1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/Template.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include <map>
43 #include <set>
44 
45 using namespace clang;
46 
47 //===----------------------------------------------------------------------===//
48 // CheckDefaultArgumentVisitor
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52   /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53   /// the default argument of a parameter to determine whether it
54   /// contains any ill-formed subexpressions. For example, this will
55   /// diagnose the use of local variables or parameters within the
56   /// default argument expression.
57   class CheckDefaultArgumentVisitor
58     : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59     Expr *DefaultArg;
60     Sema *S;
61 
62   public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)63     CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64       : DefaultArg(defarg), S(s) {}
65 
66     bool VisitExpr(Expr *Node);
67     bool VisitDeclRefExpr(DeclRefExpr *DRE);
68     bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69     bool VisitLambdaExpr(LambdaExpr *Lambda);
70     bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71   };
72 
73   /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)74   bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75     bool IsInvalid = false;
76     for (Stmt::child_range I = Node->children(); I; ++I)
77       IsInvalid |= Visit(*I);
78     return IsInvalid;
79   }
80 
81   /// VisitDeclRefExpr - Visit a reference to a declaration, to
82   /// determine whether this declaration can be used in the default
83   /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)84   bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85     NamedDecl *Decl = DRE->getDecl();
86     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87       // C++ [dcl.fct.default]p9
88       //   Default arguments are evaluated each time the function is
89       //   called. The order of evaluation of function arguments is
90       //   unspecified. Consequently, parameters of a function shall not
91       //   be used in default argument expressions, even if they are not
92       //   evaluated. Parameters of a function declared before a default
93       //   argument expression are in scope and can hide namespace and
94       //   class member names.
95       return S->Diag(DRE->getLocStart(),
96                      diag::err_param_default_argument_references_param)
97          << Param->getDeclName() << DefaultArg->getSourceRange();
98     } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99       // C++ [dcl.fct.default]p7
100       //   Local variables shall not be used in default argument
101       //   expressions.
102       if (VDecl->isLocalVarDecl())
103         return S->Diag(DRE->getLocStart(),
104                        diag::err_param_default_argument_references_local)
105           << VDecl->getDeclName() << DefaultArg->getSourceRange();
106     }
107 
108     return false;
109   }
110 
111   /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)112   bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113     // C++ [dcl.fct.default]p8:
114     //   The keyword this shall not be used in a default argument of a
115     //   member function.
116     return S->Diag(ThisE->getLocStart(),
117                    diag::err_param_default_argument_references_this)
118                << ThisE->getSourceRange();
119   }
120 
VisitPseudoObjectExpr(PseudoObjectExpr * POE)121   bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122     bool Invalid = false;
123     for (PseudoObjectExpr::semantics_iterator
124            i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125       Expr *E = *i;
126 
127       // Look through bindings.
128       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129         E = OVE->getSourceExpr();
130         assert(E && "pseudo-object binding without source expression?");
131       }
132 
133       Invalid |= Visit(E);
134     }
135     return Invalid;
136   }
137 
VisitLambdaExpr(LambdaExpr * Lambda)138   bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139     // C++11 [expr.lambda.prim]p13:
140     //   A lambda-expression appearing in a default argument shall not
141     //   implicitly or explicitly capture any entity.
142     if (Lambda->capture_begin() == Lambda->capture_end())
143       return false;
144 
145     return S->Diag(Lambda->getLocStart(),
146                    diag::err_lambda_capture_default_arg);
147   }
148 }
149 
150 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)151 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152                                                  const CXXMethodDecl *Method) {
153   // If we have an MSAny spec already, don't bother.
154   if (!Method || ComputedEST == EST_MSAny)
155     return;
156 
157   const FunctionProtoType *Proto
158     = Method->getType()->getAs<FunctionProtoType>();
159   Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160   if (!Proto)
161     return;
162 
163   ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164 
165   // If this function can throw any exceptions, make a note of that.
166   if (EST == EST_MSAny || EST == EST_None) {
167     ClearExceptions();
168     ComputedEST = EST;
169     return;
170   }
171 
172   // FIXME: If the call to this decl is using any of its default arguments, we
173   // need to search them for potentially-throwing calls.
174 
175   // If this function has a basic noexcept, it doesn't affect the outcome.
176   if (EST == EST_BasicNoexcept)
177     return;
178 
179   // If we have a throw-all spec at this point, ignore the function.
180   if (ComputedEST == EST_None)
181     return;
182 
183   // If we're still at noexcept(true) and there's a nothrow() callee,
184   // change to that specification.
185   if (EST == EST_DynamicNone) {
186     if (ComputedEST == EST_BasicNoexcept)
187       ComputedEST = EST_DynamicNone;
188     return;
189   }
190 
191   // Check out noexcept specs.
192   if (EST == EST_ComputedNoexcept) {
193     FunctionProtoType::NoexceptResult NR =
194         Proto->getNoexceptSpec(Self->Context);
195     assert(NR != FunctionProtoType::NR_NoNoexcept &&
196            "Must have noexcept result for EST_ComputedNoexcept.");
197     assert(NR != FunctionProtoType::NR_Dependent &&
198            "Should not generate implicit declarations for dependent cases, "
199            "and don't know how to handle them anyway.");
200 
201     // noexcept(false) -> no spec on the new function
202     if (NR == FunctionProtoType::NR_Throw) {
203       ClearExceptions();
204       ComputedEST = EST_None;
205     }
206     // noexcept(true) won't change anything either.
207     return;
208   }
209 
210   assert(EST == EST_Dynamic && "EST case not considered earlier.");
211   assert(ComputedEST != EST_None &&
212          "Shouldn't collect exceptions when throw-all is guaranteed.");
213   ComputedEST = EST_Dynamic;
214   // Record the exceptions in this function's exception specification.
215   for (const auto &E : Proto->exceptions())
216     if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
217       Exceptions.push_back(E);
218 }
219 
CalledExpr(Expr * E)220 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221   if (!E || ComputedEST == EST_MSAny)
222     return;
223 
224   // FIXME:
225   //
226   // C++0x [except.spec]p14:
227   //   [An] implicit exception-specification specifies the type-id T if and
228   // only if T is allowed by the exception-specification of a function directly
229   // invoked by f's implicit definition; f shall allow all exceptions if any
230   // function it directly invokes allows all exceptions, and f shall allow no
231   // exceptions if every function it directly invokes allows no exceptions.
232   //
233   // Note in particular that if an implicit exception-specification is generated
234   // for a function containing a throw-expression, that specification can still
235   // be noexcept(true).
236   //
237   // Note also that 'directly invoked' is not defined in the standard, and there
238   // is no indication that we should only consider potentially-evaluated calls.
239   //
240   // Ultimately we should implement the intent of the standard: the exception
241   // specification should be the set of exceptions which can be thrown by the
242   // implicit definition. For now, we assume that any non-nothrow expression can
243   // throw any exception.
244 
245   if (Self->canThrow(E))
246     ComputedEST = EST_None;
247 }
248 
249 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)250 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                               SourceLocation EqualLoc) {
252   if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                           diag::err_typecheck_decl_incomplete_type)) {
254     Param->setInvalidDecl();
255     return true;
256   }
257 
258   // C++ [dcl.fct.default]p5
259   //   A default argument expression is implicitly converted (clause
260   //   4) to the parameter type. The default argument expression has
261   //   the same semantic constraints as the initializer expression in
262   //   a declaration of a variable of the parameter type, using the
263   //   copy-initialization semantics (8.5).
264   InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                     Param);
266   InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                            EqualLoc);
268   InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270   if (Result.isInvalid())
271     return true;
272   Arg = Result.getAs<Expr>();
273 
274   CheckCompletedExpr(Arg, EqualLoc);
275   Arg = MaybeCreateExprWithCleanups(Arg);
276 
277   // Okay: add the default argument to the parameter
278   Param->setDefaultArg(Arg);
279 
280   // We have already instantiated this parameter; provide each of the
281   // instantiations with the uninstantiated default argument.
282   UnparsedDefaultArgInstantiationsMap::iterator InstPos
283     = UnparsedDefaultArgInstantiations.find(Param);
284   if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285     for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286       InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287 
288     // We're done tracking this parameter's instantiations.
289     UnparsedDefaultArgInstantiations.erase(InstPos);
290   }
291 
292   return false;
293 }
294 
295 /// ActOnParamDefaultArgument - Check whether the default argument
296 /// provided for a function parameter is well-formed. If so, attach it
297 /// to the parameter declaration.
298 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)299 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                 Expr *DefaultArg) {
301   if (!param || !DefaultArg)
302     return;
303 
304   ParmVarDecl *Param = cast<ParmVarDecl>(param);
305   UnparsedDefaultArgLocs.erase(Param);
306 
307   // Default arguments are only permitted in C++
308   if (!getLangOpts().CPlusPlus) {
309     Diag(EqualLoc, diag::err_param_default_argument)
310       << DefaultArg->getSourceRange();
311     Param->setInvalidDecl();
312     return;
313   }
314 
315   // Check for unexpanded parameter packs.
316   if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317     Param->setInvalidDecl();
318     return;
319   }
320 
321   // C++11 [dcl.fct.default]p3
322   //   A default argument expression [...] shall not be specified for a
323   //   parameter pack.
324   if (Param->isParameterPack()) {
325     Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
326         << DefaultArg->getSourceRange();
327     return;
328   }
329 
330   // Check that the default argument is well-formed
331   CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
332   if (DefaultArgChecker.Visit(DefaultArg)) {
333     Param->setInvalidDecl();
334     return;
335   }
336 
337   SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
338 }
339 
340 /// ActOnParamUnparsedDefaultArgument - We've seen a default
341 /// argument for a function parameter, but we can't parse it yet
342 /// because we're inside a class definition. Note that this default
343 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)344 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
345                                              SourceLocation EqualLoc,
346                                              SourceLocation ArgLoc) {
347   if (!param)
348     return;
349 
350   ParmVarDecl *Param = cast<ParmVarDecl>(param);
351   Param->setUnparsedDefaultArg();
352   UnparsedDefaultArgLocs[Param] = ArgLoc;
353 }
354 
355 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
356 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param,SourceLocation EqualLoc)357 void Sema::ActOnParamDefaultArgumentError(Decl *param,
358                                           SourceLocation EqualLoc) {
359   if (!param)
360     return;
361 
362   ParmVarDecl *Param = cast<ParmVarDecl>(param);
363   Param->setInvalidDecl();
364   UnparsedDefaultArgLocs.erase(Param);
365   Param->setDefaultArg(new(Context)
366                        OpaqueValueExpr(EqualLoc,
367                                        Param->getType().getNonReferenceType(),
368                                        VK_RValue));
369 }
370 
371 /// CheckExtraCXXDefaultArguments - Check for any extra default
372 /// arguments in the declarator, which is not a function declaration
373 /// or definition and therefore is not permitted to have default
374 /// arguments. This routine should be invoked for every declarator
375 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)376 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
377   // C++ [dcl.fct.default]p3
378   //   A default argument expression shall be specified only in the
379   //   parameter-declaration-clause of a function declaration or in a
380   //   template-parameter (14.1). It shall not be specified for a
381   //   parameter pack. If it is specified in a
382   //   parameter-declaration-clause, it shall not occur within a
383   //   declarator or abstract-declarator of a parameter-declaration.
384   bool MightBeFunction = D.isFunctionDeclarationContext();
385   for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
386     DeclaratorChunk &chunk = D.getTypeObject(i);
387     if (chunk.Kind == DeclaratorChunk::Function) {
388       if (MightBeFunction) {
389         // This is a function declaration. It can have default arguments, but
390         // keep looking in case its return type is a function type with default
391         // arguments.
392         MightBeFunction = false;
393         continue;
394       }
395       for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
396            ++argIdx) {
397         ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
398         if (Param->hasUnparsedDefaultArg()) {
399           CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
400           SourceRange SR;
401           if (Toks->size() > 1)
402             SR = SourceRange((*Toks)[1].getLocation(),
403                              Toks->back().getLocation());
404           else
405             SR = UnparsedDefaultArgLocs[Param];
406           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
407             << SR;
408           delete Toks;
409           chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
410         } else if (Param->getDefaultArg()) {
411           Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
412             << Param->getDefaultArg()->getSourceRange();
413           Param->setDefaultArg(nullptr);
414         }
415       }
416     } else if (chunk.Kind != DeclaratorChunk::Paren) {
417       MightBeFunction = false;
418     }
419   }
420 }
421 
functionDeclHasDefaultArgument(const FunctionDecl * FD)422 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
423   for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
424     const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
425     if (!PVD->hasDefaultArg())
426       return false;
427     if (!PVD->hasInheritedDefaultArg())
428       return true;
429   }
430   return false;
431 }
432 
433 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
434 /// function, once we already know that they have the same
435 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
436 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)437 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
438                                 Scope *S) {
439   bool Invalid = false;
440 
441   // C++ [dcl.fct.default]p4:
442   //   For non-template functions, default arguments can be added in
443   //   later declarations of a function in the same
444   //   scope. Declarations in different scopes have completely
445   //   distinct sets of default arguments. That is, declarations in
446   //   inner scopes do not acquire default arguments from
447   //   declarations in outer scopes, and vice versa. In a given
448   //   function declaration, all parameters subsequent to a
449   //   parameter with a default argument shall have default
450   //   arguments supplied in this or previous declarations. A
451   //   default argument shall not be redefined by a later
452   //   declaration (not even to the same value).
453   //
454   // C++ [dcl.fct.default]p6:
455   //   Except for member functions of class templates, the default arguments
456   //   in a member function definition that appears outside of the class
457   //   definition are added to the set of default arguments provided by the
458   //   member function declaration in the class definition.
459   for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
460     ParmVarDecl *OldParam = Old->getParamDecl(p);
461     ParmVarDecl *NewParam = New->getParamDecl(p);
462 
463     bool OldParamHasDfl = OldParam->hasDefaultArg();
464     bool NewParamHasDfl = NewParam->hasDefaultArg();
465 
466     // The declaration context corresponding to the scope is the semantic
467     // parent, unless this is a local function declaration, in which case
468     // it is that surrounding function.
469     DeclContext *ScopeDC = New->isLocalExternDecl()
470                                ? New->getLexicalDeclContext()
471                                : New->getDeclContext();
472     if (S && !isDeclInScope(Old, ScopeDC, S) &&
473         !New->getDeclContext()->isRecord())
474       // Ignore default parameters of old decl if they are not in
475       // the same scope and this is not an out-of-line definition of
476       // a member function.
477       OldParamHasDfl = false;
478     if (New->isLocalExternDecl() != Old->isLocalExternDecl())
479       // If only one of these is a local function declaration, then they are
480       // declared in different scopes, even though isDeclInScope may think
481       // they're in the same scope. (If both are local, the scope check is
482       // sufficent, and if neither is local, then they are in the same scope.)
483       OldParamHasDfl = false;
484 
485     if (OldParamHasDfl && NewParamHasDfl) {
486 
487       unsigned DiagDefaultParamID =
488         diag::err_param_default_argument_redefinition;
489 
490       // MSVC accepts that default parameters be redefined for member functions
491       // of template class. The new default parameter's value is ignored.
492       Invalid = true;
493       if (getLangOpts().MicrosoftExt) {
494         CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
495         if (MD && MD->getParent()->getDescribedClassTemplate()) {
496           // Merge the old default argument into the new parameter.
497           NewParam->setHasInheritedDefaultArg();
498           if (OldParam->hasUninstantiatedDefaultArg())
499             NewParam->setUninstantiatedDefaultArg(
500                                       OldParam->getUninstantiatedDefaultArg());
501           else
502             NewParam->setDefaultArg(OldParam->getInit());
503           DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
504           Invalid = false;
505         }
506       }
507 
508       // FIXME: If we knew where the '=' was, we could easily provide a fix-it
509       // hint here. Alternatively, we could walk the type-source information
510       // for NewParam to find the last source location in the type... but it
511       // isn't worth the effort right now. This is the kind of test case that
512       // is hard to get right:
513       //   int f(int);
514       //   void g(int (*fp)(int) = f);
515       //   void g(int (*fp)(int) = &f);
516       Diag(NewParam->getLocation(), DiagDefaultParamID)
517         << NewParam->getDefaultArgRange();
518 
519       // Look for the function declaration where the default argument was
520       // actually written, which may be a declaration prior to Old.
521       for (auto Older = Old; OldParam->hasInheritedDefaultArg();) {
522         Older = Older->getPreviousDecl();
523         OldParam = Older->getParamDecl(p);
524       }
525 
526       Diag(OldParam->getLocation(), diag::note_previous_definition)
527         << OldParam->getDefaultArgRange();
528     } else if (OldParamHasDfl) {
529       // Merge the old default argument into the new parameter.
530       // It's important to use getInit() here;  getDefaultArg()
531       // strips off any top-level ExprWithCleanups.
532       NewParam->setHasInheritedDefaultArg();
533       if (OldParam->hasUnparsedDefaultArg())
534         NewParam->setUnparsedDefaultArg();
535       else if (OldParam->hasUninstantiatedDefaultArg())
536         NewParam->setUninstantiatedDefaultArg(
537                                       OldParam->getUninstantiatedDefaultArg());
538       else
539         NewParam->setDefaultArg(OldParam->getInit());
540     } else if (NewParamHasDfl) {
541       if (New->getDescribedFunctionTemplate()) {
542         // Paragraph 4, quoted above, only applies to non-template functions.
543         Diag(NewParam->getLocation(),
544              diag::err_param_default_argument_template_redecl)
545           << NewParam->getDefaultArgRange();
546         Diag(Old->getLocation(), diag::note_template_prev_declaration)
547           << false;
548       } else if (New->getTemplateSpecializationKind()
549                    != TSK_ImplicitInstantiation &&
550                  New->getTemplateSpecializationKind() != TSK_Undeclared) {
551         // C++ [temp.expr.spec]p21:
552         //   Default function arguments shall not be specified in a declaration
553         //   or a definition for one of the following explicit specializations:
554         //     - the explicit specialization of a function template;
555         //     - the explicit specialization of a member function template;
556         //     - the explicit specialization of a member function of a class
557         //       template where the class template specialization to which the
558         //       member function specialization belongs is implicitly
559         //       instantiated.
560         Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
561           << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
562           << New->getDeclName()
563           << NewParam->getDefaultArgRange();
564       } else if (New->getDeclContext()->isDependentContext()) {
565         // C++ [dcl.fct.default]p6 (DR217):
566         //   Default arguments for a member function of a class template shall
567         //   be specified on the initial declaration of the member function
568         //   within the class template.
569         //
570         // Reading the tea leaves a bit in DR217 and its reference to DR205
571         // leads me to the conclusion that one cannot add default function
572         // arguments for an out-of-line definition of a member function of a
573         // dependent type.
574         int WhichKind = 2;
575         if (CXXRecordDecl *Record
576               = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
577           if (Record->getDescribedClassTemplate())
578             WhichKind = 0;
579           else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
580             WhichKind = 1;
581           else
582             WhichKind = 2;
583         }
584 
585         Diag(NewParam->getLocation(),
586              diag::err_param_default_argument_member_template_redecl)
587           << WhichKind
588           << NewParam->getDefaultArgRange();
589       }
590     }
591   }
592 
593   // DR1344: If a default argument is added outside a class definition and that
594   // default argument makes the function a special member function, the program
595   // is ill-formed. This can only happen for constructors.
596   if (isa<CXXConstructorDecl>(New) &&
597       New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
598     CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
599                      OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
600     if (NewSM != OldSM) {
601       ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
602       assert(NewParam->hasDefaultArg());
603       Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
604         << NewParam->getDefaultArgRange() << NewSM;
605       Diag(Old->getLocation(), diag::note_previous_declaration);
606     }
607   }
608 
609   const FunctionDecl *Def;
610   // C++11 [dcl.constexpr]p1: If any declaration of a function or function
611   // template has a constexpr specifier then all its declarations shall
612   // contain the constexpr specifier.
613   if (New->isConstexpr() != Old->isConstexpr()) {
614     Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
615       << New << New->isConstexpr();
616     Diag(Old->getLocation(), diag::note_previous_declaration);
617     Invalid = true;
618   } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
619              Old->isDefined(Def)) {
620     // C++11 [dcl.fcn.spec]p4:
621     //   If the definition of a function appears in a translation unit before its
622     //   first declaration as inline, the program is ill-formed.
623     Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
624     Diag(Def->getLocation(), diag::note_previous_definition);
625     Invalid = true;
626   }
627 
628   // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
629   // argument expression, that declaration shall be a definition and shall be
630   // the only declaration of the function or function template in the
631   // translation unit.
632   if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
633       functionDeclHasDefaultArgument(Old)) {
634     Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
635     Diag(Old->getLocation(), diag::note_previous_declaration);
636     Invalid = true;
637   }
638 
639   if (CheckEquivalentExceptionSpec(Old, New))
640     Invalid = true;
641 
642   return Invalid;
643 }
644 
645 /// \brief Merge the exception specifications of two variable declarations.
646 ///
647 /// This is called when there's a redeclaration of a VarDecl. The function
648 /// checks if the redeclaration might have an exception specification and
649 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)650 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
651   // Shortcut if exceptions are disabled.
652   if (!getLangOpts().CXXExceptions)
653     return;
654 
655   assert(Context.hasSameType(New->getType(), Old->getType()) &&
656          "Should only be called if types are otherwise the same.");
657 
658   QualType NewType = New->getType();
659   QualType OldType = Old->getType();
660 
661   // We're only interested in pointers and references to functions, as well
662   // as pointers to member functions.
663   if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
664     NewType = R->getPointeeType();
665     OldType = OldType->getAs<ReferenceType>()->getPointeeType();
666   } else if (const PointerType *P = NewType->getAs<PointerType>()) {
667     NewType = P->getPointeeType();
668     OldType = OldType->getAs<PointerType>()->getPointeeType();
669   } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
670     NewType = M->getPointeeType();
671     OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
672   }
673 
674   if (!NewType->isFunctionProtoType())
675     return;
676 
677   // There's lots of special cases for functions. For function pointers, system
678   // libraries are hopefully not as broken so that we don't need these
679   // workarounds.
680   if (CheckEquivalentExceptionSpec(
681         OldType->getAs<FunctionProtoType>(), Old->getLocation(),
682         NewType->getAs<FunctionProtoType>(), New->getLocation())) {
683     New->setInvalidDecl();
684   }
685 }
686 
687 /// CheckCXXDefaultArguments - Verify that the default arguments for a
688 /// function declaration are well-formed according to C++
689 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)690 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
691   unsigned NumParams = FD->getNumParams();
692   unsigned p;
693 
694   // Find first parameter with a default argument
695   for (p = 0; p < NumParams; ++p) {
696     ParmVarDecl *Param = FD->getParamDecl(p);
697     if (Param->hasDefaultArg())
698       break;
699   }
700 
701   // C++11 [dcl.fct.default]p4:
702   //   In a given function declaration, each parameter subsequent to a parameter
703   //   with a default argument shall have a default argument supplied in this or
704   //   a previous declaration or shall be a function parameter pack. A default
705   //   argument shall not be redefined by a later declaration (not even to the
706   //   same value).
707   unsigned LastMissingDefaultArg = 0;
708   for (; p < NumParams; ++p) {
709     ParmVarDecl *Param = FD->getParamDecl(p);
710     if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
711       if (Param->isInvalidDecl())
712         /* We already complained about this parameter. */;
713       else if (Param->getIdentifier())
714         Diag(Param->getLocation(),
715              diag::err_param_default_argument_missing_name)
716           << Param->getIdentifier();
717       else
718         Diag(Param->getLocation(),
719              diag::err_param_default_argument_missing);
720 
721       LastMissingDefaultArg = p;
722     }
723   }
724 
725   if (LastMissingDefaultArg > 0) {
726     // Some default arguments were missing. Clear out all of the
727     // default arguments up to (and including) the last missing
728     // default argument, so that we leave the function parameters
729     // in a semantically valid state.
730     for (p = 0; p <= LastMissingDefaultArg; ++p) {
731       ParmVarDecl *Param = FD->getParamDecl(p);
732       if (Param->hasDefaultArg()) {
733         Param->setDefaultArg(nullptr);
734       }
735     }
736   }
737 }
738 
739 // CheckConstexprParameterTypes - Check whether a function's parameter types
740 // are all literal types. If so, return true. If not, produce a suitable
741 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)742 static bool CheckConstexprParameterTypes(Sema &SemaRef,
743                                          const FunctionDecl *FD) {
744   unsigned ArgIndex = 0;
745   const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
746   for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
747                                               e = FT->param_type_end();
748        i != e; ++i, ++ArgIndex) {
749     const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
750     SourceLocation ParamLoc = PD->getLocation();
751     if (!(*i)->isDependentType() &&
752         SemaRef.RequireLiteralType(ParamLoc, *i,
753                                    diag::err_constexpr_non_literal_param,
754                                    ArgIndex+1, PD->getSourceRange(),
755                                    isa<CXXConstructorDecl>(FD)))
756       return false;
757   }
758   return true;
759 }
760 
761 /// \brief Get diagnostic %select index for tag kind for
762 /// record diagnostic message.
763 /// WARNING: Indexes apply to particular diagnostics only!
764 ///
765 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)766 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
767   switch (Tag) {
768   case TTK_Struct: return 0;
769   case TTK_Interface: return 1;
770   case TTK_Class:  return 2;
771   default: llvm_unreachable("Invalid tag kind for record diagnostic!");
772   }
773 }
774 
775 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
776 // the requirements of a constexpr function definition or a constexpr
777 // constructor definition. If so, return true. If not, produce appropriate
778 // diagnostics and return false.
779 //
780 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)781 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
782   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
783   if (MD && MD->isInstance()) {
784     // C++11 [dcl.constexpr]p4:
785     //  The definition of a constexpr constructor shall satisfy the following
786     //  constraints:
787     //  - the class shall not have any virtual base classes;
788     const CXXRecordDecl *RD = MD->getParent();
789     if (RD->getNumVBases()) {
790       Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
791         << isa<CXXConstructorDecl>(NewFD)
792         << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
793       for (const auto &I : RD->vbases())
794         Diag(I.getLocStart(),
795              diag::note_constexpr_virtual_base_here) << I.getSourceRange();
796       return false;
797     }
798   }
799 
800   if (!isa<CXXConstructorDecl>(NewFD)) {
801     // C++11 [dcl.constexpr]p3:
802     //  The definition of a constexpr function shall satisfy the following
803     //  constraints:
804     // - it shall not be virtual;
805     const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
806     if (Method && Method->isVirtual()) {
807       Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
808 
809       // If it's not obvious why this function is virtual, find an overridden
810       // function which uses the 'virtual' keyword.
811       const CXXMethodDecl *WrittenVirtual = Method;
812       while (!WrittenVirtual->isVirtualAsWritten())
813         WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
814       if (WrittenVirtual != Method)
815         Diag(WrittenVirtual->getLocation(),
816              diag::note_overridden_virtual_function);
817       return false;
818     }
819 
820     // - its return type shall be a literal type;
821     QualType RT = NewFD->getReturnType();
822     if (!RT->isDependentType() &&
823         RequireLiteralType(NewFD->getLocation(), RT,
824                            diag::err_constexpr_non_literal_return))
825       return false;
826   }
827 
828   // - each of its parameter types shall be a literal type;
829   if (!CheckConstexprParameterTypes(*this, NewFD))
830     return false;
831 
832   return true;
833 }
834 
835 /// Check the given declaration statement is legal within a constexpr function
836 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
837 ///
838 /// \return true if the body is OK (maybe only as an extension), false if we
839 ///         have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc)840 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
841                                    DeclStmt *DS, SourceLocation &Cxx1yLoc) {
842   // C++11 [dcl.constexpr]p3 and p4:
843   //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
844   //  contain only
845   for (const auto *DclIt : DS->decls()) {
846     switch (DclIt->getKind()) {
847     case Decl::StaticAssert:
848     case Decl::Using:
849     case Decl::UsingShadow:
850     case Decl::UsingDirective:
851     case Decl::UnresolvedUsingTypename:
852     case Decl::UnresolvedUsingValue:
853       //   - static_assert-declarations
854       //   - using-declarations,
855       //   - using-directives,
856       continue;
857 
858     case Decl::Typedef:
859     case Decl::TypeAlias: {
860       //   - typedef declarations and alias-declarations that do not define
861       //     classes or enumerations,
862       const auto *TN = cast<TypedefNameDecl>(DclIt);
863       if (TN->getUnderlyingType()->isVariablyModifiedType()) {
864         // Don't allow variably-modified types in constexpr functions.
865         TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
866         SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
867           << TL.getSourceRange() << TL.getType()
868           << isa<CXXConstructorDecl>(Dcl);
869         return false;
870       }
871       continue;
872     }
873 
874     case Decl::Enum:
875     case Decl::CXXRecord:
876       // C++1y allows types to be defined, not just declared.
877       if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
878         SemaRef.Diag(DS->getLocStart(),
879                      SemaRef.getLangOpts().CPlusPlus14
880                        ? diag::warn_cxx11_compat_constexpr_type_definition
881                        : diag::ext_constexpr_type_definition)
882           << isa<CXXConstructorDecl>(Dcl);
883       continue;
884 
885     case Decl::EnumConstant:
886     case Decl::IndirectField:
887     case Decl::ParmVar:
888       // These can only appear with other declarations which are banned in
889       // C++11 and permitted in C++1y, so ignore them.
890       continue;
891 
892     case Decl::Var: {
893       // C++1y [dcl.constexpr]p3 allows anything except:
894       //   a definition of a variable of non-literal type or of static or
895       //   thread storage duration or for which no initialization is performed.
896       const auto *VD = cast<VarDecl>(DclIt);
897       if (VD->isThisDeclarationADefinition()) {
898         if (VD->isStaticLocal()) {
899           SemaRef.Diag(VD->getLocation(),
900                        diag::err_constexpr_local_var_static)
901             << isa<CXXConstructorDecl>(Dcl)
902             << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
903           return false;
904         }
905         if (!VD->getType()->isDependentType() &&
906             SemaRef.RequireLiteralType(
907               VD->getLocation(), VD->getType(),
908               diag::err_constexpr_local_var_non_literal_type,
909               isa<CXXConstructorDecl>(Dcl)))
910           return false;
911         if (!VD->getType()->isDependentType() &&
912             !VD->hasInit() && !VD->isCXXForRangeDecl()) {
913           SemaRef.Diag(VD->getLocation(),
914                        diag::err_constexpr_local_var_no_init)
915             << isa<CXXConstructorDecl>(Dcl);
916           return false;
917         }
918       }
919       SemaRef.Diag(VD->getLocation(),
920                    SemaRef.getLangOpts().CPlusPlus14
921                     ? diag::warn_cxx11_compat_constexpr_local_var
922                     : diag::ext_constexpr_local_var)
923         << isa<CXXConstructorDecl>(Dcl);
924       continue;
925     }
926 
927     case Decl::NamespaceAlias:
928     case Decl::Function:
929       // These are disallowed in C++11 and permitted in C++1y. Allow them
930       // everywhere as an extension.
931       if (!Cxx1yLoc.isValid())
932         Cxx1yLoc = DS->getLocStart();
933       continue;
934 
935     default:
936       SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
937         << isa<CXXConstructorDecl>(Dcl);
938       return false;
939     }
940   }
941 
942   return true;
943 }
944 
945 /// Check that the given field is initialized within a constexpr constructor.
946 ///
947 /// \param Dcl The constexpr constructor being checked.
948 /// \param Field The field being checked. This may be a member of an anonymous
949 ///        struct or union nested within the class being checked.
950 /// \param Inits All declarations, including anonymous struct/union members and
951 ///        indirect members, for which any initialization was provided.
952 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)953 static void CheckConstexprCtorInitializer(Sema &SemaRef,
954                                           const FunctionDecl *Dcl,
955                                           FieldDecl *Field,
956                                           llvm::SmallSet<Decl*, 16> &Inits,
957                                           bool &Diagnosed) {
958   if (Field->isInvalidDecl())
959     return;
960 
961   if (Field->isUnnamedBitfield())
962     return;
963 
964   // Anonymous unions with no variant members and empty anonymous structs do not
965   // need to be explicitly initialized. FIXME: Anonymous structs that contain no
966   // indirect fields don't need initializing.
967   if (Field->isAnonymousStructOrUnion() &&
968       (Field->getType()->isUnionType()
969            ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
970            : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
971     return;
972 
973   if (!Inits.count(Field)) {
974     if (!Diagnosed) {
975       SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
976       Diagnosed = true;
977     }
978     SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
979   } else if (Field->isAnonymousStructOrUnion()) {
980     const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
981     for (auto *I : RD->fields())
982       // If an anonymous union contains an anonymous struct of which any member
983       // is initialized, all members must be initialized.
984       if (!RD->isUnion() || Inits.count(I))
985         CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
986   }
987 }
988 
989 /// Check the provided statement is allowed in a constexpr function
990 /// definition.
991 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc)992 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
993                            SmallVectorImpl<SourceLocation> &ReturnStmts,
994                            SourceLocation &Cxx1yLoc) {
995   // - its function-body shall be [...] a compound-statement that contains only
996   switch (S->getStmtClass()) {
997   case Stmt::NullStmtClass:
998     //   - null statements,
999     return true;
1000 
1001   case Stmt::DeclStmtClass:
1002     //   - static_assert-declarations
1003     //   - using-declarations,
1004     //   - using-directives,
1005     //   - typedef declarations and alias-declarations that do not define
1006     //     classes or enumerations,
1007     if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1008       return false;
1009     return true;
1010 
1011   case Stmt::ReturnStmtClass:
1012     //   - and exactly one return statement;
1013     if (isa<CXXConstructorDecl>(Dcl)) {
1014       // C++1y allows return statements in constexpr constructors.
1015       if (!Cxx1yLoc.isValid())
1016         Cxx1yLoc = S->getLocStart();
1017       return true;
1018     }
1019 
1020     ReturnStmts.push_back(S->getLocStart());
1021     return true;
1022 
1023   case Stmt::CompoundStmtClass: {
1024     // C++1y allows compound-statements.
1025     if (!Cxx1yLoc.isValid())
1026       Cxx1yLoc = S->getLocStart();
1027 
1028     CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1029     for (auto *BodyIt : CompStmt->body()) {
1030       if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1031                                       Cxx1yLoc))
1032         return false;
1033     }
1034     return true;
1035   }
1036 
1037   case Stmt::AttributedStmtClass:
1038     if (!Cxx1yLoc.isValid())
1039       Cxx1yLoc = S->getLocStart();
1040     return true;
1041 
1042   case Stmt::IfStmtClass: {
1043     // C++1y allows if-statements.
1044     if (!Cxx1yLoc.isValid())
1045       Cxx1yLoc = S->getLocStart();
1046 
1047     IfStmt *If = cast<IfStmt>(S);
1048     if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1049                                     Cxx1yLoc))
1050       return false;
1051     if (If->getElse() &&
1052         !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1053                                     Cxx1yLoc))
1054       return false;
1055     return true;
1056   }
1057 
1058   case Stmt::WhileStmtClass:
1059   case Stmt::DoStmtClass:
1060   case Stmt::ForStmtClass:
1061   case Stmt::CXXForRangeStmtClass:
1062   case Stmt::ContinueStmtClass:
1063     // C++1y allows all of these. We don't allow them as extensions in C++11,
1064     // because they don't make sense without variable mutation.
