1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/AST/RecordLayout.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/Attr.h"
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/CrashRecoveryContext.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/MathExtras.h"
24
25 using namespace clang;
26
27 namespace {
28
29 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
30 /// For a class hierarchy like
31 ///
32 /// class A { };
33 /// class B : A { };
34 /// class C : A, B { };
35 ///
36 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
37 /// instances, one for B and two for A.
38 ///
39 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
40 struct BaseSubobjectInfo {
41 /// Class - The class for this base info.
42 const CXXRecordDecl *Class;
43
44 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
45 bool IsVirtual;
46
47 /// Bases - Information about the base subobjects.
48 SmallVector<BaseSubobjectInfo*, 4> Bases;
49
50 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
51 /// of this base info (if one exists).
52 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
53
54 // FIXME: Document.
55 const BaseSubobjectInfo *Derived;
56 };
57
58 /// \brief Externally provided layout. Typically used when the AST source, such
59 /// as DWARF, lacks all the information that was available at compile time, such
60 /// as alignment attributes on fields and pragmas in effect.
61 struct ExternalLayout {
ExternalLayout__anon07e898d70111::ExternalLayout62 ExternalLayout() : Size(0), Align(0) {}
63
64 /// \brief Overall record size in bits.
65 uint64_t Size;
66
67 /// \brief Overall record alignment in bits.
68 uint64_t Align;
69
70 /// \brief Record field offsets in bits.
71 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
72
73 /// \brief Direct, non-virtual base offsets.
74 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
75
76 /// \brief Virtual base offsets.
77 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
78
79 /// Get the offset of the given field. The external source must provide
80 /// entries for all fields in the record.
getExternalFieldOffset__anon07e898d70111::ExternalLayout81 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
82 assert(FieldOffsets.count(FD) &&
83 "Field does not have an external offset");
84 return FieldOffsets[FD];
85 }
86
getExternalNVBaseOffset__anon07e898d70111::ExternalLayout87 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
88 auto Known = BaseOffsets.find(RD);
89 if (Known == BaseOffsets.end())
90 return false;
91 BaseOffset = Known->second;
92 return true;
93 }
94
getExternalVBaseOffset__anon07e898d70111::ExternalLayout95 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
96 auto Known = VirtualBaseOffsets.find(RD);
97 if (Known == VirtualBaseOffsets.end())
98 return false;
99 BaseOffset = Known->second;
100 return true;
101 }
102 };
103
104 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
105 /// offsets while laying out a C++ class.
106 class EmptySubobjectMap {
107 const ASTContext &Context;
108 uint64_t CharWidth;
109
110 /// Class - The class whose empty entries we're keeping track of.
111 const CXXRecordDecl *Class;
112
113 /// EmptyClassOffsets - A map from offsets to empty record decls.
114 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
115 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
116 EmptyClassOffsetsMapTy EmptyClassOffsets;
117
118 /// MaxEmptyClassOffset - The highest offset known to contain an empty
119 /// base subobject.
120 CharUnits MaxEmptyClassOffset;
121
122 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
123 /// member subobject that is empty.
124 void ComputeEmptySubobjectSizes();
125
126 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
127
128 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
129 CharUnits Offset, bool PlacingEmptyBase);
130
131 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
132 const CXXRecordDecl *Class,
133 CharUnits Offset);
134 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
135
136 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
137 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const138 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
139 return Offset <= MaxEmptyClassOffset;
140 }
141
142 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const143 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
144 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
145 assert(FieldOffset % CharWidth == 0 &&
146 "Field offset not at char boundary!");
147
148 return Context.toCharUnitsFromBits(FieldOffset);
149 }
150
151 protected:
152 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
153 CharUnits Offset) const;
154
155 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
156 CharUnits Offset);
157
158 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
159 const CXXRecordDecl *Class,
160 CharUnits Offset) const;
161 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
162 CharUnits Offset) const;
163
164 public:
165 /// This holds the size of the largest empty subobject (either a base
166 /// or a member). Will be zero if the record being built doesn't contain
167 /// any empty classes.
168 CharUnits SizeOfLargestEmptySubobject;
169
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)170 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
171 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
172 ComputeEmptySubobjectSizes();
173 }
174
175 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
176 /// at the given offset.
177 /// Returns false if placing the record will result in two components
178 /// (direct or indirect) of the same type having the same offset.
179 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
180 CharUnits Offset);
181
182 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
183 /// offset.
184 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
185 };
186
ComputeEmptySubobjectSizes()187 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
188 // Check the bases.
189 for (const CXXBaseSpecifier &Base : Class->bases()) {
190 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
191
192 CharUnits EmptySize;
193 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
194 if (BaseDecl->isEmpty()) {
195 // If the class decl is empty, get its size.
196 EmptySize = Layout.getSize();
197 } else {
198 // Otherwise, we get the largest empty subobject for the decl.
199 EmptySize = Layout.getSizeOfLargestEmptySubobject();
200 }
201
202 if (EmptySize > SizeOfLargestEmptySubobject)
203 SizeOfLargestEmptySubobject = EmptySize;
204 }
205
206 // Check the fields.
207 for (const FieldDecl *FD : Class->fields()) {
208 const RecordType *RT =
209 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
210
211 // We only care about record types.
212 if (!RT)
213 continue;
214
215 CharUnits EmptySize;
216 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
217 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
218 if (MemberDecl->isEmpty()) {
219 // If the class decl is empty, get its size.
220 EmptySize = Layout.getSize();
221 } else {
222 // Otherwise, we get the largest empty subobject for the decl.
223 EmptySize = Layout.getSizeOfLargestEmptySubobject();
224 }
225
226 if (EmptySize > SizeOfLargestEmptySubobject)
227 SizeOfLargestEmptySubobject = EmptySize;
228 }
229 }
230
231 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const232 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
233 CharUnits Offset) const {
234 // We only need to check empty bases.
235 if (!RD->isEmpty())
236 return true;
237
238 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
239 if (I == EmptyClassOffsets.end())
240 return true;
241
242 const ClassVectorTy &Classes = I->second;
243 if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
244 return true;
245
246 // There is already an empty class of the same type at this offset.
247 return false;
248 }
249
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)250 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
251 CharUnits Offset) {
252 // We only care about empty bases.
253 if (!RD->isEmpty())
254 return;
255
256 // If we have empty structures inside a union, we can assign both
257 // the same offset. Just avoid pushing them twice in the list.
258 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
259 if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
260 return;
261
262 Classes.push_back(RD);
263
264 // Update the empty class offset.
265 if (Offset > MaxEmptyClassOffset)
266 MaxEmptyClassOffset = Offset;
267 }
268
269 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)270 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
271 CharUnits Offset) {
272 // We don't have to keep looking past the maximum offset that's known to
273 // contain an empty class.
274 if (!AnyEmptySubobjectsBeyondOffset(Offset))
275 return true;
276
277 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
278 return false;
279
280 // Traverse all non-virtual bases.
281 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
282 for (const BaseSubobjectInfo *Base : Info->Bases) {
283 if (Base->IsVirtual)
284 continue;
285
286 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
287
288 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
289 return false;
290 }
291
292 if (Info->PrimaryVirtualBaseInfo) {
293 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
294
295 if (Info == PrimaryVirtualBaseInfo->Derived) {
296 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
297 return false;
298 }
299 }
300
301 // Traverse all member variables.
302 unsigned FieldNo = 0;
303 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
304 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
305 if (I->isBitField())
306 continue;
307
308 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
309 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
310 return false;
311 }
312
313 return true;
314 }
315
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)316 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
317 CharUnits Offset,
318 bool PlacingEmptyBase) {
319 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
320 // We know that the only empty subobjects that can conflict with empty
321 // subobject of non-empty bases, are empty bases that can be placed at
322 // offset zero. Because of this, we only need to keep track of empty base
323 // subobjects with offsets less than the size of the largest empty
324 // subobject for our class.
325 return;
326 }
327
328 AddSubobjectAtOffset(Info->Class, Offset);
329
330 // Traverse all non-virtual bases.
331 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
332 for (const BaseSubobjectInfo *Base : Info->Bases) {
333 if (Base->IsVirtual)
334 continue;
335
336 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
337 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
338 }
339
340 if (Info->PrimaryVirtualBaseInfo) {
341 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
342
343 if (Info == PrimaryVirtualBaseInfo->Derived)
344 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
345 PlacingEmptyBase);
346 }
347
348 // Traverse all member variables.
349 unsigned FieldNo = 0;
350 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
351 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
352 if (I->isBitField())
353 continue;
354
355 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
356 UpdateEmptyFieldSubobjects(*I, FieldOffset);
357 }
358 }
359
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)360 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
361 CharUnits Offset) {
362 // If we know this class doesn't have any empty subobjects we don't need to
363 // bother checking.
364 if (SizeOfLargestEmptySubobject.isZero())
365 return true;
366
367 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
368 return false;
369
370 // We are able to place the base at this offset. Make sure to update the
371 // empty base subobject map.
372 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
373 return true;
374 }
375
376 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const377 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
378 const CXXRecordDecl *Class,
379 CharUnits Offset) const {
380 // We don't have to keep looking past the maximum offset that's known to
381 // contain an empty class.
382 if (!AnyEmptySubobjectsBeyondOffset(Offset))
383 return true;
384
385 if (!CanPlaceSubobjectAtOffset(RD, Offset))
386 return false;
387
388 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
389
390 // Traverse all non-virtual bases.
391 for (const CXXBaseSpecifier &Base : RD->bases()) {
392 if (Base.isVirtual())
393 continue;
394
395 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
396
397 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
398 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
399 return false;
400 }
401
402 if (RD == Class) {
403 // This is the most derived class, traverse virtual bases as well.
404 for (const CXXBaseSpecifier &Base : RD->vbases()) {
405 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
406
407 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
408 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
409 return false;
410 }
411 }
412
413 // Traverse all member variables.
414 unsigned FieldNo = 0;
415 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
416 I != E; ++I, ++FieldNo) {
417 if (I->isBitField())
418 continue;
419
420 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
421
422 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
423 return false;
424 }
425
426 return true;
427 }
428
429 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const430 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
431 CharUnits Offset) const {
432 // We don't have to keep looking past the maximum offset that's known to
433 // contain an empty class.
434 if (!AnyEmptySubobjectsBeyondOffset(Offset))
435 return true;
436
437 QualType T = FD->getType();
438 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
439 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
440
441 // If we have an array type we need to look at every element.
442 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
443 QualType ElemTy = Context.getBaseElementType(AT);
444 const RecordType *RT = ElemTy->getAs<RecordType>();
445 if (!RT)
446 return true;
447
448 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
449 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
450
451 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
452 CharUnits ElementOffset = Offset;
453 for (uint64_t I = 0; I != NumElements; ++I) {
454 // We don't have to keep looking past the maximum offset that's known to
455 // contain an empty class.
456 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
457 return true;
458
459 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
460 return false;
461
462 ElementOffset += Layout.getSize();
463 }
464 }
465
466 return true;
467 }
468
469 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)470 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
471 CharUnits Offset) {
472 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
473 return false;
474
475 // We are able to place the member variable at this offset.
476 // Make sure to update the empty base subobject map.
477 UpdateEmptyFieldSubobjects(FD, Offset);
478 return true;
479 }
480
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset)481 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
482 const CXXRecordDecl *Class,
483 CharUnits Offset) {
484 // We know that the only empty subobjects that can conflict with empty
485 // field subobjects are subobjects of empty bases that can be placed at offset
486 // zero. Because of this, we only need to keep track of empty field
487 // subobjects with offsets less than the size of the largest empty
488 // subobject for our class.
489 if (Offset >= SizeOfLargestEmptySubobject)
490 return;
491
492 AddSubobjectAtOffset(RD, Offset);
493
494 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
495
496 // Traverse all non-virtual bases.
497 for (const CXXBaseSpecifier &Base : RD->bases()) {
498 if (Base.isVirtual())
499 continue;
500
501 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
502
503 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
504 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
505 }
506
507 if (RD == Class) {
508 // This is the most derived class, traverse virtual bases as well.
509 for (const CXXBaseSpecifier &Base : RD->vbases()) {
510 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
511
512 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
513 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
514 }
515 }
516
517 // Traverse all member variables.
518 unsigned FieldNo = 0;
519 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
520 I != E; ++I, ++FieldNo) {
521 if (I->isBitField())
522 continue;
523
524 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
525
526 UpdateEmptyFieldSubobjects(*I, FieldOffset);
527 }
528 }
529
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset)530 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
531 CharUnits Offset) {
532 QualType T = FD->getType();
533 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
534 UpdateEmptyFieldSubobjects(RD, RD, Offset);
535 return;
536 }
537
538 // If we have an array type we need to update every element.
539 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
540 QualType ElemTy = Context.getBaseElementType(AT);
541 const RecordType *RT = ElemTy->getAs<RecordType>();
542 if (!RT)
543 return;
544
545 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
546 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
547
548 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
549 CharUnits ElementOffset = Offset;
550
551 for (uint64_t I = 0; I != NumElements; ++I) {
552 // We know that the only empty subobjects that can conflict with empty
553 // field subobjects are subobjects of empty bases that can be placed at
554 // offset zero. Because of this, we only need to keep track of empty field
555 // subobjects with offsets less than the size of the largest empty
556 // subobject for our class.
