backward solve with U
687 for (Index k = m_mapL.nsuper(); k >= 0; k--)
688 {
689 Index fsupc = m_mapL.supToCol()[k];
690 Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
691 Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
692 Index luptr = m_mapL.colIndexPtr()[fsupc];
693
694 if (nsupc == 1)
695 {
696 for (Index j = 0; j < nrhs; j++)
697 {
698 X(fsupc, j) /= m_mapL.valuePtr()[luptr];
699 }
700 }
701 else
702 {
703 Map<const Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
704 Map< Matrix<Scalar,Dynamic,Dynamic>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
705 U = A.template triangularView<Upper>().solve(U);
706 }
707
708 for (Index j = 0; j < nrhs; ++j)
709 {
710 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
711 {
712 typename MatrixUType::InnerIterator it(m_mapU, jcol);
713 for ( ; it; ++it)
714 {
715 Index irow = it.index();
716 X(irow, j) -= X(jcol, j) * it.value();
717 }
718 }
719 }
720 } // End For U-solve
721 }
722 const MatrixLType& m_mapL;
723 const MatrixUType& m_mapU;
724 };
725
726 namespace internal {
727
728 template<typename _MatrixType, typename Derived, typename Rhs>
729 struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
730 : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
731 {
732 typedef SparseLU<_MatrixType,Derived> Dec;
733 EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
734
735 template<typename Dest> void evalTo(Dest& dst) const
736 {
737 dec()._solve(rhs(),dst);
738 }
739 };
740
741 template<typename _MatrixType, typename Derived, typename Rhs>
742 struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs>
743 : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs>
744 {
745 typedef SparseLU<_MatrixType,Derived> Dec;
746 EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)
747
748 template<typename Dest> void evalTo(Dest& dst) const
749 {
750 this->defaultEvalTo(dst);
751 }
752 };
753 } // end namespace internal
754
755 } // End namespace Eigen
756
757 #endif
758