1065     if (!SemaRef.getLangOpts().CPlusPlus14)
1066       break;
1067     if (!Cxx1yLoc.isValid())
1068       Cxx1yLoc = S->getLocStart();
1069     for (Stmt::child_range Children = S->children(); Children; ++Children)
1070       if (*Children &&
1071           !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1072                                       Cxx1yLoc))
1073         return false;
1074     return true;
1075 
1076   case Stmt::SwitchStmtClass:
1077   case Stmt::CaseStmtClass:
1078   case Stmt::DefaultStmtClass:
1079   case Stmt::BreakStmtClass:
1080     // C++1y allows switch-statements, and since they don't need variable
1081     // mutation, we can reasonably allow them in C++11 as an extension.
1082     if (!Cxx1yLoc.isValid())
1083       Cxx1yLoc = S->getLocStart();
1084     for (Stmt::child_range Children = S->children(); Children; ++Children)
1085       if (*Children &&
1086           !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1087                                       Cxx1yLoc))
1088         return false;
1089     return true;
1090 
1091   default:
1092     if (!isa<Expr>(S))
1093       break;
1094 
1095     // C++1y allows expression-statements.
1096     if (!Cxx1yLoc.isValid())
1097       Cxx1yLoc = S->getLocStart();
1098     return true;
1099   }
1100 
1101   SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1102     << isa<CXXConstructorDecl>(Dcl);
1103   return false;
1104 }
1105 
1106 /// Check the body for the given constexpr function declaration only contains
1107 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1108 ///
1109 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)1110 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1111   if (isa<CXXTryStmt>(Body)) {
1112     // C++11 [dcl.constexpr]p3:
1113     //  The definition of a constexpr function shall satisfy the following
1114     //  constraints: [...]
1115     // - its function-body shall be = delete, = default, or a
1116     //   compound-statement
1117     //
1118     // C++11 [dcl.constexpr]p4:
1119     //  In the definition of a constexpr constructor, [...]
1120     // - its function-body shall not be a function-try-block;
1121     Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1122       << isa<CXXConstructorDecl>(Dcl);
1123     return false;
1124   }
1125 
1126   SmallVector<SourceLocation, 4> ReturnStmts;
1127 
1128   // - its function-body shall be [...] a compound-statement that contains only
1129   //   [... list of cases ...]
1130   CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1131   SourceLocation Cxx1yLoc;
1132   for (auto *BodyIt : CompBody->body()) {
1133     if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1134       return false;
1135   }
1136 
1137   if (Cxx1yLoc.isValid())
1138     Diag(Cxx1yLoc,
1139          getLangOpts().CPlusPlus14
1140            ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1141            : diag::ext_constexpr_body_invalid_stmt)
1142       << isa<CXXConstructorDecl>(Dcl);
1143 
1144   if (const CXXConstructorDecl *Constructor
1145         = dyn_cast<CXXConstructorDecl>(Dcl)) {
1146     const CXXRecordDecl *RD = Constructor->getParent();
1147     // DR1359:
1148     // - every non-variant non-static data member and base class sub-object
1149     //   shall be initialized;
1150     // DR1460:
1151     // - if the class is a union having variant members, exactly one of them
1152     //   shall be initialized;
1153     if (RD->isUnion()) {
1154       if (Constructor->getNumCtorInitializers() == 0 &&
1155           RD->hasVariantMembers()) {
1156         Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1157         return false;
1158       }
1159     } else if (!Constructor->isDependentContext() &&
1160                !Constructor->isDelegatingConstructor()) {
1161       assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1162 
1163       // Skip detailed checking if we have enough initializers, and we would
1164       // allow at most one initializer per member.
1165       bool AnyAnonStructUnionMembers = false;
1166       unsigned Fields = 0;
1167       for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1168            E = RD->field_end(); I != E; ++I, ++Fields) {
1169         if (I->isAnonymousStructOrUnion()) {
1170           AnyAnonStructUnionMembers = true;
1171           break;
1172         }
1173       }
1174       // DR1460:
1175       // - if the class is a union-like class, but is not a union, for each of
1176       //   its anonymous union members having variant members, exactly one of
1177       //   them shall be initialized;
1178       if (AnyAnonStructUnionMembers ||
1179           Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1180         // Check initialization of non-static data members. Base classes are
1181         // always initialized so do not need to be checked. Dependent bases
1182         // might not have initializers in the member initializer list.
1183         llvm::SmallSet<Decl*, 16> Inits;
1184         for (const auto *I: Constructor->inits()) {
1185           if (FieldDecl *FD = I->getMember())
1186             Inits.insert(FD);
1187           else if (IndirectFieldDecl *ID = I->getIndirectMember())
1188             Inits.insert(ID->chain_begin(), ID->chain_end());
1189         }
1190 
1191         bool Diagnosed = false;
1192         for (auto *I : RD->fields())
1193           CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1194         if (Diagnosed)
1195           return false;
1196       }
1197     }
1198   } else {
1199     if (ReturnStmts.empty()) {
1200       // C++1y doesn't require constexpr functions to contain a 'return'
1201       // statement. We still do, unless the return type might be void, because
1202       // otherwise if there's no return statement, the function cannot
1203       // be used in a core constant expression.
1204       bool OK = getLangOpts().CPlusPlus14 &&
1205                 (Dcl->getReturnType()->isVoidType() ||
1206                  Dcl->getReturnType()->isDependentType());
1207       Diag(Dcl->getLocation(),
1208            OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1209               : diag::err_constexpr_body_no_return);
1210       return OK;
1211     }
1212     if (ReturnStmts.size() > 1) {
1213       Diag(ReturnStmts.back(),
1214            getLangOpts().CPlusPlus14
1215              ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1216              : diag::ext_constexpr_body_multiple_return);
1217       for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1218         Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1219     }
1220   }
1221 
1222   // C++11 [dcl.constexpr]p5:
1223   //   if no function argument values exist such that the function invocation
1224   //   substitution would produce a constant expression, the program is
1225   //   ill-formed; no diagnostic required.
1226   // C++11 [dcl.constexpr]p3:
1227   //   - every constructor call and implicit conversion used in initializing the
1228   //     return value shall be one of those allowed in a constant expression.
1229   // C++11 [dcl.constexpr]p4:
1230   //   - every constructor involved in initializing non-static data members and
1231   //     base class sub-objects shall be a constexpr constructor.
1232   SmallVector<PartialDiagnosticAt, 8> Diags;
1233   if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1234     Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1235       << isa<CXXConstructorDecl>(Dcl);
1236     for (size_t I = 0, N = Diags.size(); I != N; ++I)
1237       Diag(Diags[I].first, Diags[I].second);
1238     // Don't return false here: we allow this for compatibility in
1239     // system headers.
1240   }
1241 
1242   return true;
1243 }
1244 
1245 /// isCurrentClassName - Determine whether the identifier II is the
1246 /// name of the class type currently being defined. In the case of
1247 /// nested classes, this will only return true if II is the name of
1248 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)1249 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1250                               const CXXScopeSpec *SS) {
1251   assert(getLangOpts().CPlusPlus && "No class names in C!");
1252 
1253   CXXRecordDecl *CurDecl;
1254   if (SS && SS->isSet() && !SS->isInvalid()) {
1255     DeclContext *DC = computeDeclContext(*SS, true);
1256     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1257   } else
1258     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1259 
1260   if (CurDecl && CurDecl->getIdentifier())
1261     return &II == CurDecl->getIdentifier();
1262   return false;
1263 }
1264 
1265 /// \brief Determine whether the identifier II is a typo for the name of
1266 /// the class type currently being defined. If so, update it to the identifier
1267 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)1268 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1269   assert(getLangOpts().CPlusPlus && "No class names in C!");
1270 
1271   if (!getLangOpts().SpellChecking)
1272     return false;
1273 
1274   CXXRecordDecl *CurDecl;
1275   if (SS && SS->isSet() && !SS->isInvalid()) {
1276     DeclContext *DC = computeDeclContext(*SS, true);
1277     CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1278   } else
1279     CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1280 
1281   if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1282       3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1283           < II->getLength()) {
1284     II = CurDecl->getIdentifier();
1285     return true;
1286   }
1287 
1288   return false;
1289 }
1290 
1291 /// \brief Determine whether the given class is a base class of the given
1292 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)1293 static bool findCircularInheritance(const CXXRecordDecl *Class,
1294                                     const CXXRecordDecl *Current) {
1295   SmallVector<const CXXRecordDecl*, 8> Queue;
1296 
1297   Class = Class->getCanonicalDecl();
1298   while (true) {
1299     for (const auto &I : Current->bases()) {
1300       CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
1301       if (!Base)
1302         continue;
1303 
1304       Base = Base->getDefinition();
1305       if (!Base)
1306         continue;
1307 
1308       if (Base->getCanonicalDecl() == Class)
1309         return true;
1310 
1311       Queue.push_back(Base);
1312     }
1313 
1314     if (Queue.empty())
1315       return false;
1316 
1317     Current = Queue.pop_back_val();
1318   }
1319 
1320   return false;
1321 }
1322 
1323 /// \brief Perform propagation of DLL attributes from a derived class to a
1324 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(Sema & S,CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)1325 static void propagateDLLAttrToBaseClassTemplate(
1326     Sema &S, CXXRecordDecl *Class, Attr *ClassAttr,
1327     ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
1328   if (getDLLAttr(
1329           BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
1330     // If the base class template has a DLL attribute, don't try to change it.
1331     return;
1332   }
1333 
1334   if (BaseTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1335     // If the base class is not already specialized, we can do the propagation.
1336     auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
1337     NewAttr->setInherited(true);
1338     BaseTemplateSpec->addAttr(NewAttr);
1339     return;
1340   }
1341 
1342   bool DifferentAttribute = false;
1343   if (Attr *SpecializationAttr = getDLLAttr(BaseTemplateSpec)) {
1344     if (!SpecializationAttr->isInherited()) {
1345       // The template has previously been specialized or instantiated with an
1346       // explicit attribute. We should not try to change it.
1347       return;
1348     }
1349     if (SpecializationAttr->getKind() == ClassAttr->getKind()) {
1350       // The specialization already has the right attribute.
1351       return;
1352     }
1353     DifferentAttribute = true;
1354   }
1355 
1356   // The template was previously instantiated or explicitly specialized without
1357   // a dll attribute, or the template was previously instantiated with a
1358   // different inherited attribute. It's too late for us to change the
1359   // attribute, so warn that this is unsupported.
1360   S.Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
1361       << BaseTemplateSpec->isExplicitSpecialization() << DifferentAttribute;
1362   S.Diag(ClassAttr->getLocation(), diag::note_attribute);
1363   if (BaseTemplateSpec->isExplicitSpecialization()) {
1364     S.Diag(BaseTemplateSpec->getLocation(),
1365            diag::note_template_class_explicit_specialization_was_here)
1366         << BaseTemplateSpec;
1367   } else {
1368     S.Diag(BaseTemplateSpec->getPointOfInstantiation(),
1369            diag::note_template_class_instantiation_was_here)
1370         << BaseTemplateSpec;
1371   }
1372 }
1373 
1374 /// \brief Check the validity of a C++ base class specifier.
1375 ///
1376 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1377 /// and returns NULL otherwise.
1378 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1379 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1380                          SourceRange SpecifierRange,
1381                          bool Virtual, AccessSpecifier Access,
1382                          TypeSourceInfo *TInfo,
1383                          SourceLocation EllipsisLoc) {
1384   QualType BaseType = TInfo->getType();
1385 
1386   // C++ [class.union]p1:
1387   //   A union shall not have base classes.
1388   if (Class->isUnion()) {
1389     Diag(Class->getLocation(), diag::err_base_clause_on_union)
1390       << SpecifierRange;
1391     return nullptr;
1392   }
1393 
1394   if (EllipsisLoc.isValid() &&
1395       !TInfo->getType()->containsUnexpandedParameterPack()) {
1396     Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1397       << TInfo->getTypeLoc().getSourceRange();
1398     EllipsisLoc = SourceLocation();
1399   }
1400 
1401   SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1402 
1403   if (BaseType->isDependentType()) {
1404     // Make sure that we don't have circular inheritance among our dependent
1405     // bases. For non-dependent bases, the check for completeness below handles
1406     // this.
1407     if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1408       if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1409           ((BaseDecl = BaseDecl->getDefinition()) &&
1410            findCircularInheritance(Class, BaseDecl))) {
1411         Diag(BaseLoc, diag::err_circular_inheritance)
1412           << BaseType << Context.getTypeDeclType(Class);
1413 
1414         if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1415           Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1416             << BaseType;
1417 
1418         return nullptr;
1419       }
1420     }
1421 
1422     return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1423                                           Class->getTagKind() == TTK_Class,
1424                                           Access, TInfo, EllipsisLoc);
1425   }
1426 
1427   // Base specifiers must be record types.
1428   if (!BaseType->isRecordType()) {
1429     Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1430     return nullptr;
1431   }
1432 
1433   // C++ [class.union]p1:
1434   //   A union shall not be used as a base class.
1435   if (BaseType->isUnionType()) {
1436     Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1437     return nullptr;
1438   }
1439 
1440   // For the MS ABI, propagate DLL attributes to base class templates.
1441   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1442     if (Attr *ClassAttr = getDLLAttr(Class)) {
1443       if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1444               BaseType->getAsCXXRecordDecl())) {
1445         propagateDLLAttrToBaseClassTemplate(*this, Class, ClassAttr,
1446                                             BaseTemplate, BaseLoc);
1447       }
1448     }
1449   }
1450 
1451   // C++ [class.derived]p2:
1452   //   The class-name in a base-specifier shall not be an incompletely
1453   //   defined class.
1454   if (RequireCompleteType(BaseLoc, BaseType,
1455                           diag::err_incomplete_base_class, SpecifierRange)) {
1456     Class->setInvalidDecl();
1457     return nullptr;
1458   }
1459 
1460   // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1461   RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1462   assert(BaseDecl && "Record type has no declaration");
1463   BaseDecl = BaseDecl->getDefinition();
1464   assert(BaseDecl && "Base type is not incomplete, but has no definition");
1465   CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1466   assert(CXXBaseDecl && "Base type is not a C++ type");
1467 
1468   // A class which contains a flexible array member is not suitable for use as a
1469   // base class:
1470   //   - If the layout determines that a base comes before another base,
1471   //     the flexible array member would index into the subsequent base.
1472   //   - If the layout determines that base comes before the derived class,
1473   //     the flexible array member would index into the derived class.
1474   if (CXXBaseDecl->hasFlexibleArrayMember()) {
1475     Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
1476       << CXXBaseDecl->getDeclName();
1477     return nullptr;
1478   }
1479 
1480   // C++ [class]p3:
1481   //   If a class is marked final and it appears as a base-type-specifier in
1482   //   base-clause, the program is ill-formed.
1483   if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1484     Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1485       << CXXBaseDecl->getDeclName()
1486       << FA->isSpelledAsSealed();
1487     Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
1488         << CXXBaseDecl->getDeclName() << FA->getRange();
1489     return nullptr;
1490   }
1491 
1492   if (BaseDecl->isInvalidDecl())
1493     Class->setInvalidDecl();
1494 
1495   // Create the base specifier.
1496   return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1497                                         Class->getTagKind() == TTK_Class,
1498                                         Access, TInfo, EllipsisLoc);
1499 }
1500 
1501 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1502 /// one entry in the base class list of a class specifier, for
1503 /// example:
1504 ///    class foo : public bar, virtual private baz {
1505 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1506 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1507 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1508                          ParsedAttributes &Attributes,
1509                          bool Virtual, AccessSpecifier Access,
1510                          ParsedType basetype, SourceLocation BaseLoc,
1511                          SourceLocation EllipsisLoc) {
1512   if (!classdecl)
1513     return true;
1514 
1515   AdjustDeclIfTemplate(classdecl);
1516   CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1517   if (!Class)
1518     return true;
1519 
1520   // We haven't yet attached the base specifiers.
1521   Class->setIsParsingBaseSpecifiers();
1522 
1523   // We do not support any C++11 attributes on base-specifiers yet.
1524   // Diagnose any attributes we see.
1525   if (!Attributes.empty()) {
1526     for (AttributeList *Attr = Attributes.getList(); Attr;
1527          Attr = Attr->getNext()) {
1528       if (Attr->isInvalid() ||
1529           Attr->getKind() == AttributeList::IgnoredAttribute)
1530         continue;
1531       Diag(Attr->getLoc(),
1532            Attr->getKind() == AttributeList::UnknownAttribute
1533              ? diag::warn_unknown_attribute_ignored
1534              : diag::err_base_specifier_attribute)
1535         << Attr->getName();
1536     }
1537   }
1538 
1539   TypeSourceInfo *TInfo = nullptr;
1540   GetTypeFromParser(basetype, &TInfo);
1541 
1542   if (EllipsisLoc.isInvalid() &&
1543       DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1544                                       UPPC_BaseType))
1545     return true;
1546 
1547   if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1548                                                       Virtual, Access, TInfo,
1549                                                       EllipsisLoc))
1550     return BaseSpec;
1551   else
1552     Class->setInvalidDecl();
1553 
1554   return true;
1555 }
1556 
1557 /// Use small set to collect indirect bases.  As this is only used
1558 /// locally, there's no need to abstract the small size parameter.
1559 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
1560 
1561 /// \brief Recursively add the bases of Type.  Don't add Type itself.
1562 static void
NoteIndirectBases(ASTContext & Context,IndirectBaseSet & Set,const QualType & Type)1563 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
1564                   const QualType &Type)
1565 {
1566   // Even though the incoming type is a base, it might not be
1567   // a class -- it could be a template parm, for instance.
1568   if (auto Rec = Type->getAs<RecordType>()) {
1569     auto Decl = Rec->getAsCXXRecordDecl();
1570 
1571     // Iterate over its bases.
1572     for (const auto &BaseSpec : Decl->bases()) {
1573       QualType Base = Context.getCanonicalType(BaseSpec.getType())
1574         .getUnqualifiedType();
1575       if (Set.insert(Base).second)
1576         // If we've not already seen it, recurse.
1577         NoteIndirectBases(Context, Set, Base);
1578     }
1579   }
1580 }
1581 
1582 /// \brief Performs the actual work of attaching the given base class
1583 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1584 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1585                                 unsigned NumBases) {
1586  if (NumBases == 0)
1587     return false;
1588 
1589   // Used to keep track of which base types we have already seen, so
1590   // that we can properly diagnose redundant direct base types. Note
1591   // that the key is always the unqualified canonical type of the base
1592   // class.
1593   std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1594 
1595   // Used to track indirect bases so we can see if a direct base is
1596   // ambiguous.
1597   IndirectBaseSet IndirectBaseTypes;
1598 
1599   // Copy non-redundant base specifiers into permanent storage.
1600   unsigned NumGoodBases = 0;
1601   bool Invalid = false;
1602   for (unsigned idx = 0; idx < NumBases; ++idx) {
1603     QualType NewBaseType
1604       = Context.getCanonicalType(Bases[idx]->getType());
1605     NewBaseType = NewBaseType.getLocalUnqualifiedType();
1606 
1607     CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1608     if (KnownBase) {
1609       // C++ [class.mi]p3:
1610       //   A class shall not be specified as a direct base class of a
1611       //   derived class more than once.
1612       Diag(Bases[idx]->getLocStart(),
1613            diag::err_duplicate_base_class)
1614         << KnownBase->getType()
1615         << Bases[idx]->getSourceRange();
1616 
1617       // Delete the duplicate base class specifier; we're going to
1618       // overwrite its pointer later.
1619       Context.Deallocate(Bases[idx]);
1620 
1621       Invalid = true;
1622     } else {
1623       // Okay, add this new base class.
1624       KnownBase = Bases[idx];
1625       Bases[NumGoodBases++] = Bases[idx];
1626 
1627       // Note this base's direct & indirect bases, if there could be ambiguity.
1628       if (NumBases > 1)
1629         NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
1630 
1631       if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1632         const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1633         if (Class->isInterface() &&
1634               (!RD->isInterface() ||
1635                KnownBase->getAccessSpecifier() != AS_public)) {
1636           // The Microsoft extension __interface does not permit bases that
1637           // are not themselves public interfaces.
1638           Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1639             << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1640             << RD->getSourceRange();
1641           Invalid = true;
1642         }
1643         if (RD->hasAttr<WeakAttr>())
1644           Class->addAttr(WeakAttr::CreateImplicit(Context));
1645       }
1646     }
1647   }
1648 
1649   // Attach the remaining base class specifiers to the derived class.
1650   Class->setBases(Bases, NumGoodBases);
1651 
1652   for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
1653     // Check whether this direct base is inaccessible due to ambiguity.
1654     QualType BaseType = Bases[idx]->getType();
1655     CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
1656       .getUnqualifiedType();
1657 
1658     if (IndirectBaseTypes.count(CanonicalBase)) {
1659       CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1660                          /*DetectVirtual=*/true);
1661       bool found
1662         = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
1663       assert(found);
1664       (void)found;
1665 
1666       if (Paths.isAmbiguous(CanonicalBase))
1667         Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
1668           << BaseType << getAmbiguousPathsDisplayString(Paths)
1669           << Bases[idx]->getSourceRange();
1670       else
1671         assert(Bases[idx]->isVirtual());
1672     }
1673 
1674     // Delete the base class specifier, since its data has been copied
1675     // into the CXXRecordDecl.
1676     Context.Deallocate(Bases[idx]);
1677   }
1678 
1679   return Invalid;
1680 }
1681 
1682 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1683 /// class, after checking whether there are any duplicate base
1684 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1685 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1686                                unsigned NumBases) {
1687   if (!ClassDecl || !Bases || !NumBases)
1688     return;
1689 
1690   AdjustDeclIfTemplate(ClassDecl);
1691   AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1692 }
1693 
1694 /// \brief Determine whether the type \p Derived is a C++ class that is
1695 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base)1696 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1697   if (!getLangOpts().CPlusPlus)
1698     return false;
1699 
1700   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1701   if (!DerivedRD)
1702     return false;
1703 
1704   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1705   if (!BaseRD)
1706     return false;
1707 
1708   // If either the base or the derived type is invalid, don't try to
1709   // check whether one is derived from the other.
1710   if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1711     return false;
1712 
1713   // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1714   return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1715 }
1716 
1717 /// \brief Determine whether the type \p Derived is a C++ class that is
1718 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base,CXXBasePaths & Paths)1719 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1720   if (!getLangOpts().CPlusPlus)
1721     return false;
1722 
1723   CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1724   if (!DerivedRD)
1725     return false;
1726 
1727   CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1728   if (!BaseRD)
1729     return false;
1730 
1731   return DerivedRD->isDerivedFrom(BaseRD, Paths);
1732 }
1733 
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1734 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1735                               CXXCastPath &BasePathArray) {
1736   assert(BasePathArray.empty() && "Base path array must be empty!");
1737   assert(Paths.isRecordingPaths() && "Must record paths!");
1738 
1739   const CXXBasePath &Path = Paths.front();
1740 
1741   // We first go backward and check if we have a virtual base.
1742   // FIXME: It would be better if CXXBasePath had the base specifier for
1743   // the nearest virtual base.
1744   unsigned Start = 0;
1745   for (unsigned I = Path.size(); I != 0; --I) {
1746     if (Path[I - 1].Base->isVirtual()) {
1747       Start = I - 1;
1748       break;
1749     }
1750   }
1751 
1752   // Now add all bases.
1753   for (unsigned I = Start, E = Path.size(); I != E; ++I)
1754     BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1755 }
1756 
1757 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1758 /// conversion (where Derived and Base are class types) is
1759 /// well-formed, meaning that the conversion is unambiguous (and
1760 /// that all of the base classes are accessible). Returns true
1761 /// and emits a diagnostic if the code is ill-formed, returns false
1762 /// otherwise. Loc is the location where this routine should point to
1763 /// if there is an error, and Range is the source range to highlight
1764 /// if there is an error.
1765 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1766 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1767                                    unsigned InaccessibleBaseID,
1768                                    unsigned AmbigiousBaseConvID,
1769                                    SourceLocation Loc, SourceRange Range,
1770                                    DeclarationName Name,
1771                                    CXXCastPath *BasePath) {
1772   // First, determine whether the path from Derived to Base is
1773   // ambiguous. This is slightly more expensive than checking whether
1774   // the Derived to Base conversion exists, because here we need to
1775   // explore multiple paths to determine if there is an ambiguity.
1776   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1777                      /*DetectVirtual=*/false);
1778   bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1779   assert(DerivationOkay &&
1780          "Can only be used with a derived-to-base conversion");
1781   (void)DerivationOkay;
1782 
1783   if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1784     if (InaccessibleBaseID) {
1785       // Check that the base class can be accessed.
1786       switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1787                                    InaccessibleBaseID)) {
1788         case AR_inaccessible:
1789           return true;
1790         case AR_accessible:
1791         case AR_dependent:
1792         case AR_delayed:
1793           break;
1794       }
1795     }
1796 
1797     // Build a base path if necessary.
1798     if (BasePath)
1799       BuildBasePathArray(Paths, *BasePath);
1800     return false;
1801   }
1802 
1803   if (AmbigiousBaseConvID) {
1804     // We know that the derived-to-base conversion is ambiguous, and
1805     // we're going to produce a diagnostic. Perform the derived-to-base
1806     // search just one more time to compute all of the possible paths so
1807     // that we can print them out. This is more expensive than any of
1808     // the previous derived-to-base checks we've done, but at this point
1809     // performance isn't as much of an issue.
1810     Paths.clear();
1811     Paths.setRecordingPaths(true);
1812     bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1813     assert(StillOkay && "Can only be used with a derived-to-base conversion");
1814     (void)StillOkay;
1815 
1816     // Build up a textual representation of the ambiguous paths, e.g.,
1817     // D -> B -> A, that will be used to illustrate the ambiguous
1818     // conversions in the diagnostic. We only print one of the paths
1819     // to each base class subobject.
1820     std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1821 
1822     Diag(Loc, AmbigiousBaseConvID)
1823     << Derived << Base << PathDisplayStr << Range << Name;
1824   }
1825   return true;
1826 }
1827 
1828 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1829 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1830                                    SourceLocation Loc, SourceRange Range,
1831                                    CXXCastPath *BasePath,
1832                                    bool IgnoreAccess) {
1833   return CheckDerivedToBaseConversion(Derived, Base,
1834                                       IgnoreAccess ? 0
1835                                        : diag::err_upcast_to_inaccessible_base,
1836                                       diag::err_ambiguous_derived_to_base_conv,
1837                                       Loc, Range, DeclarationName(),
1838                                       BasePath);
1839 }
1840 
1841 
1842 /// @brief Builds a string representing ambiguous paths from a
1843 /// specific derived class to different subobjects of the same base
1844 /// class.
1845 ///
1846 /// This function builds a string that can be used in error messages
1847 /// to show the different paths that one can take through the
1848 /// inheritance hierarchy to go from the derived class to different
1849 /// subobjects of a base class. The result looks something like this:
1850 /// @code
1851 /// struct D -> struct B -> struct A
1852 /// struct D -> struct C -> struct A
1853 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1854 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1855   std::string PathDisplayStr;
1856   std::set<unsigned> DisplayedPaths;
1857   for (CXXBasePaths::paths_iterator Path = Paths.begin();
1858        Path != Paths.end(); ++Path) {
1859     if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1860       // We haven't displayed a path to this particular base
1861       // class subobject yet.
1862       PathDisplayStr += "\n    ";
1863       PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1864       for (CXXBasePath::const_iterator Element = Path->begin();
1865            Element != Path->end(); ++Element)
1866         PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1867     }
1868   }
1869 
1870   return PathDisplayStr;
1871 }
1872 
1873 //===----------------------------------------------------------------------===//
1874 // C++ class member Handling
1875 //===----------------------------------------------------------------------===//
1876 
1877 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1878 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1879                                 SourceLocation ASLoc,
1880                                 SourceLocation ColonLoc,
1881                                 AttributeList *Attrs) {
1882   assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1883   AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1884                                                   ASLoc, ColonLoc);
1885   CurContext->addHiddenDecl(ASDecl);
1886   return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1887 }
1888 
1889 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)1890 void Sema::CheckOverrideControl(NamedDecl *D) {
1891   if (D->isInvalidDecl())
1892     return;
1893 
1894   // We only care about "override" and "final" declarations.
1895   if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1896     return;
1897 
1898   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1899 
1900   // We can't check dependent instance methods.
1901   if (MD && MD->isInstance() &&
1902       (MD->getParent()->hasAnyDependentBases() ||
1903        MD->getType()->isDependentType()))
1904     return;
1905 
1906   if (MD && !MD->isVirtual()) {
1907     // If we have a non-virtual method, check if if hides a virtual method.
1908     // (In that case, it's most likely the method has the wrong type.)
1909     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1910     FindHiddenVirtualMethods(MD, OverloadedMethods);
1911 
1912     if (!OverloadedMethods.empty()) {
1913       if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1914         Diag(OA->getLocation(),
1915              diag::override_keyword_hides_virtual_member_function)
1916           << "override" << (OverloadedMethods.size() > 1);
1917       } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1918         Diag(FA->getLocation(),
1919              diag::override_keyword_hides_virtual_member_function)
1920           << (FA->isSpelledAsSealed() ? "sealed" : "final")
1921           << (OverloadedMethods.size() > 1);
1922       }
1923       NoteHiddenVirtualMethods(MD, OverloadedMethods);
1924       MD->setInvalidDecl();
1925       return;
1926     }
1927     // Fall through into the general case diagnostic.
1928     // FIXME: We might want to attempt typo correction here.
1929   }
1930 
1931   if (!MD || !MD->isVirtual()) {
1932     if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1933       Diag(OA->getLocation(),
1934            diag::override_keyword_only_allowed_on_virtual_member_functions)
1935         << "override" << FixItHint::CreateRemoval(OA->getLocation());
1936       D->dropAttr<OverrideAttr>();
1937     }
1938     if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1939       Diag(FA->getLocation(),
1940            diag::override_keyword_only_allowed_on_virtual_member_functions)
1941         << (FA->isSpelledAsSealed() ? "sealed" : "final")
1942         << FixItHint::CreateRemoval(FA->getLocation());
1943       D->dropAttr<FinalAttr>();
1944     }
1945     return;
1946   }
1947 
1948   // C++11 [class.virtual]p5:
1949   //   If a function is marked with the virt-specifier override and
1950   //   does not override a member function of a base class, the program is
1951   //   ill-formed.
1952   bool HasOverriddenMethods =
1953     MD->begin_overridden_methods() != MD->end_overridden_methods();
1954   if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1955     Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1956       << MD->getDeclName();
1957 }
1958 
DiagnoseAbsenceOfOverrideControl(NamedDecl * D)1959 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
1960   if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
1961     return;
1962   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1963   if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() ||
1964       isa<CXXDestructorDecl>(MD))
1965     return;
1966 
1967   SourceLocation Loc = MD->getLocation();
1968   SourceLocation SpellingLoc = Loc;
1969   if (getSourceManager().isMacroArgExpansion(Loc))
1970     SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
1971   SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
1972   if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
1973       return;
1974 
1975   if (MD->size_overridden_methods() > 0) {
1976     Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding)
1977       << MD->getDeclName();
1978     const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
1979     Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
1980   }
1981 }
1982 
1983 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1984 /// function overrides a virtual member function marked 'final', according to
1985 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1986 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1987                                                   const CXXMethodDecl *Old) {
1988   FinalAttr *FA = Old->getAttr<FinalAttr>();
1989   if (!FA)
1990     return false;
1991 
1992   Diag(New->getLocation(), diag::err_final_function_overridden)
1993     << New->getDeclName()
1994     << FA->isSpelledAsSealed();
1995   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1996   return true;
1997 }
1998 
InitializationHasSideEffects(const FieldDecl & FD)1999 static bool InitializationHasSideEffects(const FieldDecl &FD) {
2000   const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2001   // FIXME: Destruction of ObjC lifetime types has side-effects.
2002   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2003     return !RD->isCompleteDefinition() ||
2004            !RD->hasTrivialDefaultConstructor() ||
2005            !RD->hasTrivialDestructor();
2006   return false;
2007 }
2008 
getMSPropertyAttr(AttributeList * list)2009 static AttributeList *getMSPropertyAttr(AttributeList *list) {
2010   for (AttributeList *it = list; it != nullptr; it = it->getNext())
2011     if (it->isDeclspecPropertyAttribute())
2012       return it;
2013   return nullptr;
2014 }
2015 
2016 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2017 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2018 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
2019 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2020 /// present (but parsing it has been deferred).
2021 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)2022 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2023                                MultiTemplateParamsArg TemplateParameterLists,
2024                                Expr *BW, const VirtSpecifiers &VS,
2025                                InClassInitStyle InitStyle) {
2026   const DeclSpec &DS = D.getDeclSpec();
2027   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2028   DeclarationName Name = NameInfo.getName();
2029   SourceLocation Loc = NameInfo.getLoc();
2030 
2031   // For anonymous bitfields, the location should point to the type.
2032   if (Loc.isInvalid())
2033     Loc = D.getLocStart();
2034 
2035   Expr *BitWidth = static_cast<Expr*>(BW);
2036 
2037   assert(isa<CXXRecordDecl>(CurContext));
2038   assert(!DS.isFriendSpecified());
2039 
2040   bool isFunc = D.isDeclarationOfFunction();
2041 
2042   if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2043     // The Microsoft extension __interface only permits public member functions
2044     // and prohibits constructors, destructors, operators, non-public member
2045     // functions, static methods and data members.
2046     unsigned InvalidDecl;
2047     bool ShowDeclName = true;
2048     if (!isFunc)
2049       InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2050     else if (AS != AS_public)
2051       InvalidDecl = 2;
2052     else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2053       InvalidDecl = 3;
2054     else switch (Name.getNameKind()) {
2055       case DeclarationName::CXXConstructorName:
2056         InvalidDecl = 4;
2057         ShowDeclName = false;
2058         break;
2059 
2060       case DeclarationName::CXXDestructorName:
2061         InvalidDecl = 5;
2062         ShowDeclName = false;
2063         break;
2064 
2065       case DeclarationName::CXXOperatorName:
2066       case DeclarationName::CXXConversionFunctionName:
2067         InvalidDecl = 6;
2068         break;
2069 
2070       default:
2071         InvalidDecl = 0;
2072         break;
2073     }
2074 
2075     if (InvalidDecl) {
2076       if (ShowDeclName)
2077         Diag(Loc, diag::err_invalid_member_in_interface)
2078           << (InvalidDecl-1) << Name;
2079       else
2080         Diag(Loc, diag::err_invalid_member_in_interface)
2081           << (InvalidDecl-1) << "";
2082       return nullptr;
2083     }
2084   }
2085 
2086   // C++ 9.2p6: A member shall not be declared to have automatic storage
2087   // duration (auto, register) or with the extern storage-class-specifier.
2088   // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2089   // data members and cannot be applied to names declared const or static,
2090   // and cannot be applied to reference members.
2091   switch (DS.getStorageClassSpec()) {
2092   case DeclSpec::SCS_unspecified:
2093   case DeclSpec::SCS_typedef:
2094   case DeclSpec::SCS_static:
2095     break;
2096   case DeclSpec::SCS_mutable:
2097     if (isFunc) {
2098       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2099 
2100       // FIXME: It would be nicer if the keyword was ignored only for this
2101       // declarator. Otherwise we could get follow-up errors.