557 if (ElementOffset >= SizeOfLargestEmptySubobject)
558 return;
559
560 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
561 ElementOffset += Layout.getSize();
562 }
563 }
564 }
565
566 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
567
568 class RecordLayoutBuilder {
569 protected:
570 // FIXME: Remove this and make the appropriate fields public.
571 friend class clang::ASTContext;
572
573 const ASTContext &Context;
574
575 EmptySubobjectMap *EmptySubobjects;
576
577 /// Size - The current size of the record layout.
578 uint64_t Size;
579
580 /// Alignment - The current alignment of the record layout.
581 CharUnits Alignment;
582
583 /// \brief The alignment if attribute packed is not used.
584 CharUnits UnpackedAlignment;
585
586 SmallVector<uint64_t, 16> FieldOffsets;
587
588 /// \brief Whether the external AST source has provided a layout for this
589 /// record.
590 unsigned UseExternalLayout : 1;
591
592 /// \brief Whether we need to infer alignment, even when we have an
593 /// externally-provided layout.
594 unsigned InferAlignment : 1;
595
596 /// Packed - Whether the record is packed or not.
597 unsigned Packed : 1;
598
599 unsigned IsUnion : 1;
600
601 unsigned IsMac68kAlign : 1;
602
603 unsigned IsMsStruct : 1;
604
605 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
606 /// this contains the number of bits in the last unit that can be used for
607 /// an adjacent bitfield if necessary. The unit in question is usually
608 /// a byte, but larger units are used if IsMsStruct.
609 unsigned char UnfilledBitsInLastUnit;
610 /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
611 /// of the previous field if it was a bitfield.
612 unsigned char LastBitfieldTypeSize;
613
614 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
615 /// #pragma pack.
616 CharUnits MaxFieldAlignment;
617
618 /// DataSize - The data size of the record being laid out.
619 uint64_t DataSize;
620
621 CharUnits NonVirtualSize;
622 CharUnits NonVirtualAlignment;
623
624 /// PrimaryBase - the primary base class (if one exists) of the class
625 /// we're laying out.
626 const CXXRecordDecl *PrimaryBase;
627
628 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
629 /// out is virtual.
630 bool PrimaryBaseIsVirtual;
631
632 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
633 /// pointer, as opposed to inheriting one from a primary base class.
634 bool HasOwnVFPtr;
635
636 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
637
638 /// Bases - base classes and their offsets in the record.
639 BaseOffsetsMapTy Bases;
640
641 // VBases - virtual base classes and their offsets in the record.
642 ASTRecordLayout::VBaseOffsetsMapTy VBases;
643
644 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
645 /// primary base classes for some other direct or indirect base class.
646 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
647
648 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
649 /// inheritance graph order. Used for determining the primary base class.
650 const CXXRecordDecl *FirstNearlyEmptyVBase;
651
652 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
653 /// avoid visiting virtual bases more than once.
654 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
655
656 /// Valid if UseExternalLayout is true.
657 ExternalLayout External;
658
RecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)659 RecordLayoutBuilder(const ASTContext &Context,
660 EmptySubobjectMap *EmptySubobjects)
661 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
662 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
663 UseExternalLayout(false), InferAlignment(false),
664 Packed(false), IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
665 UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
666 MaxFieldAlignment(CharUnits::Zero()),
667 DataSize(0), NonVirtualSize(CharUnits::Zero()),
668 NonVirtualAlignment(CharUnits::One()),
669 PrimaryBase(nullptr), PrimaryBaseIsVirtual(false),
670 HasOwnVFPtr(false),
671 FirstNearlyEmptyVBase(nullptr) {}
672
673 void Layout(const RecordDecl *D);
674 void Layout(const CXXRecordDecl *D);
675 void Layout(const ObjCInterfaceDecl *D);
676
677 void LayoutFields(const RecordDecl *D);
678 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
679 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
680 bool FieldPacked, const FieldDecl *D);
681 void LayoutBitField(const FieldDecl *D);
682
getCXXABI() const683 TargetCXXABI getCXXABI() const {
684 return Context.getTargetInfo().getCXXABI();
685 }
686
687 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
688 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
689
690 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
691 BaseSubobjectInfoMapTy;
692
693 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
694 /// of the class we're laying out to their base subobject info.
695 BaseSubobjectInfoMapTy VirtualBaseInfo;
696
697 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
698 /// class we're laying out to their base subobject info.
699 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
700
701 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
702 /// bases of the given class.
703 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
704
705 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
706 /// single class and all of its base classes.
707 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
708 bool IsVirtual,
709 BaseSubobjectInfo *Derived);
710
711 /// DeterminePrimaryBase - Determine the primary base of the given class.
712 void DeterminePrimaryBase(const CXXRecordDecl *RD);
713
714 void SelectPrimaryVBase(const CXXRecordDecl *RD);
715
716 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
717
718 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
719 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
720 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
721
722 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
723 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
724
725 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
726 CharUnits Offset);
727
728 /// LayoutVirtualBases - Lays out all the virtual bases.
729 void LayoutVirtualBases(const CXXRecordDecl *RD,
730 const CXXRecordDecl *MostDerivedClass);
731
732 /// LayoutVirtualBase - Lays out a single virtual base.
733 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
734
735 /// LayoutBase - Will lay out a base and return the offset where it was
736 /// placed, in chars.
737 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
738
739 /// InitializeLayout - Initialize record layout for the given record decl.
740 void InitializeLayout(const Decl *D);
741
742 /// FinishLayout - Finalize record layout. Adjust record size based on the
743 /// alignment.
744 void FinishLayout(const NamedDecl *D);
745
746 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)747 void UpdateAlignment(CharUnits NewAlignment) {
748 UpdateAlignment(NewAlignment, NewAlignment);
749 }
750
751 /// \brief Retrieve the externally-supplied field offset for the given
752 /// field.
753 ///
754 /// \param Field The field whose offset is being queried.
755 /// \param ComputedOffset The offset that we've computed for this field.
756 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
757 uint64_t ComputedOffset);
758
759 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
760 uint64_t UnpackedOffset, unsigned UnpackedAlign,
761 bool isPacked, const FieldDecl *D);
762
763 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
764
getSize() const765 CharUnits getSize() const {
766 assert(Size % Context.getCharWidth() == 0);
767 return Context.toCharUnitsFromBits(Size);
768 }
getSizeInBits() const769 uint64_t getSizeInBits() const { return Size; }
770
setSize(CharUnits NewSize)771 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)772 void setSize(uint64_t NewSize) { Size = NewSize; }
773
getAligment() const774 CharUnits getAligment() const { return Alignment; }
775
getDataSize() const776 CharUnits getDataSize() const {
777 assert(DataSize % Context.getCharWidth() == 0);
778 return Context.toCharUnitsFromBits(DataSize);
779 }
getDataSizeInBits() const780 uint64_t getDataSizeInBits() const { return DataSize; }
781
setDataSize(CharUnits NewSize)782 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)783 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
784
785 RecordLayoutBuilder(const RecordLayoutBuilder &) = delete;
786 void operator=(const RecordLayoutBuilder &) = delete;
787 };
788 } // end anonymous namespace
789
790 void
SelectPrimaryVBase(const CXXRecordDecl * RD)791 RecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
792 for (const auto &I : RD->bases()) {
793 assert(!I.getType()->isDependentType() &&
794 "Cannot layout class with dependent bases.");
795
796 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
797
798 // Check if this is a nearly empty virtual base.
799 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
800 // If it's not an indirect primary base, then we've found our primary
801 // base.
802 if (!IndirectPrimaryBases.count(Base)) {
803 PrimaryBase = Base;
804 PrimaryBaseIsVirtual = true;
805 return;
806 }
807
808 // Is this the first nearly empty virtual base?
809 if (!FirstNearlyEmptyVBase)
810 FirstNearlyEmptyVBase = Base;
811 }
812
813 SelectPrimaryVBase(Base);
814 if (PrimaryBase)
815 return;
816 }
817 }
818
819 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)820 void RecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
821 // If the class isn't dynamic, it won't have a primary base.
822 if (!RD->isDynamicClass())
823 return;
824
825 // Compute all the primary virtual bases for all of our direct and
826 // indirect bases, and record all their primary virtual base classes.
827 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
828
829 // If the record has a dynamic base class, attempt to choose a primary base
830 // class. It is the first (in direct base class order) non-virtual dynamic
831 // base class, if one exists.
832 for (const auto &I : RD->bases()) {
833 // Ignore virtual bases.
834 if (I.isVirtual())
835 continue;
836
837 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
838
839 if (Base->isDynamicClass()) {
840 // We found it.
841 PrimaryBase = Base;
842 PrimaryBaseIsVirtual = false;
843 return;
844 }
845 }
846
847 // Under the Itanium ABI, if there is no non-virtual primary base class,
848 // try to compute the primary virtual base. The primary virtual base is
849 // the first nearly empty virtual base that is not an indirect primary
850 // virtual base class, if one exists.
851 if (RD->getNumVBases() != 0) {
852 SelectPrimaryVBase(RD);
853 if (PrimaryBase)
854 return;
855 }
856
857 // Otherwise, it is the first indirect primary base class, if one exists.
858 if (FirstNearlyEmptyVBase) {
859 PrimaryBase = FirstNearlyEmptyVBase;
860 PrimaryBaseIsVirtual = true;
861 return;
862 }
863
864 assert(!PrimaryBase && "Should not get here with a primary base!");
865 }
866
867 BaseSubobjectInfo *
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)868 RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
869 bool IsVirtual,
870 BaseSubobjectInfo *Derived) {
871 BaseSubobjectInfo *Info;
872
873 if (IsVirtual) {
874 // Check if we already have info about this virtual base.
875 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
876 if (InfoSlot) {
877 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
878 return InfoSlot;
879 }
880
881 // We don't, create it.
882 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
883 Info = InfoSlot;
884 } else {
885 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
886 }
887
888 Info->Class = RD;
889 Info->IsVirtual = IsVirtual;
890 Info->Derived = nullptr;
891 Info->PrimaryVirtualBaseInfo = nullptr;
892
893 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
894 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
895
896 // Check if this base has a primary virtual base.
897 if (RD->getNumVBases()) {
898 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
899 if (Layout.isPrimaryBaseVirtual()) {
900 // This base does have a primary virtual base.
901 PrimaryVirtualBase = Layout.getPrimaryBase();
902 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
903
904 // Now check if we have base subobject info about this primary base.
905 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
906
907 if (PrimaryVirtualBaseInfo) {
908 if (PrimaryVirtualBaseInfo->Derived) {
909 // We did have info about this primary base, and it turns out that it
910 // has already been claimed as a primary virtual base for another
911 // base.
912 PrimaryVirtualBase = nullptr;
913 } else {
914 // We can claim this base as our primary base.
915 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
916 PrimaryVirtualBaseInfo->Derived = Info;
917 }
918 }
919 }
920 }
921
922 // Now go through all direct bases.
923 for (const auto &I : RD->bases()) {
924 bool IsVirtual = I.isVirtual();
925
926 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
927
928 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
929 }
930
931 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
932 // Traversing the bases must have created the base info for our primary
933 // virtual base.
934 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
935 assert(PrimaryVirtualBaseInfo &&
936 "Did not create a primary virtual base!");
937
938 // Claim the primary virtual base as our primary virtual base.
939 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
940 PrimaryVirtualBaseInfo->Derived = Info;
941 }
942
943 return Info;
944 }
945
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)946 void RecordLayoutBuilder::ComputeBaseSubobjectInfo(const CXXRecordDecl *RD) {
947 for (const auto &I : RD->bases()) {
948 bool IsVirtual = I.isVirtual();
949
950 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
951
952 // Compute the base subobject info for this base.
953 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
954 nullptr);
955
956 if (IsVirtual) {
957 // ComputeBaseInfo has already added this base for us.
958 assert(VirtualBaseInfo.count(BaseDecl) &&
959 "Did not add virtual base!");
960 } else {
961 // Add the base info to the map of non-virtual bases.
962 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
963 "Non-virtual base already exists!");
964 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
965 }
966 }
967 }
968
969 void
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)970 RecordLayoutBuilder::EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign) {
971 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
972
973 // The maximum field alignment overrides base align.
974 if (!MaxFieldAlignment.isZero()) {
975 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
976 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
977 }
978
979 // Round up the current record size to pointer alignment.
980 setSize(getSize().RoundUpToAlignment(BaseAlign));
981 setDataSize(getSize());
982
983 // Update the alignment.
984 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
985 }
986
987 void
LayoutNonVirtualBases(const CXXRecordDecl * RD)988 RecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD) {
989 // Then, determine the primary base class.
990 DeterminePrimaryBase(RD);
991
992 // Compute base subobject info.
993 ComputeBaseSubobjectInfo(RD);
994
995 // If we have a primary base class, lay it out.
996 if (PrimaryBase) {
997 if (PrimaryBaseIsVirtual) {
998 // If the primary virtual base was a primary virtual base of some other
999 // base class we'll have to steal it.
1000 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
1001 PrimaryBaseInfo->Derived = nullptr;
1002
1003 // We have a virtual primary base, insert it as an indirect primary base.
1004 IndirectPrimaryBases.insert(PrimaryBase);
1005
1006 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1007 "vbase already visited!");
1008 VisitedVirtualBases.insert(PrimaryBase);
1009
1010 LayoutVirtualBase(PrimaryBaseInfo);
1011 } else {
1012 BaseSubobjectInfo *PrimaryBaseInfo =
1013 NonVirtualBaseInfo.lookup(PrimaryBase);
1014 assert(PrimaryBaseInfo &&
1015 "Did not find base info for non-virtual primary base!");
1016
1017 LayoutNonVirtualBase(PrimaryBaseInfo);
1018 }
1019
1020 // If this class needs a vtable/vf-table and didn't get one from a
1021 // primary base, add it in now.
1022 } else if (RD->isDynamicClass()) {
1023 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1024 CharUnits PtrWidth =
1025 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1026 CharUnits PtrAlign =
1027 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1028 EnsureVTablePointerAlignment(PtrAlign);
1029 HasOwnVFPtr = true;
1030 setSize(getSize() + PtrWidth);
1031 setDataSize(getSize());
1032 }
1033
1034 // Now lay out the non-virtual bases.
1035 for (const auto &I : RD->bases()) {
1036
1037 // Ignore virtual bases.
1038 if (I.isVirtual())
1039 continue;
1040
1041 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1042
1043 // Skip the primary base, because we've already laid it out. The
1044 // !PrimaryBaseIsVirtual check is required because we might have a
1045 // non-virtual base of the same type as a primary virtual base.
1046 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1047 continue;
1048
1049 // Lay out the base.
1050 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1051 assert(BaseInfo && "Did not find base info for non-virtual base!");
1052
1053 LayoutNonVirtualBase(BaseInfo);
1054 }
1055 }
1056
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1057 void RecordLayoutBuilder::LayoutNonVirtualBase(const BaseSubobjectInfo *Base) {
1058 // Layout the base.
1059 CharUnits Offset = LayoutBase(Base);
1060
1061 // Add its base class offset.
1062 assert(!Bases.count(Base->Class) && "base offset already exists!");
1063 Bases.insert(std::make_pair(Base->Class, Offset));
1064
1065 AddPrimaryVirtualBaseOffsets(Base, Offset);
1066 }
1067
1068 void
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1069 RecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
1070 CharUnits Offset) {
1071 // This base isn't interesting, it has no virtual bases.
1072 if (!Info->Class->getNumVBases())
1073 return;
1074
1075 // First, check if we have a virtual primary base to add offsets for.
1076 if (Info->PrimaryVirtualBaseInfo) {
1077 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1078 "Primary virtual base is not virtual!");
1079 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1080 // Add the offset.
1081 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1082 "primary vbase offset already exists!");
1083 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1084 ASTRecordLayout::VBaseInfo(Offset, false)));
1085
1086 // Traverse the primary virtual base.
1087 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1088 }
1089 }
1090
1091 // Now go through all direct non-virtual bases.
1092 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1093 for (const BaseSubobjectInfo *Base : Info->Bases) {
1094 if (Base->IsVirtual)
1095 continue;
1096
1097 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1098 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1099 }
1100 }
1101
1102 void
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1103 RecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
1104 const CXXRecordDecl *MostDerivedClass) {
1105 const CXXRecordDecl *PrimaryBase;
1106 bool PrimaryBaseIsVirtual;
1107
1108 if (MostDerivedClass == RD) {
1109 PrimaryBase = this->PrimaryBase;
1110 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1111 } else {
1112 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1113 PrimaryBase = Layout.getPrimaryBase();
1114 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1115 }
1116
1117 for (const CXXBaseSpecifier &Base : RD->bases()) {
1118 assert(!Base.getType()->isDependentType() &&
1119 "Cannot layout class with dependent bases.");
1120
1121 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1122
1123 if (Base.isVirtual()) {
1124 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1125 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1126
1127 // Only lay out the virtual base if it's not an indirect primary base.
1128 if (!IndirectPrimaryBase) {
1129 // Only visit virtual bases once.
1130 if (!VisitedVirtualBases.insert(BaseDecl).second)
1131 continue;
1132
1133 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1134 assert(BaseInfo && "Did not find virtual base info!");
1135 LayoutVirtualBase(BaseInfo);
1136 }
1137 }
1138 }
1139
1140 if (!BaseDecl->getNumVBases()) {
1141 // This base isn't interesting since it doesn't have any virtual bases.
1142 continue;
1143 }
1144
1145 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1146 }
1147 }
1148
LayoutVirtualBase(const BaseSubobjectInfo * Base)1149 void RecordLayoutBuilder::LayoutVirtualBase(const BaseSubobjectInfo *Base) {
1150 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1151
1152 // Layout the base.
1153 CharUnits Offset = LayoutBase(Base);
1154
1155 // Add its base class offset.
1156 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1157 VBases.insert(std::make_pair(Base->Class,
1158 ASTRecordLayout::VBaseInfo(Offset, false)));
1159
1160 AddPrimaryVirtualBaseOffsets(Base, Offset);
1161 }
1162
LayoutBase(const BaseSubobjectInfo * Base)1163 CharUnits RecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1164 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1165
1166
1167 CharUnits Offset;
1168
1169 // Query the external layout to see if it provides an offset.
1170 bool HasExternalLayout = false;
1171 if (UseExternalLayout) {
1172 llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1173 if (Base->IsVirtual)
1174 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1175 else
1176 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1177 }
1178
1179 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1180 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1181
1182 // If we have an empty base class, try to place it at offset 0.
1183 if (Base->Class->isEmpty() &&
1184 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1185 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1186 setSize(std::max(getSize(), Layout.getSize()));
1187 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1188
1189 return CharUnits::Zero();
1190 }
1191
1192 // The maximum field alignment overrides base align.
1193 if (!MaxFieldAlignment.isZero()) {
1194 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1195 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1196 }
1197
1198 if (!HasExternalLayout) {
1199 // Round up the current record size to the base's alignment boundary.
1200 Offset = getDataSize().RoundUpToAlignment(BaseAlign);
1201
1202 // Try to place the base.
1203 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1204 Offset += BaseAlign;
1205 } else {
1206 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1207 (void)Allowed;
1208 assert(Allowed && "Base subobject externally placed at overlapping offset");
1209
1210 if (InferAlignment && Offset < getDataSize().RoundUpToAlignment(BaseAlign)){
1211 // The externally-supplied base offset is before the base offset we
1212 // computed. Assume that the structure is packed.
1213 Alignment = CharUnits::One();
1214 InferAlignment = false;
1215 }
1216 }
1217
1218 if (!Base->Class->isEmpty()) {
1219 // Update the data size.
1220 setDataSize(Offset + Layout.getNonVirtualSize());
1221
1222 setSize(std::max(getSize(), getDataSize()));
1223 } else
1224 setSize(std::max(getSize(), Offset + Layout.getSize()));
1225
1226 // Remember max struct/class alignment.
1227 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1228
1229 return Offset;
1230 }
1231
InitializeLayout(const Decl * D)1232 void RecordLayoutBuilder::InitializeLayout(const Decl *D) {
1233 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1234 IsUnion = RD->isUnion();
1235 IsMsStruct = RD->isMsStruct(Context);
1236 }
1237
1238 Packed = D->hasAttr<PackedAttr>();
1239
1240 // Honor the default struct packing maximum alignment flag.
1241 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1242 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1243 }
1244
1245 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1246 // and forces all structures to have 2-byte alignment. The IBM docs on it
1247 // allude to additional (more complicated) semantics, especially with regard
1248 // to bit-fields, but gcc appears not to follow that.
1249 if (D->hasAttr<AlignMac68kAttr>()) {
1250 IsMac68kAlign = true;
1251 MaxFieldAlignment = CharUnits::fromQuantity(2);
1252 Alignment = CharUnits::fromQuantity(2);
1253 } else {
1254 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1255 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1256
1257 if (unsigned MaxAlign = D->getMaxAlignment())
1258 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1259 }
1260
1261 // If there is an external AST source, ask it for the various offsets.
1262 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1263 if (ExternalASTSource *Source = Context.getExternalSource()) {
1264 UseExternalLayout = Source->layoutRecordType(
1265 RD, External.Size, External.Align, External.FieldOffsets,
1266 External.BaseOffsets, External.VirtualBaseOffsets);
1267
1268 // Update based on external alignment.
1269 if (UseExternalLayout) {
1270 if (External.Align > 0) {
1271 Alignment = Context.toCharUnitsFromBits(External.Align);
1272 } else {
1273 // The external source didn't have alignment information; infer it.
1274 InferAlignment = true;
1275 }
1276 }
1277 }
1278 }
1279
Layout(const RecordDecl * D)1280 void RecordLayoutBuilder::Layout(const RecordDecl *D) {
1281 InitializeLayout(D);
1282 LayoutFields(D);
1283
1284 // Finally, round the size of the total struct up to the alignment of the
1285 // struct itself.
1286 FinishLayout(D);
1287 }
1288
Layout(const CXXRecordDecl * RD)1289 void RecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1290 InitializeLayout(RD);
1291
1292 // Lay out the vtable and the non-virtual bases.
1293 LayoutNonVirtualBases(RD);
1294
1295 LayoutFields(RD);
1296
1297 NonVirtualSize = Context.toCharUnitsFromBits(
1298 llvm::RoundUpToAlignment(getSizeInBits(),
1299 Context.getTargetInfo().getCharAlign()));
1300 NonVirtualAlignment = Alignment;
1301
1302 // Lay out the virtual bases and add the primary virtual base offsets.
1303 LayoutVirtualBases(RD, RD);
1304
1305 // Finally, round the size of the total struct up to the alignment
1306 // of the struct itself.
1307 FinishLayout(RD);
1308
1309 #ifndef NDEBUG
1310 // Check that we have base offsets for all bases.
1311 for (const CXXBaseSpecifier &Base : RD->bases()) {
1312 if (Base.isVirtual())
1313 continue;
1314
1315 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1316
1317 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1318 }
1319
1320 // And all virtual bases.
1321 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1322 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1323
1324 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1325 }
1326 #endif
1327 }
1328
Layout(const ObjCInterfaceDecl * D)1329 void RecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1330 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1331 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1332
1333 UpdateAlignment(SL.getAlignment());
1334
1335 // We start laying out ivars not at the end of the superclass
1336 // structure, but at the next byte following the last field.
1337 setSize(SL.getDataSize());
1338 setDataSize(getSize());
1339 }
1340
1341 InitializeLayout(D);
1342 // Layout each ivar sequentially.
1343 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1344 IVD = IVD->getNextIvar())
1345 LayoutField(IVD, false);
1346
1347 // Finally, round the size of the total struct up to the alignment of the
1348 // struct itself.
1349 FinishLayout(D);
1350 }
1351
LayoutFields(const RecordDecl * D)1352 void RecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1353 // Layout each field, for now, just sequentially, respecting alignment. In
1354 // the future, this will need to be tweakable by targets.
1355 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1356 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1357 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1358 auto Next(I);
1359 ++Next;
1360 LayoutField(*I,
1361 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1362 }
1363 }
1364
1365 // Rounds the specified size to have it a multiple of the char size.
1366 static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,const ASTContext & Context)1367 roundUpSizeToCharAlignment(uint64_t Size,
1368 const ASTContext &Context) {
1369 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1370 return llvm::RoundUpToAlignment(Size, CharAlignment);
1371 }
1372
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1373 void RecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1374 uint64_t TypeSize,
1375 bool FieldPacked,
1376 const FieldDecl *D) {
1377 assert(Context.getLangOpts().CPlusPlus &&
1378 "Can only have wide bit-fields in C++!");
1379
1380 // Itanium C++ ABI 2.4:
1381 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1382 // sizeof(T')*8 <= n.
1383
1384 QualType IntegralPODTypes[] = {
1385 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1386 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1387 };
1388
1389 QualType Type;
1390 for (const QualType &QT : IntegralPODTypes) {
1391 uint64_t Size = Context.getTypeSize(QT);
1392
1393 if (Size > FieldSize)
1394 break;
1395
1396 Type = QT;
1397 }
1398 assert(!Type.isNull() && "Did not find a type!");
1399
1400 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1401
1402 // We're not going to use any of the unfilled bits in the last byte.
1403 UnfilledBitsInLastUnit = 0;
1404 LastBitfieldTypeSize = 0;
1405
1406 uint64_t FieldOffset;
1407 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1408
1409 if (IsUnion) {
1410 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1411 Context);
1412 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1413 FieldOffset = 0;
1414 } else {
1415 // The bitfield is allocated starting at the next offset aligned
1416 // appropriately for T', with length n bits.
1417 FieldOffset = llvm::RoundUpToAlignment(getDataSizeInBits(),
1418 Context.toBits(TypeAlign));
1419
1420 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1421
1422 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits,
1423 Context.getTargetInfo().getCharAlign()));
1424 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1425 }
1426
1427 // Place this field at the current location.
1428 FieldOffsets.push_back(FieldOffset);
1429
1430 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1431 Context.toBits(TypeAlign), FieldPacked, D);
1432
1433 // Update the size.
1434 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1435
1436 // Remember max struct/class alignment.
1437 UpdateAlignment(TypeAlign);
1438 }
1439
LayoutBitField(const FieldDecl * D)1440 void RecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1441 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1442 uint64_t FieldSize = D->getBitWidthValue(Context);
1443 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1444 uint64_t TypeSize = FieldInfo.Width;
1445 unsigned FieldAlign = FieldInfo.Align;
1446
1447 // UnfilledBitsInLastUnit is the difference between the end of the
1448 // last allocated bitfield (i.e. the first bit offset available for
1449 // bitfields) and the end of the current data size in bits (i.e. the
1450 // first bit offset available for non-bitfields). The current data
1451 // size in bits is always a multiple of the char size; additionally,
1452 // for ms_struct records it's also a multiple of the
1453 // LastBitfieldTypeSize (if set).