2102       D.getMutableDeclSpec().ClearStorageClassSpecs();
2103     }
2104     break;
2105   default:
2106     Diag(DS.getStorageClassSpecLoc(),
2107          diag::err_storageclass_invalid_for_member);
2108     D.getMutableDeclSpec().ClearStorageClassSpecs();
2109     break;
2110   }
2111 
2112   bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2113                        DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2114                       !isFunc);
2115 
2116   if (DS.isConstexprSpecified() && isInstField) {
2117     SemaDiagnosticBuilder B =
2118         Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2119     SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2120     if (InitStyle == ICIS_NoInit) {
2121       B << 0 << 0;
2122       if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2123         B << FixItHint::CreateRemoval(ConstexprLoc);
2124       else {
2125         B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2126         D.getMutableDeclSpec().ClearConstexprSpec();
2127         const char *PrevSpec;
2128         unsigned DiagID;
2129         bool Failed = D.getMutableDeclSpec().SetTypeQual(
2130             DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2131         (void)Failed;
2132         assert(!Failed && "Making a constexpr member const shouldn't fail");
2133       }
2134     } else {
2135       B << 1;
2136       const char *PrevSpec;
2137       unsigned DiagID;
2138       if (D.getMutableDeclSpec().SetStorageClassSpec(
2139           *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2140           Context.getPrintingPolicy())) {
2141         assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
2142                "This is the only DeclSpec that should fail to be applied");
2143         B << 1;
2144       } else {
2145         B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2146         isInstField = false;
2147       }
2148     }
2149   }
2150 
2151   NamedDecl *Member;
2152   if (isInstField) {
2153     CXXScopeSpec &SS = D.getCXXScopeSpec();
2154 
2155     // Data members must have identifiers for names.
2156     if (!Name.isIdentifier()) {
2157       Diag(Loc, diag::err_bad_variable_name)
2158         << Name;
2159       return nullptr;
2160     }
2161 
2162     IdentifierInfo *II = Name.getAsIdentifierInfo();
2163 
2164     // Member field could not be with "template" keyword.
2165     // So TemplateParameterLists should be empty in this case.
2166     if (TemplateParameterLists.size()) {
2167       TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2168       if (TemplateParams->size()) {
2169         // There is no such thing as a member field template.
2170         Diag(D.getIdentifierLoc(), diag::err_template_member)
2171             << II
2172             << SourceRange(TemplateParams->getTemplateLoc(),
2173                 TemplateParams->getRAngleLoc());
2174       } else {
2175         // There is an extraneous 'template<>' for this member.
2176         Diag(TemplateParams->getTemplateLoc(),
2177             diag::err_template_member_noparams)
2178             << II
2179             << SourceRange(TemplateParams->getTemplateLoc(),
2180                 TemplateParams->getRAngleLoc());
2181       }
2182       return nullptr;
2183     }
2184 
2185     if (SS.isSet() && !SS.isInvalid()) {
2186       // The user provided a superfluous scope specifier inside a class
2187       // definition:
2188       //
2189       // class X {
2190       //   int X::member;
2191       // };
2192       if (DeclContext *DC = computeDeclContext(SS, false))
2193         diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2194       else
2195         Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2196           << Name << SS.getRange();
2197 
2198       SS.clear();
2199     }
2200 
2201     AttributeList *MSPropertyAttr =
2202       getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2203     if (MSPropertyAttr) {
2204       Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2205                                 BitWidth, InitStyle, AS, MSPropertyAttr);
2206       if (!Member)
2207         return nullptr;
2208       isInstField = false;
2209     } else {
2210       Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2211                                 BitWidth, InitStyle, AS);
2212       assert(Member && "HandleField never returns null");
2213     }
2214   } else {
2215     assert(InitStyle == ICIS_NoInit ||
2216            D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2217 
2218     Member = HandleDeclarator(S, D, TemplateParameterLists);
2219     if (!Member)
2220       return nullptr;
2221 
2222     // Non-instance-fields can't have a bitfield.
2223     if (BitWidth) {
2224       if (Member->isInvalidDecl()) {
2225         // don't emit another diagnostic.
2226       } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
2227         // C++ 9.6p3: A bit-field shall not be a static member.
2228         // "static member 'A' cannot be a bit-field"
2229         Diag(Loc, diag::err_static_not_bitfield)
2230           << Name << BitWidth->getSourceRange();
2231       } else if (isa<TypedefDecl>(Member)) {
2232         // "typedef member 'x' cannot be a bit-field"
2233         Diag(Loc, diag::err_typedef_not_bitfield)
2234           << Name << BitWidth->getSourceRange();
2235       } else {
2236         // A function typedef ("typedef int f(); f a;").
2237         // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2238         Diag(Loc, diag::err_not_integral_type_bitfield)
2239           << Name << cast<ValueDecl>(Member)->getType()
2240           << BitWidth->getSourceRange();
2241       }
2242 
2243       BitWidth = nullptr;
2244       Member->setInvalidDecl();
2245     }
2246 
2247     Member->setAccess(AS);
2248 
2249     // If we have declared a member function template or static data member
2250     // template, set the access of the templated declaration as well.
2251     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2252       FunTmpl->getTemplatedDecl()->setAccess(AS);
2253     else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2254       VarTmpl->getTemplatedDecl()->setAccess(AS);
2255   }
2256 
2257   if (VS.isOverrideSpecified())
2258     Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
2259   if (VS.isFinalSpecified())
2260     Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2261                                             VS.isFinalSpelledSealed()));
2262 
2263   if (VS.getLastLocation().isValid()) {
2264     // Update the end location of a method that has a virt-specifiers.
2265     if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2266       MD->setRangeEnd(VS.getLastLocation());
2267   }
2268 
2269   CheckOverrideControl(Member);
2270 
2271   assert((Name || isInstField) && "No identifier for non-field ?");
2272 
2273   if (isInstField) {
2274     FieldDecl *FD = cast<FieldDecl>(Member);
2275     FieldCollector->Add(FD);
2276 
2277     if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
2278       // Remember all explicit private FieldDecls that have a name, no side
2279       // effects and are not part of a dependent type declaration.
2280       if (!FD->isImplicit() && FD->getDeclName() &&
2281           FD->getAccess() == AS_private &&
2282           !FD->hasAttr<UnusedAttr>() &&
2283           !FD->getParent()->isDependentContext() &&
2284           !InitializationHasSideEffects(*FD))
2285         UnusedPrivateFields.insert(FD);
2286     }
2287   }
2288 
2289   return Member;
2290 }
2291 
2292 namespace {
2293   class UninitializedFieldVisitor
2294       : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2295     Sema &S;
2296     // List of Decls to generate a warning on.  Also remove Decls that become
2297     // initialized.
2298     llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
2299     // List of base classes of the record.  Classes are removed after their
2300     // initializers.
2301     llvm::SmallPtrSetImpl<QualType> &BaseClasses;
2302     // Vector of decls to be removed from the Decl set prior to visiting the
2303     // nodes.  These Decls may have been initialized in the prior initializer.
2304     llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
2305     // If non-null, add a note to the warning pointing back to the constructor.
2306     const CXXConstructorDecl *Constructor;
2307     // Variables to hold state when processing an initializer list.  When
2308     // InitList is true, special case initialization of FieldDecls matching
2309     // InitListFieldDecl.
2310     bool InitList;
2311     FieldDecl *InitListFieldDecl;
2312     llvm::SmallVector<unsigned, 4> InitFieldIndex;
2313 
2314   public:
2315     typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSetImpl<ValueDecl * > & Decls,llvm::SmallPtrSetImpl<QualType> & BaseClasses)2316     UninitializedFieldVisitor(Sema &S,
2317                               llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
2318                               llvm::SmallPtrSetImpl<QualType> &BaseClasses)
2319       : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
2320         Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
2321 
2322     // Returns true if the use of ME is not an uninitialized use.
IsInitListMemberExprInitialized(MemberExpr * ME,bool CheckReferenceOnly)2323     bool IsInitListMemberExprInitialized(MemberExpr *ME,
2324                                          bool CheckReferenceOnly) {
2325       llvm::SmallVector<FieldDecl*, 4> Fields;
2326       bool ReferenceField = false;
2327       while (ME) {
2328         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
2329         if (!FD)
2330           return false;
2331         Fields.push_back(FD);
2332         if (FD->getType()->isReferenceType())
2333           ReferenceField = true;
2334         ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
2335       }
2336 
2337       // Binding a reference to an unintialized field is not an
2338       // uninitialized use.
2339       if (CheckReferenceOnly && !ReferenceField)
2340         return true;
2341 
2342       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
2343       // Discard the first field since it is the field decl that is being
2344       // initialized.
2345       for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
2346         UsedFieldIndex.push_back((*I)->getFieldIndex());
2347       }
2348 
2349       for (auto UsedIter = UsedFieldIndex.begin(),
2350                 UsedEnd = UsedFieldIndex.end(),
2351                 OrigIter = InitFieldIndex.begin(),
2352                 OrigEnd = InitFieldIndex.end();
2353            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
2354         if (*UsedIter < *OrigIter)
2355           return true;
2356         if (*UsedIter > *OrigIter)
2357           break;
2358       }
2359 
2360       return false;
2361     }
2362 
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly,bool AddressOf)2363     void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
2364                           bool AddressOf) {
2365       if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2366         return;
2367 
2368       // FieldME is the inner-most MemberExpr that is not an anonymous struct
2369       // or union.
2370       MemberExpr *FieldME = ME;
2371 
2372       bool AllPODFields = FieldME->getType().isPODType(S.Context);
2373 
2374       Expr *Base = ME;
2375       while (MemberExpr *SubME =
2376                  dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
2377 
2378         if (isa<VarDecl>(SubME->getMemberDecl()))
2379           return;
2380 
2381         if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
2382           if (!FD->isAnonymousStructOrUnion())
2383             FieldME = SubME;
2384 
2385         if (!FieldME->getType().isPODType(S.Context))
2386           AllPODFields = false;
2387 
2388         Base = SubME->getBase();
2389       }
2390 
2391       if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
2392         return;
2393 
2394       if (AddressOf && AllPODFields)
2395         return;
2396 
2397       ValueDecl* FoundVD = FieldME->getMemberDecl();
2398 
2399       if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
2400         while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
2401           BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
2402         }
2403 
2404         if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
2405           QualType T = BaseCast->getType();
2406           if (T->isPointerType() &&
2407               BaseClasses.count(T->getPointeeType())) {
2408             S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
2409                 << T->getPointeeType() << FoundVD;
2410           }
2411         }
2412       }
2413 
2414       if (!Decls.count(FoundVD))
2415         return;
2416 
2417       const bool IsReference = FoundVD->getType()->isReferenceType();
2418 
2419       if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
2420         // Special checking for initializer lists.
2421         if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
2422           return;
2423         }
2424       } else {
2425         // Prevent double warnings on use of unbounded references.
2426         if (CheckReferenceOnly && !IsReference)
2427           return;
2428       }
2429 
2430       unsigned diag = IsReference
2431           ? diag::warn_reference_field_is_uninit
2432           : diag::warn_field_is_uninit;
2433       S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
2434       if (Constructor)
2435         S.Diag(Constructor->getLocation(),
2436                diag::note_uninit_in_this_constructor)
2437           << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
2438 
2439     }
2440 
HandleValue(Expr * E,bool AddressOf)2441     void HandleValue(Expr *E, bool AddressOf) {
2442       E = E->IgnoreParens();
2443 
2444       if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2445         HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
2446                          AddressOf /*AddressOf*/);
2447         return;
2448       }
2449 
2450       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2451         Visit(CO->getCond());
2452         HandleValue(CO->getTrueExpr(), AddressOf);
2453         HandleValue(CO->getFalseExpr(), AddressOf);
2454         return;
2455       }
2456 
2457       if (BinaryConditionalOperator *BCO =
2458               dyn_cast<BinaryConditionalOperator>(E)) {
2459         Visit(BCO->getCond());
2460         HandleValue(BCO->getFalseExpr(), AddressOf);
2461         return;
2462       }
2463 
2464       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
2465         HandleValue(OVE->getSourceExpr(), AddressOf);
2466         return;
2467       }
2468 
2469       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2470         switch (BO->getOpcode()) {
2471         default:
2472           break;
2473         case(BO_PtrMemD):
2474         case(BO_PtrMemI):
2475           HandleValue(BO->getLHS(), AddressOf);
2476           Visit(BO->getRHS());
2477           return;
2478         case(BO_Comma):
2479           Visit(BO->getLHS());
2480           HandleValue(BO->getRHS(), AddressOf);
2481           return;
2482         }
2483       }
2484 
2485       Visit(E);
2486     }
2487 
CheckInitListExpr(InitListExpr * ILE)2488     void CheckInitListExpr(InitListExpr *ILE) {
2489       InitFieldIndex.push_back(0);
2490       for (auto Child : ILE->children()) {
2491         if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
2492           CheckInitListExpr(SubList);
2493         } else {
2494           Visit(Child);
2495         }
2496         ++InitFieldIndex.back();
2497       }
2498       InitFieldIndex.pop_back();
2499     }
2500 
CheckInitializer(Expr * E,const CXXConstructorDecl * FieldConstructor,FieldDecl * Field,const Type * BaseClass)2501     void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
2502                           FieldDecl *Field, const Type *BaseClass) {
2503       // Remove Decls that may have been initialized in the previous
2504       // initializer.
2505       for (ValueDecl* VD : DeclsToRemove)
2506         Decls.erase(VD);
2507       DeclsToRemove.clear();
2508 
2509       Constructor = FieldConstructor;
2510       InitListExpr *ILE = dyn_cast<InitListExpr>(E);
2511 
2512       if (ILE && Field) {
2513         InitList = true;
2514         InitListFieldDecl = Field;
2515         InitFieldIndex.clear();
2516         CheckInitListExpr(ILE);
2517       } else {
2518         InitList = false;
2519         Visit(E);
2520       }
2521 
2522       if (Field)
2523         Decls.erase(Field);
2524       if (BaseClass)
2525         BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
2526     }
2527 
VisitMemberExpr(MemberExpr * ME)2528     void VisitMemberExpr(MemberExpr *ME) {
2529       // All uses of unbounded reference fields will warn.
2530       HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
2531     }
2532 
VisitImplicitCastExpr(ImplicitCastExpr * E)2533     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2534       if (E->getCastKind() == CK_LValueToRValue) {
2535         HandleValue(E->getSubExpr(), false /*AddressOf*/);
2536         return;
2537       }
2538 
2539       Inherited::VisitImplicitCastExpr(E);
2540     }
2541 
VisitCXXConstructExpr(CXXConstructExpr * E)2542     void VisitCXXConstructExpr(CXXConstructExpr *E) {
2543       if (E->getConstructor()->isCopyConstructor()) {
2544         Expr *ArgExpr = E->getArg(0);
2545         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
2546           if (ILE->getNumInits() == 1)
2547             ArgExpr = ILE->getInit(0);
2548         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
2549           if (ICE->getCastKind() == CK_NoOp)
2550             ArgExpr = ICE->getSubExpr();
2551         HandleValue(ArgExpr, false /*AddressOf*/);
2552         return;
2553       }
2554       Inherited::VisitCXXConstructExpr(E);
2555     }
2556 
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)2557     void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2558       Expr *Callee = E->getCallee();
2559       if (isa<MemberExpr>(Callee)) {
2560         HandleValue(Callee, false /*AddressOf*/);
2561         for (auto Arg : E->arguments())
2562           Visit(Arg);
2563         return;
2564       }
2565 
2566       Inherited::VisitCXXMemberCallExpr(E);
2567     }
2568 
VisitCallExpr(CallExpr * E)2569     void VisitCallExpr(CallExpr *E) {
2570       // Treat std::move as a use.
2571       if (E->getNumArgs() == 1) {
2572         if (FunctionDecl *FD = E->getDirectCallee()) {
2573           if (FD->isInStdNamespace() && FD->getIdentifier() &&
2574               FD->getIdentifier()->isStr("move")) {
2575             HandleValue(E->getArg(0), false /*AddressOf*/);
2576             return;
2577           }
2578         }
2579       }
2580 
2581       Inherited::VisitCallExpr(E);
2582     }
2583 
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)2584     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
2585       Expr *Callee = E->getCallee();
2586 
2587       if (isa<UnresolvedLookupExpr>(Callee))
2588         return Inherited::VisitCXXOperatorCallExpr(E);
2589 
2590       Visit(Callee);
2591       for (auto Arg : E->arguments())
2592         HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
2593     }
2594 
VisitBinaryOperator(BinaryOperator * E)2595     void VisitBinaryOperator(BinaryOperator *E) {
2596       // If a field assignment is detected, remove the field from the
2597       // uninitiailized field set.
2598       if (E->getOpcode() == BO_Assign)
2599         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2600           if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2601             if (!FD->getType()->isReferenceType())
2602               DeclsToRemove.push_back(FD);
2603 
2604       if (E->isCompoundAssignmentOp()) {
2605         HandleValue(E->getLHS(), false /*AddressOf*/);
2606         Visit(E->getRHS());
2607         return;
2608       }
2609 
2610       Inherited::VisitBinaryOperator(E);
2611     }
2612 
VisitUnaryOperator(UnaryOperator * E)2613     void VisitUnaryOperator(UnaryOperator *E) {
2614       if (E->isIncrementDecrementOp()) {
2615         HandleValue(E->getSubExpr(), false /*AddressOf*/);
2616         return;
2617       }
2618       if (E->getOpcode() == UO_AddrOf) {
2619         if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
2620           HandleValue(ME->getBase(), true /*AddressOf*/);
2621           return;
2622         }
2623       }
2624 
2625       Inherited::VisitUnaryOperator(E);
2626     }
2627   };
2628 
2629   // Diagnose value-uses of fields to initialize themselves, e.g.
2630   //   foo(foo)
2631   // where foo is not also a parameter to the constructor.
2632   // Also diagnose across field uninitialized use such as
2633   //   x(y), y(x)
2634   // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)2635   static void DiagnoseUninitializedFields(
2636       Sema &SemaRef, const CXXConstructorDecl *Constructor) {
2637 
2638     if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
2639                                            Constructor->getLocation())) {
2640       return;
2641     }
2642 
2643     if (Constructor->isInvalidDecl())
2644       return;
2645 
2646     const CXXRecordDecl *RD = Constructor->getParent();
2647 
2648     if (RD->getDescribedClassTemplate())
2649       return;
2650 
2651     // Holds fields that are uninitialized.
2652     llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
2653 
2654     // At the beginning, all fields are uninitialized.
2655     for (auto *I : RD->decls()) {
2656       if (auto *FD = dyn_cast<FieldDecl>(I)) {
2657         UninitializedFields.insert(FD);
2658       } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
2659         UninitializedFields.insert(IFD->getAnonField());
2660       }
2661     }
2662 
2663     llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
2664     for (auto I : RD->bases())
2665       UninitializedBaseClasses.insert(I.getType().getCanonicalType());
2666 
2667     if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2668       return;
2669 
2670     UninitializedFieldVisitor UninitializedChecker(SemaRef,
2671                                                    UninitializedFields,
2672                                                    UninitializedBaseClasses);
2673 
2674     for (const auto *FieldInit : Constructor->inits()) {
2675       if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2676         break;
2677 
2678       Expr *InitExpr = FieldInit->getInit();
2679       if (!InitExpr)
2680         continue;
2681 
2682       if (CXXDefaultInitExpr *Default =
2683               dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
2684         InitExpr = Default->getExpr();
2685         if (!InitExpr)
2686           continue;
2687         // In class initializers will point to the constructor.
2688         UninitializedChecker.CheckInitializer(InitExpr, Constructor,
2689                                               FieldInit->getAnyMember(),
2690                                               FieldInit->getBaseClass());
2691       } else {
2692         UninitializedChecker.CheckInitializer(InitExpr, nullptr,
2693                                               FieldInit->getAnyMember(),
2694                                               FieldInit->getBaseClass());
2695       }
2696     }
2697   }
2698 } // namespace
2699 
2700 /// \brief Enter a new C++ default initializer scope. After calling this, the
2701 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
2702 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()2703 void Sema::ActOnStartCXXInClassMemberInitializer() {
2704   // Create a synthetic function scope to represent the call to the constructor
2705   // that notionally surrounds a use of this initializer.
2706   PushFunctionScope();
2707 }
2708 
2709 /// \brief This is invoked after parsing an in-class initializer for a
2710 /// non-static C++ class member, and after instantiating an in-class initializer
2711 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)2712 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
2713                                                   SourceLocation InitLoc,
2714                                                   Expr *InitExpr) {
2715   // Pop the notional constructor scope we created earlier.
2716   PopFunctionScopeInfo(nullptr, D);
2717 
2718   FieldDecl *FD = dyn_cast<FieldDecl>(D);
2719   assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
2720          "must set init style when field is created");
2721 
2722   if (!InitExpr) {
2723     D->setInvalidDecl();
2724     if (FD)
2725       FD->removeInClassInitializer();
2726     return;
2727   }
2728 
2729   if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2730     FD->setInvalidDecl();
2731     FD->removeInClassInitializer();
2732     return;
2733   }
2734 
2735   ExprResult Init = InitExpr;
2736   if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2737     InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2738     InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2739         ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2740         : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2741     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2742     Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2743     if (Init.isInvalid()) {
2744       FD->setInvalidDecl();
2745       return;
2746     }
2747   }
2748 
2749   // C++11 [class.base.init]p7:
2750   //   The initialization of each base and member constitutes a
2751   //   full-expression.
2752   Init = ActOnFinishFullExpr(Init.get(), InitLoc);
2753   if (Init.isInvalid()) {
2754     FD->setInvalidDecl();
2755     return;
2756   }
2757 
2758   InitExpr = Init.get();
2759 
2760   FD->setInClassInitializer(InitExpr);
2761 }
2762 
2763 /// \brief Find the direct and/or virtual base specifiers that
2764 /// correspond to the given base type, for use in base initialization
2765 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)2766 static bool FindBaseInitializer(Sema &SemaRef,
2767                                 CXXRecordDecl *ClassDecl,
2768                                 QualType BaseType,
2769                                 const CXXBaseSpecifier *&DirectBaseSpec,
2770                                 const CXXBaseSpecifier *&VirtualBaseSpec) {
2771   // First, check for a direct base class.
2772   DirectBaseSpec = nullptr;
2773   for (const auto &Base : ClassDecl->bases()) {
2774     if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
2775       // We found a direct base of this type. That's what we're
2776       // initializing.
2777       DirectBaseSpec = &Base;
2778       break;
2779     }
2780   }
2781 
2782   // Check for a virtual base class.
2783   // FIXME: We might be able to short-circuit this if we know in advance that
2784   // there are no virtual bases.
2785   VirtualBaseSpec = nullptr;
2786   if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2787     // We haven't found a base yet; search the class hierarchy for a
2788     // virtual base class.
2789     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2790                        /*DetectVirtual=*/false);
2791     if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2792                               BaseType, Paths)) {
2793       for (CXXBasePaths::paths_iterator Path = Paths.begin();
2794            Path != Paths.end(); ++Path) {
2795         if (Path->back().Base->isVirtual()) {
2796           VirtualBaseSpec = Path->back().Base;
2797           break;
2798         }
2799       }
2800     }
2801   }
2802 
2803   return DirectBaseSpec || VirtualBaseSpec;
2804 }
2805 
2806 /// \brief Handle a C++ member initializer using braced-init-list syntax.
2807 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)2808 Sema::ActOnMemInitializer(Decl *ConstructorD,
2809                           Scope *S,
2810                           CXXScopeSpec &SS,
2811                           IdentifierInfo *MemberOrBase,
2812                           ParsedType TemplateTypeTy,
2813                           const DeclSpec &DS,
2814                           SourceLocation IdLoc,
2815                           Expr *InitList,
2816                           SourceLocation EllipsisLoc) {
2817   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2818                              DS, IdLoc, InitList,
2819                              EllipsisLoc);
2820 }
2821 
2822 /// \brief Handle a C++ member initializer using parentheses syntax.
2823 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)2824 Sema::ActOnMemInitializer(Decl *ConstructorD,
2825                           Scope *S,
2826                           CXXScopeSpec &SS,
2827                           IdentifierInfo *MemberOrBase,
2828                           ParsedType TemplateTypeTy,
2829                           const DeclSpec &DS,
2830                           SourceLocation IdLoc,
2831                           SourceLocation LParenLoc,
2832                           ArrayRef<Expr *> Args,
2833                           SourceLocation RParenLoc,
2834                           SourceLocation EllipsisLoc) {
2835   Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2836                                            Args, RParenLoc);
2837   return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2838                              DS, IdLoc, List, EllipsisLoc);
2839 }
2840 
2841 namespace {
2842 
2843 // Callback to only accept typo corrections that can be a valid C++ member
2844 // intializer: either a non-static field member or a base class.
2845 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2846 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)2847   explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2848       : ClassDecl(ClassDecl) {}
2849 
ValidateCandidate(const TypoCorrection & candidate)2850   bool ValidateCandidate(const TypoCorrection &candidate) override {
2851     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2852       if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2853         return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2854       return isa<TypeDecl>(ND);
2855     }
2856     return false;
2857   }
2858 
2859 private:
2860   CXXRecordDecl *ClassDecl;
2861 };
2862 
2863 }
2864 
2865 /// \brief Handle a C++ member initializer.
2866 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)2867 Sema::BuildMemInitializer(Decl *ConstructorD,
2868                           Scope *S,
2869                           CXXScopeSpec &SS,
2870                           IdentifierInfo *MemberOrBase,
2871                           ParsedType TemplateTypeTy,
2872                           const DeclSpec &DS,
2873                           SourceLocation IdLoc,
2874                           Expr *Init,
2875                           SourceLocation EllipsisLoc) {
2876   ExprResult Res = CorrectDelayedTyposInExpr(Init);
2877   if (!Res.isUsable())
2878     return true;
2879   Init = Res.get();
2880 
2881   if (!ConstructorD)
2882     return true;
2883 
2884   AdjustDeclIfTemplate(ConstructorD);
2885 
2886   CXXConstructorDecl *Constructor
2887     = dyn_cast<CXXConstructorDecl>(ConstructorD);
2888   if (!Constructor) {
2889     // The user wrote a constructor initializer on a function that is
2890     // not a C++ constructor. Ignore the error for now, because we may
2891     // have more member initializers coming; we'll diagnose it just
2892     // once in ActOnMemInitializers.
2893     return true;
2894   }
2895 
2896   CXXRecordDecl *ClassDecl = Constructor->getParent();
2897 
2898   // C++ [class.base.init]p2:
2899   //   Names in a mem-initializer-id are looked up in the scope of the
2900   //   constructor's class and, if not found in that scope, are looked
2901   //   up in the scope containing the constructor's definition.
2902   //   [Note: if the constructor's class contains a member with the
2903   //   same name as a direct or virtual base class of the class, a
2904   //   mem-initializer-id naming the member or base class and composed
2905   //   of a single identifier refers to the class member. A
2906   //   mem-initializer-id for the hidden base class may be specified
2907   //   using a qualified name. ]
2908   if (!SS.getScopeRep() && !TemplateTypeTy) {
2909     // Look for a member, first.
2910     DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
2911     if (!Result.empty()) {
2912       ValueDecl *Member;
2913       if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2914           (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2915         if (EllipsisLoc.isValid())
2916           Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2917             << MemberOrBase
2918             << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2919 
2920         return BuildMemberInitializer(Member, Init, IdLoc);
2921       }
2922     }
2923   }
2924   // It didn't name a member, so see if it names a class.
2925   QualType BaseType;
2926   TypeSourceInfo *TInfo = nullptr;
2927 
2928   if (TemplateTypeTy) {
2929     BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2930   } else if (DS.getTypeSpecType() == TST_decltype) {
2931     BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2932   } else {
2933     LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2934     LookupParsedName(R, S, &SS);
2935 
2936     TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2937     if (!TyD) {
2938       if (R.isAmbiguous()) return true;
2939 
2940       // We don't want access-control diagnostics here.
2941       R.suppressDiagnostics();
2942 
2943       if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2944         bool NotUnknownSpecialization = false;
2945         DeclContext *DC = computeDeclContext(SS, false);
2946         if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2947           NotUnknownSpecialization = !Record->hasAnyDependentBases();
2948 
2949         if (!NotUnknownSpecialization) {
2950           // When the scope specifier can refer to a member of an unknown
2951           // specialization, we take it as a type name.
2952           BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2953                                        SS.getWithLocInContext(Context),
2954                                        *MemberOrBase, IdLoc);
2955           if (BaseType.isNull())
2956             return true;
2957 
2958           R.clear();
2959           R.setLookupName(MemberOrBase);
2960         }
2961       }
2962 
2963       // If no results were found, try to correct typos.
2964       TypoCorrection Corr;
2965       if (R.empty() && BaseType.isNull() &&
2966           (Corr = CorrectTypo(
2967                R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2968                llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
2969                CTK_ErrorRecovery, ClassDecl))) {
2970         if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2971           // We have found a non-static data member with a similar
2972           // name to what was typed; complain and initialize that
2973           // member.
2974           diagnoseTypo(Corr,
2975                        PDiag(diag::err_mem_init_not_member_or_class_suggest)
2976                          << MemberOrBase << true);
2977           return BuildMemberInitializer(Member, Init, IdLoc);
2978         } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2979           const CXXBaseSpecifier *DirectBaseSpec;
2980           const CXXBaseSpecifier *VirtualBaseSpec;
2981           if (FindBaseInitializer(*this, ClassDecl,
2982                                   Context.getTypeDeclType(Type),
2983                                   DirectBaseSpec, VirtualBaseSpec)) {
2984             // We have found a direct or virtual base class with a
2985             // similar name to what was typed; complain and initialize
2986             // that base class.
2987             diagnoseTypo(Corr,
2988                          PDiag(diag::err_mem_init_not_member_or_class_suggest)
2989                            << MemberOrBase << false,
2990                          PDiag() /*Suppress note, we provide our own.*/);
2991 
2992             const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2993                                                               : VirtualBaseSpec;
2994             Diag(BaseSpec->getLocStart(),
2995                  diag::note_base_class_specified_here)
2996               << BaseSpec->getType()
2997               << BaseSpec->getSourceRange();
2998 
2999             TyD = Type;
3000           }
3001         }
3002       }
3003 
3004       if (!TyD && BaseType.isNull()) {
3005         Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3006           << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3007         return true;
3008       }
3009     }
3010 
3011     if (BaseType.isNull()) {
3012       BaseType = Context.getTypeDeclType(TyD);
3013       MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3014       if (SS.isSet())
3015         // FIXME: preserve source range information
3016         BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3017                                              BaseType);
3018     }
3019   }
3020 
3021   if (!TInfo)
3022     TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3023 
3024   return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3025 }
3026 
3027 /// Checks a member initializer expression for cases where reference (or
3028 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3029 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3030                                                Expr *Init,
3031                                                SourceLocation IdLoc) {
3032   QualType MemberTy = Member->getType();
3033 
3034   // We only handle pointers and references currently.
3035   // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3036   if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3037     return;
3038 
3039   const bool IsPointer = MemberTy->isPointerType();
3040   if (IsPointer) {
3041     if (const UnaryOperator *Op
3042           = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3043       // The only case we're worried about with pointers requires taking the
3044       // address.
3045       if (Op->getOpcode() != UO_AddrOf)
3046         return;
3047 
3048       Init = Op->getSubExpr();
3049     } else {
3050       // We only handle address-of expression initializers for pointers.
3051       return;
3052     }
3053   }
3054 
3055   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3056     // We only warn when referring to a non-reference parameter declaration.
3057     const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3058     if (!Parameter || Parameter->getType()->isReferenceType())
3059       return;
3060 
3061     S.Diag(Init->getExprLoc(),
3062            IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3063                      : diag::warn_bind_ref_member_to_parameter)
3064       << Member << Parameter << Init->getSourceRange();
3065   } else {
3066     // Other initializers are fine.
3067     return;
3068   }
3069 
3070   S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3071     << (unsigned)IsPointer;
3072 }
3073 
3074 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3075 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3076                              SourceLocation IdLoc) {
3077   FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3078   IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3079   assert((DirectMember || IndirectMember) &&
3080          "Member must be a FieldDecl or IndirectFieldDecl");
3081 
3082   if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3083     return true;
3084 
3085   if (Member->isInvalidDecl())
3086     return true;
3087 
3088   MultiExprArg Args;
3089   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3090     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3091   } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3092     Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3093   } else {
3094     // Template instantiation doesn't reconstruct ParenListExprs for us.
3095     Args = Init;
3096   }
3097 
3098   SourceRange InitRange = Init->getSourceRange();
3099 
3100   if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3101     // Can't check initialization for a member of dependent type or when
3102     // any of the arguments are type-dependent expressions.
3103     DiscardCleanupsInEvaluationContext();
3104   } else {
3105     bool InitList = false;
3106     if (isa<InitListExpr>(Init)) {
3107       InitList = true;
3108       Args = Init;
3109     }
3110 
3111     // Initialize the member.
3112     InitializedEntity MemberEntity =
3113       DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3114                    : InitializedEntity::InitializeMember(IndirectMember,
3115                                                          nullptr);
3116     InitializationKind Kind =
3117       InitList ? InitializationKind::CreateDirectList(IdLoc)
3118                : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3119                                                   InitRange.getEnd());
3120 
3121     InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3122     ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3123                                             nullptr);
3124     if (MemberInit.isInvalid())
3125       return true;
3126 
3127     CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3128 
3129     // C++11 [class.base.init]p7:
3130     //   The initialization of each base and member constitutes a
3131     //   full-expression.
3132     MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3133     if (MemberInit.isInvalid())
3134       return true;
3135 
3136     Init = MemberInit.get();
3137   }
3138 
3139   if (DirectMember) {
3140     return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3141                                             InitRange.getBegin(), Init,
3142                                             InitRange.getEnd());
3143   } else {
3144     return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3145                                             InitRange.getBegin(), Init,
3146                                             InitRange.getEnd());
3147   }
3148 }
3149 
3150 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)3151 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3152                                  CXXRecordDecl *ClassDecl) {
3153   SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3154   if (!LangOpts.CPlusPlus11)
3155     return Diag(NameLoc, diag::err_delegating_ctor)
3156       << TInfo->getTypeLoc().getLocalSourceRange();
3157   Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3158 
3159   bool InitList = true;
3160   MultiExprArg Args = Init;
3161   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3162     InitList = false;
3163     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3164   }
3165 
3166   SourceRange InitRange = Init->getSourceRange();
3167   // Initialize the object.
3168   InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
3169                                      QualType(ClassDecl->getTypeForDecl(), 0));
3170   InitializationKind Kind =
3171     InitList ? InitializationKind::CreateDirectList(NameLoc)
3172              : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
3173                                                 InitRange.getEnd());
3174   InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
3175   ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
3176                                               Args, nullptr);
3177   if (DelegationInit.isInvalid())
3178     return true;
3179 
3180   assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
3181          "Delegating constructor with no target?");
3182 
3183   // C++11 [class.base.init]p7:
3184   //   The initialization of each base and member constitutes a
3185   //   full-expression.
3186   DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
3187                                        InitRange.getBegin());
3188   if (DelegationInit.isInvalid())
3189     return true;
3190 
3191   // If we are in a dependent context, template instantiation will
3192   // perform this type-checking again. Just save the arguments that we
3193   // received in a ParenListExpr.