1454
1455 // The struct-layout algorithm is dictated by the platform ABI,
1456 // which in principle could use almost any rules it likes. In
1457 // practice, UNIXy targets tend to inherit the algorithm described
1458 // in the System V generic ABI. The basic bitfield layout rule in
1459 // System V is to place bitfields at the next available bit offset
1460 // where the entire bitfield would fit in an aligned storage unit of
1461 // the declared type; it's okay if an earlier or later non-bitfield
1462 // is allocated in the same storage unit. However, some targets
1463 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1464 // require this storage unit to be aligned, and therefore always put
1465 // the bitfield at the next available bit offset.
1466
1467 // ms_struct basically requests a complete replacement of the
1468 // platform ABI's struct-layout algorithm, with the high-level goal
1469 // of duplicating MSVC's layout. For non-bitfields, this follows
1470 // the the standard algorithm. The basic bitfield layout rule is to
1471 // allocate an entire unit of the bitfield's declared type
1472 // (e.g. 'unsigned long'), then parcel it up among successive
1473 // bitfields whose declared types have the same size, making a new
1474 // unit as soon as the last can no longer store the whole value.
1475 // Since it completely replaces the platform ABI's algorithm,
1476 // settings like !useBitFieldTypeAlignment() do not apply.
1477
1478 // A zero-width bitfield forces the use of a new storage unit for
1479 // later bitfields. In general, this occurs by rounding up the
1480 // current size of the struct as if the algorithm were about to
1481 // place a non-bitfield of the field's formal type. Usually this
1482 // does not change the alignment of the struct itself, but it does
1483 // on some targets (those that useZeroLengthBitfieldAlignment(),
1484 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1485 // ignored unless they follow a non-zero-width bitfield.
1486
1487 // A field alignment restriction (e.g. from #pragma pack) or
1488 // specification (e.g. from __attribute__((aligned))) changes the
1489 // formal alignment of the field. For System V, this alters the
1490 // required alignment of the notional storage unit that must contain
1491 // the bitfield. For ms_struct, this only affects the placement of
1492 // new storage units. In both cases, the effect of #pragma pack is
1493 // ignored on zero-width bitfields.
1494
1495 // On System V, a packed field (e.g. from #pragma pack or
1496 // __attribute__((packed))) always uses the next available bit
1497 // offset.
1498
1499 // In an ms_struct struct, the alignment of a fundamental type is
1500 // always equal to its size. This is necessary in order to mimic
1501 // the i386 alignment rules on targets which might not fully align
1502 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1503
1504 // First, some simple bookkeeping to perform for ms_struct structs.
1505 if (IsMsStruct) {
1506 // The field alignment for integer types is always the size.
1507 FieldAlign = TypeSize;
1508
1509 // If the previous field was not a bitfield, or was a bitfield
1510 // with a different storage unit size, we're done with that
1511 // storage unit.
1512 if (LastBitfieldTypeSize != TypeSize) {
1513 // Also, ignore zero-length bitfields after non-bitfields.
1514 if (!LastBitfieldTypeSize && !FieldSize)
1515 FieldAlign = 1;
1516
1517 UnfilledBitsInLastUnit = 0;
1518 LastBitfieldTypeSize = 0;
1519 }
1520 }
1521
1522 // If the field is wider than its declared type, it follows
1523 // different rules in all cases.
1524 if (FieldSize > TypeSize) {
1525 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1526 return;
1527 }
1528
1529 // Compute the next available bit offset.
1530 uint64_t FieldOffset =
1531 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1532
1533 // Handle targets that don't honor bitfield type alignment.
1534 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1535 // Some such targets do honor it on zero-width bitfields.
1536 if (FieldSize == 0 &&
1537 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1538 // The alignment to round up to is the max of the field's natural
1539 // alignment and a target-specific fixed value (sometimes zero).
1540 unsigned ZeroLengthBitfieldBoundary =
1541 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1542 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1543
1544 // If that doesn't apply, just ignore the field alignment.
1545 } else {
1546 FieldAlign = 1;
1547 }
1548 }
1549
1550 // Remember the alignment we would have used if the field were not packed.
1551 unsigned UnpackedFieldAlign = FieldAlign;
1552
1553 // Ignore the field alignment if the field is packed unless it has zero-size.
1554 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1555 FieldAlign = 1;
1556
1557 // But, if there's an 'aligned' attribute on the field, honor that.
1558 if (unsigned ExplicitFieldAlign = D->getMaxAlignment()) {
1559 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1560 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1561 }
1562
1563 // But, if there's a #pragma pack in play, that takes precedent over
1564 // even the 'aligned' attribute, for non-zero-width bitfields.
1565 if (!MaxFieldAlignment.isZero() && FieldSize) {
1566 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1567 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1568 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1569 }
1570
1571 // For purposes of diagnostics, we're going to simultaneously
1572 // compute the field offsets that we would have used if we weren't
1573 // adding any alignment padding or if the field weren't packed.
1574 uint64_t UnpaddedFieldOffset = FieldOffset;
1575 uint64_t UnpackedFieldOffset = FieldOffset;
1576
1577 // Check if we need to add padding to fit the bitfield within an
1578 // allocation unit with the right size and alignment. The rules are
1579 // somewhat different here for ms_struct structs.
1580 if (IsMsStruct) {
1581 // If it's not a zero-width bitfield, and we can fit the bitfield
1582 // into the active storage unit (and we haven't already decided to
1583 // start a new storage unit), just do so, regardless of any other
1584 // other consideration. Otherwise, round up to the right alignment.
1585 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1586 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1587 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1588 UnpackedFieldAlign);
1589 UnfilledBitsInLastUnit = 0;
1590 }
1591
1592 } else {
1593 // #pragma pack, with any value, suppresses the insertion of padding.
1594 bool AllowPadding = MaxFieldAlignment.isZero();
1595
1596 // Compute the real offset.
1597 if (FieldSize == 0 ||
1598 (AllowPadding &&
1599 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1600 FieldOffset = llvm::RoundUpToAlignment(FieldOffset, FieldAlign);
1601 }
1602
1603 // Repeat the computation for diagnostic purposes.
1604 if (FieldSize == 0 ||
1605 (AllowPadding &&
1606 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1607 UnpackedFieldOffset = llvm::RoundUpToAlignment(UnpackedFieldOffset,
1608 UnpackedFieldAlign);
1609 }
1610
1611 // If we're using external layout, give the external layout a chance
1612 // to override this information.
1613 if (UseExternalLayout)
1614 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1615
1616 // Okay, place the bitfield at the calculated offset.
1617 FieldOffsets.push_back(FieldOffset);
1618
1619 // Bookkeeping:
1620
1621 // Anonymous members don't affect the overall record alignment,
1622 // except on targets where they do.
1623 if (!IsMsStruct &&
1624 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1625 !D->getIdentifier())
1626 FieldAlign = UnpackedFieldAlign = 1;
1627
1628 // Diagnose differences in layout due to padding or packing.
1629 if (!UseExternalLayout)
1630 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1631 UnpackedFieldAlign, FieldPacked, D);
1632
1633 // Update DataSize to include the last byte containing (part of) the bitfield.
1634
1635 // For unions, this is just a max operation, as usual.
1636 if (IsUnion) {
1637 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1638 Context);
1639 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1640 // For non-zero-width bitfields in ms_struct structs, allocate a new
1641 // storage unit if necessary.
1642 } else if (IsMsStruct && FieldSize) {
1643 // We should have cleared UnfilledBitsInLastUnit in every case
1644 // where we changed storage units.
1645 if (!UnfilledBitsInLastUnit) {
1646 setDataSize(FieldOffset + TypeSize);
1647 UnfilledBitsInLastUnit = TypeSize;
1648 }
1649 UnfilledBitsInLastUnit -= FieldSize;
1650 LastBitfieldTypeSize = TypeSize;
1651
1652 // Otherwise, bump the data size up to include the bitfield,
1653 // including padding up to char alignment, and then remember how
1654 // bits we didn't use.
1655 } else {
1656 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1657 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1658 setDataSize(llvm::RoundUpToAlignment(NewSizeInBits, CharAlignment));
1659 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1660
1661 // The only time we can get here for an ms_struct is if this is a
1662 // zero-width bitfield, which doesn't count as anything for the
1663 // purposes of unfilled bits.
1664 LastBitfieldTypeSize = 0;
1665 }
1666
1667 // Update the size.
1668 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1669
1670 // Remember max struct/class alignment.
1671 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1672 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1673 }
1674
LayoutField(const FieldDecl * D,bool InsertExtraPadding)1675 void RecordLayoutBuilder::LayoutField(const FieldDecl *D,
1676 bool InsertExtraPadding) {
1677 if (D->isBitField()) {
1678 LayoutBitField(D);
1679 return;
1680 }
1681
1682 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1683
1684 // Reset the unfilled bits.
1685 UnfilledBitsInLastUnit = 0;
1686 LastBitfieldTypeSize = 0;
1687
1688 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1689 CharUnits FieldOffset =
1690 IsUnion ? CharUnits::Zero() : getDataSize();
1691 CharUnits FieldSize;
1692 CharUnits FieldAlign;
1693
1694 if (D->getType()->isIncompleteArrayType()) {
1695 // This is a flexible array member; we can't directly
1696 // query getTypeInfo about these, so we figure it out here.
1697 // Flexible array members don't have any size, but they
1698 // have to be aligned appropriately for their element type.
1699 FieldSize = CharUnits::Zero();
1700 const ArrayType* ATy = Context.getAsArrayType(D->getType());
1701 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1702 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1703 unsigned AS = RT->getPointeeType().getAddressSpace();
1704 FieldSize =
1705 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1706 FieldAlign =
1707 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1708 } else {
1709 std::pair<CharUnits, CharUnits> FieldInfo =
1710 Context.getTypeInfoInChars(D->getType());
1711 FieldSize = FieldInfo.first;
1712 FieldAlign = FieldInfo.second;
1713
1714 if (IsMsStruct) {
1715 // If MS bitfield layout is required, figure out what type is being
1716 // laid out and align the field to the width of that type.
1717
1718 // Resolve all typedefs down to their base type and round up the field
1719 // alignment if necessary.
1720 QualType T = Context.getBaseElementType(D->getType());
1721 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1722 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1723 if (TypeSize > FieldAlign)
1724 FieldAlign = TypeSize;
1725 }
1726 }
1727 }
1728
1729 // The align if the field is not packed. This is to check if the attribute
1730 // was unnecessary (-Wpacked).
1731 CharUnits UnpackedFieldAlign = FieldAlign;
1732 CharUnits UnpackedFieldOffset = FieldOffset;
1733
1734 if (FieldPacked)
1735 FieldAlign = CharUnits::One();
1736 CharUnits MaxAlignmentInChars =
1737 Context.toCharUnitsFromBits(D->getMaxAlignment());
1738 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1739 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1740
1741 // The maximum field alignment overrides the aligned attribute.
1742 if (!MaxFieldAlignment.isZero()) {
1743 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1744 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1745 }
1746
1747 // Round up the current record size to the field's alignment boundary.
1748 FieldOffset = FieldOffset.RoundUpToAlignment(FieldAlign);
1749 UnpackedFieldOffset =
1750 UnpackedFieldOffset.RoundUpToAlignment(UnpackedFieldAlign);
1751
1752 if (UseExternalLayout) {
1753 FieldOffset = Context.toCharUnitsFromBits(
1754 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1755
1756 if (!IsUnion && EmptySubobjects) {
1757 // Record the fact that we're placing a field at this offset.
1758 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1759 (void)Allowed;
1760 assert(Allowed && "Externally-placed field cannot be placed here");
1761 }
1762 } else {
1763 if (!IsUnion && EmptySubobjects) {
1764 // Check if we can place the field at this offset.
1765 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1766 // We couldn't place the field at the offset. Try again at a new offset.
1767 FieldOffset += FieldAlign;
1768 }
1769 }
1770 }
1771
1772 // Place this field at the current location.
1773 FieldOffsets.push_back(Context.toBits(FieldOffset));
1774
1775 if (!UseExternalLayout)
1776 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1777 Context.toBits(UnpackedFieldOffset),
1778 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1779
1780 if (InsertExtraPadding) {
1781 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1782 CharUnits ExtraSizeForAsan = ASanAlignment;
1783 if (FieldSize % ASanAlignment)
1784 ExtraSizeForAsan +=
1785 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1786 FieldSize += ExtraSizeForAsan;
1787 }
1788
1789 // Reserve space for this field.
1790 uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1791 if (IsUnion)
1792 setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1793 else
1794 setDataSize(FieldOffset + FieldSize);
1795
1796 // Update the size.
1797 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1798
1799 // Remember max struct/class alignment.
1800 UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1801 }
1802
FinishLayout(const NamedDecl * D)1803 void RecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1804 // In C++, records cannot be of size 0.
1805 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1806 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1807 // Compatibility with gcc requires a class (pod or non-pod)
1808 // which is not empty but of size 0; such as having fields of
1809 // array of zero-length, remains of Size 0
1810 if (RD->isEmpty())
1811 setSize(CharUnits::One());
1812 }
1813 else
1814 setSize(CharUnits::One());
1815 }
1816
1817 // Finally, round the size of the record up to the alignment of the
1818 // record itself.
1819 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1820 uint64_t UnpackedSizeInBits =
1821 llvm::RoundUpToAlignment(getSizeInBits(),
1822 Context.toBits(UnpackedAlignment));
1823 CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
1824 uint64_t RoundedSize
1825 = llvm::RoundUpToAlignment(getSizeInBits(), Context.toBits(Alignment));
1826
1827 if (UseExternalLayout) {
1828 // If we're inferring alignment, and the external size is smaller than
1829 // our size after we've rounded up to alignment, conservatively set the
1830 // alignment to 1.
1831 if (InferAlignment && External.Size < RoundedSize) {
1832 Alignment = CharUnits::One();
1833 InferAlignment = false;
1834 }
1835 setSize(External.Size);
1836 return;
1837 }
1838
1839 // Set the size to the final size.
1840 setSize(RoundedSize);
1841
1842 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1843 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1844 // Warn if padding was introduced to the struct/class/union.
1845 if (getSizeInBits() > UnpaddedSize) {
1846 unsigned PadSize = getSizeInBits() - UnpaddedSize;
1847 bool InBits = true;
1848 if (PadSize % CharBitNum == 0) {
1849 PadSize = PadSize / CharBitNum;
1850 InBits = false;
1851 }
1852 Diag(RD->getLocation(), diag::warn_padded_struct_size)
1853 << Context.getTypeDeclType(RD)
1854 << PadSize
1855 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
1856 }
1857
1858 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1859 // bother since there won't be alignment issues.
1860 if (Packed && UnpackedAlignment > CharUnits::One() &&
1861 getSize() == UnpackedSize)
1862 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1863 << Context.getTypeDeclType(RD);
1864 }
1865 }
1866
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)1867 void RecordLayoutBuilder::UpdateAlignment(CharUnits NewAlignment,
1868 CharUnits UnpackedNewAlignment) {
1869 // The alignment is not modified when using 'mac68k' alignment or when
1870 // we have an externally-supplied layout that also provides overall alignment.
1871 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
1872 return;
1873
1874 if (NewAlignment > Alignment) {
1875 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
1876 "Alignment not a power of 2");
1877 Alignment = NewAlignment;
1878 }
1879
1880 if (UnpackedNewAlignment > UnpackedAlignment) {
1881 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
1882 "Alignment not a power of 2");
1883 UnpackedAlignment = UnpackedNewAlignment;
1884 }
1885 }
1886
1887 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)1888 RecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
1889 uint64_t ComputedOffset) {
1890 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
1891
1892 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
1893 // The externally-supplied field offset is before the field offset we
1894 // computed. Assume that the structure is packed.
1895 Alignment = CharUnits::One();
1896 InferAlignment = false;
1897 }
1898
1899 // Use the externally-supplied field offset.
1900 return ExternalFieldOffset;
1901 }
1902
1903 /// \brief Get diagnostic %select index for tag kind for
1904 /// field padding diagnostic message.
1905 /// WARNING: Indexes apply to particular diagnostics only!
1906 ///
1907 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)1908 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
1909 switch (Tag) {
1910 case TTK_Struct: return 0;
1911 case TTK_Interface: return 1;
1912 case TTK_Class: return 2;
1913 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
1914 }
1915 }
1916
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)1917 void RecordLayoutBuilder::CheckFieldPadding(uint64_t Offset,
1918 uint64_t UnpaddedOffset,
1919 uint64_t UnpackedOffset,
1920 unsigned UnpackedAlign,
1921 bool isPacked,
1922 const FieldDecl *D) {
1923 // We let objc ivars without warning, objc interfaces generally are not used
1924 // for padding tricks.
1925 if (isa<ObjCIvarDecl>(D))
1926 return;
1927
1928 // Don't warn about structs created without a SourceLocation. This can
1929 // be done by clients of the AST, such as codegen.
1930 if (D->getLocation().isInvalid())
1931 return;
1932
1933 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1934
1935 // Warn if padding was introduced to the struct/class.
1936 if (!IsUnion && Offset > UnpaddedOffset) {
1937 unsigned PadSize = Offset - UnpaddedOffset;
1938 bool InBits = true;
1939 if (PadSize % CharBitNum == 0) {
1940 PadSize = PadSize / CharBitNum;
1941 InBits = false;
1942 }
1943 if (D->getIdentifier())
1944 Diag(D->getLocation(), diag::warn_padded_struct_field)
1945 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1946 << Context.getTypeDeclType(D->getParent())
1947 << PadSize
1948 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1) // plural or not
1949 << D->getIdentifier();
1950 else
1951 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
1952 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1953 << Context.getTypeDeclType(D->getParent())
1954 << PadSize
1955 << (InBits ? 1 : 0) /*(byte|bit)*/ << (PadSize > 1); // plural or not
1956 }
1957
1958 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1959 // bother since there won't be alignment issues.
1960 if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
1961 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1962 << D->getIdentifier();
1963 }
1964
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)1965 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
1966 const CXXRecordDecl *RD) {
1967 // If a class isn't polymorphic it doesn't have a key function.
1968 if (!RD->isPolymorphic())
1969 return nullptr;
1970
1971 // A class that is not externally visible doesn't have a key function. (Or
1972 // at least, there's no point to assigning a key function to such a class;
1973 // this doesn't affect the ABI.)
1974 if (!RD->isExternallyVisible())
1975 return nullptr;
1976
1977 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
1978 // Same behavior as GCC.
1979 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
1980 if (TSK == TSK_ImplicitInstantiation ||
1981 TSK == TSK_ExplicitInstantiationDeclaration ||
1982 TSK == TSK_ExplicitInstantiationDefinition)
1983 return nullptr;
1984
1985 bool allowInlineFunctions =
1986 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
1987
1988 for (const CXXMethodDecl *MD : RD->methods()) {
1989 if (!MD->isVirtual())
1990 continue;
1991
1992 if (MD->isPure())
1993 continue;
1994
1995 // Ignore implicit member functions, they are always marked as inline, but
1996 // they don't have a body until they're defined.
1997 if (MD->isImplicit())
1998 continue;
1999
2000 if (MD->isInlineSpecified())
2001 continue;
2002
2003 if (MD->hasInlineBody())
2004 continue;
2005
2006 // Ignore inline deleted or defaulted functions.
2007 if (!MD->isUserProvided())
2008 continue;
2009
2010 // In certain ABIs, ignore functions with out-of-line inline definitions.
2011 if (!allowInlineFunctions) {
2012 const FunctionDecl *Def;
2013 if (MD->hasBody(Def) && Def->isInlineSpecified())
2014 continue;
2015 }
2016
2017 // We found it.
2018 return MD;
2019 }
2020
2021 return nullptr;
2022 }
2023
2024 DiagnosticBuilder
Diag(SourceLocation Loc,unsigned DiagID)2025 RecordLayoutBuilder::Diag(SourceLocation Loc, unsigned DiagID) {
2026 return Context.getDiagnostics().Report(Loc, DiagID);
2027 }
2028
2029 /// Does the target C++ ABI require us to skip over the tail-padding
2030 /// of the given class (considering it as a base class) when allocating
2031 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2032 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2033 switch (ABI.getTailPaddingUseRules()) {
2034 case TargetCXXABI::AlwaysUseTailPadding:
2035 return false;
2036
2037 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2038 // FIXME: To the extent that this is meant to cover the Itanium ABI
2039 // rules, we should implement the restrictions about over-sized
2040 // bitfields:
2041 //
2042 // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
2043 // In general, a type is considered a POD for the purposes of
2044 // layout if it is a POD type (in the sense of ISO C++
2045 // [basic.types]). However, a POD-struct or POD-union (in the
2046 // sense of ISO C++ [class]) with a bitfield member whose
2047 // declared width is wider than the declared type of the
2048 // bitfield is not a POD for the purpose of layout. Similarly,
2049 // an array type is not a POD for the purpose of layout if the
2050 // element type of the array is not a POD for the purpose of
2051 // layout.
2052 //
2053 // Where references to the ISO C++ are made in this paragraph,
2054 // the Technical Corrigendum 1 version of the standard is
2055 // intended.
2056 return RD->isPOD();
2057
2058 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2059 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2060 // but with a lot of abstraction penalty stripped off. This does
2061 // assume that these properties are set correctly even in C++98
2062 // mode; fortunately, that is true because we want to assign
2063 // consistently semantics to the type-traits intrinsics (or at
2064 // least as many of them as possible).
2065 return RD->isTrivial() && RD->isStandardLayout();
2066 }
2067
2068 llvm_unreachable("bad tail-padding use kind");
2069 }
2070
isMsLayout(const RecordDecl * D)2071 static bool isMsLayout(const RecordDecl* D) {
2072 return D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
2073 }
2074
2075 // This section contains an implementation of struct layout that is, up to the
2076 // included tests, compatible with cl.exe (2013). The layout produced is
2077 // significantly different than those produced by the Itanium ABI. Here we note
2078 // the most important differences.
2079 //
2080 // * The alignment of bitfields in unions is ignored when computing the
2081 // alignment of the union.
2082 // * The existence of zero-width bitfield that occurs after anything other than
2083 // a non-zero length bitfield is ignored.
2084 // * There is no explicit primary base for the purposes of layout. All bases
2085 // with vfptrs are laid out first, followed by all bases without vfptrs.
2086 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2087 // function pointer) and a vbptr (virtual base pointer). They can each be
2088 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2089 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2090 // placed after the lexiographically last non-virtual base. This placement
2091 // is always before fields but can be in the middle of the non-virtual bases
2092 // due to the two-pass layout scheme for non-virtual-bases.
2093 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2094 // the virtual base and is used in conjunction with virtual overrides during
2095 // construction and destruction. This is always a 4 byte value and is used as
2096 // an alternative to constructor vtables.
2097 // * vtordisps are allocated in a block of memory with size and alignment equal
2098 // to the alignment of the completed structure (before applying __declspec(
2099 // align())). The vtordisp always occur at the end of the allocation block,
2100 // immediately prior to the virtual base.
2101 // * vfptrs are injected after all bases and fields have been laid out. In
2102 // order to guarantee proper alignment of all fields, the vfptr injection
2103 // pushes all bases and fields back by the alignment imposed by those bases
2104 // and fields. This can potentially add a significant amount of padding.
2105 // vfptrs are always injected at offset 0.
2106 // * vbptrs are injected after all bases and fields have been laid out. In
2107 // order to guarantee proper alignment of all fields, the vfptr injection
2108 // pushes all bases and fields back by the alignment imposed by those bases
2109 // and fields. This can potentially add a significant amount of padding.
2110 // vbptrs are injected immediately after the last non-virtual base as
2111 // lexiographically ordered in the code. If this site isn't pointer aligned
2112 // the vbptr is placed at the next properly aligned location. Enough padding
2113 // is added to guarantee a fit.
2114 // * The last zero sized non-virtual base can be placed at the end of the
2115 // struct (potentially aliasing another object), or may alias with the first
2116 // field, even if they are of the same type.
2117 // * The last zero size virtual base may be placed at the end of the struct
2118 // potentially aliasing another object.
2119 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2120 // between bases or vbases with specific properties. The criteria for
2121 // additional padding between two bases is that the first base is zero sized
2122 // or ends with a zero sized subobject and the second base is zero sized or
2123 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2124 // layout of the so the leading base is not always the first one declared).
2125 // This rule does take into account fields that are not records, so padding
2126 // will occur even if the last field is, e.g. an int. The padding added for
2127 // bases is 1 byte. The padding added between vbases depends on the alignment
2128 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2129 // * There is no concept of non-virtual alignment, non-virtual alignment and
2130 // alignment are always identical.
2131 // * There is a distinction between alignment and required alignment.
2132 // __declspec(align) changes the required alignment of a struct. This
2133 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2134 // record inherits required alignment from all of its fields and bases.
2135 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2136 // alignment instead of its required alignment. This is the only known way
2137 // to make the alignment of a struct bigger than 8. Interestingly enough
2138 // this alignment is also immune to the effects of #pragma pack and can be
2139 // used to create structures with large alignment under #pragma pack.
2140 // However, because it does not impact required alignment, such a structure,
2141 // when used as a field or base, will not be aligned if #pragma pack is
2142 // still active at the time of use.
2143 //
2144 // Known incompatibilities:
2145 // * all: #pragma pack between fields in a record
2146 // * 2010 and back: If the last field in a record is a bitfield, every object
2147 // laid out after the record will have extra padding inserted before it. The
2148 // extra padding will have size equal to the size of the storage class of the
2149 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2150 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2151 // sized bitfield.
2152 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2153 // greater due to __declspec(align()) then a second layout phase occurs after
2154 // The locations of the vf and vb pointers are known. This layout phase
2155 // suffers from the "last field is a bitfield" bug in 2010 and results in
2156 // _every_ field getting padding put in front of it, potentially including the
2157 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2158 // anything tries to read the vftbl. The second layout phase also treats
2159 // bitfields as separate entities and gives them each storage rather than
2160 // packing them. Additionally, because this phase appears to perform a
2161 // (an unstable) sort on the members before laying them out and because merged
2162 // bitfields have the same address, the bitfields end up in whatever order
2163 // the sort left them in, a behavior we could never hope to replicate.