3194   // FIXME: This isn't quite ideal, since our ASTs don't capture all
3195   // of the information that we have about the base
3196   // initializer. However, deconstructing the ASTs is a dicey process,
3197   // and this approach is far more likely to get the corner cases right.
3198   if (CurContext->isDependentContext())
3199     DelegationInit = Init;
3200 
3201   return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
3202                                           DelegationInit.getAs<Expr>(),
3203                                           InitRange.getEnd());
3204 }
3205 
3206 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)3207 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
3208                            Expr *Init, CXXRecordDecl *ClassDecl,
3209                            SourceLocation EllipsisLoc) {
3210   SourceLocation BaseLoc
3211     = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
3212 
3213   if (!BaseType->isDependentType() && !BaseType->isRecordType())
3214     return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
3215              << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3216 
3217   // C++ [class.base.init]p2:
3218   //   [...] Unless the mem-initializer-id names a nonstatic data
3219   //   member of the constructor's class or a direct or virtual base
3220   //   of that class, the mem-initializer is ill-formed. A
3221   //   mem-initializer-list can initialize a base class using any
3222   //   name that denotes that base class type.
3223   bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
3224 
3225   SourceRange InitRange = Init->getSourceRange();
3226   if (EllipsisLoc.isValid()) {
3227     // This is a pack expansion.
3228     if (!BaseType->containsUnexpandedParameterPack())  {
3229       Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
3230         << SourceRange(BaseLoc, InitRange.getEnd());
3231 
3232       EllipsisLoc = SourceLocation();
3233     }
3234   } else {
3235     // Check for any unexpanded parameter packs.
3236     if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
3237       return true;
3238 
3239     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3240       return true;
3241   }
3242 
3243   // Check for direct and virtual base classes.
3244   const CXXBaseSpecifier *DirectBaseSpec = nullptr;
3245   const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
3246   if (!Dependent) {
3247     if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
3248                                        BaseType))
3249       return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
3250 
3251     FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
3252                         VirtualBaseSpec);
3253 
3254     // C++ [base.class.init]p2:
3255     // Unless the mem-initializer-id names a nonstatic data member of the
3256     // constructor's class or a direct or virtual base of that class, the
3257     // mem-initializer is ill-formed.
3258     if (!DirectBaseSpec && !VirtualBaseSpec) {
3259       // If the class has any dependent bases, then it's possible that
3260       // one of those types will resolve to the same type as
3261       // BaseType. Therefore, just treat this as a dependent base
3262       // class initialization.  FIXME: Should we try to check the
3263       // initialization anyway? It seems odd.
3264       if (ClassDecl->hasAnyDependentBases())
3265         Dependent = true;
3266       else
3267         return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
3268           << BaseType << Context.getTypeDeclType(ClassDecl)
3269           << BaseTInfo->getTypeLoc().getLocalSourceRange();
3270     }
3271   }
3272 
3273   if (Dependent) {
3274     DiscardCleanupsInEvaluationContext();
3275 
3276     return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3277                                             /*IsVirtual=*/false,
3278                                             InitRange.getBegin(), Init,
3279                                             InitRange.getEnd(), EllipsisLoc);
3280   }
3281 
3282   // C++ [base.class.init]p2:
3283   //   If a mem-initializer-id is ambiguous because it designates both
3284   //   a direct non-virtual base class and an inherited virtual base
3285   //   class, the mem-initializer is ill-formed.
3286   if (DirectBaseSpec && VirtualBaseSpec)
3287     return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
3288       << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3289 
3290   const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
3291   if (!BaseSpec)
3292     BaseSpec = VirtualBaseSpec;
3293 
3294   // Initialize the base.
3295   bool InitList = true;
3296   MultiExprArg Args = Init;
3297   if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3298     InitList = false;
3299     Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3300   }
3301 
3302   InitializedEntity BaseEntity =
3303     InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
3304   InitializationKind Kind =
3305     InitList ? InitializationKind::CreateDirectList(BaseLoc)
3306              : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
3307                                                 InitRange.getEnd());
3308   InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
3309   ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
3310   if (BaseInit.isInvalid())
3311     return true;
3312 
3313   // C++11 [class.base.init]p7:
3314   //   The initialization of each base and member constitutes a
3315   //   full-expression.
3316   BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
3317   if (BaseInit.isInvalid())
3318     return true;
3319 
3320   // If we are in a dependent context, template instantiation will
3321   // perform this type-checking again. Just save the arguments that we
3322   // received in a ParenListExpr.
3323   // FIXME: This isn't quite ideal, since our ASTs don't capture all
3324   // of the information that we have about the base
3325   // initializer. However, deconstructing the ASTs is a dicey process,
3326   // and this approach is far more likely to get the corner cases right.
3327   if (CurContext->isDependentContext())
3328     BaseInit = Init;
3329 
3330   return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3331                                           BaseSpec->isVirtual(),
3332                                           InitRange.getBegin(),
3333                                           BaseInit.getAs<Expr>(),
3334                                           InitRange.getEnd(), EllipsisLoc);
3335 }
3336 
3337 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())3338 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
3339   if (T.isNull()) T = E->getType();
3340   QualType TargetType = SemaRef.BuildReferenceType(
3341       T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
3342   SourceLocation ExprLoc = E->getLocStart();
3343   TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
3344       TargetType, ExprLoc);
3345 
3346   return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
3347                                    SourceRange(ExprLoc, ExprLoc),
3348                                    E->getSourceRange()).get();
3349 }
3350 
3351 /// ImplicitInitializerKind - How an implicit base or member initializer should
3352 /// initialize its base or member.
3353 enum ImplicitInitializerKind {
3354   IIK_Default,
3355   IIK_Copy,
3356   IIK_Move,
3357   IIK_Inherit
3358 };
3359 
3360 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)3361 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3362                              ImplicitInitializerKind ImplicitInitKind,
3363                              CXXBaseSpecifier *BaseSpec,
3364                              bool IsInheritedVirtualBase,
3365                              CXXCtorInitializer *&CXXBaseInit) {
3366   InitializedEntity InitEntity
3367     = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
3368                                         IsInheritedVirtualBase);
3369 
3370   ExprResult BaseInit;
3371 
3372   switch (ImplicitInitKind) {
3373   case IIK_Inherit: {
3374     const CXXRecordDecl *Inherited =
3375         Constructor->getInheritedConstructor()->getParent();
3376     const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
3377     if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
3378       // C++11 [class.inhctor]p8:
3379       //   Each expression in the expression-list is of the form
3380       //   static_cast<T&&>(p), where p is the name of the corresponding
3381       //   constructor parameter and T is the declared type of p.
3382       SmallVector<Expr*, 16> Args;
3383       for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
3384         ParmVarDecl *PD = Constructor->getParamDecl(I);
3385         ExprResult ArgExpr =
3386             SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
3387                                      VK_LValue, SourceLocation());
3388         if (ArgExpr.isInvalid())
3389           return true;
3390         Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
3391       }
3392 
3393       InitializationKind InitKind = InitializationKind::CreateDirect(
3394           Constructor->getLocation(), SourceLocation(), SourceLocation());
3395       InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
3396       BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
3397       break;
3398     }
3399   }
3400   // Fall through.
3401   case IIK_Default: {
3402     InitializationKind InitKind
3403       = InitializationKind::CreateDefault(Constructor->getLocation());
3404     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3405     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3406     break;
3407   }
3408 
3409   case IIK_Move:
3410   case IIK_Copy: {
3411     bool Moving = ImplicitInitKind == IIK_Move;
3412     ParmVarDecl *Param = Constructor->getParamDecl(0);
3413     QualType ParamType = Param->getType().getNonReferenceType();
3414 
3415     Expr *CopyCtorArg =
3416       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3417                           SourceLocation(), Param, false,
3418                           Constructor->getLocation(), ParamType,
3419                           VK_LValue, nullptr);
3420 
3421     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
3422 
3423     // Cast to the base class to avoid ambiguities.
3424     QualType ArgTy =
3425       SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3426                                        ParamType.getQualifiers());
3427 
3428     if (Moving) {
3429       CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3430     }
3431 
3432     CXXCastPath BasePath;
3433     BasePath.push_back(BaseSpec);
3434     CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3435                                             CK_UncheckedDerivedToBase,
3436                                             Moving ? VK_XValue : VK_LValue,
3437                                             &BasePath).get();
3438 
3439     InitializationKind InitKind
3440       = InitializationKind::CreateDirect(Constructor->getLocation(),
3441                                          SourceLocation(), SourceLocation());
3442     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3443     BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3444     break;
3445   }
3446   }
3447 
3448   BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3449   if (BaseInit.isInvalid())
3450     return true;
3451 
3452   CXXBaseInit =
3453     new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3454                SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3455                                                         SourceLocation()),
3456                                              BaseSpec->isVirtual(),
3457                                              SourceLocation(),
3458                                              BaseInit.getAs<Expr>(),
3459                                              SourceLocation(),
3460                                              SourceLocation());
3461 
3462   return false;
3463 }
3464 
RefersToRValueRef(Expr * MemRef)3465 static bool RefersToRValueRef(Expr *MemRef) {
3466   ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3467   return Referenced->getType()->isRValueReferenceType();
3468 }
3469 
3470 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)3471 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3472                                ImplicitInitializerKind ImplicitInitKind,
3473                                FieldDecl *Field, IndirectFieldDecl *Indirect,
3474                                CXXCtorInitializer *&CXXMemberInit) {
3475   if (Field->isInvalidDecl())
3476     return true;
3477 
3478   SourceLocation Loc = Constructor->getLocation();
3479 
3480   if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3481     bool Moving = ImplicitInitKind == IIK_Move;
3482     ParmVarDecl *Param = Constructor->getParamDecl(0);
3483     QualType ParamType = Param->getType().getNonReferenceType();
3484 
3485     // Suppress copying zero-width bitfields.
3486     if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3487       return false;
3488 
3489     Expr *MemberExprBase =
3490       DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3491                           SourceLocation(), Param, false,
3492                           Loc, ParamType, VK_LValue, nullptr);
3493 
3494     SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3495 
3496     if (Moving) {
3497       MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3498     }
3499 
3500     // Build a reference to this field within the parameter.
3501     CXXScopeSpec SS;
3502     LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3503                               Sema::LookupMemberName);
3504     MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3505                                   : cast<ValueDecl>(Field), AS_public);
3506     MemberLookup.resolveKind();
3507     ExprResult CtorArg
3508       = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3509                                          ParamType, Loc,
3510                                          /*IsArrow=*/false,
3511                                          SS,
3512                                          /*TemplateKWLoc=*/SourceLocation(),
3513                                          /*FirstQualifierInScope=*/nullptr,
3514                                          MemberLookup,
3515                                          /*TemplateArgs=*/nullptr);
3516     if (CtorArg.isInvalid())
3517       return true;
3518 
3519     // C++11 [class.copy]p15:
3520     //   - if a member m has rvalue reference type T&&, it is direct-initialized
3521     //     with static_cast<T&&>(x.m);
3522     if (RefersToRValueRef(CtorArg.get())) {
3523       CtorArg = CastForMoving(SemaRef, CtorArg.get());
3524     }
3525 
3526     // When the field we are copying is an array, create index variables for
3527     // each dimension of the array. We use these index variables to subscript
3528     // the source array, and other clients (e.g., CodeGen) will perform the
3529     // necessary iteration with these index variables.
3530     SmallVector<VarDecl *, 4> IndexVariables;
3531     QualType BaseType = Field->getType();
3532     QualType SizeType = SemaRef.Context.getSizeType();
3533     bool InitializingArray = false;
3534     while (const ConstantArrayType *Array
3535                           = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3536       InitializingArray = true;
3537       // Create the iteration variable for this array index.
3538       IdentifierInfo *IterationVarName = nullptr;
3539       {
3540         SmallString<8> Str;
3541         llvm::raw_svector_ostream OS(Str);
3542         OS << "__i" << IndexVariables.size();
3543         IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3544       }
3545       VarDecl *IterationVar
3546         = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3547                           IterationVarName, SizeType,
3548                         SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3549                           SC_None);
3550       IndexVariables.push_back(IterationVar);
3551 
3552       // Create a reference to the iteration variable.
3553       ExprResult IterationVarRef
3554         = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3555       assert(!IterationVarRef.isInvalid() &&
3556              "Reference to invented variable cannot fail!");
3557       IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
3558       assert(!IterationVarRef.isInvalid() &&
3559              "Conversion of invented variable cannot fail!");
3560 
3561       // Subscript the array with this iteration variable.
3562       CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
3563                                                         IterationVarRef.get(),
3564                                                         Loc);
3565       if (CtorArg.isInvalid())
3566         return true;
3567 
3568       BaseType = Array->getElementType();
3569     }
3570 
3571     // The array subscript expression is an lvalue, which is wrong for moving.
3572     if (Moving && InitializingArray)
3573       CtorArg = CastForMoving(SemaRef, CtorArg.get());
3574 
3575     // Construct the entity that we will be initializing. For an array, this
3576     // will be first element in the array, which may require several levels
3577     // of array-subscript entities.
3578     SmallVector<InitializedEntity, 4> Entities;
3579     Entities.reserve(1 + IndexVariables.size());
3580     if (Indirect)
3581       Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3582     else
3583       Entities.push_back(InitializedEntity::InitializeMember(Field));
3584     for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3585       Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3586                                                               0,
3587                                                               Entities.back()));
3588 
3589     // Direct-initialize to use the copy constructor.
3590     InitializationKind InitKind =
3591       InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3592 
3593     Expr *CtorArgE = CtorArg.getAs<Expr>();
3594     InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
3595                                    CtorArgE);
3596 
3597     ExprResult MemberInit
3598       = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3599                         MultiExprArg(&CtorArgE, 1));
3600     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3601     if (MemberInit.isInvalid())
3602       return true;
3603 
3604     if (Indirect) {
3605       assert(IndexVariables.size() == 0 &&
3606              "Indirect field improperly initialized");
3607       CXXMemberInit
3608         = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3609                                                    Loc, Loc,
3610                                                    MemberInit.getAs<Expr>(),
3611                                                    Loc);
3612     } else
3613       CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3614                                                  Loc, MemberInit.getAs<Expr>(),
3615                                                  Loc,
3616                                                  IndexVariables.data(),
3617                                                  IndexVariables.size());
3618     return false;
3619   }
3620 
3621   assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3622          "Unhandled implicit init kind!");
3623 
3624   QualType FieldBaseElementType =
3625     SemaRef.Context.getBaseElementType(Field->getType());
3626 
3627   if (FieldBaseElementType->isRecordType()) {
3628     InitializedEntity InitEntity
3629       = Indirect? InitializedEntity::InitializeMember(Indirect)
3630                 : InitializedEntity::InitializeMember(Field);
3631     InitializationKind InitKind =
3632       InitializationKind::CreateDefault(Loc);
3633 
3634     InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3635     ExprResult MemberInit =
3636       InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3637 
3638     MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3639     if (MemberInit.isInvalid())
3640       return true;
3641 
3642     if (Indirect)
3643       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3644                                                                Indirect, Loc,
3645                                                                Loc,
3646                                                                MemberInit.get(),
3647                                                                Loc);
3648     else
3649       CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3650                                                                Field, Loc, Loc,
3651                                                                MemberInit.get(),
3652                                                                Loc);
3653     return false;
3654   }
3655 
3656   if (!Field->getParent()->isUnion()) {
3657     if (FieldBaseElementType->isReferenceType()) {
3658       SemaRef.Diag(Constructor->getLocation(),
3659                    diag::err_uninitialized_member_in_ctor)
3660       << (int)Constructor->isImplicit()
3661       << SemaRef.Context.getTagDeclType(Constructor->getParent())
3662       << 0 << Field->getDeclName();
3663       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3664       return true;
3665     }
3666 
3667     if (FieldBaseElementType.isConstQualified()) {
3668       SemaRef.Diag(Constructor->getLocation(),
3669                    diag::err_uninitialized_member_in_ctor)
3670       << (int)Constructor->isImplicit()
3671       << SemaRef.Context.getTagDeclType(Constructor->getParent())
3672       << 1 << Field->getDeclName();
3673       SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3674       return true;
3675     }
3676   }
3677 
3678   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3679       FieldBaseElementType->isObjCRetainableType() &&
3680       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3681       FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3682     // ARC:
3683     //   Default-initialize Objective-C pointers to NULL.
3684     CXXMemberInit
3685       = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3686                                                  Loc, Loc,
3687                  new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3688                                                  Loc);
3689     return false;
3690   }
3691 
3692   // Nothing to initialize.
3693   CXXMemberInit = nullptr;
3694   return false;
3695 }
3696 
3697 namespace {
3698 struct BaseAndFieldInfo {
3699   Sema &S;
3700   CXXConstructorDecl *Ctor;
3701   bool AnyErrorsInInits;
3702   ImplicitInitializerKind IIK;
3703   llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3704   SmallVector<CXXCtorInitializer*, 8> AllToInit;
3705   llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
3706 
BaseAndFieldInfo__anonb9d573a20411::BaseAndFieldInfo3707   BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3708     : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3709     bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3710     if (Generated && Ctor->isCopyConstructor())
3711       IIK = IIK_Copy;
3712     else if (Generated && Ctor->isMoveConstructor())
3713       IIK = IIK_Move;
3714     else if (Ctor->getInheritedConstructor())
3715       IIK = IIK_Inherit;
3716     else
3717       IIK = IIK_Default;
3718   }
3719 
isImplicitCopyOrMove__anonb9d573a20411::BaseAndFieldInfo3720   bool isImplicitCopyOrMove() const {
3721     switch (IIK) {
3722     case IIK_Copy:
3723     case IIK_Move:
3724       return true;
3725 
3726     case IIK_Default:
3727     case IIK_Inherit:
3728       return false;
3729     }
3730 
3731     llvm_unreachable("Invalid ImplicitInitializerKind!");
3732   }
3733 
addFieldInitializer__anonb9d573a20411::BaseAndFieldInfo3734   bool addFieldInitializer(CXXCtorInitializer *Init) {
3735     AllToInit.push_back(Init);
3736 
3737     // Check whether this initializer makes the field "used".
3738     if (Init->getInit()->HasSideEffects(S.Context))
3739       S.UnusedPrivateFields.remove(Init->getAnyMember());
3740 
3741     return false;
3742   }
3743 
isInactiveUnionMember__anonb9d573a20411::BaseAndFieldInfo3744   bool isInactiveUnionMember(FieldDecl *Field) {
3745     RecordDecl *Record = Field->getParent();
3746     if (!Record->isUnion())
3747       return false;
3748 
3749     if (FieldDecl *Active =
3750             ActiveUnionMember.lookup(Record->getCanonicalDecl()))
3751       return Active != Field->getCanonicalDecl();
3752 
3753     // In an implicit copy or move constructor, ignore any in-class initializer.
3754     if (isImplicitCopyOrMove())
3755       return true;
3756 
3757     // If there's no explicit initialization, the field is active only if it
3758     // has an in-class initializer...
3759     if (Field->hasInClassInitializer())
3760       return false;
3761     // ... or it's an anonymous struct or union whose class has an in-class
3762     // initializer.
3763     if (!Field->isAnonymousStructOrUnion())
3764       return true;
3765     CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
3766     return !FieldRD->hasInClassInitializer();
3767   }
3768 
3769   /// \brief Determine whether the given field is, or is within, a union member
3770   /// that is inactive (because there was an initializer given for a different
3771   /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anonb9d573a20411::BaseAndFieldInfo3772   bool isWithinInactiveUnionMember(FieldDecl *Field,
3773                                    IndirectFieldDecl *Indirect) {
3774     if (!Indirect)
3775       return isInactiveUnionMember(Field);
3776 
3777     for (auto *C : Indirect->chain()) {
3778       FieldDecl *Field = dyn_cast<FieldDecl>(C);
3779       if (Field && isInactiveUnionMember(Field))
3780         return true;
3781     }
3782     return false;
3783   }
3784 };
3785 }
3786 
3787 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
3788 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)3789 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3790   if (T->isIncompleteArrayType())
3791     return true;
3792 
3793   while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3794     if (!ArrayT->getSize())
3795       return true;
3796 
3797     T = ArrayT->getElementType();
3798   }
3799 
3800   return false;
3801 }
3802 
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)3803 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3804                                     FieldDecl *Field,
3805                                     IndirectFieldDecl *Indirect = nullptr) {
3806   if (Field->isInvalidDecl())
3807     return false;
3808 
3809   // Overwhelmingly common case: we have a direct initializer for this field.
3810   if (CXXCtorInitializer *Init =
3811           Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
3812     return Info.addFieldInitializer(Init);
3813 
3814   // C++11 [class.base.init]p8:
3815   //   if the entity is a non-static data member that has a
3816   //   brace-or-equal-initializer and either
3817   //   -- the constructor's class is a union and no other variant member of that
3818   //      union is designated by a mem-initializer-id or
3819   //   -- the constructor's class is not a union, and, if the entity is a member
3820   //      of an anonymous union, no other member of that union is designated by
3821   //      a mem-initializer-id,
3822   //   the entity is initialized as specified in [dcl.init].
3823   //
3824   // We also apply the same rules to handle anonymous structs within anonymous
3825   // unions.
3826   if (Info.isWithinInactiveUnionMember(Field, Indirect))
3827     return false;
3828 
3829   if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3830     ExprResult DIE =
3831         SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
3832     if (DIE.isInvalid())
3833       return true;
3834     CXXCtorInitializer *Init;
3835     if (Indirect)
3836       Init = new (SemaRef.Context)
3837           CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
3838                              SourceLocation(), DIE.get(), SourceLocation());
3839     else
3840       Init = new (SemaRef.Context)
3841           CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
3842                              SourceLocation(), DIE.get(), SourceLocation());
3843     return Info.addFieldInitializer(Init);
3844   }
3845 
3846   // Don't initialize incomplete or zero-length arrays.
3847   if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3848     return false;
3849 
3850   // Don't try to build an implicit initializer if there were semantic
3851   // errors in any of the initializers (and therefore we might be
3852   // missing some that the user actually wrote).
3853   if (Info.AnyErrorsInInits)
3854     return false;
3855 
3856   CXXCtorInitializer *Init = nullptr;
3857   if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3858                                      Indirect, Init))
3859     return true;
3860 
3861   if (!Init)
3862     return false;
3863 
3864   return Info.addFieldInitializer(Init);
3865 }
3866 
3867 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)3868 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3869                                CXXCtorInitializer *Initializer) {
3870   assert(Initializer->isDelegatingInitializer());
3871   Constructor->setNumCtorInitializers(1);
3872   CXXCtorInitializer **initializer =
3873     new (Context) CXXCtorInitializer*[1];
3874   memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3875   Constructor->setCtorInitializers(initializer);
3876 
3877   if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3878     MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3879     DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3880   }
3881 
3882   DelegatingCtorDecls.push_back(Constructor);
3883 
3884   DiagnoseUninitializedFields(*this, Constructor);
3885 
3886   return false;
3887 }
3888 
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)3889 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3890                                ArrayRef<CXXCtorInitializer *> Initializers) {
3891   if (Constructor->isDependentContext()) {
3892     // Just store the initializers as written, they will be checked during
3893     // instantiation.
3894     if (!Initializers.empty()) {
3895       Constructor->setNumCtorInitializers(Initializers.size());
3896       CXXCtorInitializer **baseOrMemberInitializers =
3897         new (Context) CXXCtorInitializer*[Initializers.size()];
3898       memcpy(baseOrMemberInitializers, Initializers.data(),
3899              Initializers.size() * sizeof(CXXCtorInitializer*));
3900       Constructor->setCtorInitializers(baseOrMemberInitializers);
3901     }
3902 
3903     // Let template instantiation know whether we had errors.
3904     if (AnyErrors)
3905       Constructor->setInvalidDecl();
3906 
3907     return false;
3908   }
3909 
3910   BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3911 
3912   // We need to build the initializer AST according to order of construction
3913   // and not what user specified in the Initializers list.
3914   CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3915   if (!ClassDecl)
3916     return true;
3917 
3918   bool HadError = false;
3919 
3920   for (unsigned i = 0; i < Initializers.size(); i++) {
3921     CXXCtorInitializer *Member = Initializers[i];
3922 
3923     if (Member->isBaseInitializer())
3924       Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3925     else {
3926       Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
3927 
3928       if (IndirectFieldDecl *F = Member->getIndirectMember()) {
3929         for (auto *C : F->chain()) {
3930           FieldDecl *FD = dyn_cast<FieldDecl>(C);
3931           if (FD && FD->getParent()->isUnion())
3932             Info.ActiveUnionMember.insert(std::make_pair(
3933                 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3934         }
3935       } else if (FieldDecl *FD = Member->getMember()) {
3936         if (FD->getParent()->isUnion())
3937           Info.ActiveUnionMember.insert(std::make_pair(
3938               FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3939       }
3940     }
3941   }
3942 
3943   // Keep track of the direct virtual bases.
3944   llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3945   for (auto &I : ClassDecl->bases()) {
3946     if (I.isVirtual())
3947       DirectVBases.insert(&I);
3948   }
3949 
3950   // Push virtual bases before others.
3951   for (auto &VBase : ClassDecl->vbases()) {
3952     if (CXXCtorInitializer *Value
3953         = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
3954       // [class.base.init]p7, per DR257:
3955       //   A mem-initializer where the mem-initializer-id names a virtual base
3956       //   class is ignored during execution of a constructor of any class that
3957       //   is not the most derived class.
3958       if (ClassDecl->isAbstract()) {
3959         // FIXME: Provide a fixit to remove the base specifier. This requires
3960         // tracking the location of the associated comma for a base specifier.
3961         Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3962           << VBase.getType() << ClassDecl;
3963         DiagnoseAbstractType(ClassDecl);
3964       }
3965 
3966       Info.AllToInit.push_back(Value);
3967     } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3968       // [class.base.init]p8, per DR257:
3969       //   If a given [...] base class is not named by a mem-initializer-id
3970       //   [...] and the entity is not a virtual base class of an abstract
3971       //   class, then [...] the entity is default-initialized.
3972       bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
3973       CXXCtorInitializer *CXXBaseInit;
3974       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3975                                        &VBase, IsInheritedVirtualBase,
3976                                        CXXBaseInit)) {
3977         HadError = true;
3978         continue;
3979       }
3980 
3981       Info.AllToInit.push_back(CXXBaseInit);
3982     }
3983   }
3984 
3985   // Non-virtual bases.
3986   for (auto &Base : ClassDecl->bases()) {
3987     // Virtuals are in the virtual base list and already constructed.
3988     if (Base.isVirtual())
3989       continue;
3990 
3991     if (CXXCtorInitializer *Value
3992           = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
3993       Info.AllToInit.push_back(Value);
3994     } else if (!AnyErrors) {
3995       CXXCtorInitializer *CXXBaseInit;
3996       if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3997                                        &Base, /*IsInheritedVirtualBase=*/false,
3998                                        CXXBaseInit)) {
3999         HadError = true;
4000         continue;
4001       }
4002 
4003       Info.AllToInit.push_back(CXXBaseInit);
4004     }
4005   }
4006 
4007   // Fields.
4008   for (auto *Mem : ClassDecl->decls()) {
4009     if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4010       // C++ [class.bit]p2:
4011       //   A declaration for a bit-field that omits the identifier declares an
4012       //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
4013       //   initialized.
4014       if (F->isUnnamedBitfield())
4015         continue;
4016 
4017       // If we're not generating the implicit copy/move constructor, then we'll
4018       // handle anonymous struct/union fields based on their individual
4019       // indirect fields.
4020       if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4021         continue;
4022 
4023       if (CollectFieldInitializer(*this, Info, F))
4024         HadError = true;
4025       continue;
4026     }
4027 
4028     // Beyond this point, we only consider default initialization.
4029     if (Info.isImplicitCopyOrMove())
4030       continue;
4031 
4032     if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4033       if (F->getType()->isIncompleteArrayType()) {
4034         assert(ClassDecl->hasFlexibleArrayMember() &&
4035                "Incomplete array type is not valid");
4036         continue;
4037       }
4038 
4039       // Initialize each field of an anonymous struct individually.
4040       if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4041         HadError = true;
4042 
4043       continue;
4044     }
4045   }
4046 
4047   unsigned NumInitializers = Info.AllToInit.size();
4048   if (NumInitializers > 0) {
4049     Constructor->setNumCtorInitializers(NumInitializers);
4050     CXXCtorInitializer **baseOrMemberInitializers =
4051       new (Context) CXXCtorInitializer*[NumInitializers];
4052     memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4053            NumInitializers * sizeof(CXXCtorInitializer*));
4054     Constructor->setCtorInitializers(baseOrMemberInitializers);
4055 
4056     // Constructors implicitly reference the base and member
4057     // destructors.
4058     MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4059                                            Constructor->getParent());
4060   }
4061 
4062   return HadError;
4063 }
4064 
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)4065 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4066   if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4067     const RecordDecl *RD = RT->getDecl();
4068     if (RD->isAnonymousStructOrUnion()) {
4069       for (auto *Field : RD->fields())
4070         PopulateKeysForFields(Field, IdealInits);
4071       return;
4072     }
4073   }
4074   IdealInits.push_back(Field->getCanonicalDecl());
4075 }
4076 
GetKeyForBase(ASTContext & Context,QualType BaseType)4077 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4078   return Context.getCanonicalType(BaseType).getTypePtr();
4079 }
4080 
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)4081 static const void *GetKeyForMember(ASTContext &Context,
4082                                    CXXCtorInitializer *Member) {
4083   if (!Member->isAnyMemberInitializer())
4084     return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4085 
4086   return Member->getAnyMember()->getCanonicalDecl();
4087 }
4088 
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)4089 static void DiagnoseBaseOrMemInitializerOrder(
4090     Sema &SemaRef, const CXXConstructorDecl *Constructor,
4091     ArrayRef<CXXCtorInitializer *> Inits) {
4092   if (Constructor->getDeclContext()->isDependentContext())
4093     return;
4094 
4095   // Don't check initializers order unless the warning is enabled at the
4096   // location of at least one initializer.
4097   bool ShouldCheckOrder = false;
4098   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4099     CXXCtorInitializer *Init = Inits[InitIndex];
4100     if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4101                                  Init->getSourceLocation())) {
4102       ShouldCheckOrder = true;
4103       break;
4104     }
4105   }
4106   if (!ShouldCheckOrder)
4107     return;
4108 
4109   // Build the list of bases and members in the order that they'll
4110   // actually be initialized.  The explicit initializers should be in
4111   // this same order but may be missing things.
4112   SmallVector<const void*, 32> IdealInitKeys;
4113 
4114   const CXXRecordDecl *ClassDecl = Constructor->getParent();
4115 
4116   // 1. Virtual bases.
4117   for (const auto &VBase : ClassDecl->vbases())
4118     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4119 
4120   // 2. Non-virtual bases.
4121   for (const auto &Base : ClassDecl->bases()) {
4122     if (Base.isVirtual())
4123       continue;
4124     IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4125   }
4126 
4127   // 3. Direct fields.
4128   for (auto *Field : ClassDecl->fields()) {
4129     if (Field->isUnnamedBitfield())
4130       continue;
4131 
4132     PopulateKeysForFields(Field, IdealInitKeys);
4133   }
4134 
4135   unsigned NumIdealInits = IdealInitKeys.size();
4136   unsigned IdealIndex = 0;
4137 
4138   CXXCtorInitializer *PrevInit = nullptr;
4139   for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4140     CXXCtorInitializer *Init = Inits[InitIndex];
4141     const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4142 
4143     // Scan forward to try to find this initializer in the idealized
4144     // initializers list.
4145     for (; IdealIndex != NumIdealInits; ++IdealIndex)
4146       if (InitKey == IdealInitKeys[IdealIndex])
4147         break;
4148 
4149     // If we didn't find this initializer, it must be because we
4150     // scanned past it on a previous iteration.  That can only
4151     // happen if we're out of order;  emit a warning.
4152     if (IdealIndex == NumIdealInits && PrevInit) {
4153       Sema::SemaDiagnosticBuilder D =
4154         SemaRef.Diag(PrevInit->getSourceLocation(),
4155                      diag::warn_initializer_out_of_order);
4156 
4157       if (PrevInit->isAnyMemberInitializer())
4158         D << 0 << PrevInit->getAnyMember()->getDeclName();
4159       else
4160         D << 1 << PrevInit->getTypeSourceInfo()->getType();
4161 
4162       if (Init->isAnyMemberInitializer())
4163         D << 0 << Init->getAnyMember()->getDeclName();
4164       else
4165         D << 1 << Init->getTypeSourceInfo()->getType();
4166 
4167       // Move back to the initializer's location in the ideal list.
4168       for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4169         if (InitKey == IdealInitKeys[IdealIndex])
4170           break;
4171 
4172       assert(IdealIndex != NumIdealInits &&
4173              "initializer not found in initializer list");
4174     }
4175 
4176     PrevInit = Init;
4177   }
4178 }
4179 
4180 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)4181 bool CheckRedundantInit(Sema &S,
4182                         CXXCtorInitializer *Init,
4183                         CXXCtorInitializer *&PrevInit) {
4184   if (!PrevInit) {
4185     PrevInit = Init;
4186     return false;
4187   }
4188 
4189   if (FieldDecl *Field = Init->getAnyMember())
4190     S.Diag(Init->getSourceLocation(),
4191            diag::err_multiple_mem_initialization)
4192       << Field->getDeclName()
4193       << Init->getSourceRange();
4194   else {
4195     const Type *BaseClass = Init->getBaseClass();
4196     assert(BaseClass && "neither field nor base");
4197     S.Diag(Init->getSourceLocation(),
4198            diag::err_multiple_base_initialization)
4199       << QualType(BaseClass, 0)
4200       << Init->getSourceRange();
4201   }
4202   S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4203     << 0 << PrevInit->getSourceRange();
4204 
4205   return true;
4206 }
4207 
4208 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4209 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4210 
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)4211 bool CheckRedundantUnionInit(Sema &S,
4212                              CXXCtorInitializer *Init,
4213                              RedundantUnionMap &Unions) {
4214   FieldDecl *Field = Init->getAnyMember();
4215   RecordDecl *Parent = Field->getParent();
4216   NamedDecl *Child = Field;
4217 
4218   while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4219     if (Parent->isUnion()) {
4220       UnionEntry &En = Unions[Parent];
4221       if (En.first && En.first != Child) {
4222         S.Diag(Init->getSourceLocation(),
4223                diag::err_multiple_mem_union_initialization)
4224           << Field->getDeclName()
4225           << Init->getSourceRange();
4226         S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4227           << 0 << En.second->getSourceRange();
4228         return true;
4229       }
4230       if (!En.first) {
4231         En.first = Child;
4232         En.second = Init;
4233       }
4234       if (!Parent->isAnonymousStructOrUnion())
4235         return false;
4236     }
4237 
4238     Child = Parent;
4239     Parent = cast<RecordDecl>(Parent->getDeclContext());
4240   }
4241 
4242   return false;
4243 }
4244 }
4245 
4246 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)4247 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4248                                 SourceLocation ColonLoc,
4249                                 ArrayRef<CXXCtorInitializer*> MemInits,
4250                                 bool AnyErrors) {
4251   if (!ConstructorDecl)
4252     return;
4253 
4254   AdjustDeclIfTemplate(ConstructorDecl);
4255 
4256   CXXConstructorDecl *Constructor
4257     = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
4258 
4259   if (!Constructor) {
4260     Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
4261     return;
4262   }
4263 
4264   // Mapping for the duplicate initializers check.