2164
2165 namespace {
2166 struct MicrosoftRecordLayoutBuilder {
2167 struct ElementInfo {
2168 CharUnits Size;
2169 CharUnits Alignment;
2170 };
2171 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anon07e898d70211::MicrosoftRecordLayoutBuilder2172 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2173 private:
2174 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2175 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2176 public:
2177 void layout(const RecordDecl *RD);
2178 void cxxLayout(const CXXRecordDecl *RD);
2179 /// \brief Initializes size and alignment and honors some flags.
2180 void initializeLayout(const RecordDecl *RD);
2181 /// \brief Initialized C++ layout, compute alignment and virtual alignment and
2182 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2183 /// laid out.
2184 void initializeCXXLayout(const CXXRecordDecl *RD);
2185 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2186 void layoutNonVirtualBase(const CXXRecordDecl *BaseDecl,
2187 const ASTRecordLayout &BaseLayout,
2188 const ASTRecordLayout *&PreviousBaseLayout);
2189 void injectVFPtr(const CXXRecordDecl *RD);
2190 void injectVBPtr(const CXXRecordDecl *RD);
2191 /// \brief Lays out the fields of the record. Also rounds size up to
2192 /// alignment.
2193 void layoutFields(const RecordDecl *RD);
2194 void layoutField(const FieldDecl *FD);
2195 void layoutBitField(const FieldDecl *FD);
2196 /// \brief Lays out a single zero-width bit-field in the record and handles
2197 /// special cases associated with zero-width bit-fields.
2198 void layoutZeroWidthBitField(const FieldDecl *FD);
2199 void layoutVirtualBases(const CXXRecordDecl *RD);
2200 void finalizeLayout(const RecordDecl *RD);
2201 /// \brief Gets the size and alignment of a base taking pragma pack and
2202 /// __declspec(align) into account.
2203 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2204 /// \brief Gets the size and alignment of a field taking pragma pack and
2205 /// __declspec(align) into account. It also updates RequiredAlignment as a
2206 /// side effect because it is most convenient to do so here.
2207 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2208 /// \brief Places a field at an offset in CharUnits.
placeFieldAtOffset__anon07e898d70211::MicrosoftRecordLayoutBuilder2209 void placeFieldAtOffset(CharUnits FieldOffset) {
2210 FieldOffsets.push_back(Context.toBits(FieldOffset));
2211 }
2212 /// \brief Places a bitfield at a bit offset.
placeFieldAtBitOffset__anon07e898d70211::MicrosoftRecordLayoutBuilder2213 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2214 FieldOffsets.push_back(FieldOffset);
2215 }
2216 /// \brief Compute the set of virtual bases for which vtordisps are required.
2217 void computeVtorDispSet(
2218 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2219 const CXXRecordDecl *RD) const;
2220 const ASTContext &Context;
2221 /// \brief The size of the record being laid out.
2222 CharUnits Size;
2223 /// \brief The non-virtual size of the record layout.
2224 CharUnits NonVirtualSize;
2225 /// \brief The data size of the record layout.
2226 CharUnits DataSize;
2227 /// \brief The current alignment of the record layout.
2228 CharUnits Alignment;
2229 /// \brief The maximum allowed field alignment. This is set by #pragma pack.
2230 CharUnits MaxFieldAlignment;
2231 /// \brief The alignment that this record must obey. This is imposed by
2232 /// __declspec(align()) on the record itself or one of its fields or bases.
2233 CharUnits RequiredAlignment;
2234 /// \brief The size of the allocation of the currently active bitfield.
2235 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2236 /// is true.
2237 CharUnits CurrentBitfieldSize;
2238 /// \brief Offset to the virtual base table pointer (if one exists).
2239 CharUnits VBPtrOffset;
2240 /// \brief Minimum record size possible.
2241 CharUnits MinEmptyStructSize;
2242 /// \brief The size and alignment info of a pointer.
2243 ElementInfo PointerInfo;
2244 /// \brief The primary base class (if one exists).
2245 const CXXRecordDecl *PrimaryBase;
2246 /// \brief The class we share our vb-pointer with.
2247 const CXXRecordDecl *SharedVBPtrBase;
2248 /// \brief The collection of field offsets.
2249 SmallVector<uint64_t, 16> FieldOffsets;
2250 /// \brief Base classes and their offsets in the record.
2251 BaseOffsetsMapTy Bases;
2252 /// \brief virtual base classes and their offsets in the record.
2253 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2254 /// \brief The number of remaining bits in our last bitfield allocation.
2255 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2256 /// true.
2257 unsigned RemainingBitsInField;
2258 bool IsUnion : 1;
2259 /// \brief True if the last field laid out was a bitfield and was not 0
2260 /// width.
2261 bool LastFieldIsNonZeroWidthBitfield : 1;
2262 /// \brief True if the class has its own vftable pointer.
2263 bool HasOwnVFPtr : 1;
2264 /// \brief True if the class has a vbtable pointer.
2265 bool HasVBPtr : 1;
2266 /// \brief True if the last sub-object within the type is zero sized or the
2267 /// object itself is zero sized. This *does not* count members that are not
2268 /// records. Only used for MS-ABI.
2269 bool EndsWithZeroSizedObject : 1;
2270 /// \brief True if this class is zero sized or first base is zero sized or
2271 /// has this property. Only used for MS-ABI.
2272 bool LeadsWithZeroSizedBase : 1;
2273
2274 /// \brief True if the external AST source provided a layout for this record.
2275 bool UseExternalLayout : 1;
2276
2277 /// \brief The layout provided by the external AST source. Only active if
2278 /// UseExternalLayout is true.
2279 ExternalLayout External;
2280 };
2281 } // namespace
2282
2283 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2284 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2285 const ASTRecordLayout &Layout) {
2286 ElementInfo Info;
2287 Info.Alignment = Layout.getAlignment();
2288 // Respect pragma pack.
2289 if (!MaxFieldAlignment.isZero())
2290 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2291 // Track zero-sized subobjects here where it's already available.
2292 EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2293 // Respect required alignment, this is necessary because we may have adjusted
2294 // the alignment in the case of pragam pack. Note that the required alignment
2295 // doesn't actually apply to the struct alignment at this point.
2296 Alignment = std::max(Alignment, Info.Alignment);
2297 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2298 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2299 Info.Size = Layout.getNonVirtualSize();
2300 return Info;
2301 }
2302
2303 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2304 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2305 const FieldDecl *FD) {
2306 // Get the alignment of the field type's natural alignment, ignore any
2307 // alignment attributes.
2308 ElementInfo Info;
2309 std::tie(Info.Size, Info.Alignment) =
2310 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2311 // Respect align attributes on the field.
2312 CharUnits FieldRequiredAlignment =
2313 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2314 // Respect align attributes on the type.
2315 if (Context.isAlignmentRequired(FD->getType()))
2316 FieldRequiredAlignment = std::max(
2317 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2318 // Respect attributes applied to subobjects of the field.
2319 if (FD->isBitField())
2320 // For some reason __declspec align impacts alignment rather than required
2321 // alignment when it is applied to bitfields.
2322 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2323 else {
2324 if (auto RT =
2325 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2326 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2327 EndsWithZeroSizedObject = Layout.hasZeroSizedSubObject();
2328 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2329 Layout.getRequiredAlignment());
2330 }
2331 // Capture required alignment as a side-effect.
2332 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2333 }
2334 // Respect pragma pack, attribute pack and declspec align
2335 if (!MaxFieldAlignment.isZero())
2336 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2337 if (FD->hasAttr<PackedAttr>())
2338 Info.Alignment = CharUnits::One();
2339 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2340 return Info;
2341 }
2342
layout(const RecordDecl * RD)2343 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2344 // For C record layout, zero-sized records always have size 4.
2345 MinEmptyStructSize = CharUnits::fromQuantity(4);
2346 initializeLayout(RD);
2347 layoutFields(RD);
2348 DataSize = Size = Size.RoundUpToAlignment(Alignment);
2349 RequiredAlignment = std::max(
2350 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2351 finalizeLayout(RD);
2352 }
2353
cxxLayout(const CXXRecordDecl * RD)2354 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2355 // The C++ standard says that empty structs have size 1.
2356 MinEmptyStructSize = CharUnits::One();
2357 initializeLayout(RD);
2358 initializeCXXLayout(RD);
2359 layoutNonVirtualBases(RD);
2360 layoutFields(RD);
2361 injectVBPtr(RD);
2362 injectVFPtr(RD);
2363 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2364 Alignment = std::max(Alignment, PointerInfo.Alignment);
2365 auto RoundingAlignment = Alignment;
2366 if (!MaxFieldAlignment.isZero())
2367 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2368 NonVirtualSize = Size = Size.RoundUpToAlignment(RoundingAlignment);
2369 RequiredAlignment = std::max(
2370 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2371 layoutVirtualBases(RD);
2372 finalizeLayout(RD);
2373 }
2374
initializeLayout(const RecordDecl * RD)2375 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2376 IsUnion = RD->isUnion();
2377 Size = CharUnits::Zero();
2378 Alignment = CharUnits::One();
2379 // In 64-bit mode we always perform an alignment step after laying out vbases.
2380 // In 32-bit mode we do not. The check to see if we need to perform alignment
2381 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2382 RequiredAlignment = Context.getTargetInfo().getPointerWidth(0) == 64 ?
2383 CharUnits::One() : CharUnits::Zero();
2384 // Compute the maximum field alignment.
2385 MaxFieldAlignment = CharUnits::Zero();
2386 // Honor the default struct packing maximum alignment flag.
2387 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2388 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2389 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2390 // than the pointer size.
2391 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2392 unsigned PackedAlignment = MFAA->getAlignment();
2393 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2394 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2395 }
2396 // Packed attribute forces max field alignment to be 1.
2397 if (RD->hasAttr<PackedAttr>())
2398 MaxFieldAlignment = CharUnits::One();
2399
2400 // Try to respect the external layout if present.
2401 UseExternalLayout = false;
2402 if (ExternalASTSource *Source = Context.getExternalSource())
2403 UseExternalLayout = Source->layoutRecordType(
2404 RD, External.Size, External.Align, External.FieldOffsets,
2405 External.BaseOffsets, External.VirtualBaseOffsets);
2406 }
2407
2408 void
initializeCXXLayout(const CXXRecordDecl * RD)2409 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2410 EndsWithZeroSizedObject = false;
2411 LeadsWithZeroSizedBase = false;
2412 HasOwnVFPtr = false;
2413 HasVBPtr = false;
2414 PrimaryBase = nullptr;
2415 SharedVBPtrBase = nullptr;
2416 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2417 // injection.
2418 PointerInfo.Size =
2419 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2420 PointerInfo.Alignment = PointerInfo.Size;
2421 // Respect pragma pack.
2422 if (!MaxFieldAlignment.isZero())
2423 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2424 }
2425
2426 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2427 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2428 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2429 // out any bases that do not contain vfptrs. We implement this as two passes
2430 // over the bases. This approach guarantees that the primary base is laid out
2431 // first. We use these passes to calculate some additional aggregated
2432 // information about the bases, such as reqruied alignment and the presence of
2433 // zero sized members.
2434 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2435 // Iterate through the bases and lay out the non-virtual ones.
2436 for (const CXXBaseSpecifier &Base : RD->bases()) {
2437 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2438 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2439 // Mark and skip virtual bases.
2440 if (Base.isVirtual()) {
2441 HasVBPtr = true;
2442 continue;
2443 }
2444 // Check fo a base to share a VBPtr with.
2445 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2446 SharedVBPtrBase = BaseDecl;
2447 HasVBPtr = true;
2448 }
2449 // Only lay out bases with extendable VFPtrs on the first pass.
2450 if (!BaseLayout.hasExtendableVFPtr())
2451 continue;
2452 // If we don't have a primary base, this one qualifies.
2453 if (!PrimaryBase) {
2454 PrimaryBase = BaseDecl;
2455 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2456 }
2457 // Lay out the base.
2458 layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2459 }
2460 // Figure out if we need a fresh VFPtr for this class.
2461 if (!PrimaryBase && RD->isDynamicClass())
2462 for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2463 e = RD->method_end();
2464 !HasOwnVFPtr && i != e; ++i)
2465 HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2466 // If we don't have a primary base then we have a leading object that could
2467 // itself lead with a zero-sized object, something we track.
2468 bool CheckLeadingLayout = !PrimaryBase;
2469 // Iterate through the bases and lay out the non-virtual ones.
2470 for (const CXXBaseSpecifier &Base : RD->bases()) {
2471 if (Base.isVirtual())
2472 continue;
2473 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2474 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2475 // Only lay out bases without extendable VFPtrs on the second pass.
2476 if (BaseLayout.hasExtendableVFPtr()) {
2477 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2478 continue;
2479 }
2480 // If this is the first layout, check to see if it leads with a zero sized
2481 // object. If it does, so do we.
2482 if (CheckLeadingLayout) {
2483 CheckLeadingLayout = false;
2484 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2485 }
2486 // Lay out the base.
2487 layoutNonVirtualBase(BaseDecl, BaseLayout, PreviousBaseLayout);
2488 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2489 }
2490 // Set our VBPtroffset if we know it at this point.
2491 if (!HasVBPtr)
2492 VBPtrOffset = CharUnits::fromQuantity(-1);
2493 else if (SharedVBPtrBase) {
2494 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2495 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2496 }
2497 }
2498
layoutNonVirtualBase(const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2499 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2500 const CXXRecordDecl *BaseDecl,
2501 const ASTRecordLayout &BaseLayout,
2502 const ASTRecordLayout *&PreviousBaseLayout) {
2503 // Insert padding between two bases if the left first one is zero sized or
2504 // contains a zero sized subobject and the right is zero sized or one leads
2505 // with a zero sized base.
2506 if (PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2507 BaseLayout.leadsWithZeroSizedBase())
2508 Size++;
2509 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2510 CharUnits BaseOffset;
2511
2512 // Respect the external AST source base offset, if present.
2513 bool FoundBase = false;
2514 if (UseExternalLayout) {
2515 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2516 if (FoundBase)
2517 assert(BaseOffset >= Size && "base offset already allocated");
2518 }
2519
2520 if (!FoundBase)
2521 BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2522 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2523 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2524 PreviousBaseLayout = &BaseLayout;
2525 }
2526
layoutFields(const RecordDecl * RD)2527 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2528 LastFieldIsNonZeroWidthBitfield = false;
2529 for (const FieldDecl *Field : RD->fields())
2530 layoutField(Field);
2531 }
2532
layoutField(const FieldDecl * FD)2533 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2534 if (FD->isBitField()) {
2535 layoutBitField(FD);
2536 return;
2537 }
2538 LastFieldIsNonZeroWidthBitfield = false;
2539 ElementInfo Info = getAdjustedElementInfo(FD);
2540 Alignment = std::max(Alignment, Info.Alignment);
2541 if (IsUnion) {
2542 placeFieldAtOffset(CharUnits::Zero());
2543 Size = std::max(Size, Info.Size);
2544 } else {
2545 CharUnits FieldOffset;
2546 if (UseExternalLayout) {
2547 FieldOffset =
2548 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2549 assert(FieldOffset >= Size && "field offset already allocated");
2550 } else {
2551 FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2552 }
2553 placeFieldAtOffset(FieldOffset);
2554 Size = FieldOffset + Info.Size;
2555 }
2556 }
2557
layoutBitField(const FieldDecl * FD)2558 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2559 unsigned Width = FD->getBitWidthValue(Context);
2560 if (Width == 0) {
2561 layoutZeroWidthBitField(FD);
2562 return;
2563 }
2564 ElementInfo Info = getAdjustedElementInfo(FD);
2565 // Clamp the bitfield to a containable size for the sake of being able
2566 // to lay them out. Sema will throw an error.
2567 if (Width > Context.toBits(Info.Size))
2568 Width = Context.toBits(Info.Size);
2569 // Check to see if this bitfield fits into an existing allocation. Note:
2570 // MSVC refuses to pack bitfields of formal types with different sizes
2571 // into the same allocation.
2572 if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
2573 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2574 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2575 RemainingBitsInField -= Width;
2576 return;
2577 }
2578 LastFieldIsNonZeroWidthBitfield = true;
2579 CurrentBitfieldSize = Info.Size;
2580 if (IsUnion) {
2581 placeFieldAtOffset(CharUnits::Zero());
2582 Size = std::max(Size, Info.Size);
2583 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2584 } else {
2585 // Allocate a new block of memory and place the bitfield in it.
2586 CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2587 placeFieldAtOffset(FieldOffset);
2588 Size = FieldOffset + Info.Size;
2589 Alignment = std::max(Alignment, Info.Alignment);
2590 RemainingBitsInField = Context.toBits(Info.Size) - Width;
2591 }
2592 }
2593
2594 void
layoutZeroWidthBitField(const FieldDecl * FD)2595 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2596 // Zero-width bitfields are ignored unless they follow a non-zero-width
2597 // bitfield.
2598 if (!LastFieldIsNonZeroWidthBitfield) {
2599 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2600 // TODO: Add a Sema warning that MS ignores alignment for zero
2601 // sized bitfields that occur after zero-size bitfields or non-bitfields.
2602 return;
2603 }
2604 LastFieldIsNonZeroWidthBitfield = false;
2605 ElementInfo Info = getAdjustedElementInfo(FD);
2606 if (IsUnion) {
2607 placeFieldAtOffset(CharUnits::Zero());
2608 Size = std::max(Size, Info.Size);
2609 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2610 } else {
2611 // Round up the current record size to the field's alignment boundary.
2612 CharUnits FieldOffset = Size.RoundUpToAlignment(Info.Alignment);
2613 placeFieldAtOffset(FieldOffset);
2614 Size = FieldOffset;
2615 Alignment = std::max(Alignment, Info.Alignment);
2616 }
2617 }
2618
injectVBPtr(const CXXRecordDecl * RD)2619 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2620 if (!HasVBPtr || SharedVBPtrBase)
2621 return;
2622 // Inject the VBPointer at the injection site.
2623 CharUnits InjectionSite = VBPtrOffset;
2624 // But before we do, make sure it's properly aligned.
2625 VBPtrOffset = VBPtrOffset.RoundUpToAlignment(PointerInfo.Alignment);
2626 // Shift everything after the vbptr down, unless we're using an external
2627 // layout.
2628 if (UseExternalLayout)
2629 return;
2630 // Determine where the first field should be laid out after the vbptr.
2631 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2632 // Make sure that the amount we push the fields back by is a multiple of the
2633 // alignment.
2634 CharUnits Offset = (FieldStart - InjectionSite).RoundUpToAlignment(
2635 std::max(RequiredAlignment, Alignment));
2636 Size += Offset;
2637 for (uint64_t &FieldOffset : FieldOffsets)
2638 FieldOffset += Context.toBits(Offset);
2639 for (BaseOffsetsMapTy::value_type &Base : Bases)
2640 if (Base.second >= InjectionSite)
2641 Base.second += Offset;
2642 }
2643
injectVFPtr(const CXXRecordDecl * RD)2644 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2645 if (!HasOwnVFPtr)
2646 return;
2647 // Make sure that the amount we push the struct back by is a multiple of the
2648 // alignment.
2649 CharUnits Offset = PointerInfo.Size.RoundUpToAlignment(
2650 std::max(RequiredAlignment, Alignment));
2651 // Increase the size of the object and push back all fields, the vbptr and all
2652 // bases by the offset amount.
2653 Size += Offset;
2654 for (uint64_t &FieldOffset : FieldOffsets)
2655 FieldOffset += Context.toBits(Offset);
2656 if (HasVBPtr)
2657 VBPtrOffset += Offset;
2658 for (BaseOffsetsMapTy::value_type &Base : Bases)
2659 Base.second += Offset;
2660 }
2661
layoutVirtualBases(const CXXRecordDecl * RD)2662 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2663 if (!HasVBPtr)
2664 return;
2665 // Vtordisps are always 4 bytes (even in 64-bit mode)
2666 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2667 CharUnits VtorDispAlignment = VtorDispSize;
2668 // vtordisps respect pragma pack.
2669 if (!MaxFieldAlignment.isZero())
2670 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2671 // The alignment of the vtordisp is at least the required alignment of the
2672 // entire record. This requirement may be present to support vtordisp
2673 // injection.
2674 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2675 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2676 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2677 RequiredAlignment =
2678 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2679 }
2680 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2681 // Compute the vtordisp set.
2682 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2683 computeVtorDispSet(HasVtorDispSet, RD);
2684 // Iterate through the virtual bases and lay them out.
2685 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2686 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2687 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2688 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2689 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2690 // Insert padding between two bases if the left first one is zero sized or
2691 // contains a zero sized subobject and the right is zero sized or one leads
2692 // with a zero sized base. The padding between virtual bases is 4
2693 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2694 // the required alignment, we don't know why.
2695 if ((PreviousBaseLayout && PreviousBaseLayout->hasZeroSizedSubObject() &&
2696 BaseLayout.leadsWithZeroSizedBase()) || HasVtordisp) {
2697 Size = Size.RoundUpToAlignment(VtorDispAlignment) + VtorDispSize;
2698 Alignment = std::max(VtorDispAlignment, Alignment);
2699 }
2700 // Insert the virtual base.
2701 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2702 CharUnits BaseOffset;
2703
2704 // Respect the external AST source base offset, if present.
2705 bool FoundBase = false;
2706 if (UseExternalLayout) {
2707 FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset);
2708 if (FoundBase)
2709 assert(BaseOffset >= Size && "base offset already allocated");
2710 }
2711 if (!FoundBase)
2712 BaseOffset = Size.RoundUpToAlignment(Info.Alignment);
2713
2714 VBases.insert(std::make_pair(BaseDecl,
2715 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2716 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2717 PreviousBaseLayout = &BaseLayout;
2718 }
2719 }
2720
finalizeLayout(const RecordDecl * RD)2721 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2722 // Respect required alignment. Note that in 32-bit mode Required alignment
2723 // may be 0 and cause size not to be updated.
2724 DataSize = Size;
2725 if (!RequiredAlignment.isZero()) {
2726 Alignment = std::max(Alignment, RequiredAlignment);
2727 auto RoundingAlignment = Alignment;
2728 if (!MaxFieldAlignment.isZero())
2729 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2730 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2731 Size = Size.RoundUpToAlignment(RoundingAlignment);
2732 }
2733 if (Size.isZero()) {
2734 EndsWithZeroSizedObject = true;
2735 LeadsWithZeroSizedBase = true;
2736 // Zero-sized structures have size equal to their alignment if a
2737 // __declspec(align) came into play.
2738 if (RequiredAlignment >= MinEmptyStructSize)
2739 Size = Alignment;
2740 else
2741 Size = MinEmptyStructSize;
2742 }
2743
2744 if (UseExternalLayout) {
2745 Size = Context.toCharUnitsFromBits(External.Size);
2746 if (External.Align)
2747 Alignment = Context.toCharUnitsFromBits(External.Align);
2748 }
2749 }
2750
2751 // Recursively walks the non-virtual bases of a class and determines if any of
2752 // them are in the bases with overridden methods set.
2753 static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl * > & BasesWithOverriddenMethods,const CXXRecordDecl * RD)2754 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2755 BasesWithOverriddenMethods,
2756 const CXXRecordDecl *RD) {
2757 if (BasesWithOverriddenMethods.count(RD))
2758 return true;
2759 // If any of a virtual bases non-virtual bases (recursively) requires a
2760 // vtordisp than so does this virtual base.
2761 for (const CXXBaseSpecifier &Base : RD->bases())
2762 if (!Base.isVirtual() &&
2763 RequiresVtordisp(BasesWithOverriddenMethods,
2764 Base.getType()->getAsCXXRecordDecl()))
2765 return true;
2766 return false;
2767 }
2768
computeVtorDispSet(llvm::SmallPtrSetImpl<const CXXRecordDecl * > & HasVtordispSet,const CXXRecordDecl * RD) const2769 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2770 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2771 const CXXRecordDecl *RD) const {
2772 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2773 // vftables.
2774 if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
2775 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2776 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2777 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2778 if (Layout.hasExtendableVFPtr())
2779 HasVtordispSet.insert(BaseDecl);
2780 }
2781 return;
2782 }
2783
2784 // If any of our bases need a vtordisp for this type, so do we. Check our
2785 // direct bases for vtordisp requirements.
2786 for (const CXXBaseSpecifier &Base : RD->bases()) {
2787 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2788 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2789 for (const auto &bi : Layout.getVBaseOffsetsMap())
2790 if (bi.second.hasVtorDisp())
2791 HasVtordispSet.insert(bi.first);
2792 }
2793 // We don't introduce any additional vtordisps if either:
2794 // * A user declared constructor or destructor aren't declared.
2795 // * #pragma vtordisp(0) or the /vd0 flag are in use.
2796 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2797 RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
2798 return;
2799 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2800 // possible for a partially constructed object with virtual base overrides to
2801 // escape a non-trivial constructor.
2802 assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
2803 // Compute a set of base classes which define methods we override. A virtual
2804 // base in this set will require a vtordisp. A virtual base that transitively
2805 // contains one of these bases as a non-virtual base will also require a
2806 // vtordisp.
2807 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2808 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2809 // Seed the working set with our non-destructor, non-pure virtual methods.
2810 for (const CXXMethodDecl *MD : RD->methods())
2811 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
2812 Work.insert(MD);
2813 while (!Work.empty()) {
2814 const CXXMethodDecl *MD = *Work.begin();
2815 CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
2816 e = MD->end_overridden_methods();
2817 // If a virtual method has no-overrides it lives in its parent's vtable.
2818 if (i == e)
2819 BasesWithOverriddenMethods.insert(MD->getParent());
2820 else
2821 Work.insert(i, e);
2822 // We've finished processing this element, remove it from the working set.
2823 Work.erase(MD);
2824 }
2825 // For each of our virtual bases, check if it is in the set of overridden
2826 // bases or if it transitively contains a non-virtual base that is.
2827 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2828 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2829 if (!HasVtordispSet.count(BaseDecl) &&
2830 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
2831 HasVtordispSet.insert(BaseDecl);
2832 }
2833 }
2834
2835 /// \brief Get or compute information about the layout of the specified record
2836 /// (struct/union/class), which indicates its size and field position
2837 /// information.