4265   // For member initializers, this is keyed with a FieldDecl*.
4266   // For base initializers, this is keyed with a Type*.
4267   llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
4268 
4269   // Mapping for the inconsistent anonymous-union initializers check.
4270   RedundantUnionMap MemberUnions;
4271 
4272   bool HadError = false;
4273   for (unsigned i = 0; i < MemInits.size(); i++) {
4274     CXXCtorInitializer *Init = MemInits[i];
4275 
4276     // Set the source order index.
4277     Init->setSourceOrder(i);
4278 
4279     if (Init->isAnyMemberInitializer()) {
4280       const void *Key = GetKeyForMember(Context, Init);
4281       if (CheckRedundantInit(*this, Init, Members[Key]) ||
4282           CheckRedundantUnionInit(*this, Init, MemberUnions))
4283         HadError = true;
4284     } else if (Init->isBaseInitializer()) {
4285       const void *Key = GetKeyForMember(Context, Init);
4286       if (CheckRedundantInit(*this, Init, Members[Key]))
4287         HadError = true;
4288     } else {
4289       assert(Init->isDelegatingInitializer());
4290       // This must be the only initializer
4291       if (MemInits.size() != 1) {
4292         Diag(Init->getSourceLocation(),
4293              diag::err_delegating_initializer_alone)
4294           << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
4295         // We will treat this as being the only initializer.
4296       }
4297       SetDelegatingInitializer(Constructor, MemInits[i]);
4298       // Return immediately as the initializer is set.
4299       return;
4300     }
4301   }
4302 
4303   if (HadError)
4304     return;
4305 
4306   DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
4307 
4308   SetCtorInitializers(Constructor, AnyErrors, MemInits);
4309 
4310   DiagnoseUninitializedFields(*this, Constructor);
4311 }
4312 
4313 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)4314 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
4315                                              CXXRecordDecl *ClassDecl) {
4316   // Ignore dependent contexts. Also ignore unions, since their members never
4317   // have destructors implicitly called.
4318   if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
4319     return;
4320 
4321   // FIXME: all the access-control diagnostics are positioned on the
4322   // field/base declaration.  That's probably good; that said, the
4323   // user might reasonably want to know why the destructor is being
4324   // emitted, and we currently don't say.
4325 
4326   // Non-static data members.
4327   for (auto *Field : ClassDecl->fields()) {
4328     if (Field->isInvalidDecl())
4329       continue;
4330 
4331     // Don't destroy incomplete or zero-length arrays.
4332     if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
4333       continue;
4334 
4335     QualType FieldType = Context.getBaseElementType(Field->getType());
4336 
4337     const RecordType* RT = FieldType->getAs<RecordType>();
4338     if (!RT)
4339       continue;
4340 
4341     CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4342     if (FieldClassDecl->isInvalidDecl())
4343       continue;
4344     if (FieldClassDecl->hasIrrelevantDestructor())
4345       continue;
4346     // The destructor for an implicit anonymous union member is never invoked.
4347     if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
4348       continue;
4349 
4350     CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
4351     assert(Dtor && "No dtor found for FieldClassDecl!");
4352     CheckDestructorAccess(Field->getLocation(), Dtor,
4353                           PDiag(diag::err_access_dtor_field)
4354                             << Field->getDeclName()
4355                             << FieldType);
4356 
4357     MarkFunctionReferenced(Location, Dtor);
4358     DiagnoseUseOfDecl(Dtor, Location);
4359   }
4360 
4361   llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
4362 
4363   // Bases.
4364   for (const auto &Base : ClassDecl->bases()) {
4365     // Bases are always records in a well-formed non-dependent class.
4366     const RecordType *RT = Base.getType()->getAs<RecordType>();
4367 
4368     // Remember direct virtual bases.
4369     if (Base.isVirtual())
4370       DirectVirtualBases.insert(RT);
4371 
4372     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4373     // If our base class is invalid, we probably can't get its dtor anyway.
4374     if (BaseClassDecl->isInvalidDecl())
4375       continue;
4376     if (BaseClassDecl->hasIrrelevantDestructor())
4377       continue;
4378 
4379     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4380     assert(Dtor && "No dtor found for BaseClassDecl!");
4381 
4382     // FIXME: caret should be on the start of the class name
4383     CheckDestructorAccess(Base.getLocStart(), Dtor,
4384                           PDiag(diag::err_access_dtor_base)
4385                             << Base.getType()
4386                             << Base.getSourceRange(),
4387                           Context.getTypeDeclType(ClassDecl));
4388 
4389     MarkFunctionReferenced(Location, Dtor);
4390     DiagnoseUseOfDecl(Dtor, Location);
4391   }
4392 
4393   // Virtual bases.
4394   for (const auto &VBase : ClassDecl->vbases()) {
4395     // Bases are always records in a well-formed non-dependent class.
4396     const RecordType *RT = VBase.getType()->castAs<RecordType>();
4397 
4398     // Ignore direct virtual bases.
4399     if (DirectVirtualBases.count(RT))
4400       continue;
4401 
4402     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4403     // If our base class is invalid, we probably can't get its dtor anyway.
4404     if (BaseClassDecl->isInvalidDecl())
4405       continue;
4406     if (BaseClassDecl->hasIrrelevantDestructor())
4407       continue;
4408 
4409     CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4410     assert(Dtor && "No dtor found for BaseClassDecl!");
4411     if (CheckDestructorAccess(
4412             ClassDecl->getLocation(), Dtor,
4413             PDiag(diag::err_access_dtor_vbase)
4414                 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
4415             Context.getTypeDeclType(ClassDecl)) ==
4416         AR_accessible) {
4417       CheckDerivedToBaseConversion(
4418           Context.getTypeDeclType(ClassDecl), VBase.getType(),
4419           diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4420           SourceRange(), DeclarationName(), nullptr);
4421     }
4422 
4423     MarkFunctionReferenced(Location, Dtor);
4424     DiagnoseUseOfDecl(Dtor, Location);
4425   }
4426 }
4427 
ActOnDefaultCtorInitializers(Decl * CDtorDecl)4428 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4429   if (!CDtorDecl)
4430     return;
4431 
4432   if (CXXConstructorDecl *Constructor
4433       = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
4434     SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4435     DiagnoseUninitializedFields(*this, Constructor);
4436   }
4437 }
4438 
RequireNonAbstractType(SourceLocation Loc,QualType T,unsigned DiagID,AbstractDiagSelID SelID)4439 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4440                                   unsigned DiagID, AbstractDiagSelID SelID) {
4441   class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4442     unsigned DiagID;
4443     AbstractDiagSelID SelID;
4444 
4445   public:
4446     NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4447       : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4448 
4449     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
4450       if (Suppressed) return;
4451       if (SelID == -1)
4452         S.Diag(Loc, DiagID) << T;
4453       else
4454         S.Diag(Loc, DiagID) << SelID << T;
4455     }
4456   } Diagnoser(DiagID, SelID);
4457 
4458   return RequireNonAbstractType(Loc, T, Diagnoser);
4459 }
4460 
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)4461 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4462                                   TypeDiagnoser &Diagnoser) {
4463   if (!getLangOpts().CPlusPlus)
4464     return false;
4465 
4466   if (const ArrayType *AT = Context.getAsArrayType(T))
4467     return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4468 
4469   if (const PointerType *PT = T->getAs<PointerType>()) {
4470     // Find the innermost pointer type.
4471     while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4472       PT = T;
4473 
4474     if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4475       return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4476   }
4477 
4478   const RecordType *RT = T->getAs<RecordType>();
4479   if (!RT)
4480     return false;
4481 
4482   const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4483 
4484   // We can't answer whether something is abstract until it has a
4485   // definition.  If it's currently being defined, we'll walk back
4486   // over all the declarations when we have a full definition.
4487   const CXXRecordDecl *Def = RD->getDefinition();
4488   if (!Def || Def->isBeingDefined())
4489     return false;
4490 
4491   if (!RD->isAbstract())
4492     return false;
4493 
4494   Diagnoser.diagnose(*this, Loc, T);
4495   DiagnoseAbstractType(RD);
4496 
4497   return true;
4498 }
4499 
DiagnoseAbstractType(const CXXRecordDecl * RD)4500 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4501   // Check if we've already emitted the list of pure virtual functions
4502   // for this class.
4503   if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4504     return;
4505 
4506   // If the diagnostic is suppressed, don't emit the notes. We're only
4507   // going to emit them once, so try to attach them to a diagnostic we're
4508   // actually going to show.
4509   if (Diags.isLastDiagnosticIgnored())
4510     return;
4511 
4512   CXXFinalOverriderMap FinalOverriders;
4513   RD->getFinalOverriders(FinalOverriders);
4514 
4515   // Keep a set of seen pure methods so we won't diagnose the same method
4516   // more than once.
4517   llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4518 
4519   for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4520                                    MEnd = FinalOverriders.end();
4521        M != MEnd;
4522        ++M) {
4523     for (OverridingMethods::iterator SO = M->second.begin(),
4524                                   SOEnd = M->second.end();
4525          SO != SOEnd; ++SO) {
4526       // C++ [class.abstract]p4:
4527       //   A class is abstract if it contains or inherits at least one
4528       //   pure virtual function for which the final overrider is pure
4529       //   virtual.
4530 
4531       //
4532       if (SO->second.size() != 1)
4533         continue;
4534 
4535       if (!SO->second.front().Method->isPure())
4536         continue;
4537 
4538       if (!SeenPureMethods.insert(SO->second.front().Method).second)
4539         continue;
4540 
4541       Diag(SO->second.front().Method->getLocation(),
4542            diag::note_pure_virtual_function)
4543         << SO->second.front().Method->getDeclName() << RD->getDeclName();
4544     }
4545   }
4546 
4547   if (!PureVirtualClassDiagSet)
4548     PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4549   PureVirtualClassDiagSet->insert(RD);
4550 }
4551 
4552 namespace {
4553 struct AbstractUsageInfo {
4554   Sema &S;
4555   CXXRecordDecl *Record;
4556   CanQualType AbstractType;
4557   bool Invalid;
4558 
AbstractUsageInfo__anonb9d573a20611::AbstractUsageInfo4559   AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4560     : S(S), Record(Record),
4561       AbstractType(S.Context.getCanonicalType(
4562                    S.Context.getTypeDeclType(Record))),
4563       Invalid(false) {}
4564 
DiagnoseAbstractType__anonb9d573a20611::AbstractUsageInfo4565   void DiagnoseAbstractType() {
4566     if (Invalid) return;
4567     S.DiagnoseAbstractType(Record);
4568     Invalid = true;
4569   }
4570 
4571   void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4572 };
4573 
4574 struct CheckAbstractUsage {
4575   AbstractUsageInfo &Info;
4576   const NamedDecl *Ctx;
4577 
CheckAbstractUsage__anonb9d573a20611::CheckAbstractUsage4578   CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4579     : Info(Info), Ctx(Ctx) {}
4580 
Visit__anonb9d573a20611::CheckAbstractUsage4581   void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4582     switch (TL.getTypeLocClass()) {
4583 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4584 #define TYPELOC(CLASS, PARENT) \
4585     case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4586 #include "clang/AST/TypeLocNodes.def"
4587     }
4588   }
4589 
Check__anonb9d573a20611::CheckAbstractUsage4590   void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4591     Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
4592     for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
4593       if (!TL.getParam(I))
4594         continue;
4595 
4596       TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
4597       if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4598     }
4599   }
4600 
Check__anonb9d573a20611::CheckAbstractUsage4601   void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4602     Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4603   }
4604 
Check__anonb9d573a20611::CheckAbstractUsage4605   void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4606     // Visit the type parameters from a permissive context.
4607     for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4608       TemplateArgumentLoc TAL = TL.getArgLoc(I);
4609       if (TAL.getArgument().getKind() == TemplateArgument::Type)
4610         if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4611           Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4612       // TODO: other template argument types?
4613     }
4614   }
4615 
4616   // Visit pointee types from a permissive context.
4617 #define CheckPolymorphic(Type) \
4618   void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4619     Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4620   }
4621   CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anonb9d573a20611::CheckAbstractUsage4622   CheckPolymorphic(ReferenceTypeLoc)
4623   CheckPolymorphic(MemberPointerTypeLoc)
4624   CheckPolymorphic(BlockPointerTypeLoc)
4625   CheckPolymorphic(AtomicTypeLoc)
4626 
4627   /// Handle all the types we haven't given a more specific
4628   /// implementation for above.
4629   void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4630     // Every other kind of type that we haven't called out already
4631     // that has an inner type is either (1) sugar or (2) contains that
4632     // inner type in some way as a subobject.
4633     if (TypeLoc Next = TL.getNextTypeLoc())
4634       return Visit(Next, Sel);
4635 
4636     // If there's no inner type and we're in a permissive context,
4637     // don't diagnose.
4638     if (Sel == Sema::AbstractNone) return;
4639 
4640     // Check whether the type matches the abstract type.
4641     QualType T = TL.getType();
4642     if (T->isArrayType()) {
4643       Sel = Sema::AbstractArrayType;
4644       T = Info.S.Context.getBaseElementType(T);
4645     }
4646     CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4647     if (CT != Info.AbstractType) return;
4648 
4649     // It matched; do some magic.
4650     if (Sel == Sema::AbstractArrayType) {
4651       Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4652         << T << TL.getSourceRange();
4653     } else {
4654       Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4655         << Sel << T << TL.getSourceRange();
4656     }
4657     Info.DiagnoseAbstractType();
4658   }
4659 };
4660 
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)4661 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4662                                   Sema::AbstractDiagSelID Sel) {
4663   CheckAbstractUsage(*this, D).Visit(TL, Sel);
4664 }
4665 
4666 }
4667 
4668 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)4669 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4670                                     CXXMethodDecl *MD) {
4671   // No need to do the check on definitions, which require that
4672   // the return/param types be complete.
4673   if (MD->doesThisDeclarationHaveABody())
4674     return;
4675 
4676   // For safety's sake, just ignore it if we don't have type source
4677   // information.  This should never happen for non-implicit methods,
4678   // but...
4679   if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4680     Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4681 }
4682 
4683 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)4684 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4685                                     CXXRecordDecl *RD) {
4686   for (auto *D : RD->decls()) {
4687     if (D->isImplicit()) continue;
4688 
4689     // Methods and method templates.
4690     if (isa<CXXMethodDecl>(D)) {
4691       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4692     } else if (isa<FunctionTemplateDecl>(D)) {
4693       FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4694       CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4695 
4696     // Fields and static variables.
4697     } else if (isa<FieldDecl>(D)) {
4698       FieldDecl *FD = cast<FieldDecl>(D);
4699       if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4700         Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4701     } else if (isa<VarDecl>(D)) {
4702       VarDecl *VD = cast<VarDecl>(D);
4703       if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4704         Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4705 
4706     // Nested classes and class templates.
4707     } else if (isa<CXXRecordDecl>(D)) {
4708       CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4709     } else if (isa<ClassTemplateDecl>(D)) {
4710       CheckAbstractClassUsage(Info,
4711                              cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4712     }
4713   }
4714 }
4715 
4716 /// \brief Check class-level dllimport/dllexport attribute.
checkDLLAttribute(Sema & S,CXXRecordDecl * Class)4717 static void checkDLLAttribute(Sema &S, CXXRecordDecl *Class) {
4718   Attr *ClassAttr = getDLLAttr(Class);
4719 
4720   // MSVC inherits DLL attributes to partial class template specializations.
4721   if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
4722     if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
4723       if (Attr *TemplateAttr =
4724               getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
4725         auto *A = cast<InheritableAttr>(TemplateAttr->clone(S.getASTContext()));
4726         A->setInherited(true);
4727         ClassAttr = A;
4728       }
4729     }
4730   }
4731 
4732   if (!ClassAttr)
4733     return;
4734 
4735   if (!Class->isExternallyVisible()) {
4736     S.Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
4737         << Class << ClassAttr;
4738     return;
4739   }
4740 
4741   if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
4742       !ClassAttr->isInherited()) {
4743     // Diagnose dll attributes on members of class with dll attribute.
4744     for (Decl *Member : Class->decls()) {
4745       if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
4746         continue;
4747       InheritableAttr *MemberAttr = getDLLAttr(Member);
4748       if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
4749         continue;
4750 
4751       S.Diag(MemberAttr->getLocation(),
4752              diag::err_attribute_dll_member_of_dll_class)
4753           << MemberAttr << ClassAttr;
4754       S.Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
4755       Member->setInvalidDecl();
4756     }
4757   }
4758 
4759   if (Class->getDescribedClassTemplate())
4760     // Don't inherit dll attribute until the template is instantiated.
4761     return;
4762 
4763   // The class is either imported or exported.
4764   const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
4765   const bool ClassImported = !ClassExported;
4766 
4767   TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
4768 
4769   // Don't dllexport explicit class template instantiation declarations.
4770   if (ClassExported && TSK == TSK_ExplicitInstantiationDeclaration) {
4771     Class->dropAttr<DLLExportAttr>();
4772     return;
4773   }
4774 
4775   // Force declaration of implicit members so they can inherit the attribute.
4776   S.ForceDeclarationOfImplicitMembers(Class);
4777 
4778   // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
4779   // seem to be true in practice?
4780 
4781   for (Decl *Member : Class->decls()) {
4782     VarDecl *VD = dyn_cast<VarDecl>(Member);
4783     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
4784 
4785     // Only methods and static fields inherit the attributes.
4786     if (!VD && !MD)
4787       continue;
4788 
4789     if (MD) {
4790       // Don't process deleted methods.
4791       if (MD->isDeleted())
4792         continue;
4793 
4794       if (MD->isMoveAssignmentOperator() && ClassImported && MD->isInlined()) {
4795         // Current MSVC versions don't export the move assignment operators, so
4796         // don't attempt to import them if we have a definition.
4797         continue;
4798       }
4799 
4800       if (MD->isInlined() &&
4801           !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4802         // MinGW does not import or export inline methods.
4803         continue;
4804       }
4805     }
4806 
4807     if (!getDLLAttr(Member)) {
4808       auto *NewAttr =
4809           cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
4810       NewAttr->setInherited(true);
4811       Member->addAttr(NewAttr);
4812     }
4813 
4814     if (MD && ClassExported) {
4815       if (MD->isUserProvided()) {
4816         // Instantiate non-default class member functions ...
4817 
4818         // .. except for certain kinds of template specializations.
4819         if (TSK == TSK_ExplicitInstantiationDeclaration)
4820           continue;
4821         if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
4822           continue;
4823 
4824         S.MarkFunctionReferenced(Class->getLocation(), MD);
4825 
4826         // The function will be passed to the consumer when its definition is
4827         // encountered.
4828       } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
4829                  MD->isCopyAssignmentOperator() ||
4830                  MD->isMoveAssignmentOperator()) {
4831         // Synthesize and instantiate non-trivial implicit methods, explicitly
4832         // defaulted methods, and the copy and move assignment operators. The
4833         // latter are exported even if they are trivial, because the address of
4834         // an operator can be taken and should compare equal accross libraries.
4835         DiagnosticErrorTrap Trap(S.Diags);
4836         S.MarkFunctionReferenced(Class->getLocation(), MD);
4837         if (Trap.hasErrorOccurred()) {
4838           S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
4839               << Class->getName() << !S.getLangOpts().CPlusPlus11;
4840           break;
4841         }
4842 
4843         // There is no later point when we will see the definition of this
4844         // function, so pass it to the consumer now.
4845         S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
4846       }
4847     }
4848   }
4849 }
4850 
4851 /// \brief Perform semantic checks on a class definition that has been
4852 /// completing, introducing implicitly-declared members, checking for
4853 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)4854 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4855   if (!Record)
4856     return;
4857 
4858   if (Record->isAbstract() && !Record->isInvalidDecl()) {
4859     AbstractUsageInfo Info(*this, Record);
4860     CheckAbstractClassUsage(Info, Record);
4861   }
4862 
4863   // If this is not an aggregate type and has no user-declared constructor,
4864   // complain about any non-static data members of reference or const scalar
4865   // type, since they will never get initializers.
4866   if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4867       !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4868       !Record->isLambda()) {
4869     bool Complained = false;
4870     for (const auto *F : Record->fields()) {
4871       if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4872         continue;
4873 
4874       if (F->getType()->isReferenceType() ||
4875           (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4876         if (!Complained) {
4877           Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4878             << Record->getTagKind() << Record;
4879           Complained = true;
4880         }
4881 
4882         Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4883           << F->getType()->isReferenceType()
4884           << F->getDeclName();
4885       }
4886     }
4887   }
4888 
4889   if (Record->getIdentifier()) {
4890     // C++ [class.mem]p13:
4891     //   If T is the name of a class, then each of the following shall have a
4892     //   name different from T:
4893     //     - every member of every anonymous union that is a member of class T.
4894     //
4895     // C++ [class.mem]p14:
4896     //   In addition, if class T has a user-declared constructor (12.1), every
4897     //   non-static data member of class T shall have a name different from T.
4898     DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4899     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4900          ++I) {
4901       NamedDecl *D = *I;
4902       if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4903           isa<IndirectFieldDecl>(D)) {
4904         Diag(D->getLocation(), diag::err_member_name_of_class)
4905           << D->getDeclName();
4906         break;
4907       }
4908     }
4909   }
4910 
4911   // Warn if the class has virtual methods but non-virtual public destructor.
4912   if (Record->isPolymorphic() && !Record->isDependentType()) {
4913     CXXDestructorDecl *dtor = Record->getDestructor();
4914     if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
4915         !Record->hasAttr<FinalAttr>())
4916       Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4917            diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4918   }
4919 
4920   if (Record->isAbstract()) {
4921     if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4922       Diag(Record->getLocation(), diag::warn_abstract_final_class)
4923         << FA->isSpelledAsSealed();
4924       DiagnoseAbstractType(Record);
4925     }
4926   }
4927 
4928   bool HasMethodWithOverrideControl = false,
4929        HasOverridingMethodWithoutOverrideControl = false;
4930   if (!Record->isDependentType()) {
4931     for (auto *M : Record->methods()) {
4932       // See if a method overloads virtual methods in a base
4933       // class without overriding any.
4934       if (!M->isStatic())
4935         DiagnoseHiddenVirtualMethods(M);
4936       if (M->hasAttr<OverrideAttr>())
4937         HasMethodWithOverrideControl = true;
4938       else if (M->size_overridden_methods() > 0)
4939         HasOverridingMethodWithoutOverrideControl = true;
4940       // Check whether the explicitly-defaulted special members are valid.
4941       if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4942         CheckExplicitlyDefaultedSpecialMember(M);
4943 
4944       // For an explicitly defaulted or deleted special member, we defer
4945       // determining triviality until the class is complete. That time is now!
4946       if (!M->isImplicit() && !M->isUserProvided()) {
4947         CXXSpecialMember CSM = getSpecialMember(M);
4948         if (CSM != CXXInvalid) {
4949           M->setTrivial(SpecialMemberIsTrivial(M, CSM));
4950 
4951           // Inform the class that we've finished declaring this member.
4952           Record->finishedDefaultedOrDeletedMember(M);
4953         }
4954       }
4955     }
4956   }
4957 
4958   if (HasMethodWithOverrideControl &&
4959       HasOverridingMethodWithoutOverrideControl) {
4960     // At least one method has the 'override' control declared.
4961     // Diagnose all other overridden methods which do not have 'override' specified on them.
4962     for (auto *M : Record->methods())
4963       DiagnoseAbsenceOfOverrideControl(M);
4964   }
4965 
4966   // ms_struct is a request to use the same ABI rules as MSVC.  Check
4967   // whether this class uses any C++ features that are implemented
4968   // completely differently in MSVC, and if so, emit a diagnostic.
4969   // That diagnostic defaults to an error, but we allow projects to
4970   // map it down to a warning (or ignore it).  It's a fairly common
4971   // practice among users of the ms_struct pragma to mass-annotate
4972   // headers, sweeping up a bunch of types that the project doesn't
4973   // really rely on MSVC-compatible layout for.  We must therefore
4974   // support "ms_struct except for C++ stuff" as a secondary ABI.
4975   if (Record->isMsStruct(Context) &&
4976       (Record->isPolymorphic() || Record->getNumBases())) {
4977     Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
4978   }
4979 
4980   // Declare inheriting constructors. We do this eagerly here because:
4981   // - The standard requires an eager diagnostic for conflicting inheriting
4982   //   constructors from different classes.
4983   // - The lazy declaration of the other implicit constructors is so as to not
4984   //   waste space and performance on classes that are not meant to be
4985   //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4986   //   have inheriting constructors.
4987   DeclareInheritingConstructors(Record);
4988 
4989   checkDLLAttribute(*this, Record);
4990 }
4991 
4992 /// Look up the special member function that would be called by a special
4993 /// member function for a subobject of class type.
4994 ///
4995 /// \param Class The class type of the subobject.
4996 /// \param CSM The kind of special member function.
4997 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
4998 /// \param ConstRHS True if this is a copy operation with a const object
4999 ///        on its RHS, that is, if the argument to the outer special member
5000 ///        function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)5001 static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
5002     Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5003     unsigned FieldQuals, bool ConstRHS) {
5004   unsigned LHSQuals = 0;
5005   if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5006     LHSQuals = FieldQuals;
5007 
5008   unsigned RHSQuals = FieldQuals;
5009   if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5010     RHSQuals = 0;
5011   else if (ConstRHS)
5012     RHSQuals |= Qualifiers::Const;
5013 
5014   return S.LookupSpecialMember(Class, CSM,
5015                                RHSQuals & Qualifiers::Const,
5016                                RHSQuals & Qualifiers::Volatile,
5017                                false,
5018                                LHSQuals & Qualifiers::Const,
5019                                LHSQuals & Qualifiers::Volatile);
5020 }
5021 
5022 /// Is the special member function which would be selected to perform the
5023 /// specified operation on the specified class type a constexpr constructor?
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS)5024 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5025                                      Sema::CXXSpecialMember CSM,
5026                                      unsigned Quals, bool ConstRHS) {
5027   Sema::SpecialMemberOverloadResult *SMOR =
5028       lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
5029   if (!SMOR || !SMOR->getMethod())
5030     // A constructor we wouldn't select can't be "involved in initializing"
5031     // anything.
5032     return true;
5033   return SMOR->getMethod()->isConstexpr();
5034 }
5035 
5036 /// Determine whether the specified special member function would be constexpr
5037 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)5038 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5039                                               Sema::CXXSpecialMember CSM,
5040                                               bool ConstArg) {
5041   if (!S.getLangOpts().CPlusPlus11)
5042     return false;
5043 
5044   // C++11 [dcl.constexpr]p4:
5045   // In the definition of a constexpr constructor [...]
5046   bool Ctor = true;
5047   switch (CSM) {
5048   case Sema::CXXDefaultConstructor:
5049     // Since default constructor lookup is essentially trivial (and cannot
5050     // involve, for instance, template instantiation), we compute whether a
5051     // defaulted default constructor is constexpr directly within CXXRecordDecl.
5052     //
5053     // This is important for performance; we need to know whether the default
5054     // constructor is constexpr to determine whether the type is a literal type.
5055     return ClassDecl->defaultedDefaultConstructorIsConstexpr();
5056 
5057   case Sema::CXXCopyConstructor:
5058   case Sema::CXXMoveConstructor:
5059     // For copy or move constructors, we need to perform overload resolution.
5060     break;
5061 
5062   case Sema::CXXCopyAssignment:
5063   case Sema::CXXMoveAssignment:
5064     if (!S.getLangOpts().CPlusPlus14)
5065       return false;
5066     // In C++1y, we need to perform overload resolution.
5067     Ctor = false;
5068     break;
5069 
5070   case Sema::CXXDestructor:
5071   case Sema::CXXInvalid:
5072     return false;
5073   }
5074 
5075   //   -- if the class is a non-empty union, or for each non-empty anonymous
5076   //      union member of a non-union class, exactly one non-static data member
5077   //      shall be initialized; [DR1359]
5078   //
5079   // If we squint, this is guaranteed, since exactly one non-static data member
5080   // will be initialized (if the constructor isn't deleted), we just don't know
5081   // which one.
5082   if (Ctor && ClassDecl->isUnion())
5083     return true;
5084 
5085   //   -- the class shall not have any virtual base classes;
5086   if (Ctor && ClassDecl->getNumVBases())
5087     return false;
5088 
5089   // C++1y [class.copy]p26:
5090   //   -- [the class] is a literal type, and
5091   if (!Ctor && !ClassDecl->isLiteral())
5092     return false;
5093 
5094   //   -- every constructor involved in initializing [...] base class
5095   //      sub-objects shall be a constexpr constructor;
5096   //   -- the assignment operator selected to copy/move each direct base
5097   //      class is a constexpr function, and
5098   for (const auto &B : ClassDecl->bases()) {
5099     const RecordType *BaseType = B.getType()->getAs<RecordType>();
5100     if (!BaseType) continue;
5101 
5102     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5103     if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
5104       return false;
5105   }
5106 
5107   //   -- every constructor involved in initializing non-static data members
5108   //      [...] shall be a constexpr constructor;
5109   //   -- every non-static data member and base class sub-object shall be
5110   //      initialized
5111   //   -- for each non-static data member of X that is of class type (or array
5112   //      thereof), the assignment operator selected to copy/move that member is
5113   //      a constexpr function
5114   for (const auto *F : ClassDecl->fields()) {
5115     if (F->isInvalidDecl())
5116       continue;
5117     QualType BaseType = S.Context.getBaseElementType(F->getType());
5118     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
5119       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5120       if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
5121                                     BaseType.getCVRQualifiers(),
5122                                     ConstArg && !F->isMutable()))
5123         return false;
5124     }
5125   }
5126 
5127   // All OK, it's constexpr!
5128   return true;
5129 }
5130 
5131 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD)5132 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
5133   switch (S.getSpecialMember(MD)) {
5134   case Sema::CXXDefaultConstructor:
5135     return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
5136   case Sema::CXXCopyConstructor:
5137     return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
5138   case Sema::CXXCopyAssignment:
5139     return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
5140   case Sema::CXXMoveConstructor:
5141     return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
5142   case Sema::CXXMoveAssignment:
5143     return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
5144   case Sema::CXXDestructor:
5145     return S.ComputeDefaultedDtorExceptionSpec(MD);
5146   case Sema::CXXInvalid:
5147     break;
5148   }
5149   assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
5150          "only special members have implicit exception specs");
5151   return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
5152 }
5153 
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)5154 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
5155                                                             CXXMethodDecl *MD) {
5156   FunctionProtoType::ExtProtoInfo EPI;
5157 
5158   // Build an exception specification pointing back at this member.
5159   EPI.ExceptionSpec.Type = EST_Unevaluated;
5160   EPI.ExceptionSpec.SourceDecl = MD;
5161 
5162   // Set the calling convention to the default for C++ instance methods.
5163   EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
5164       S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5165                                             /*IsCXXMethod=*/true));
5166   return EPI;
5167 }
5168 
EvaluateImplicitExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)5169 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
5170   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
5171   if (FPT->getExceptionSpecType() != EST_Unevaluated)
5172     return;
5173 
5174   // Evaluate the exception specification.
5175   auto ESI = computeImplicitExceptionSpec(*this, Loc, MD).getExceptionSpec();
5176 
5177   // Update the type of the special member to use it.
5178   UpdateExceptionSpec(MD, ESI);
5179 
5180   // A user-provided destructor can be defined outside the class. When that
5181   // happens, be sure to update the exception specification on both
5182   // declarations.
5183   const FunctionProtoType *CanonicalFPT =
5184     MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
5185   if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
5186     UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
5187 }
5188 
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD)5189 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
5190   CXXRecordDecl *RD = MD->getParent();
5191   CXXSpecialMember CSM = getSpecialMember(MD);
5192 
5193   assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
5194          "not an explicitly-defaulted special member");
5195 
5196   // Whether this was the first-declared instance of the constructor.
5197   // This affects whether we implicitly add an exception spec and constexpr.
5198   bool First = MD == MD->getCanonicalDecl();
5199 
5200   bool HadError = false;
5201 
5202   // C++11 [dcl.fct.def.default]p1:
5203   //   A function that is explicitly defaulted shall
5204   //     -- be a special member function (checked elsewhere),
5205   //     -- have the same type (except for ref-qualifiers, and except that a
5206   //        copy operation can take a non-const reference) as an implicit
5207   //        declaration, and
5208   //     -- not have default arguments.
5209   unsigned ExpectedParams = 1;
5210   if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
5211     ExpectedParams = 0;
5212   if (MD->getNumParams() != ExpectedParams) {
5213     // This also checks for default arguments: a copy or move constructor with a
5214     // default argument is classified as a default constructor, and assignment
5215     // operations and destructors can't have default arguments.
5216     Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
5217       << CSM << MD->getSourceRange();
5218     HadError = true;
5219   } else if (MD->isVariadic()) {
5220     Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
5221       << CSM << MD->getSourceRange();
5222     HadError = true;
5223   }
5224 
5225   const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
5226 
5227   bool CanHaveConstParam = false;
5228   if (CSM == CXXCopyConstructor)
5229     CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
5230   else if (CSM == CXXCopyAssignment)
5231     CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
5232 
5233   QualType ReturnType = Context.VoidTy;
5234   if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
5235     // Check for return type matching.
5236     ReturnType = Type->getReturnType();
5237     QualType ExpectedReturnType =
5238         Context.getLValueReferenceType(Context.getTypeDeclType(RD));
5239     if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
5240       Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
5241         << (CSM == CXXMoveAssignment) << ExpectedReturnType;
5242       HadError = true;
5243     }
5244 
5245     // A defaulted special member cannot have cv-qualifiers.
5246     if (Type->getTypeQuals()) {
5247       Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
5248         << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
5249       HadError = true;
5250     }
5251   }
5252 
5253   // Check for parameter type matching.
5254   QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
5255   bool HasConstParam = false;
5256   if (ExpectedParams && ArgType->isReferenceType()) {
5257     // Argument must be reference to possibly-const T.
5258     QualType ReferentType = ArgType->getPointeeType();
5259     HasConstParam = ReferentType.isConstQualified();
5260 
5261     if (ReferentType.isVolatileQualified()) {
5262       Diag(MD->getLocation(),
5263            diag::err_defaulted_special_member_volatile_param) << CSM;
5264       HadError = true;
5265     }
5266 
5267     if (HasConstParam && !CanHaveConstParam) {
5268       if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
5269         Diag(MD->getLocation(),
5270              diag::err_defaulted_special_member_copy_const_param)
5271           << (CSM == CXXCopyAssignment);
5272         // FIXME: Explain why this special member can't be const.
5273       } else {
5274         Diag(MD->getLocation(),
5275              diag::err_defaulted_special_member_move_const_param)
5276           << (CSM == CXXMoveAssignment);
5277       }
5278       HadError = true;
5279     }
5280   } else if (ExpectedParams) {
5281     // A copy assignment operator can take its argument by value, but a
5282     // defaulted one cannot.
5283     assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
5284     Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
5285     HadError = true;
5286   }
5287 
5288   // C++11 [dcl.fct.def.default]p2:
5289   //   An explicitly-defaulted function may be declared constexpr only if it
5290   //   would have been implicitly declared as constexpr,
5291   // Do not apply this rule to members of class templates, since core issue 1358
5292   // makes such functions always instantiate to constexpr functions. For
5293   // functions which cannot be constexpr (for non-constructors in C++11 and for
5294   // destructors in C++1y), this is checked elsewhere.
5295   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
5296                                                      HasConstParam);
5297   if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
5298                                  : isa<CXXConstructorDecl>(MD)) &&
5299       MD->isConstexpr() && !Constexpr &&
5300       MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
5301     Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
5302     // FIXME: Explain why the special member can't be constexpr.
5303     HadError = true;
5304   }
5305 
5306   //   and may have an explicit exception-specification only if it is compatible
5307   //   with the exception-specification on the implicit declaration.
5308   if (Type->hasExceptionSpec()) {
5309     // Delay the check if this is the first declaration of the special member,
5310     // since we may not have parsed some necessary in-class initializers yet.
5311     if (First) {
5312       // If the exception specification needs to be instantiated, do so now,
5313       // before we clobber it with an EST_Unevaluated specification below.
5314       if (Type->getExceptionSpecType() == EST_Uninstantiated) {
5315         InstantiateExceptionSpec(MD->getLocStart(), MD);
5316         Type = MD->getType()->getAs<FunctionProtoType>();
5317       }
5318       DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
5319     } else
5320       CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
5321   }
5322 
5323   //   If a function is explicitly defaulted on its first declaration,
5324   if (First) {
5325     //  -- it is implicitly considered to be constexpr if the implicit
5326     //     definition would be,
5327     MD->setConstexpr(Constexpr);
5328 
5329     //  -- it is implicitly considered to have the same exception-specification
5330     //     as if it had been implicitly declared,
5331     FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
5332     EPI.ExceptionSpec.Type = EST_Unevaluated;
5333     EPI.ExceptionSpec.SourceDecl = MD;
5334     MD->setType(Context.getFunctionType(ReturnType,
5335                                         llvm::makeArrayRef(&ArgType,
5336                                                            ExpectedParams),
5337                                         EPI));
5338   }
5339 
5340   if (ShouldDeleteSpecialMember(MD, CSM)) {
5341     if (First) {
5342       SetDeclDeleted(MD, MD->getLocation());
5343     } else {
5344       // C++11 [dcl.fct.def.default]p4:
5345       //   [For a] user-provided explicitly-defaulted function [...] if such a
5346       //   function is implicitly defined as deleted, the program is ill-formed.
5347       Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
5348       ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
5349       HadError = true;
5350     }
5351   }
5352 
5353   if (HadError)
5354     MD->setInvalidDecl();
5355 }
5356 
5357 /// Check whether the exception specification provided for an
5358 /// explicitly-defaulted special member matches the exception specification
5359 /// that would have been generated for an implicit special member, per
5360 /// C++11 [dcl.fct.def.default]p2.
CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl * MD,const FunctionProtoType * SpecifiedType)5361 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
5362     CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
5363   // If the exception specification was explicitly specified but hadn't been
5364   // parsed when the method was defaulted, grab it now.
5365   if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
5366     SpecifiedType =
5367         MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
5368 
5369   // Compute the implicit exception specification.
5370   CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5371                                                        /*IsCXXMethod=*/true);
5372   FunctionProtoType::ExtProtoInfo EPI(CC);
5373   EPI.ExceptionSpec = computeImplicitExceptionSpec(*this, MD->getLocation(), MD)
5374                           .getExceptionSpec();
5375   const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
5376     Context.getFunctionType(Context.VoidTy, None, EPI));
5377 
5378   // Ensure that it matches.
5379   CheckEquivalentExceptionSpec(
5380     PDiag(diag::err_incorrect_defaulted_exception_spec)
5381       << getSpecialMember(MD), PDiag(),
5382     ImplicitType, SourceLocation(),
5383     SpecifiedType, MD->getLocation());
5384 }
5385 
CheckDelayedMemberExceptionSpecs()5386 void Sema::CheckDelayedMemberExceptionSpecs() {
5387   decltype(DelayedExceptionSpecChecks) Checks;
5388   decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
5389 
5390   std::swap(Checks, DelayedExceptionSpecChecks);
5391   std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
5392 
5393   // Perform any deferred checking of exception specifications for virtual
5394   // destructors.
5395   for (auto &Check : Checks)
5396     CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
5397 
5398   // Check that any explicitly-defaulted methods have exception specifications
5399   // compatible with their implicit exception specifications.
5400   for (auto &Spec : Specs)
5401     CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
5402 }
5403 
5404 namespace {
5405 struct SpecialMemberDeletionInfo {
5406   Sema &S;
5407   CXXMethodDecl *MD;
5408   Sema::CXXSpecialMember CSM;
5409   bool Diagnose;
5410 
5411   // Properties of the special member, computed for convenience.
5412   bool IsConstructor, IsAssignment, IsMove, ConstArg;
5413   SourceLocation Loc;
5414 
5415   bool AllFieldsAreConst;
5416 
SpecialMemberDeletionInfo__anonb9d573a20711::SpecialMemberDeletionInfo5417   SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
5418                             Sema::CXXSpecialMember CSM, bool Diagnose)
5419     : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
5420       IsConstructor(false), IsAssignment(false), IsMove(false),
5421       ConstArg(false), Loc(MD->getLocation()),
5422       AllFieldsAreConst(true) {
5423     switch (CSM) {
5424       case Sema::CXXDefaultConstructor:
5425       case Sema::CXXCopyConstructor:
5426         IsConstructor = true;
5427         break;
5428       case Sema::CXXMoveConstructor:
5429         IsConstructor = true;
5430         IsMove = true;
5431         break;
5432       case Sema::CXXCopyAssignment:
5433         IsAssignment = true;
5434         break;
5435       case Sema::CXXMoveAssignment:
5436         IsAssignment = true;
5437         IsMove = true;
5438         break;
5439       case Sema::CXXDestructor:
5440         break;
5441       case Sema::CXXInvalid:
5442         llvm_unreachable("invalid special member kind");
5443     }
5444 
5445     if (MD->getNumParams()) {
5446       if (const ReferenceType *RT =
5447               MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
5448         ConstArg = RT->getPointeeType().isConstQualified();
5449     }
5450   }
5451 
inUnion__anonb9d573a20711::SpecialMemberDeletionInfo5452   bool inUnion() const { return MD->getParent()->isUnion(); }
5453 
5454   /// Look up the corresponding special member in the given class.
lookupIn__anonb9d573a20711::SpecialMemberDeletionInfo5455   Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
5456                                               unsigned Quals, bool IsMutable) {
5457     return lookupCallFromSpecialMember(S, Class, CSM, Quals,
5458                                        ConstArg && !IsMutable);
5459   }
5460 
5461   typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
5462 
5463   bool shouldDeleteForBase(CXXBaseSpecifier *Base);
5464   bool shouldDeleteForField(FieldDecl *FD);
5465   bool shouldDeleteForAllConstMembers();
5466 
5467   bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
5468                                      unsigned Quals);
5469   bool shouldDeleteForSubobjectCall(Subobject Subobj,
5470                                     Sema::SpecialMemberOverloadResult *SMOR,
5471                                     bool IsDtorCallInCtor);
5472 
5473   bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
5474 };
5475 }
5476 
5477 /// Is the given special member inaccessible when used on the given
5478 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)5479 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
5480                                              CXXMethodDecl *target) {
5481   /// If we're operating on a base class, the object type is the
5482   /// type of this special member.
5483   QualType objectTy;
5484   AccessSpecifier access = target->getAccess();
5485   if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
5486     objectTy = S.Context.getTypeDeclType(MD->getParent());
5487     access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
5488 
5489   // If we're operating on a field, the object type is the type of the field.
5490   } else {
5491     objectTy = S.Context.getTypeDeclType(target->getParent());
5492   }
5493 
5494   return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
5495 }
5496 
5497 /// Check whether we should delete a special member due to the implicit
5498 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)5499 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
5500     Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
5501     bool IsDtorCallInCtor) {
5502   CXXMethodDecl *Decl = SMOR->getMethod();
5503   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5504 
5505   int DiagKind = -1;
5506 
5507   if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
5508     DiagKind = !Decl ? 0 : 1;
5509   else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5510     DiagKind = 2;
5511   else if (!isAccessible(Subobj, Decl))
5512     DiagKind = 3;
5513   else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
5514            !Decl->isTrivial()) {
5515     // A member of a union must have a trivial corresponding special member.
5516     // As a weird special case, a destructor call from a union's constructor
5517     // must be accessible and non-deleted, but need not be trivial. Such a
5518     // destructor is never actually called, but is semantically checked as
5519     // if it were.
5520     DiagKind = 4;
5521   }
5522 
5523   if (DiagKind == -1)
5524     return false;
5525 
5526   if (Diagnose) {
5527     if (Field) {
5528       S.Diag(Field->getLocation(),
5529              diag::note_deleted_special_member_class_subobject)
5530         << CSM << MD->getParent() << /*IsField*/true
5531         << Field << DiagKind << IsDtorCallInCtor;
5532     } else {
5533       CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5534       S.Diag(Base->getLocStart(),
5535              diag::note_deleted_special_member_class_subobject)
5536         << CSM << MD->getParent() << /*IsField*/false
5537         << Base->getType() << DiagKind << IsDtorCallInCtor;
5538     }
5539 
5540     if (DiagKind == 1)
5541       S.NoteDeletedFunction(Decl);
5542     // FIXME: Explain inaccessibility if DiagKind == 3.
5543   }
5544 
5545   return true;
5546 }
5547 
5548 /// Check whether we should delete a special member function due to having a
5549 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)5550 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5551     CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5552   FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5553   bool IsMutable = Field && Field->isMutable();
5554 
5555   // C++11 [class.ctor]p5:
5556   // -- any direct or virtual base class, or non-static data member with no
5557   //    brace-or-equal-initializer, has class type M (or array thereof) and
5558   //    either M has no default constructor or overload resolution as applied
5559   //    to M's default constructor results in an ambiguity or in a function
5560   //    that is deleted or inaccessible
5561   // C++11 [class.copy]p11, C++11 [class.copy]p23:
5562   // -- a direct or virtual base class B that cannot be copied/moved because
5563   //    overload resolution, as applied to B's corresponding special member,
5564   //    results in an ambiguity or a function that is deleted or inaccessible
5565   //    from the defaulted special member
5566   // C++11 [class.dtor]p5:
5567   // -- any direct or virtual base class [...] has a type with a destructor
5568   //    that is deleted or inaccessible
5569   if (!(CSM == Sema::CXXDefaultConstructor &&
5570         Field && Field->hasInClassInitializer()) &&
5571       shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
5572                                    false))
5573     return true;
5574 
5575   // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5576   // -- any direct or virtual base class or non-static data member has a
5577   //    type with a destructor that is deleted or inaccessible
5578   if (IsConstructor) {
5579     Sema::SpecialMemberOverloadResult *SMOR =
5580         S.LookupSpecialMember(Class, Sema::CXXDestructor,
5581                               false, false, false, false, false);
5582     if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5583       return true;
5584   }
5585 
5586   return false;
5587 }
5588 
5589 /// Check whether we should delete a special member function due to the class
5590 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)5591 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5592   CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5593   return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5594 }
5595 
5596 /// Check whether we should delete a special member function due to the class
5597 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)5598 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5599   QualType FieldType = S.Context.getBaseElementType(FD->getType());
5600   CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5601 
5602   if (CSM == Sema::CXXDefaultConstructor) {
5603     // For a default constructor, all references must be initialized in-class
5604     // and, if a union, it must have a non-const member.
5605     if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5606       if (Diagnose)
5607         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5608           << MD->getParent() << FD << FieldType << /*Reference*/0;
5609       return true;
5610     }
5611     // C++11 [class.ctor]p5: any non-variant non-static data member of
5612     // const-qualified type (or array thereof) with no
5613     // brace-or-equal-initializer does not have a user-provided default
5614     // constructor.
5615     if (!inUnion() && FieldType.isConstQualified() &&
5616         !FD->hasInClassInitializer() &&
5617         (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5618       if (Diagnose)
5619         S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5620           << MD->getParent() << FD << FD->getType() << /*Const*/1;
5621       return true;
5622     }
5623 
5624     if (inUnion() && !FieldType.isConstQualified())
5625       AllFieldsAreConst = false;
5626   } else if (CSM == Sema::CXXCopyConstructor) {
5627     // For a copy constructor, data members must not be of rvalue reference
5628     // type.
5629     if (FieldType->isRValueReferenceType()) {
5630       if (Diagnose)
5631         S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5632           << MD->getParent() << FD << FieldType;
5633       return true;
5634     }
5635   } else if (IsAssignment) {
5636     // For an assignment operator, data members must not be of reference type.
5637     if (FieldType->isReferenceType()) {
5638       if (Diagnose)
5639         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5640           << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5641       return true;
5642     }
5643     if (!FieldRecord && FieldType.isConstQualified()) {
5644       // C++11 [class.copy]p23:
5645       // -- a non-static data member of const non-class type (or array thereof)
5646       if (Diagnose)
5647         S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5648           << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5649       return true;
5650     }
5651   }
5652 
5653   if (FieldRecord) {
5654     // Some additional restrictions exist on the variant members.
5655     if (!inUnion() && FieldRecord->isUnion() &&
5656         FieldRecord->isAnonymousStructOrUnion()) {
5657       bool AllVariantFieldsAreConst = true;
5658 
5659       // FIXME: Handle anonymous unions declared within anonymous unions.
5660       for (auto *UI : FieldRecord->fields()) {
5661         QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5662 
5663         if (!UnionFieldType.isConstQualified())
5664           AllVariantFieldsAreConst = false;
5665 
5666         CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5667         if (UnionFieldRecord &&
5668             shouldDeleteForClassSubobject(UnionFieldRecord, UI,
5669                                           UnionFieldType.getCVRQualifiers()))
5670           return true;
5671       }
5672 
5673       // At least one member in each anonymous union must be non-const
5674       if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5675           !FieldRecord->field_empty()) {
5676         if (Diagnose)
5677           S.Diag(FieldRecord->getLocation(),
5678                  diag::note_deleted_default_ctor_all_const)
5679             << MD->getParent() << /*anonymous union*/1;
5680         return true;
5681       }
5682 
5683       // Don't check the implicit member of the anonymous union type.
5684       // This is technically non-conformant, but sanity demands it.
5685       return false;
5686     }
5687 
5688     if (shouldDeleteForClassSubobject(FieldRecord, FD,
5689                                       FieldType.getCVRQualifiers()))
5690       return true;
5691   }
5692 
5693   return false;
5694 }
5695 
5696 /// C++11 [class.ctor] p5:
5697 ///   A defaulted default constructor for a class X is defined as deleted if
5698 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()5699 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5700   // This is a silly definition, because it gives an empty union a deleted
5701   // default constructor. Don't do that.
5702   if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5703       !MD->getParent()->field_empty()) {
5704     if (Diagnose)
5705       S.Diag(MD->getParent()->getLocation(),
5706              diag::note_deleted_default_ctor_all_const)
5707         << MD->getParent() << /*not anonymous union*/0;
5708     return true;
5709   }
5710   return false;
5711 }
5712 
5713 /// Determine whether a defaulted special member function should be defined as
5714 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5715 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5716 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5717                                      bool Diagnose) {
5718   if (MD->isInvalidDecl())
5719     return false;
5720   CXXRecordDecl *RD = MD->getParent();
5721   assert(!RD->isDependentType() && "do deletion after instantiation");
5722   if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5723     return false;
5724 
5725   // C++11 [expr.lambda.prim]p19:
5726   //   The closure type associated with a lambda-expression has a
5727   //   deleted (8.4.3) default constructor and a deleted copy
5728   //   assignment operator.
5729   if (RD->isLambda() &&
5730       (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5731     if (Diagnose)
5732       Diag(RD->getLocation(), diag::note_lambda_decl);
5733     return true;
5734   }
5735 
5736   // For an anonymous struct or union, the copy and assignment special members
5737   // will never be used, so skip the check. For an anonymous union declared at
5738   // namespace scope, the constructor and destructor are used.
5739   if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5740       RD->isAnonymousStructOrUnion())
5741     return false;
5742 
5743   // C++11 [class.copy]p7, p18:
5744   //   If the class definition declares a move constructor or move assignment
5745   //   operator, an implicitly declared copy constructor or copy assignment
5746   //   operator is defined as deleted.
5747   if (MD->isImplicit() &&
5748       (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5749     CXXMethodDecl *UserDeclaredMove = nullptr;
5750 
5751     // In Microsoft mode, a user-declared move only causes the deletion of the
5752     // corresponding copy operation, not both copy operations.
5753     if (RD->hasUserDeclaredMoveConstructor() &&
5754         (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
5755       if (!Diagnose) return true;
5756 
5757       // Find any user-declared move constructor.
5758       for (auto *I : RD->ctors()) {
5759         if (I->isMoveConstructor()) {
5760           UserDeclaredMove = I;
5761           break;
5762         }
5763       }
5764       assert(UserDeclaredMove);
5765     } else if (RD->hasUserDeclaredMoveAssignment() &&
5766                (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
5767       if (!Diagnose) return true;
5768 
5769       // Find any user-declared move assignment operator.
5770       for (auto *I : RD->methods()) {
5771         if (I->isMoveAssignmentOperator()) {
5772           UserDeclaredMove = I;
5773           break;
5774         }
5775       }
5776       assert(UserDeclaredMove);
5777     }
5778 
5779     if (UserDeclaredMove) {
5780       Diag(UserDeclaredMove->getLocation(),
5781            diag::note_deleted_copy_user_declared_move)
5782         << (CSM == CXXCopyAssignment) << RD
5783         << UserDeclaredMove->isMoveAssignmentOperator();
5784       return true;
5785     }
5786   }
5787 
5788   // Do access control from the special member function
5789   ContextRAII MethodContext(*this, MD);
5790 
5791   // C++11 [class.dtor]p5:
5792   // -- for a virtual destructor, lookup of the non-array deallocation function
5793   //    results in an ambiguity or in a function that is deleted or inaccessible
5794   if (CSM == CXXDestructor && MD->isVirtual()) {
5795     FunctionDecl *OperatorDelete = nullptr;
5796     DeclarationName Name =
5797       Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5798     if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5799                                  OperatorDelete, false)) {
5800       if (Diagnose)
5801         Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5802       return true;
5803     }
5804   }
5805 
5806   SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5807 
5808   for (auto &BI : RD->bases())
5809     if (!BI.isVirtual() &&
5810         SMI.shouldDeleteForBase(&BI))
5811       return true;
5812 
5813   // Per DR1611, do not consider virtual bases of constructors of abstract
5814   // classes, since we are not going to construct them.
5815   if (!RD->isAbstract() || !SMI.IsConstructor) {
5816     for (auto &BI : RD->vbases())
5817       if (SMI.shouldDeleteForBase(&BI))
5818         return true;
5819   }
5820 
5821   for (auto *FI : RD->fields())
5822     if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5823         SMI.shouldDeleteForField(FI))
5824       return true;
5825 
5826   if (SMI.shouldDeleteForAllConstMembers())
5827     return true;
5828 
5829   if (getLangOpts().CUDA) {
5830     // We should delete the special member in CUDA mode if target inference
5831     // failed.
5832     return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
5833                                                    Diagnose);
5834   }
5835 
5836   return false;
5837 }
5838 
5839 /// Perform lookup for a special member of the specified kind, and determine
5840 /// whether it is trivial. If the triviality can be determined without the
5841 /// lookup, skip it. This is intended for use when determining whether a
5842 /// special member of a containing object is trivial, and thus does not ever
5843 /// perform overload resolution for default constructors.
5844 ///
5845 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5846 /// member that was most likely to be intended to be trivial, if any.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXMethodDecl ** Selected)5847 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5848                                      Sema::CXXSpecialMember CSM, unsigned Quals,
5849                                      bool ConstRHS, CXXMethodDecl **Selected) {
5850   if (Selected)
5851     *Selected = nullptr;
5852 
5853   switch (CSM) {
5854   case Sema::CXXInvalid:
5855     llvm_unreachable("not a special member");
5856 
5857   case Sema::CXXDefaultConstructor:
5858     // C++11 [class.ctor]p5:
5859     //   A default constructor is trivial if:
5860     //    - all the [direct subobjects] have trivial default constructors
5861     //
5862     // Note, no overload resolution is performed in this case.
5863     if (RD->hasTrivialDefaultConstructor())
5864       return true;
5865 
5866     if (Selected) {
5867       // If there's a default constructor which could have been trivial, dig it
5868       // out. Otherwise, if there's any user-provided default constructor, point
5869       // to that as an example of why there's not a trivial one.
5870       CXXConstructorDecl *DefCtor = nullptr;
5871       if (RD->needsImplicitDefaultConstructor())
5872         S.DeclareImplicitDefaultConstructor(RD);
5873       for (auto *CI : RD->ctors()) {
5874         if (!CI->isDefaultConstructor())
5875           continue;
5876         DefCtor = CI;
5877         if (!DefCtor->isUserProvided())
5878           break;
5879       }
5880 
5881       *Selected = DefCtor;
5882     }
5883 
5884     return false;
5885 
5886   case Sema::CXXDestructor:
5887     // C++11 [class.dtor]p5:
5888     //   A destructor is trivial if:
5889     //    - all the direct [subobjects] have trivial destructors
5890     if (RD->hasTrivialDestructor())
5891       return true;
5892 
5893     if (Selected) {
5894       if (RD->needsImplicitDestructor())
5895         S.DeclareImplicitDestructor(RD);
5896       *Selected = RD->getDestructor();
5897     }
5898 
5899     return false;
5900 
5901   case Sema::CXXCopyConstructor:
5902     // C++11 [class.copy]p12:
5903     //   A copy constructor is trivial if:
5904     //    - the constructor selected to copy each direct [subobject] is trivial
5905     if (RD->hasTrivialCopyConstructor()) {
5906       if (Quals == Qualifiers::Const)
5907         // We must either select the trivial copy constructor or reach an
5908         // ambiguity; no need to actually perform overload resolution.
5909         return true;
5910     } else if (!Selected) {
5911       return false;
5912     }
5913     // In C++98, we are not supposed to perform overload resolution here, but we
5914     // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5915     // cases like B as having a non-trivial copy constructor:
5916     //   struct A { template<typename T> A(T&); };
5917     //   struct B { mutable A a; };
5918     goto NeedOverloadResolution;
5919 
5920   case Sema::CXXCopyAssignment:
5921     // C++11 [class.copy]p25:
5922     //   A copy assignment operator is trivial if:
5923     //    - the assignment operator selected to copy each direct [subobject] is
5924     //      trivial
5925     if (RD->hasTrivialCopyAssignment()) {
5926       if (Quals == Qualifiers::Const)
5927         return true;
5928     } else if (!Selected) {
5929       return false;
5930     }
5931     // In C++98, we are not supposed to perform overload resolution here, but we
5932     // treat that as a language defect.
5933     goto NeedOverloadResolution;
5934 
5935   case Sema::CXXMoveConstructor:
5936   case Sema::CXXMoveAssignment:
5937   NeedOverloadResolution:
5938     Sema::SpecialMemberOverloadResult *SMOR =
5939         lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
5940 
5941     // The standard doesn't describe how to behave if the lookup is ambiguous.
5942     // We treat it as not making the member non-trivial, just like the standard
5943     // mandates for the default constructor. This should rarely matter, because
5944     // the member will also be deleted.
5945     if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5946       return true;
5947 
5948     if (!SMOR->getMethod()) {
5949       assert(SMOR->getKind() ==
5950              Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5951       return false;
5952     }
5953 
5954     // We deliberately don't check if we found a deleted special member. We're
5955     // not supposed to!
5956     if (Selected)
5957       *Selected = SMOR->getMethod();
5958     return SMOR->getMethod()->isTrivial();
5959   }
5960 
5961   llvm_unreachable("unknown special method kind");
5962 }
5963 
findUserDeclaredCtor(CXXRecordDecl * RD)5964 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5965   for (auto *CI : RD->ctors())
5966     if (!CI->isImplicit())
5967       return CI;
5968 
5969   // Look for constructor templates.
5970   typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5971   for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5972     if (CXXConstructorDecl *CD =
5973           dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5974       return CD;
5975   }
5976 
5977   return nullptr;
5978 }
5979 
5980 /// The kind of subobject we are checking for triviality. The values of this
5981 /// enumeration are used in diagnostics.
5982 enum TrivialSubobjectKind {
5983   /// The subobject is a base class.
5984   TSK_BaseClass,
5985   /// The subobject is a non-static data member.
5986   TSK_Field,
5987   /// The object is actually the complete object.
5988   TSK_CompleteObject
5989 };
5990 
5991 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,bool Diagnose)5992 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5993                                       QualType SubType, bool ConstRHS,
5994                                       Sema::CXXSpecialMember CSM,
5995                                       TrivialSubobjectKind Kind,
5996                                       bool Diagnose) {
5997   CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5998   if (!SubRD)
5999     return true;
6000 
6001   CXXMethodDecl *Selected;
6002   if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
6003                                ConstRHS, Diagnose ? &Selected : nullptr))
6004     return true;
6005 
6006   if (Diagnose) {
6007     if (ConstRHS)
6008       SubType.addConst();
6009 
6010     if (!Selected && CSM == Sema::CXXDefaultConstructor) {
6011       S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
6012         << Kind << SubType.getUnqualifiedType();
6013       if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
6014         S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
6015     } else if (!Selected)
6016       S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
6017         << Kind << SubType.getUnqualifiedType() << CSM << SubType;
6018     else if (Selected->isUserProvided()) {
6019       if (Kind == TSK_CompleteObject)
6020         S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
6021           << Kind << SubType.getUnqualifiedType() << CSM;
6022       else {
6023         S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
6024           << Kind << SubType.getUnqualifiedType() << CSM;
6025         S.Diag(Selected->getLocation(), diag::note_declared_at);
6026       }
6027     } else {
6028       if (Kind != TSK_CompleteObject)
6029         S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
6030           << Kind << SubType.getUnqualifiedType() << CSM;
6031 
6032       // Explain why the defaulted or deleted special member isn't trivial.
6033       S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
6034     }
6035   }
6036 
6037   return false;
6038 }
6039 
6040 /// Check whether the members of a class type allow a special member to be
6041 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,bool Diagnose)6042 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
6043                                      Sema::CXXSpecialMember CSM,
6044                                      bool ConstArg, bool Diagnose) {
6045   for (const auto *FI : RD->fields()) {
6046     if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
6047       continue;
6048 
6049     QualType FieldType = S.Context.getBaseElementType(FI->getType());
6050 
6051     // Pretend anonymous struct or union members are members of this class.
6052     if (FI->isAnonymousStructOrUnion()) {
6053       if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
6054                                     CSM, ConstArg, Diagnose))
6055         return false;
6056       continue;
6057     }
6058 
6059     // C++11 [class.ctor]p5:
6060     //   A default constructor is trivial if [...]
6061     //    -- no non-static data member of its class has a
6062     //       brace-or-equal-initializer
6063     if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
6064       if (Diagnose)
6065         S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
6066       return false;
6067     }
6068 
6069     // Objective C ARC 4.3.5:
6070     //   [...] nontrivally ownership-qualified types are [...] not trivially
6071     //   default constructible, copy constructible, move constructible, copy
6072     //   assignable, move assignable, or destructible [...]
6073     if (S.getLangOpts().ObjCAutoRefCount &&
6074         FieldType.hasNonTrivialObjCLifetime()) {
6075       if (Diagnose)
6076         S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
6077           << RD << FieldType.getObjCLifetime();
6078       return false;
6079     }
6080 
6081     bool ConstRHS = ConstArg && !FI->isMutable();
6082     if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
6083                                    CSM, TSK_Field, Diagnose))
6084       return false;
6085   }
6086 
6087   return true;
6088 }
6089 
6090 /// Diagnose why the specified class does not have a trivial special member of
6091 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)6092 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
6093   QualType Ty = Context.getRecordType(RD);
6094 
6095   bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
6096   checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
6097                             TSK_CompleteObject, /*Diagnose*/true);
6098 }
6099 
6100 /// Determine whether a defaulted or deleted special member function is trivial,
6101 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
6102 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)6103 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
6104                                   bool Diagnose) {
6105   assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
6106 
6107   CXXRecordDecl *RD = MD->getParent();
6108 
6109   bool ConstArg = false;
6110 
6111   // C++11 [class.copy]p12, p25: [DR1593]
6112   //   A [special member] is trivial if [...] its parameter-type-list is
6113   //   equivalent to the parameter-type-list of an implicit declaration [...]
6114   switch (CSM) {
6115   case CXXDefaultConstructor:
6116   case CXXDestructor:
6117     // Trivial default constructors and destructors cannot have parameters.
6118     break;
6119 
6120   case CXXCopyConstructor:
6121   case CXXCopyAssignment: {
6122     // Trivial copy operations always have const, non-volatile parameter types.
6123     ConstArg = true;
6124     const ParmVarDecl *Param0 = MD->getParamDecl(0);
6125     const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
6126     if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
6127       if (Diagnose)
6128         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6129           << Param0->getSourceRange() << Param0->getType()
6130           << Context.getLValueReferenceType(
6131                Context.getRecordType(RD).withConst());
6132       return false;
6133     }
6134     break;
6135   }
6136 
6137   case CXXMoveConstructor:
6138   case CXXMoveAssignment: {
6139     // Trivial move operations always have non-cv-qualified parameters.
6140     const ParmVarDecl *Param0 = MD->getParamDecl(0);
6141     const RValueReferenceType *RT =
6142       Param0->getType()->getAs<RValueReferenceType>();
6143     if (!RT || RT->getPointeeType().getCVRQualifiers()) {
6144       if (Diagnose)
6145         Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6146           << Param0->getSourceRange() << Param0->getType()
6147           << Context.getRValueReferenceType(Context.getRecordType(RD));
6148       return false;
6149     }
6150     break;
6151   }
6152 
6153   case CXXInvalid:
6154     llvm_unreachable("not a special member");
6155   }
6156 
6157   if (MD->getMinRequiredArguments() < MD->getNumParams()) {
6158     if (Diagnose)
6159       Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
6160            diag::note_nontrivial_default_arg)
6161         << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
6162     return false;
6163   }
6164   if (MD->isVariadic()) {
6165     if (Diagnose)
6166       Diag(MD->getLocation(), diag::note_nontrivial_variadic);
6167     return false;
6168   }
6169 
6170   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6171   //   A copy/move [constructor or assignment operator] is trivial if
6172   //    -- the [member] selected to copy/move each direct base class subobject
6173   //       is trivial
6174   //
6175   // C++11 [class.copy]p12, C++11 [class.copy]p25:
6176   //   A [default constructor or destructor] is trivial if
6177   //    -- all the direct base classes have trivial [default constructors or
6178   //       destructors]
6179   for (const auto &BI : RD->bases())
6180     if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
6181                                    ConstArg, CSM, TSK_BaseClass, Diagnose))
6182       return false;
6183 
6184   // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6185   //   A copy/move [constructor or assignment operator] for a class X is
6186   //   trivial if
6187   //    -- for each non-static data member of X that is of class type (or array
6188   //       thereof), the constructor selected to copy/move that member is
6189   //       trivial
6190   //
6191   // C++11 [class.copy]p12, C++11 [class.copy]p25:
6192   //   A [default constructor or destructor] is trivial if
6193   //    -- for all of the non-static data members of its class that are of class
6194   //       type (or array thereof), each such class has a trivial [default
6195   //       constructor or destructor]
6196   if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
6197     return false;
6198 
6199   // C++11 [class.dtor]p5:
6200   //   A destructor is trivial if [...]
6201   //    -- the destructor is not virtual
6202   if (CSM == CXXDestructor && MD->isVirtual()) {
6203     if (Diagnose)
6204       Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
6205     return false;
6206   }
6207 
6208   // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
6209   //   A [special member] for class X is trivial if [...]
6210   //    -- class X has no virtual functions and no virtual base classes
6211   if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
6212     if (!Diagnose)
6213       return false;
6214 
6215     if (RD->getNumVBases()) {
6216       // Check for virtual bases. We already know that the corresponding
6217       // member in all bases is trivial, so vbases must all be direct.
6218       CXXBaseSpecifier &BS = *RD->vbases_begin();
6219       assert(BS.isVirtual());
6220       Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
6221       return false;
6222     }
6223 
6224     // Must have a virtual method.
6225     for (const auto *MI : RD->methods()) {
6226       if (MI->isVirtual()) {
6227         SourceLocation MLoc = MI->getLocStart();
6228         Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
6229         return false;
6230       }
6231     }
6232 
6233     llvm_unreachable("dynamic class with no vbases and no virtual functions");
6234   }
6235 
6236   // Looks like it's trivial!
6237   return true;
6238 }
6239 
6240 /// \brief Data used with FindHiddenVirtualMethod
6241 namespace {
6242   struct FindHiddenVirtualMethodData {
6243     Sema *S;
6244     CXXMethodDecl *Method;
6245     llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
6246     SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6247   };
6248 }
6249 
6250 /// \brief Check whether any most overriden method from MD in Methods
CheckMostOverridenMethods(const CXXMethodDecl * MD,const llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)6251 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
6252                   const llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
6253   if (MD->size_overridden_methods() == 0)
6254     return Methods.count(MD->getCanonicalDecl());
6255   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6256                                       E = MD->end_overridden_methods();
6257        I != E; ++I)
6258     if (CheckMostOverridenMethods(*I, Methods))
6259       return true;
6260   return false;
6261 }
6262 
6263 /// \brief Member lookup function that determines whether a given C++
6264 /// method overloads virtual methods in a base class without overriding any,
6265 /// to be used with CXXRecordDecl::lookupInBases().
FindHiddenVirtualMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)6266 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
6267                                     CXXBasePath &Path,
6268                                     void *UserData) {
6269   RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6270 
6271   FindHiddenVirtualMethodData &Data
6272     = *static_cast<FindHiddenVirtualMethodData*>(UserData);
6273 
6274   DeclarationName Name = Data.Method->getDeclName();
6275   assert(Name.getNameKind() == DeclarationName::Identifier);
6276 
6277   bool foundSameNameMethod = false;
6278   SmallVector<CXXMethodDecl *, 8> overloadedMethods;
6279   for (Path.Decls = BaseRecord->lookup(Name);
6280        !Path.Decls.empty();
6281        Path.Decls = Path.Decls.slice(1)) {
6282     NamedDecl *D = Path.Decls.front();
6283     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6284       MD = MD->getCanonicalDecl();
6285       foundSameNameMethod = true;
6286       // Interested only in hidden virtual methods.
6287       if (!MD->isVirtual())
6288         continue;
6289       // If the method we are checking overrides a method from its base
6290       // don't warn about the other overloaded methods. Clang deviates from GCC
6291       // by only diagnosing overloads of inherited virtual functions that do not
6292       // override any other virtual functions in the base. GCC's
6293       // -Woverloaded-virtual diagnoses any derived function hiding a virtual
6294       // function from a base class. These cases may be better served by a
6295       // warning (not specific to virtual functions) on call sites when the call
6296       // would select a different function from the base class, were it visible.
6297       // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
6298       if (!Data.S->IsOverload(Data.Method, MD, false))
6299         return true;
6300       // Collect the overload only if its hidden.