2838 const ASTRecordLayout *
BuildMicrosoftASTRecordLayout(const RecordDecl * D) const2839 ASTContext::BuildMicrosoftASTRecordLayout(const RecordDecl *D) const {
2840 MicrosoftRecordLayoutBuilder Builder(*this);
2841 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2842 Builder.cxxLayout(RD);
2843 return new (*this) ASTRecordLayout(
2844 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2845 Builder.HasOwnVFPtr,
2846 Builder.HasOwnVFPtr || Builder.PrimaryBase,
2847 Builder.VBPtrOffset, Builder.NonVirtualSize, Builder.FieldOffsets.data(),
2848 Builder.FieldOffsets.size(), Builder.NonVirtualSize,
2849 Builder.Alignment, CharUnits::Zero(), Builder.PrimaryBase,
2850 false, Builder.SharedVBPtrBase,
2851 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
2852 Builder.Bases, Builder.VBases);
2853 } else {
2854 Builder.layout(D);
2855 return new (*this) ASTRecordLayout(
2856 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2857 Builder.Size, Builder.FieldOffsets.data(), Builder.FieldOffsets.size());
2858 }
2859 }
2860
2861 /// getASTRecordLayout - Get or compute information about the layout of the
2862 /// specified record (struct/union/class), which indicates its size and field
2863 /// position information.
2864 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const2865 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2866 // These asserts test different things. A record has a definition
2867 // as soon as we begin to parse the definition. That definition is
2868 // not a complete definition (which is what isDefinition() tests)
2869 // until we *finish* parsing the definition.
2870
2871 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2872 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2873
2874 D = D->getDefinition();
2875 assert(D && "Cannot get layout of forward declarations!");
2876 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
2877 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2878
2879 // Look up this layout, if already laid out, return what we have.
2880 // Note that we can't save a reference to the entry because this function
2881 // is recursive.
2882 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2883 if (Entry) return *Entry;
2884
2885 const ASTRecordLayout *NewEntry = nullptr;
2886
2887 if (isMsLayout(D)) {
2888 NewEntry = BuildMicrosoftASTRecordLayout(D);
2889 } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
2890 EmptySubobjectMap EmptySubobjects(*this, RD);
2891 RecordLayoutBuilder Builder(*this, &EmptySubobjects);
2892 Builder.Layout(RD);
2893
2894 // In certain situations, we are allowed to lay out objects in the
2895 // tail-padding of base classes. This is ABI-dependent.
2896 // FIXME: this should be stored in the record layout.
2897 bool skipTailPadding =
2898 mustSkipTailPadding(getTargetInfo().getCXXABI(), cast<CXXRecordDecl>(D));
2899
2900 // FIXME: This should be done in FinalizeLayout.
2901 CharUnits DataSize =
2902 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
2903 CharUnits NonVirtualSize =
2904 skipTailPadding ? DataSize : Builder.NonVirtualSize;
2905 NewEntry =
2906 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2907 Builder.Alignment,
2908 /*RequiredAlignment : used by MS-ABI)*/
2909 Builder.Alignment,
2910 Builder.HasOwnVFPtr,
2911 RD->isDynamicClass(),
2912 CharUnits::fromQuantity(-1),
2913 DataSize,
2914 Builder.FieldOffsets.data(),
2915 Builder.FieldOffsets.size(),
2916 NonVirtualSize,
2917 Builder.NonVirtualAlignment,
2918 EmptySubobjects.SizeOfLargestEmptySubobject,
2919 Builder.PrimaryBase,
2920 Builder.PrimaryBaseIsVirtual,
2921 nullptr, false, false,
2922 Builder.Bases, Builder.VBases);
2923 } else {
2924 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2925 Builder.Layout(D);
2926
2927 NewEntry =
2928 new (*this) ASTRecordLayout(*this, Builder.getSize(),
2929 Builder.Alignment,
2930 /*RequiredAlignment : used by MS-ABI)*/
2931 Builder.Alignment,
2932 Builder.getSize(),
2933 Builder.FieldOffsets.data(),
2934 Builder.FieldOffsets.size());
2935 }
2936
2937 ASTRecordLayouts[D] = NewEntry;
2938
2939 if (getLangOpts().DumpRecordLayouts) {
2940 llvm::outs() << "\n*** Dumping AST Record Layout\n";
2941 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
2942 }
2943
2944 return *NewEntry;
2945 }
2946
getCurrentKeyFunction(const CXXRecordDecl * RD)2947 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
2948 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
2949 return nullptr;
2950
2951 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
2952 RD = cast<CXXRecordDecl>(RD->getDefinition());
2953
2954 // Beware:
2955 // 1) computing the key function might trigger deserialization, which might
2956 // invalidate iterators into KeyFunctions
2957 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
2958 // invalidate the LazyDeclPtr within the map itself
2959 LazyDeclPtr Entry = KeyFunctions[RD];
2960 const Decl *Result =
2961 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
2962
2963 // Store it back if it changed.
2964 if (Entry.isOffset() || Entry.isValid() != bool(Result))
2965 KeyFunctions[RD] = const_cast<Decl*>(Result);
2966
2967 return cast_or_null<CXXMethodDecl>(Result);
2968 }
2969
setNonKeyFunction(const CXXMethodDecl * Method)2970 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
2971 assert(Method == Method->getFirstDecl() &&
2972 "not working with method declaration from class definition");
2973
2974 // Look up the cache entry. Since we're working with the first
2975 // declaration, its parent must be the class definition, which is
2976 // the correct key for the KeyFunctions hash.
2977 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr>::iterator
2978 I = KeyFunctions.find(Method->getParent());
2979
2980 // If it's not cached, there's nothing to do.
2981 if (I == KeyFunctions.end()) return;
2982
2983 // If it is cached, check whether it's the target method, and if so,
2984 // remove it from the cache. Note, the call to 'get' might invalidate
2985 // the iterator and the LazyDeclPtr object within the map.
2986 LazyDeclPtr Ptr = I->second;
2987 if (Ptr.get(getExternalSource()) == Method) {
2988 // FIXME: remember that we did this for module / chained PCH state?
2989 KeyFunctions.erase(Method->getParent());
2990 }
2991 }
2992
getFieldOffset(const ASTContext & C,const FieldDecl * FD)2993 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
2994 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
2995 return Layout.getFieldOffset(FD->getFieldIndex());
2996 }
2997
getFieldOffset(const ValueDecl * VD) const2998 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
2999 uint64_t OffsetInBits;
3000 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3001 OffsetInBits = ::getFieldOffset(*this, FD);
3002 } else {
3003 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3004
3005 OffsetInBits = 0;
3006 for (const NamedDecl *ND : IFD->chain())
3007 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3008 }
3009
3010 return OffsetInBits;
3011 }
3012
3013 /// getObjCLayout - Get or compute information about the layout of the
3014 /// given interface.
3015 ///
3016 /// \param Impl - If given, also include the layout of the interface's
3017 /// implementation. This may differ by including synthesized ivars.
3018 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const3019 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3020 const ObjCImplementationDecl *Impl) const {
3021 // Retrieve the definition
3022 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3023 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3024 D = D->getDefinition();
3025 assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
3026
3027 // Look up this layout, if already laid out, return what we have.
3028 const ObjCContainerDecl *Key =
3029 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3030 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3031 return *Entry;
3032
3033 // Add in synthesized ivar count if laying out an implementation.
3034 if (Impl) {
3035 unsigned SynthCount = CountNonClassIvars(D);
3036 // If there aren't any sythesized ivars then reuse the interface
3037 // entry. Note we can't cache this because we simply free all
3038 // entries later; however we shouldn't look up implementations
3039 // frequently.
3040 if (SynthCount == 0)
3041 return getObjCLayout(D, nullptr);
3042 }
3043
3044 RecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3045 Builder.Layout(D);
3046
3047 const ASTRecordLayout *NewEntry =
3048 new (*this) ASTRecordLayout(*this, Builder.getSize(),
3049 Builder.Alignment,
3050 /*RequiredAlignment : used by MS-ABI)*/
3051 Builder.Alignment,
3052 Builder.getDataSize(),
3053 Builder.FieldOffsets.data(),
3054 Builder.FieldOffsets.size());
3055
3056 ObjCLayouts[Key] = NewEntry;
3057
3058 return *NewEntry;
3059 }
3060
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)3061 static void PrintOffset(raw_ostream &OS,
3062 CharUnits Offset, unsigned IndentLevel) {
3063 OS << llvm::format("%4" PRId64 " | ", (int64_t)Offset.getQuantity());
3064 OS.indent(IndentLevel * 2);
3065 }
3066
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)3067 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3068 OS << " | ";
3069 OS.indent(IndentLevel * 2);
3070 }
3071
DumpCXXRecordLayout(raw_ostream & OS,const CXXRecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool IncludeVirtualBases)3072 static void DumpCXXRecordLayout(raw_ostream &OS,
3073 const CXXRecordDecl *RD, const ASTContext &C,
3074 CharUnits Offset,
3075 unsigned IndentLevel,
3076 const char* Description,
3077 bool IncludeVirtualBases) {
3078 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3079
3080 PrintOffset(OS, Offset, IndentLevel);
3081 OS << C.getTypeDeclType(const_cast<CXXRecordDecl *>(RD)).getAsString();
3082 if (Description)
3083 OS << ' ' << Description;
3084 if (RD->isEmpty())
3085 OS << " (empty)";
3086 OS << '\n';
3087
3088 IndentLevel++;
3089
3090 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3091 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3092 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3093
3094 // Vtable pointer.
3095 if (RD->isDynamicClass() && !PrimaryBase && !isMsLayout(RD)) {
3096 PrintOffset(OS, Offset, IndentLevel);
3097 OS << '(' << *RD << " vtable pointer)\n";
3098 } else if (HasOwnVFPtr) {
3099 PrintOffset(OS, Offset, IndentLevel);
3100 // vfptr (for Microsoft C++ ABI)
3101 OS << '(' << *RD << " vftable pointer)\n";
3102 }
3103
3104 // Collect nvbases.
3105 SmallVector<const CXXRecordDecl *, 4> Bases;
3106 for (const CXXBaseSpecifier &Base : RD->bases()) {
3107 assert(!Base.getType()->isDependentType() &&
3108 "Cannot layout class with dependent bases.");
3109 if (!Base.isVirtual())
3110 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3111 }
3112
3113 // Sort nvbases by offset.
3114 std::stable_sort(Bases.begin(), Bases.end(),
3115 [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3116 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3117 });
3118
3119 // Dump (non-virtual) bases
3120 for (const CXXRecordDecl *Base : Bases) {
3121 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3122 DumpCXXRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3123 Base == PrimaryBase ? "(primary base)" : "(base)",
3124 /*IncludeVirtualBases=*/false);
3125 }
3126
3127 // vbptr (for Microsoft C++ ABI)
3128 if (HasOwnVBPtr) {
3129 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3130 OS << '(' << *RD << " vbtable pointer)\n";
3131 }
3132
3133 // Dump fields.
3134 uint64_t FieldNo = 0;
3135 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
3136 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3137 const FieldDecl &Field = **I;
3138 CharUnits FieldOffset = Offset +
3139 C.toCharUnitsFromBits(Layout.getFieldOffset(FieldNo));
3140
3141 if (const CXXRecordDecl *D = Field.getType()->getAsCXXRecordDecl()) {
3142 DumpCXXRecordLayout(OS, D, C, FieldOffset, IndentLevel,
3143 Field.getName().data(),
3144 /*IncludeVirtualBases=*/true);
3145 continue;
3146 }
3147
3148 PrintOffset(OS, FieldOffset, IndentLevel);
3149 OS << Field.getType().getAsString() << ' ' << Field << '\n';
3150 }
3151
3152 if (!IncludeVirtualBases)
3153 return;
3154
3155 // Dump virtual bases.
3156 const ASTRecordLayout::VBaseOffsetsMapTy &vtordisps =
3157 Layout.getVBaseOffsetsMap();
3158 for (const CXXBaseSpecifier &Base : RD->vbases()) {
3159 assert(Base.isVirtual() && "Found non-virtual class!");
3160 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3161
3162 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3163
3164 if (vtordisps.find(VBase)->second.hasVtorDisp()) {
3165 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3166 OS << "(vtordisp for vbase " << *VBase << ")\n";
3167 }
3168
3169 DumpCXXRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3170 VBase == PrimaryBase ?
3171 "(primary virtual base)" : "(virtual base)",
3172 /*IncludeVirtualBases=*/false);
3173 }
3174
3175 PrintIndentNoOffset(OS, IndentLevel - 1);
3176 OS << "[sizeof=" << Layout.getSize().getQuantity();
3177 if (!isMsLayout(RD))
3178 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3179 OS << ", align=" << Layout.getAlignment().getQuantity() << '\n';
3180
3181 PrintIndentNoOffset(OS, IndentLevel - 1);
3182 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3183 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity() << "]\n";
3184 }
3185
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3186 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3187 raw_ostream &OS,
3188 bool Simple) const {
3189 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3190
3191 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
3192 if (!Simple)
3193 return DumpCXXRecordLayout(OS, CXXRD, *this, CharUnits(), 0, nullptr,
3194 /*IncludeVirtualBases=*/true);
3195
3196 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3197 if (!Simple) {
3198 OS << "Record: ";
3199 RD->dump();
3200 }
3201 OS << "\nLayout: ";
3202 OS << "<ASTRecordLayout\n";
3203 OS << " Size:" << toBits(Info.getSize()) << "\n";
3204 if (!isMsLayout(RD))
3205 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3206 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3207 OS << " FieldOffsets: [";
3208 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3209 if (i) OS << ", ";
3210 OS << Info.getFieldOffset(i);
3211 }
3212 OS << "]>\n";
3213 }
3214