6301       if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
6302         overloadedMethods.push_back(MD);
6303     }
6304   }
6305 
6306   if (foundSameNameMethod)
6307     Data.OverloadedMethods.append(overloadedMethods.begin(),
6308                                    overloadedMethods.end());
6309   return foundSameNameMethod;
6310 }
6311 
6312 /// \brief Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)6313 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
6314                         llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
6315   if (MD->size_overridden_methods() == 0)
6316     Methods.insert(MD->getCanonicalDecl());
6317   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6318                                       E = MD->end_overridden_methods();
6319        I != E; ++I)
6320     AddMostOverridenMethods(*I, Methods);
6321 }
6322 
6323 /// \brief Check if a method overloads virtual methods in a base class without
6324 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6325 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
6326                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6327   if (!MD->getDeclName().isIdentifier())
6328     return;
6329 
6330   CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
6331                      /*bool RecordPaths=*/false,
6332                      /*bool DetectVirtual=*/false);
6333   FindHiddenVirtualMethodData Data;
6334   Data.Method = MD;
6335   Data.S = this;
6336 
6337   // Keep the base methods that were overriden or introduced in the subclass
6338   // by 'using' in a set. A base method not in this set is hidden.
6339   CXXRecordDecl *DC = MD->getParent();
6340   DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
6341   for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
6342     NamedDecl *ND = *I;
6343     if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
6344       ND = shad->getTargetDecl();
6345     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
6346       AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
6347   }
6348 
6349   if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
6350     OverloadedMethods = Data.OverloadedMethods;
6351 }
6352 
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6353 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
6354                           SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6355   for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
6356     CXXMethodDecl *overloadedMD = OverloadedMethods[i];
6357     PartialDiagnostic PD = PDiag(
6358          diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
6359     HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
6360     Diag(overloadedMD->getLocation(), PD);
6361   }
6362 }
6363 
6364 /// \brief Diagnose methods which overload virtual methods in a base class
6365 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)6366 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
6367   if (MD->isInvalidDecl())
6368     return;
6369 
6370   if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
6371     return;
6372 
6373   SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6374   FindHiddenVirtualMethods(MD, OverloadedMethods);
6375   if (!OverloadedMethods.empty()) {
6376     Diag(MD->getLocation(), diag::warn_overloaded_virtual)
6377       << MD << (OverloadedMethods.size() > 1);
6378 
6379     NoteHiddenVirtualMethods(MD, OverloadedMethods);
6380   }
6381 }
6382 
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)6383 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
6384                                              Decl *TagDecl,
6385                                              SourceLocation LBrac,
6386                                              SourceLocation RBrac,
6387                                              AttributeList *AttrList) {
6388   if (!TagDecl)
6389     return;
6390 
6391   AdjustDeclIfTemplate(TagDecl);
6392 
6393   for (const AttributeList* l = AttrList; l; l = l->getNext()) {
6394     if (l->getKind() != AttributeList::AT_Visibility)
6395       continue;
6396     l->setInvalid();
6397     Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
6398       l->getName();
6399   }
6400 
6401   ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
6402               // strict aliasing violation!
6403               reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
6404               FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
6405 
6406   CheckCompletedCXXClass(
6407                         dyn_cast_or_null<CXXRecordDecl>(TagDecl));
6408 }
6409 
6410 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
6411 /// special functions, such as the default constructor, copy
6412 /// constructor, or destructor, to the given C++ class (C++
6413 /// [special]p1).  This routine can only be executed just before the
6414 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)6415 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
6416   if (!ClassDecl->hasUserDeclaredConstructor())
6417     ++ASTContext::NumImplicitDefaultConstructors;
6418 
6419   if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
6420     ++ASTContext::NumImplicitCopyConstructors;
6421 
6422     // If the properties or semantics of the copy constructor couldn't be
6423     // determined while the class was being declared, force a declaration
6424     // of it now.
6425     if (ClassDecl->needsOverloadResolutionForCopyConstructor())
6426       DeclareImplicitCopyConstructor(ClassDecl);
6427   }
6428 
6429   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
6430     ++ASTContext::NumImplicitMoveConstructors;
6431 
6432     if (ClassDecl->needsOverloadResolutionForMoveConstructor())
6433       DeclareImplicitMoveConstructor(ClassDecl);
6434   }
6435 
6436   if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
6437     ++ASTContext::NumImplicitCopyAssignmentOperators;
6438 
6439     // If we have a dynamic class, then the copy assignment operator may be
6440     // virtual, so we have to declare it immediately. This ensures that, e.g.,
6441     // it shows up in the right place in the vtable and that we diagnose
6442     // problems with the implicit exception specification.
6443     if (ClassDecl->isDynamicClass() ||
6444         ClassDecl->needsOverloadResolutionForCopyAssignment())
6445       DeclareImplicitCopyAssignment(ClassDecl);
6446   }
6447 
6448   if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
6449     ++ASTContext::NumImplicitMoveAssignmentOperators;
6450 
6451     // Likewise for the move assignment operator.
6452     if (ClassDecl->isDynamicClass() ||
6453         ClassDecl->needsOverloadResolutionForMoveAssignment())
6454       DeclareImplicitMoveAssignment(ClassDecl);
6455   }
6456 
6457   if (!ClassDecl->hasUserDeclaredDestructor()) {
6458     ++ASTContext::NumImplicitDestructors;
6459 
6460     // If we have a dynamic class, then the destructor may be virtual, so we
6461     // have to declare the destructor immediately. This ensures that, e.g., it
6462     // shows up in the right place in the vtable and that we diagnose problems
6463     // with the implicit exception specification.
6464     if (ClassDecl->isDynamicClass() ||
6465         ClassDecl->needsOverloadResolutionForDestructor())
6466       DeclareImplicitDestructor(ClassDecl);
6467   }
6468 }
6469 
ActOnReenterTemplateScope(Scope * S,Decl * D)6470 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
6471   if (!D)
6472     return 0;
6473 
6474   // The order of template parameters is not important here. All names
6475   // get added to the same scope.
6476   SmallVector<TemplateParameterList *, 4> ParameterLists;
6477 
6478   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
6479     D = TD->getTemplatedDecl();
6480 
6481   if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
6482     ParameterLists.push_back(PSD->getTemplateParameters());
6483 
6484   if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
6485     for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
6486       ParameterLists.push_back(DD->getTemplateParameterList(i));
6487 
6488     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6489       if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
6490         ParameterLists.push_back(FTD->getTemplateParameters());
6491     }
6492   }
6493 
6494   if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
6495     for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
6496       ParameterLists.push_back(TD->getTemplateParameterList(i));
6497 
6498     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
6499       if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
6500         ParameterLists.push_back(CTD->getTemplateParameters());
6501     }
6502   }
6503 
6504   unsigned Count = 0;
6505   for (TemplateParameterList *Params : ParameterLists) {
6506     if (Params->size() > 0)
6507       // Ignore explicit specializations; they don't contribute to the template
6508       // depth.
6509       ++Count;
6510     for (NamedDecl *Param : *Params) {
6511       if (Param->getDeclName()) {
6512         S->AddDecl(Param);
6513         IdResolver.AddDecl(Param);
6514       }
6515     }
6516   }
6517 
6518   return Count;
6519 }
6520 
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)6521 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6522   if (!RecordD) return;
6523   AdjustDeclIfTemplate(RecordD);
6524   CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
6525   PushDeclContext(S, Record);
6526 }
6527 
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)6528 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6529   if (!RecordD) return;
6530   PopDeclContext();
6531 }
6532 
6533 /// This is used to implement the constant expression evaluation part of the
6534 /// attribute enable_if extension. There is nothing in standard C++ which would
6535 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)6536 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
6537   if (!Param)
6538     return;
6539 
6540   S->AddDecl(Param);
6541   if (Param->getDeclName())
6542     IdResolver.AddDecl(Param);
6543 }
6544 
6545 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
6546 /// parsing a top-level (non-nested) C++ class, and we are now
6547 /// parsing those parts of the given Method declaration that could
6548 /// not be parsed earlier (C++ [class.mem]p2), such as default
6549 /// arguments. This action should enter the scope of the given
6550 /// Method declaration as if we had just parsed the qualified method
6551 /// name. However, it should not bring the parameters into scope;
6552 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6553 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6554 }
6555 
6556 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
6557 /// C++ method declaration. We're (re-)introducing the given
6558 /// function parameter into scope for use in parsing later parts of
6559 /// the method declaration. For example, we could see an
6560 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)6561 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6562   if (!ParamD)
6563     return;
6564 
6565   ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6566 
6567   // If this parameter has an unparsed default argument, clear it out
6568   // to make way for the parsed default argument.
6569   if (Param->hasUnparsedDefaultArg())
6570     Param->setDefaultArg(nullptr);
6571 
6572   S->AddDecl(Param);
6573   if (Param->getDeclName())
6574     IdResolver.AddDecl(Param);
6575 }
6576 
6577 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6578 /// processing the delayed method declaration for Method. The method
6579 /// declaration is now considered finished. There may be a separate
6580 /// ActOnStartOfFunctionDef action later (not necessarily
6581 /// immediately!) for this method, if it was also defined inside the
6582 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6583 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6584   if (!MethodD)
6585     return;
6586 
6587   AdjustDeclIfTemplate(MethodD);
6588 
6589   FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6590 
6591   // Now that we have our default arguments, check the constructor
6592   // again. It could produce additional diagnostics or affect whether
6593   // the class has implicitly-declared destructors, among other
6594   // things.
6595   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6596     CheckConstructor(Constructor);
6597 
6598   // Check the default arguments, which we may have added.
6599   if (!Method->isInvalidDecl())
6600     CheckCXXDefaultArguments(Method);
6601 }
6602 
6603 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6604 /// the well-formedness of the constructor declarator @p D with type @p
6605 /// R. If there are any errors in the declarator, this routine will
6606 /// emit diagnostics and set the invalid bit to true.  In any case, the type
6607 /// will be updated to reflect a well-formed type for the constructor and
6608 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6609 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6610                                           StorageClass &SC) {
6611   bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6612 
6613   // C++ [class.ctor]p3:
6614   //   A constructor shall not be virtual (10.3) or static (9.4). A
6615   //   constructor can be invoked for a const, volatile or const
6616   //   volatile object. A constructor shall not be declared const,
6617   //   volatile, or const volatile (9.3.2).
6618   if (isVirtual) {
6619     if (!D.isInvalidType())
6620       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6621         << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6622         << SourceRange(D.getIdentifierLoc());
6623     D.setInvalidType();
6624   }
6625   if (SC == SC_Static) {
6626     if (!D.isInvalidType())
6627       Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6628         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6629         << SourceRange(D.getIdentifierLoc());
6630     D.setInvalidType();
6631     SC = SC_None;
6632   }
6633 
6634   if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6635     diagnoseIgnoredQualifiers(
6636         diag::err_constructor_return_type, TypeQuals, SourceLocation(),
6637         D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
6638         D.getDeclSpec().getRestrictSpecLoc(),
6639         D.getDeclSpec().getAtomicSpecLoc());
6640     D.setInvalidType();
6641   }
6642 
6643   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6644   if (FTI.TypeQuals != 0) {
6645     if (FTI.TypeQuals & Qualifiers::Const)
6646       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6647         << "const" << SourceRange(D.getIdentifierLoc());
6648     if (FTI.TypeQuals & Qualifiers::Volatile)
6649       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6650         << "volatile" << SourceRange(D.getIdentifierLoc());
6651     if (FTI.TypeQuals & Qualifiers::Restrict)
6652       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6653         << "restrict" << SourceRange(D.getIdentifierLoc());
6654     D.setInvalidType();
6655   }
6656 
6657   // C++0x [class.ctor]p4:
6658   //   A constructor shall not be declared with a ref-qualifier.
6659   if (FTI.hasRefQualifier()) {
6660     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6661       << FTI.RefQualifierIsLValueRef
6662       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6663     D.setInvalidType();
6664   }
6665 
6666   // Rebuild the function type "R" without any type qualifiers (in
6667   // case any of the errors above fired) and with "void" as the
6668   // return type, since constructors don't have return types.
6669   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6670   if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
6671     return R;
6672 
6673   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6674   EPI.TypeQuals = 0;
6675   EPI.RefQualifier = RQ_None;
6676 
6677   return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
6678 }
6679 
6680 /// CheckConstructor - Checks a fully-formed constructor for
6681 /// well-formedness, issuing any diagnostics required. Returns true if
6682 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)6683 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6684   CXXRecordDecl *ClassDecl
6685     = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6686   if (!ClassDecl)
6687     return Constructor->setInvalidDecl();
6688 
6689   // C++ [class.copy]p3:
6690   //   A declaration of a constructor for a class X is ill-formed if
6691   //   its first parameter is of type (optionally cv-qualified) X and
6692   //   either there are no other parameters or else all other
6693   //   parameters have default arguments.
6694   if (!Constructor->isInvalidDecl() &&
6695       ((Constructor->getNumParams() == 1) ||
6696        (Constructor->getNumParams() > 1 &&
6697         Constructor->getParamDecl(1)->hasDefaultArg())) &&
6698       Constructor->getTemplateSpecializationKind()
6699                                               != TSK_ImplicitInstantiation) {
6700     QualType ParamType = Constructor->getParamDecl(0)->getType();
6701     QualType ClassTy = Context.getTagDeclType(ClassDecl);
6702     if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6703       SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6704       const char *ConstRef
6705         = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6706                                                         : " const &";
6707       Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6708         << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6709 
6710       // FIXME: Rather that making the constructor invalid, we should endeavor
6711       // to fix the type.
6712       Constructor->setInvalidDecl();
6713     }
6714   }
6715 }
6716 
6717 /// CheckDestructor - Checks a fully-formed destructor definition for
6718 /// well-formedness, issuing any diagnostics required.  Returns true
6719 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)6720 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6721   CXXRecordDecl *RD = Destructor->getParent();
6722 
6723   if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6724     SourceLocation Loc;
6725 
6726     if (!Destructor->isImplicit())
6727       Loc = Destructor->getLocation();
6728     else
6729       Loc = RD->getLocation();
6730 
6731     // If we have a virtual destructor, look up the deallocation function
6732     FunctionDecl *OperatorDelete = nullptr;
6733     DeclarationName Name =
6734     Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6735     if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6736       return true;
6737     // If there's no class-specific operator delete, look up the global
6738     // non-array delete.
6739     if (!OperatorDelete)
6740       OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
6741 
6742     MarkFunctionReferenced(Loc, OperatorDelete);
6743 
6744     Destructor->setOperatorDelete(OperatorDelete);
6745   }
6746 
6747   return false;
6748 }
6749 
6750 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6751 /// the well-formednes of the destructor declarator @p D with type @p
6752 /// R. If there are any errors in the declarator, this routine will
6753 /// emit diagnostics and set the declarator to invalid.  Even if this happens,
6754 /// will be updated to reflect a well-formed type for the destructor and
6755 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6756 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6757                                          StorageClass& SC) {
6758   // C++ [class.dtor]p1:
6759   //   [...] A typedef-name that names a class is a class-name
6760   //   (7.1.3); however, a typedef-name that names a class shall not
6761   //   be used as the identifier in the declarator for a destructor
6762   //   declaration.
6763   QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6764   if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6765     Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6766       << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6767   else if (const TemplateSpecializationType *TST =
6768              DeclaratorType->getAs<TemplateSpecializationType>())
6769     if (TST->isTypeAlias())
6770       Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6771         << DeclaratorType << 1;
6772 
6773   // C++ [class.dtor]p2:
6774   //   A destructor is used to destroy objects of its class type. A
6775   //   destructor takes no parameters, and no return type can be
6776   //   specified for it (not even void). The address of a destructor
6777   //   shall not be taken. A destructor shall not be static. A
6778   //   destructor can be invoked for a const, volatile or const
6779   //   volatile object. A destructor shall not be declared const,
6780   //   volatile or const volatile (9.3.2).
6781   if (SC == SC_Static) {
6782     if (!D.isInvalidType())
6783       Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6784         << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6785         << SourceRange(D.getIdentifierLoc())
6786         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6787 
6788     SC = SC_None;
6789   }
6790   if (!D.isInvalidType()) {
6791     // Destructors don't have return types, but the parser will
6792     // happily parse something like:
6793     //
6794     //   class X {
6795     //     float ~X();
6796     //   };
6797     //
6798     // The return type will be eliminated later.
6799     if (D.getDeclSpec().hasTypeSpecifier())
6800       Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6801         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6802         << SourceRange(D.getIdentifierLoc());
6803     else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6804       diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
6805                                 SourceLocation(),
6806                                 D.getDeclSpec().getConstSpecLoc(),
6807                                 D.getDeclSpec().getVolatileSpecLoc(),
6808                                 D.getDeclSpec().getRestrictSpecLoc(),
6809                                 D.getDeclSpec().getAtomicSpecLoc());
6810       D.setInvalidType();
6811     }
6812   }
6813 
6814   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6815   if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6816     if (FTI.TypeQuals & Qualifiers::Const)
6817       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6818         << "const" << SourceRange(D.getIdentifierLoc());
6819     if (FTI.TypeQuals & Qualifiers::Volatile)
6820       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6821         << "volatile" << SourceRange(D.getIdentifierLoc());
6822     if (FTI.TypeQuals & Qualifiers::Restrict)
6823       Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6824         << "restrict" << SourceRange(D.getIdentifierLoc());
6825     D.setInvalidType();
6826   }
6827 
6828   // C++0x [class.dtor]p2:
6829   //   A destructor shall not be declared with a ref-qualifier.
6830   if (FTI.hasRefQualifier()) {
6831     Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6832       << FTI.RefQualifierIsLValueRef
6833       << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6834     D.setInvalidType();
6835   }
6836 
6837   // Make sure we don't have any parameters.
6838   if (FTIHasNonVoidParameters(FTI)) {
6839     Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6840 
6841     // Delete the parameters.
6842     FTI.freeParams();
6843     D.setInvalidType();
6844   }
6845 
6846   // Make sure the destructor isn't variadic.
6847   if (FTI.isVariadic) {
6848     Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6849     D.setInvalidType();
6850   }
6851 
6852   // Rebuild the function type "R" without any type qualifiers or
6853   // parameters (in case any of the errors above fired) and with
6854   // "void" as the return type, since destructors don't have return
6855   // types.
6856   if (!D.isInvalidType())
6857     return R;
6858 
6859   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6860   FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6861   EPI.Variadic = false;
6862   EPI.TypeQuals = 0;
6863   EPI.RefQualifier = RQ_None;
6864   return Context.getFunctionType(Context.VoidTy, None, EPI);
6865 }
6866 
extendLeft(SourceRange & R,const SourceRange & Before)6867 static void extendLeft(SourceRange &R, const SourceRange &Before) {
6868   if (Before.isInvalid())
6869     return;
6870   R.setBegin(Before.getBegin());
6871   if (R.getEnd().isInvalid())
6872     R.setEnd(Before.getEnd());
6873 }
6874 
extendRight(SourceRange & R,const SourceRange & After)6875 static void extendRight(SourceRange &R, const SourceRange &After) {
6876   if (After.isInvalid())
6877     return;
6878   if (R.getBegin().isInvalid())
6879     R.setBegin(After.getBegin());
6880   R.setEnd(After.getEnd());
6881 }
6882 
6883 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6884 /// well-formednes of the conversion function declarator @p D with
6885 /// type @p R. If there are any errors in the declarator, this routine
6886 /// will emit diagnostics and return true. Otherwise, it will return
6887 /// false. Either way, the type @p R will be updated to reflect a
6888 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)6889 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6890                                      StorageClass& SC) {
6891   // C++ [class.conv.fct]p1:
6892   //   Neither parameter types nor return type can be specified. The
6893   //   type of a conversion function (8.3.5) is "function taking no
6894   //   parameter returning conversion-type-id."
6895   if (SC == SC_Static) {
6896     if (!D.isInvalidType())
6897       Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6898         << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6899         << D.getName().getSourceRange();
6900     D.setInvalidType();
6901     SC = SC_None;
6902   }
6903 
6904   TypeSourceInfo *ConvTSI = nullptr;
6905   QualType ConvType =
6906       GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
6907 
6908   if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6909     // Conversion functions don't have return types, but the parser will
6910     // happily parse something like:
6911     //
6912     //   class X {
6913     //     float operator bool();
6914     //   };
6915     //
6916     // The return type will be changed later anyway.
6917     Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6918       << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6919       << SourceRange(D.getIdentifierLoc());
6920     D.setInvalidType();
6921   }
6922 
6923   const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6924 
6925   // Make sure we don't have any parameters.
6926   if (Proto->getNumParams() > 0) {
6927     Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6928 
6929     // Delete the parameters.
6930     D.getFunctionTypeInfo().freeParams();
6931     D.setInvalidType();
6932   } else if (Proto->isVariadic()) {
6933     Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6934     D.setInvalidType();
6935   }
6936 
6937   // Diagnose "&operator bool()" and other such nonsense.  This
6938   // is actually a gcc extension which we don't support.
6939   if (Proto->getReturnType() != ConvType) {
6940     bool NeedsTypedef = false;
6941     SourceRange Before, After;
6942 
6943     // Walk the chunks and extract information on them for our diagnostic.
6944     bool PastFunctionChunk = false;
6945     for (auto &Chunk : D.type_objects()) {
6946       switch (Chunk.Kind) {
6947       case DeclaratorChunk::Function:
6948         if (!PastFunctionChunk) {
6949           if (Chunk.Fun.HasTrailingReturnType) {
6950             TypeSourceInfo *TRT = nullptr;
6951             GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
6952             if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
6953           }
6954           PastFunctionChunk = true;
6955           break;
6956         }
6957         // Fall through.
6958       case DeclaratorChunk::Array:
6959         NeedsTypedef = true;
6960         extendRight(After, Chunk.getSourceRange());
6961         break;
6962 
6963       case DeclaratorChunk::Pointer:
6964       case DeclaratorChunk::BlockPointer:
6965       case DeclaratorChunk::Reference:
6966       case DeclaratorChunk::MemberPointer:
6967         extendLeft(Before, Chunk.getSourceRange());
6968         break;
6969 
6970       case DeclaratorChunk::Paren:
6971         extendLeft(Before, Chunk.Loc);
6972         extendRight(After, Chunk.EndLoc);
6973         break;
6974       }
6975     }
6976 
6977     SourceLocation Loc = Before.isValid() ? Before.getBegin() :
6978                          After.isValid()  ? After.getBegin() :
6979                                             D.getIdentifierLoc();
6980     auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
6981     DB << Before << After;
6982 
6983     if (!NeedsTypedef) {
6984       DB << /*don't need a typedef*/0;
6985 
6986       // If we can provide a correct fix-it hint, do so.
6987       if (After.isInvalid() && ConvTSI) {
6988         SourceLocation InsertLoc =
6989             PP.getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
6990         DB << FixItHint::CreateInsertion(InsertLoc, " ")
6991            << FixItHint::CreateInsertionFromRange(
6992                   InsertLoc, CharSourceRange::getTokenRange(Before))
6993            << FixItHint::CreateRemoval(Before);
6994       }
6995     } else if (!Proto->getReturnType()->isDependentType()) {
6996       DB << /*typedef*/1 << Proto->getReturnType();
6997     } else if (getLangOpts().CPlusPlus11) {
6998       DB << /*alias template*/2 << Proto->getReturnType();
6999     } else {
7000       DB << /*might not be fixable*/3;
7001     }
7002 
7003     // Recover by incorporating the other type chunks into the result type.
7004     // Note, this does *not* change the name of the function. This is compatible
7005     // with the GCC extension:
7006     //   struct S { &operator int(); } s;
7007     //   int &r = s.operator int(); // ok in GCC
7008     //   S::operator int&() {} // error in GCC, function name is 'operator int'.
7009     ConvType = Proto->getReturnType();
7010   }
7011 
7012   // C++ [class.conv.fct]p4:
7013   //   The conversion-type-id shall not represent a function type nor
7014   //   an array type.
7015   if (ConvType->isArrayType()) {
7016     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
7017     ConvType = Context.getPointerType(ConvType);
7018     D.setInvalidType();
7019   } else if (ConvType->isFunctionType()) {
7020     Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
7021     ConvType = Context.getPointerType(ConvType);
7022     D.setInvalidType();
7023   }
7024 
7025   // Rebuild the function type "R" without any parameters (in case any
7026   // of the errors above fired) and with the conversion type as the
7027   // return type.
7028   if (D.isInvalidType())
7029     R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
7030 
7031   // C++0x explicit conversion operators.
7032   if (D.getDeclSpec().isExplicitSpecified())
7033     Diag(D.getDeclSpec().getExplicitSpecLoc(),
7034          getLangOpts().CPlusPlus11 ?
7035            diag::warn_cxx98_compat_explicit_conversion_functions :
7036            diag::ext_explicit_conversion_functions)
7037       << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
7038 }
7039 
7040 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
7041 /// the declaration of the given C++ conversion function. This routine
7042 /// is responsible for recording the conversion function in the C++
7043 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)7044 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
7045   assert(Conversion && "Expected to receive a conversion function declaration");
7046 
7047   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
7048 
7049   // Make sure we aren't redeclaring the conversion function.
7050   QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
7051 
7052   // C++ [class.conv.fct]p1:
7053   //   [...] A conversion function is never used to convert a
7054   //   (possibly cv-qualified) object to the (possibly cv-qualified)
7055   //   same object type (or a reference to it), to a (possibly
7056   //   cv-qualified) base class of that type (or a reference to it),
7057   //   or to (possibly cv-qualified) void.
7058   // FIXME: Suppress this warning if the conversion function ends up being a
7059   // virtual function that overrides a virtual function in a base class.
7060   QualType ClassType
7061     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7062   if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
7063     ConvType = ConvTypeRef->getPointeeType();
7064   if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
7065       Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
7066     /* Suppress diagnostics for instantiations. */;
7067   else if (ConvType->isRecordType()) {
7068     ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
7069     if (ConvType == ClassType)
7070       Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
7071         << ClassType;
7072     else if (IsDerivedFrom(ClassType, ConvType))
7073       Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
7074         <<  ClassType << ConvType;
7075   } else if (ConvType->isVoidType()) {
7076     Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
7077       << ClassType << ConvType;
7078   }
7079 
7080   if (FunctionTemplateDecl *ConversionTemplate
7081                                 = Conversion->getDescribedFunctionTemplate())
7082     return ConversionTemplate;
7083 
7084   return Conversion;
7085 }
7086 
7087 //===----------------------------------------------------------------------===//
7088 // Namespace Handling
7089 //===----------------------------------------------------------------------===//
7090 
7091 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
7092 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)7093 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
7094                                             SourceLocation Loc,
7095                                             IdentifierInfo *II, bool *IsInline,
7096                                             NamespaceDecl *PrevNS) {
7097   assert(*IsInline != PrevNS->isInline());
7098 
7099   // HACK: Work around a bug in libstdc++4.6's <atomic>, where
7100   // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
7101   // inline namespaces, with the intention of bringing names into namespace std.
7102   //
7103   // We support this just well enough to get that case working; this is not
7104   // sufficient to support reopening namespaces as inline in general.
7105   if (*IsInline && II && II->getName().startswith("__atomic") &&
7106       S.getSourceManager().isInSystemHeader(Loc)) {
7107     // Mark all prior declarations of the namespace as inline.
7108     for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
7109          NS = NS->getPreviousDecl())
7110       NS->setInline(*IsInline);
7111     // Patch up the lookup table for the containing namespace. This isn't really
7112     // correct, but it's good enough for this particular case.
7113     for (auto *I : PrevNS->decls())
7114       if (auto *ND = dyn_cast<NamedDecl>(I))
7115         PrevNS->getParent()->makeDeclVisibleInContext(ND);
7116     return;
7117   }
7118 
7119   if (PrevNS->isInline())
7120     // The user probably just forgot the 'inline', so suggest that it
7121     // be added back.
7122     S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
7123       << FixItHint::CreateInsertion(KeywordLoc, "inline ");
7124   else
7125     S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
7126 
7127   S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
7128   *IsInline = PrevNS->isInline();
7129 }
7130 
7131 /// ActOnStartNamespaceDef - This is called at the start of a namespace
7132 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList)7133 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
7134                                    SourceLocation InlineLoc,
7135                                    SourceLocation NamespaceLoc,
7136                                    SourceLocation IdentLoc,
7137                                    IdentifierInfo *II,
7138                                    SourceLocation LBrace,
7139                                    AttributeList *AttrList) {
7140   SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
7141   // For anonymous namespace, take the location of the left brace.
7142   SourceLocation Loc = II ? IdentLoc : LBrace;
7143   bool IsInline = InlineLoc.isValid();
7144   bool IsInvalid = false;
7145   bool IsStd = false;
7146   bool AddToKnown = false;
7147   Scope *DeclRegionScope = NamespcScope->getParent();
7148 
7149   NamespaceDecl *PrevNS = nullptr;
7150   if (II) {
7151     // C++ [namespace.def]p2:
7152     //   The identifier in an original-namespace-definition shall not
7153     //   have been previously defined in the declarative region in
7154     //   which the original-namespace-definition appears. The
7155     //   identifier in an original-namespace-definition is the name of
7156     //   the namespace. Subsequently in that declarative region, it is
7157     //   treated as an original-namespace-name.
7158     //
7159     // Since namespace names are unique in their scope, and we don't
7160     // look through using directives, just look for any ordinary names.
7161 
7162     const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
7163     Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
7164     Decl::IDNS_Namespace;
7165     NamedDecl *PrevDecl = nullptr;
7166     DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
7167     for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
7168          ++I) {
7169       if ((*I)->getIdentifierNamespace() & IDNS) {
7170         PrevDecl = *I;
7171         break;
7172       }
7173     }
7174 
7175     PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
7176 
7177     if (PrevNS) {
7178       // This is an extended namespace definition.
7179       if (IsInline != PrevNS->isInline())
7180         DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
7181                                         &IsInline, PrevNS);
7182     } else if (PrevDecl) {
7183       // This is an invalid name redefinition.
7184       Diag(Loc, diag::err_redefinition_different_kind)
7185         << II;
7186       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7187       IsInvalid = true;
7188       // Continue on to push Namespc as current DeclContext and return it.
7189     } else if (II->isStr("std") &&
7190                CurContext->getRedeclContext()->isTranslationUnit()) {
7191       // This is the first "real" definition of the namespace "std", so update
7192       // our cache of the "std" namespace to point at this definition.
7193       PrevNS = getStdNamespace();
7194       IsStd = true;
7195       AddToKnown = !IsInline;
7196     } else {
7197       // We've seen this namespace for the first time.
7198       AddToKnown = !IsInline;
7199     }
7200   } else {
7201     // Anonymous namespaces.
7202 
7203     // Determine whether the parent already has an anonymous namespace.
7204     DeclContext *Parent = CurContext->getRedeclContext();
7205     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7206       PrevNS = TU->getAnonymousNamespace();
7207     } else {
7208       NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
7209       PrevNS = ND->getAnonymousNamespace();
7210     }
7211 
7212     if (PrevNS && IsInline != PrevNS->isInline())
7213       DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
7214                                       &IsInline, PrevNS);
7215   }
7216 
7217   NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
7218                                                  StartLoc, Loc, II, PrevNS);
7219   if (IsInvalid)
7220     Namespc->setInvalidDecl();
7221 
7222   ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
7223 
7224   // FIXME: Should we be merging attributes?
7225   if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
7226     PushNamespaceVisibilityAttr(Attr, Loc);
7227 
7228   if (IsStd)
7229     StdNamespace = Namespc;
7230   if (AddToKnown)
7231     KnownNamespaces[Namespc] = false;
7232 
7233   if (II) {
7234     PushOnScopeChains(Namespc, DeclRegionScope);
7235   } else {
7236     // Link the anonymous namespace into its parent.
7237     DeclContext *Parent = CurContext->getRedeclContext();
7238     if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7239       TU->setAnonymousNamespace(Namespc);
7240     } else {
7241       cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
7242     }
7243 
7244     CurContext->addDecl(Namespc);
7245 
7246     // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
7247     //   behaves as if it were replaced by
7248     //     namespace unique { /* empty body */ }
7249     //     using namespace unique;
7250     //     namespace unique { namespace-body }
7251     //   where all occurrences of 'unique' in a translation unit are
7252     //   replaced by the same identifier and this identifier differs
7253     //   from all other identifiers in the entire program.
7254 
7255     // We just create the namespace with an empty name and then add an
7256     // implicit using declaration, just like the standard suggests.
7257     //
7258     // CodeGen enforces the "universally unique" aspect by giving all
7259     // declarations semantically contained within an anonymous
7260     // namespace internal linkage.
7261 
7262     if (!PrevNS) {
7263       UsingDirectiveDecl* UD
7264         = UsingDirectiveDecl::Create(Context, Parent,
7265                                      /* 'using' */ LBrace,
7266                                      /* 'namespace' */ SourceLocation(),
7267                                      /* qualifier */ NestedNameSpecifierLoc(),
7268                                      /* identifier */ SourceLocation(),
7269                                      Namespc,
7270                                      /* Ancestor */ Parent);
7271       UD->setImplicit();
7272       Parent->addDecl(UD);
7273     }
7274   }
7275 
7276   ActOnDocumentableDecl(Namespc);
7277 
7278   // Although we could have an invalid decl (i.e. the namespace name is a
7279   // redefinition), push it as current DeclContext and try to continue parsing.
7280   // FIXME: We should be able to push Namespc here, so that the each DeclContext
7281   // for the namespace has the declarations that showed up in that particular
7282   // namespace definition.
7283   PushDeclContext(NamespcScope, Namespc);
7284   return Namespc;
7285 }
7286 
7287 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
7288 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)7289 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
7290   if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
7291     return AD->getNamespace();
7292   return dyn_cast_or_null<NamespaceDecl>(D);
7293 }
7294 
7295 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
7296 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)7297 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
7298   NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
7299   assert(Namespc && "Invalid parameter, expected NamespaceDecl");
7300   Namespc->setRBraceLoc(RBrace);
7301   PopDeclContext();
7302   if (Namespc->hasAttr<VisibilityAttr>())
7303     PopPragmaVisibility(true, RBrace);
7304 }
7305 
getStdBadAlloc() const7306 CXXRecordDecl *Sema::getStdBadAlloc() const {
7307   return cast_or_null<CXXRecordDecl>(
7308                                   StdBadAlloc.get(Context.getExternalSource()));
7309 }
7310 
getStdNamespace() const7311 NamespaceDecl *Sema::getStdNamespace() const {
7312   return cast_or_null<NamespaceDecl>(
7313                                  StdNamespace.get(Context.getExternalSource()));
7314 }
7315 
7316 /// \brief Retrieve the special "std" namespace, which may require us to
7317 /// implicitly define the namespace.
getOrCreateStdNamespace()7318 NamespaceDecl *Sema::getOrCreateStdNamespace() {
7319   if (!StdNamespace) {
7320     // The "std" namespace has not yet been defined, so build one implicitly.
7321     StdNamespace = NamespaceDecl::Create(Context,
7322                                          Context.getTranslationUnitDecl(),
7323                                          /*Inline=*/false,
7324                                          SourceLocation(), SourceLocation(),
7325                                          &PP.getIdentifierTable().get("std"),
7326                                          /*PrevDecl=*/nullptr);
7327     getStdNamespace()->setImplicit(true);
7328   }
7329 
7330   return getStdNamespace();
7331 }
7332 
isStdInitializerList(QualType Ty,QualType * Element)7333 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
7334   assert(getLangOpts().CPlusPlus &&
7335          "Looking for std::initializer_list outside of C++.");
7336 
7337   // We're looking for implicit instantiations of
7338   // template <typename E> class std::initializer_list.
7339 
7340   if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
7341     return false;
7342 
7343   ClassTemplateDecl *Template = nullptr;
7344   const TemplateArgument *Arguments = nullptr;
7345 
7346   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7347 
7348     ClassTemplateSpecializationDecl *Specialization =
7349         dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
7350     if (!Specialization)
7351       return false;
7352 
7353     Template = Specialization->getSpecializedTemplate();
7354     Arguments = Specialization->getTemplateArgs().data();
7355   } else if (const TemplateSpecializationType *TST =
7356                  Ty->getAs<TemplateSpecializationType>()) {
7357     Template = dyn_cast_or_null<ClassTemplateDecl>(
7358         TST->getTemplateName().getAsTemplateDecl());
7359     Arguments = TST->getArgs();
7360   }
7361   if (!Template)
7362     return false;
7363 
7364   if (!StdInitializerList) {
7365     // Haven't recognized std::initializer_list yet, maybe this is it.
7366     CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
7367     if (TemplateClass->getIdentifier() !=
7368             &PP.getIdentifierTable().get("initializer_list") ||
7369         !getStdNamespace()->InEnclosingNamespaceSetOf(
7370             TemplateClass->getDeclContext()))
7371       return false;
7372     // This is a template called std::initializer_list, but is it the right
7373     // template?
7374     TemplateParameterList *Params = Template->getTemplateParameters();
7375     if (Params->getMinRequiredArguments() != 1)
7376       return false;
7377     if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
7378       return false;
7379 
7380     // It's the right template.
7381     StdInitializerList = Template;
7382   }
7383 
7384   if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
7385     return false;
7386 
7387   // This is an instance of std::initializer_list. Find the argument type.
7388   if (Element)
7389     *Element = Arguments[0].getAsType();
7390   return true;
7391 }
7392 
LookupStdInitializerList(Sema & S,SourceLocation Loc)7393 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
7394   NamespaceDecl *Std = S.getStdNamespace();
7395   if (!Std) {
7396     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7397     return nullptr;
7398   }
7399 
7400   LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
7401                       Loc, Sema::LookupOrdinaryName);
7402   if (!S.LookupQualifiedName(Result, Std)) {
7403     S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7404     return nullptr;
7405   }
7406   ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
7407   if (!Template) {
7408     Result.suppressDiagnostics();
7409     // We found something weird. Complain about the first thing we found.
7410     NamedDecl *Found = *Result.begin();
7411     S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
7412     return nullptr;
7413   }
7414 
7415   // We found some template called std::initializer_list. Now verify that it's
7416   // correct.
7417   TemplateParameterList *Params = Template->getTemplateParameters();
7418   if (Params->getMinRequiredArguments() != 1 ||
7419       !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
7420     S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
7421     return nullptr;
7422   }
7423 
7424   return Template;
7425 }
7426 
BuildStdInitializerList(QualType Element,SourceLocation Loc)7427 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
7428   if (!StdInitializerList) {
7429     StdInitializerList = LookupStdInitializerList(*this, Loc);
7430     if (!StdInitializerList)
7431       return QualType();
7432   }
7433 
7434   TemplateArgumentListInfo Args(Loc, Loc);
7435   Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
7436                                        Context.getTrivialTypeSourceInfo(Element,
7437                                                                         Loc)));
7438   return Context.getCanonicalType(
7439       CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
7440 }
7441 
isInitListConstructor(const CXXConstructorDecl * Ctor)7442 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
7443   // C++ [dcl.init.list]p2:
7444   //   A constructor is an initializer-list constructor if its first parameter
7445   //   is of type std::initializer_list<E> or reference to possibly cv-qualified
7446   //   std::initializer_list<E> for some type E, and either there are no other
7447   //   parameters or else all other parameters have default arguments.
7448   if (Ctor->getNumParams() < 1 ||
7449       (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
7450     return false;
7451 
7452   QualType ArgType = Ctor->getParamDecl(0)->getType();
7453   if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
7454     ArgType = RT->getPointeeType().getUnqualifiedType();
7455 
7456   return isStdInitializerList(ArgType, nullptr);
7457 }
7458 
7459 /// \brief Determine whether a using statement is in a context where it will be
7460 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)7461 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
7462   switch (CurContext->getDeclKind()) {
7463     case Decl::TranslationUnit:
7464       return true;
7465     case Decl::LinkageSpec:
7466       return IsUsingDirectiveInToplevelContext(CurContext->getParent());
7467     default:
7468       return false;
7469   }
7470 }
7471 
7472 namespace {
7473 
7474 // Callback to only accept typo corrections that are namespaces.
7475 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
7476 public:
ValidateCandidate(const TypoCorrection & candidate)7477   bool ValidateCandidate(const TypoCorrection &candidate) override {
7478     if (NamedDecl *ND = candidate.getCorrectionDecl())
7479       return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
7480     return false;
7481   }
7482 };
7483 
7484 }
7485 
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)7486 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
7487                                        CXXScopeSpec &SS,
7488                                        SourceLocation IdentLoc,
7489                                        IdentifierInfo *Ident) {
7490   R.clear();
7491   if (TypoCorrection Corrected =
7492           S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
7493                         llvm::make_unique<NamespaceValidatorCCC>(),
7494                         Sema::CTK_ErrorRecovery)) {
7495     if (DeclContext *DC = S.computeDeclContext(SS, false)) {
7496       std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
7497       bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
7498                               Ident->getName().equals(CorrectedStr);
7499       S.diagnoseTypo(Corrected,
7500                      S.PDiag(diag::err_using_directive_member_suggest)
7501                        << Ident << DC << DroppedSpecifier << SS.getRange(),
7502                      S.PDiag(diag::note_namespace_defined_here));
7503     } else {
7504       S.diagnoseTypo(Corrected,
7505                      S.PDiag(diag::err_using_directive_suggest) << Ident,
7506                      S.PDiag(diag::note_namespace_defined_here));
7507     }
7508     R.addDecl(Corrected.getCorrectionDecl());
7509     return true;
7510   }
7511   return false;
7512 }
7513 
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)7514 Decl *Sema::ActOnUsingDirective(Scope *S,
7515                                           SourceLocation UsingLoc,
7516                                           SourceLocation NamespcLoc,
7517                                           CXXScopeSpec &SS,
7518                                           SourceLocation IdentLoc,
7519                                           IdentifierInfo *NamespcName,
7520                                           AttributeList *AttrList) {
7521   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7522   assert(NamespcName && "Invalid NamespcName.");
7523   assert(IdentLoc.isValid() && "Invalid NamespceName location.");
7524 
7525   // This can only happen along a recovery path.
7526   while (S->getFlags() & Scope::TemplateParamScope)
7527     S = S->getParent();
7528   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7529 
7530   UsingDirectiveDecl *UDir = nullptr;
7531   NestedNameSpecifier *Qualifier = nullptr;
7532   if (SS.isSet())
7533     Qualifier = SS.getScopeRep();
7534 
7535   // Lookup namespace name.
7536   LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
7537   LookupParsedName(R, S, &SS);
7538   if (R.isAmbiguous())
7539     return nullptr;
7540 
7541   if (R.empty()) {
7542     R.clear();
7543     // Allow "using namespace std;" or "using namespace ::std;" even if
7544     // "std" hasn't been defined yet, for GCC compatibility.
7545     if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
7546         NamespcName->isStr("std")) {
7547       Diag(IdentLoc, diag::ext_using_undefined_std);
7548       R.addDecl(getOrCreateStdNamespace());
7549       R.resolveKind();
7550     }
7551     // Otherwise, attempt typo correction.
7552     else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
7553   }
7554 
7555   if (!R.empty()) {
7556     NamedDecl *Named = R.getFoundDecl();
7557     assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
7558         && "expected namespace decl");
7559 
7560     // The use of a nested name specifier may trigger deprecation warnings.
7561     DiagnoseUseOfDecl(Named, IdentLoc);
7562 
7563     // C++ [namespace.udir]p1:
7564     //   A using-directive specifies that the names in the nominated
7565     //   namespace can be used in the scope in which the
7566     //   using-directive appears after the using-directive. During
7567     //   unqualified name lookup (3.4.1), the names appear as if they
7568     //   were declared in the nearest enclosing namespace which
7569     //   contains both the using-directive and the nominated
7570     //   namespace. [Note: in this context, "contains" means "contains
7571     //   directly or indirectly". ]
7572 
7573     // Find enclosing context containing both using-directive and
7574     // nominated namespace.
7575     NamespaceDecl *NS = getNamespaceDecl(Named);
7576     DeclContext *CommonAncestor = cast<DeclContext>(NS);
7577     while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
7578       CommonAncestor = CommonAncestor->getParent();
7579 
7580     UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
7581                                       SS.getWithLocInContext(Context),
7582                                       IdentLoc, Named, CommonAncestor);
7583 
7584     if (IsUsingDirectiveInToplevelContext(CurContext) &&
7585         !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
7586       Diag(IdentLoc, diag::warn_using_directive_in_header);
7587     }
7588 
7589     PushUsingDirective(S, UDir);
7590   } else {
7591     Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7592   }
7593 
7594   if (UDir)
7595     ProcessDeclAttributeList(S, UDir, AttrList);
7596 
7597   return UDir;
7598 }
7599 
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)7600 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
7601   // If the scope has an associated entity and the using directive is at
7602   // namespace or translation unit scope, add the UsingDirectiveDecl into
7603   // its lookup structure so qualified name lookup can find it.
7604   DeclContext *Ctx = S->getEntity();
7605   if (Ctx && !Ctx->isFunctionOrMethod())
7606     Ctx->addDecl(UDir);
7607   else
7608     // Otherwise, it is at block scope. The using-directives will affect lookup
7609     // only to the end of the scope.
7610     S->PushUsingDirective(UDir);
7611 }
7612 
7613 
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool HasTypenameKeyword,SourceLocation TypenameLoc)7614 Decl *Sema::ActOnUsingDeclaration(Scope *S,
7615                                   AccessSpecifier AS,
7616                                   bool HasUsingKeyword,
7617                                   SourceLocation UsingLoc,
7618                                   CXXScopeSpec &SS,
7619                                   UnqualifiedId &Name,
7620                                   AttributeList *AttrList,
7621                                   bool HasTypenameKeyword,
7622                                   SourceLocation TypenameLoc) {
7623   assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7624 
7625   switch (Name.getKind()) {
7626   case UnqualifiedId::IK_ImplicitSelfParam:
7627   case UnqualifiedId::IK_Identifier:
7628   case UnqualifiedId::IK_OperatorFunctionId:
7629   case UnqualifiedId::IK_LiteralOperatorId:
7630   case UnqualifiedId::IK_ConversionFunctionId:
7631     break;
7632 
7633   case UnqualifiedId::IK_ConstructorName:
7634   case UnqualifiedId::IK_ConstructorTemplateId:
7635     // C++11 inheriting constructors.
7636     Diag(Name.getLocStart(),
7637          getLangOpts().CPlusPlus11 ?
7638            diag::warn_cxx98_compat_using_decl_constructor :
7639            diag::err_using_decl_constructor)
7640       << SS.getRange();
7641 
7642     if (getLangOpts().CPlusPlus11) break;
7643 
7644     return nullptr;
7645 
7646   case UnqualifiedId::IK_DestructorName:
7647     Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7648       << SS.getRange();
7649     return nullptr;
7650 
7651   case UnqualifiedId::IK_TemplateId:
7652     Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7653       << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7654     return nullptr;
7655   }
7656 
7657   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7658   DeclarationName TargetName = TargetNameInfo.getName();
7659   if (!TargetName)
7660     return nullptr;
7661 
7662   // Warn about access declarations.
7663   if (!HasUsingKeyword) {
7664     Diag(Name.getLocStart(),
7665          getLangOpts().CPlusPlus11 ? diag::err_access_decl
7666                                    : diag::warn_access_decl_deprecated)
7667       << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7668   }
7669 
7670   if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7671       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7672     return nullptr;
7673 
7674   NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7675                                         TargetNameInfo, AttrList,
7676                                         /* IsInstantiation */ false,
7677                                         HasTypenameKeyword, TypenameLoc);
7678   if (UD)
7679     PushOnScopeChains(UD, S, /*AddToContext*/ false);
7680 
7681   return UD;
7682 }
7683 
7684 /// \brief Determine whether a using declaration considers the given
7685 /// declarations as "equivalent", e.g., if they are redeclarations of
7686 /// the same entity or are both typedefs of the same type.
7687 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)7688 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
7689   if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
7690     return true;
7691 
7692   if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7693     if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
7694       return Context.hasSameType(TD1->getUnderlyingType(),
7695                                  TD2->getUnderlyingType());
7696 
7697   return false;
7698 }
7699 
7700 
7701 /// Determines whether to create a using shadow decl for a particular
7702 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)7703 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7704                                 const LookupResult &Previous,
7705                                 UsingShadowDecl *&PrevShadow) {
7706   // Diagnose finding a decl which is not from a base class of the
7707   // current class.  We do this now because there are cases where this
7708   // function will silently decide not to build a shadow decl, which
7709   // will pre-empt further diagnostics.
7710   //
7711   // We don't need to do this in C++0x because we do the check once on
7712   // the qualifier.
7713   //
7714   // FIXME: diagnose the following if we care enough:
7715   //   struct A { int foo; };
7716   //   struct B : A { using A::foo; };
7717   //   template <class T> struct C : A {};
7718   //   template <class T> struct D : C<T> { using B::foo; } // <---
7719   // This is invalid (during instantiation) in C++03 because B::foo
7720   // resolves to the using decl in B, which is not a base class of D<T>.
7721   // We can't diagnose it immediately because C<T> is an unknown
7722   // specialization.  The UsingShadowDecl in D<T> then points directly
7723   // to A::foo, which will look well-formed when we instantiate.
7724   // The right solution is to not collapse the shadow-decl chain.
7725   if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7726     DeclContext *OrigDC = Orig->getDeclContext();
7727 
7728     // Handle enums and anonymous structs.
7729     if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7730     CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7731     while (OrigRec->isAnonymousStructOrUnion())
7732       OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7733 
7734     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7735       if (OrigDC == CurContext) {
7736         Diag(Using->getLocation(),
7737              diag::err_using_decl_nested_name_specifier_is_current_class)
7738           << Using->getQualifierLoc().getSourceRange();
7739         Diag(Orig->getLocation(), diag::note_using_decl_target);
7740         return true;
7741       }
7742 
7743       Diag(Using->getQualifierLoc().getBeginLoc(),
7744            diag::err_using_decl_nested_name_specifier_is_not_base_class)
7745         << Using->getQualifier()
7746         << cast<CXXRecordDecl>(CurContext)
7747         << Using->getQualifierLoc().getSourceRange();
7748       Diag(Orig->getLocation(), diag::note_using_decl_target);
7749       return true;
7750     }
7751   }
7752 
7753   if (Previous.empty()) return false;
7754 
7755   NamedDecl *Target = Orig;
7756   if (isa<UsingShadowDecl>(Target))
7757     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7758 
7759   // If the target happens to be one of the previous declarations, we
7760   // don't have a conflict.
7761   //
7762   // FIXME: but we might be increasing its access, in which case we
7763   // should redeclare it.
7764   NamedDecl *NonTag = nullptr, *Tag = nullptr;
7765   bool FoundEquivalentDecl = false;
7766   for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7767          I != E; ++I) {
7768     NamedDecl *D = (*I)->getUnderlyingDecl();
7769     if (IsEquivalentForUsingDecl(Context, D, Target)) {
7770       if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
7771         PrevShadow = Shadow;
7772       FoundEquivalentDecl = true;
7773     }
7774 
7775     (isa<TagDecl>(D) ? Tag : NonTag) = D;
7776   }
7777 
7778   if (FoundEquivalentDecl)
7779     return false;
7780 
7781   if (FunctionDecl *FD = Target->getAsFunction()) {
7782     NamedDecl *OldDecl = nullptr;
7783     switch (CheckOverload(nullptr, FD, Previous, OldDecl,
7784                           /*IsForUsingDecl*/ true)) {
7785     case Ovl_Overload:
7786       return false;
7787 
7788     case Ovl_NonFunction:
7789       Diag(Using->getLocation(), diag::err_using_decl_conflict);
7790       break;
7791 
7792     // We found a decl with the exact signature.
7793     case Ovl_Match:
7794       // If we're in a record, we want to hide the target, so we
7795       // return true (without a diagnostic) to tell the caller not to
7796       // build a shadow decl.
7797       if (CurContext->isRecord())
7798         return true;
7799 
7800       // If we're not in a record, this is an error.
7801       Diag(Using->getLocation(), diag::err_using_decl_conflict);
7802       break;
7803     }
7804 
7805     Diag(Target->getLocation(), diag::note_using_decl_target);
7806     Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7807     return true;
7808   }
7809 
7810   // Target is not a function.
7811 
7812   if (isa<TagDecl>(Target)) {
7813     // No conflict between a tag and a non-tag.
7814     if (!Tag) return false;
7815 
7816     Diag(Using->getLocation(), diag::err_using_decl_conflict);
7817     Diag(Target->getLocation(), diag::note_using_decl_target);
7818     Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7819     return true;
7820   }
7821 
7822   // No conflict between a tag and a non-tag.
7823   if (!NonTag) return false;
7824 
7825   Diag(Using->getLocation(), diag::err_using_decl_conflict);
7826   Diag(Target->getLocation(), diag::note_using_decl_target);
7827   Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7828   return true;
7829 }
7830 
7831 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)7832 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7833                                             UsingDecl *UD,
7834                                             NamedDecl *Orig,
7835                                             UsingShadowDecl *PrevDecl) {
7836 
7837   // If we resolved to another shadow declaration, just coalesce them.
7838   NamedDecl *Target = Orig;
7839   if (isa<UsingShadowDecl>(Target)) {
7840     Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7841     assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7842   }
7843 
7844   UsingShadowDecl *Shadow
7845     = UsingShadowDecl::Create(Context, CurContext,
7846                               UD->getLocation(), UD, Target);
7847   UD->addShadowDecl(Shadow);
7848 
7849   Shadow->setAccess(UD->getAccess());
7850   if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7851     Shadow->setInvalidDecl();
7852 
7853   Shadow->setPreviousDecl(PrevDecl);
7854 
7855   if (S)
7856     PushOnScopeChains(Shadow, S);
7857   else
7858     CurContext->addDecl(Shadow);
7859 
7860 
7861   return Shadow;
7862 }
7863 
7864 /// Hides a using shadow declaration.  This is required by the current
7865 /// using-decl implementation when a resolvable using declaration in a
7866 /// class is followed by a declaration which would hide or override
7867 /// one or more of the using decl's targets; for example:
7868 ///
7869 ///   struct Base { void foo(int); };
7870 ///   struct Derived : Base {
7871 ///     using Base::foo;
7872 ///     void foo(int);
7873 ///   };
7874 ///
7875 /// The governing language is C++03 [namespace.udecl]p12:
7876 ///
7877 ///   When a using-declaration brings names from a base class into a
7878 ///   derived class scope, member functions in the derived class
7879 ///   override and/or hide member functions with the same name and
7880 ///   parameter types in a base class (rather than conflicting).
7881 ///
7882 /// There are two ways to implement this:
7883 ///   (1) optimistically create shadow decls when they're not hidden
7884 ///       by existing declarations, or
7885 ///   (2) don't create any shadow decls (or at least don't make them
7886 ///       visible) until we've fully parsed/instantiated the class.
7887 /// The problem with (1) is that we might have to retroactively remove
7888 /// a shadow decl, which requires several O(n) operations because the
7889 /// decl structures are (very reasonably) not designed for removal.
7890 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)7891 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7892   if (Shadow->getDeclName().getNameKind() ==
7893         DeclarationName::CXXConversionFunctionName)
7894     cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7895 
7896   // Remove it from the DeclContext...
7897   Shadow->getDeclContext()->removeDecl(Shadow);
7898 
7899   // ...and the scope, if applicable...
7900   if (S) {
7901     S->RemoveDecl(Shadow);
7902     IdResolver.RemoveDecl(Shadow);
7903   }
7904 
7905   // ...and the using decl.
7906   Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7907 
7908   // TODO: complain somehow if Shadow was used.  It shouldn't
7909   // be possible for this to happen, because...?
7910 }
7911 
7912 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)7913 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
7914                                                 QualType DesiredBase,
7915                                                 bool &AnyDependentBases) {
7916   // Check whether the named type is a direct base class.
7917   CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
7918   for (auto &Base : Derived->bases()) {
7919     CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
7920     if (CanonicalDesiredBase == BaseType)
7921       return &Base;
7922     if (BaseType->isDependentType())
7923       AnyDependentBases = true;
7924   }
7925   return nullptr;
7926 }
7927 
7928 namespace {
7929 class UsingValidatorCCC : public CorrectionCandidateCallback {
7930 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)7931   UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
7932                     NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
7933       : HasTypenameKeyword(HasTypenameKeyword),
7934         IsInstantiation(IsInstantiation), OldNNS(NNS),
7935         RequireMemberOf(RequireMemberOf) {}
7936 
ValidateCandidate(const TypoCorrection & Candidate)7937   bool ValidateCandidate(const TypoCorrection &Candidate) override {
7938     NamedDecl *ND = Candidate.getCorrectionDecl();
7939 
7940     // Keywords are not valid here.
7941     if (!ND || isa<NamespaceDecl>(ND))
7942       return false;
7943 
7944     // Completely unqualified names are invalid for a 'using' declaration.
7945     if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7946       return false;
7947 
7948     if (RequireMemberOf) {
7949       auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
7950       if (FoundRecord && FoundRecord->isInjectedClassName()) {
7951         // No-one ever wants a using-declaration to name an injected-class-name
7952         // of a base class, unless they're declaring an inheriting constructor.
7953         ASTContext &Ctx = ND->getASTContext();
7954         if (!Ctx.getLangOpts().CPlusPlus11)
7955           return false;
7956         QualType FoundType = Ctx.getRecordType(FoundRecord);
7957 
7958         // Check that the injected-class-name is named as a member of its own
7959         // type; we don't want to suggest 'using Derived::Base;', since that
7960         // means something else.
7961         NestedNameSpecifier *Specifier =
7962             Candidate.WillReplaceSpecifier()
7963                 ? Candidate.getCorrectionSpecifier()
7964                 : OldNNS;
7965         if (!Specifier->getAsType() ||
7966             !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
7967           return false;
7968 
7969         // Check that this inheriting constructor declaration actually names a
7970         // direct base class of the current class.
7971         bool AnyDependentBases = false;
7972         if (!findDirectBaseWithType(RequireMemberOf,
7973                                     Ctx.getRecordType(FoundRecord),
7974                                     AnyDependentBases) &&
7975             !AnyDependentBases)
7976           return false;
7977       } else {
7978         auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
7979         if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
7980           return false;
7981 
7982         // FIXME: Check that the base class member is accessible?
7983       }
7984     }
7985 
7986     if (isa<TypeDecl>(ND))
7987       return HasTypenameKeyword || !IsInstantiation;
7988 
7989     return !HasTypenameKeyword;
7990   }
7991 
7992 private:
7993   bool HasTypenameKeyword;
7994   bool IsInstantiation;
7995   NestedNameSpecifier *OldNNS;
7996   CXXRecordDecl *RequireMemberOf;
7997 };
7998 } // end anonymous namespace
7999 
8000 /// Builds a using declaration.
8001 ///
8002 /// \param IsInstantiation - Whether this call arises from an
8003 ///   instantiation of an unresolved using declaration.  We treat
8004 ///   the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,AttributeList * AttrList,bool IsInstantiation,bool HasTypenameKeyword,SourceLocation TypenameLoc)8005 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
8006                                        SourceLocation UsingLoc,
8007                                        CXXScopeSpec &SS,
8008                                        DeclarationNameInfo NameInfo,
8009                                        AttributeList *AttrList,
8010                                        bool IsInstantiation,
8011                                        bool HasTypenameKeyword,
8012                                        SourceLocation TypenameLoc) {
8013   assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
8014   SourceLocation IdentLoc = NameInfo.getLoc();
8015   assert(IdentLoc.isValid() && "Invalid TargetName location.");
8016 
8017   // FIXME: We ignore attributes for now.
8018 
8019   if (SS.isEmpty()) {
8020     Diag(IdentLoc, diag::err_using_requires_qualname);
8021     return nullptr;
8022   }
8023 
8024   // Do the redeclaration lookup in the current scope.
8025   LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
8026                         ForRedeclaration);
8027   Previous.setHideTags(false);
8028   if (S) {
8029     LookupName(Previous, S);
8030 
8031     // It is really dumb that we have to do this.
8032     LookupResult::Filter F = Previous.makeFilter();
8033     while (F.hasNext()) {
8034       NamedDecl *D = F.next();
8035       if (!isDeclInScope(D, CurContext, S))
8036         F.erase();
8037       // If we found a local extern declaration that's not ordinarily visible,
8038       // and this declaration is being added to a non-block scope, ignore it.
8039       // We're only checking for scope conflicts here, not also for violations
8040       // of the linkage rules.
8041       else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
8042                !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
8043         F.erase();
8044     }
8045     F.done();
8046   } else {
8047     assert(IsInstantiation && "no scope in non-instantiation");
8048     assert(CurContext->isRecord() && "scope not record in instantiation");
8049     LookupQualifiedName(Previous, CurContext);
8050   }
8051 
8052   // Check for invalid redeclarations.
8053   if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
8054                                   SS, IdentLoc, Previous))
8055     return nullptr;
8056 
8057   // Check for bad qualifiers.
8058   if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
8059     return nullptr;
8060 
8061   DeclContext *LookupContext = computeDeclContext(SS);
8062   NamedDecl *D;
8063   NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8064   if (!LookupContext) {
8065     if (HasTypenameKeyword) {
8066       // FIXME: not all declaration name kinds are legal here
8067       D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
8068                                               UsingLoc, TypenameLoc,
8069                                               QualifierLoc,
8070                                               IdentLoc, NameInfo.getName());
8071     } else {
8072       D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
8073                                            QualifierLoc, NameInfo);
8074     }
8075     D->setAccess(AS);
8076     CurContext->addDecl(D);
8077     return D;
8078   }
8079 
8080   auto Build = [&](bool Invalid) {
8081     UsingDecl *UD =
8082         UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
8083                           HasTypenameKeyword);
8084     UD->setAccess(AS);
8085     CurContext->addDecl(UD);
8086     UD->setInvalidDecl(Invalid);
8087     return UD;
8088   };
8089   auto BuildInvalid = [&]{ return Build(true); };
8090   auto BuildValid = [&]{ return Build(false); };
8091 
8092   if (RequireCompleteDeclContext(SS, LookupContext))
8093     return BuildInvalid();
8094 
8095   // Look up the target name.
8096   LookupResult R(*this, NameInfo, LookupOrdinaryName);
8097 
8098   // Unlike most lookups, we don't always want to hide tag
8099   // declarations: tag names are visible through the using declaration
8100   // even if hidden by ordinary names, *except* in a dependent context
8101   // where it's important for the sanity of two-phase lookup.
8102   if (!IsInstantiation)
8103     R.setHideTags(false);
8104 
8105   // For the purposes of this lookup, we have a base object type
8106   // equal to that of the current context.
8107   if (CurContext->isRecord()) {
8108     R.setBaseObjectType(
8109                    Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
8110   }
8111 
8112   LookupQualifiedName(R, LookupContext);
8113 
8114   // Try to correct typos if possible. If constructor name lookup finds no
8115   // results, that means the named class has no explicit constructors, and we
8116   // suppressed declaring implicit ones (probably because it's dependent or
8117   // invalid).
8118   if (R.empty() &&
8119       NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
8120     if (TypoCorrection Corrected = CorrectTypo(
8121             R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
8122             llvm::make_unique<UsingValidatorCCC>(
8123                 HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
8124                 dyn_cast<CXXRecordDecl>(CurContext)),
8125             CTK_ErrorRecovery)) {
8126       // We reject any correction for which ND would be NULL.
8127       NamedDecl *ND = Corrected.getCorrectionDecl();
8128 
8129       // We reject candidates where DroppedSpecifier == true, hence the
8130       // literal '0' below.
8131       diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
8132                                 << NameInfo.getName() << LookupContext << 0
8133                                 << SS.getRange());
8134 
8135       // If we corrected to an inheriting constructor, handle it as one.
8136       auto *RD = dyn_cast<CXXRecordDecl>(ND);
8137       if (RD && RD->isInjectedClassName()) {
8138         // Fix up the information we'll use to build the using declaration.
8139         if (Corrected.WillReplaceSpecifier()) {
8140           NestedNameSpecifierLocBuilder Builder;
8141           Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
8142                               QualifierLoc.getSourceRange());
8143           QualifierLoc = Builder.getWithLocInContext(Context);
8144         }
8145 
8146         NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
8147             Context.getCanonicalType(Context.getRecordType(RD))));
8148         NameInfo.setNamedTypeInfo(nullptr);
8149         for (auto *Ctor : LookupConstructors(RD))
8150           R.addDecl(Ctor);
8151       } else {
8152         // FIXME: Pick up all the declarations if we found an overloaded function.
8153         R.addDecl(ND);
8154       }
8155     } else {
8156       Diag(IdentLoc, diag::err_no_member)
8157         << NameInfo.getName() << LookupContext << SS.getRange();
8158       return BuildInvalid();
8159     }
8160   }
8161 
8162   if (R.isAmbiguous())
8163     return BuildInvalid();
8164 
8165   if (HasTypenameKeyword) {
8166     // If we asked for a typename and got a non-type decl, error out.
8167     if (!R.getAsSingle<TypeDecl>()) {
8168       Diag(IdentLoc, diag::err_using_typename_non_type);
8169       for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8170         Diag((*I)->getUnderlyingDecl()->getLocation(),
8171              diag::note_using_decl_target);
8172       return BuildInvalid();
8173     }
8174   } else {
8175     // If we asked for a non-typename and we got a type, error out,
8176     // but only if this is an instantiation of an unresolved using
8177     // decl.  Otherwise just silently find the type name.
8178     if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
8179       Diag(IdentLoc, diag::err_using_dependent_value_is_type);
8180       Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
8181       return BuildInvalid();
8182     }
8183   }
8184 
8185   // C++0x N2914 [namespace.udecl]p6:
8186   // A using-declaration shall not name a namespace.
8187   if (R.getAsSingle<NamespaceDecl>()) {
8188     Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
8189       << SS.getRange();
8190     return BuildInvalid();
8191   }
8192 
8193   UsingDecl *UD = BuildValid();
8194 
8195   // The normal rules do not apply to inheriting constructor declarations.
8196   if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
8197     // Suppress access diagnostics; the access check is instead performed at the
8198     // point of use for an inheriting constructor.
8199     R.suppressDiagnostics();
8200     CheckInheritingConstructorUsingDecl(UD);
8201     return UD;
8202   }
8203 
8204   // Otherwise, look up the target name.
8205 
8206   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8207     UsingShadowDecl *PrevDecl = nullptr;
8208     if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
8209       BuildUsingShadowDecl(S, UD, *I, PrevDecl);
8210   }
8211 
8212   return UD;
8213 }
8214 
8215 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)8216 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
8217   assert(!UD->hasTypename() && "expecting a constructor name");
8218 
8219   const Type *SourceType = UD->getQualifier()->getAsType();
8220   assert(SourceType &&
8221          "Using decl naming constructor doesn't have type in scope spec.");
8222   CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
8223 
8224   // Check whether the named type is a direct base class.
8225   bool AnyDependentBases = false;
8226   auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
8227                                       AnyDependentBases);
8228   if (!Base && !AnyDependentBases) {
8229     Diag(UD->getUsingLoc(),
8230          diag::err_using_decl_constructor_not_in_direct_base)
8231       << UD->getNameInfo().getSourceRange()
8232       << QualType(SourceType, 0) << TargetClass;
8233     UD->setInvalidDecl();
8234     return true;
8235   }
8236 
8237   if (Base)
8238     Base->setInheritConstructors();
8239 
8240   return false;
8241 }
8242 
8243 /// Checks that the given using declaration is not an invalid
8244 /// redeclaration.  Note that this is checking only for the using decl
8245 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)8246 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
8247                                        bool HasTypenameKeyword,
8248                                        const CXXScopeSpec &SS,
8249                                        SourceLocation NameLoc,
8250                                        const LookupResult &Prev) {
8251   // C++03 [namespace.udecl]p8:
8252   // C++0x [namespace.udecl]p10:
8253   //   A using-declaration is a declaration and can therefore be used
8254   //   repeatedly where (and only where) multiple declarations are
8255   //   allowed.
8256   //
8257   // That's in non-member contexts.
8258   if (!CurContext->getRedeclContext()->isRecord())
8259     return false;
8260 
8261   NestedNameSpecifier *Qual = SS.getScopeRep();
8262 
8263   for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
8264     NamedDecl *D = *I;
8265 
8266     bool DTypename;
8267     NestedNameSpecifier *DQual;
8268     if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
8269       DTypename = UD->hasTypename();
8270       DQual = UD->getQualifier();
8271     } else if (UnresolvedUsingValueDecl *UD
8272                  = dyn_cast<UnresolvedUsingValueDecl>(D)) {
8273       DTypename = false;
8274       DQual = UD->getQualifier();
8275     } else if (UnresolvedUsingTypenameDecl *UD
8276                  = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
8277       DTypename = true;
8278       DQual = UD->getQualifier();
8279     } else continue;
8280 
8281     // using decls differ if one says 'typename' and the other doesn't.
8282     // FIXME: non-dependent using decls?
8283     if (HasTypenameKeyword != DTypename) continue;
8284 
8285     // using decls differ if they name different scopes (but note that
8286     // template instantiation can cause this check to trigger when it
8287     // didn't before instantiation).
8288     if (Context.getCanonicalNestedNameSpecifier(Qual) !=
8289         Context.getCanonicalNestedNameSpecifier(DQual))
8290       continue;
8291 
8292     Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
8293     Diag(D->getLocation(), diag::note_using_decl) << 1;
8294     return true;
8295   }
8296 
8297   return false;
8298 }
8299 
8300 
8301 /// Checks that the given nested-name qualifier used in a using decl
8302 /// in the current context is appropriately related to the current
8303 /// scope.  If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc)8304 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
8305                                    const CXXScopeSpec &SS,
8306                                    const DeclarationNameInfo &NameInfo,
8307                                    SourceLocation NameLoc) {
8308   DeclContext *NamedContext = computeDeclContext(SS);
8309 
8310   if (!CurContext->isRecord()) {
8311     // C++03 [namespace.udecl]p3:
8312     // C++0x [namespace.udecl]p8:
8313     //   A using-declaration for a class member shall be a member-declaration.
8314 
8315     // If we weren't able to compute a valid scope, it must be a
8316     // dependent class scope.
8317     if (!NamedContext || NamedContext->isRecord()) {
8318       auto *RD = dyn_cast_or_null<CXXRecordDecl>(NamedContext);
8319       if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
8320         RD = nullptr;
8321 
8322       Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
8323         << SS.getRange();
8324 
8325       // If we have a complete, non-dependent source type, try to suggest a
8326       // way to get the same effect.
8327       if (!RD)
8328         return true;
8329 
8330       // Find what this using-declaration was referring to.
8331       LookupResult R(*this, NameInfo, LookupOrdinaryName);
8332       R.setHideTags(false);
8333       R.suppressDiagnostics();
8334       LookupQualifiedName(R, RD);
8335 
8336       if (R.getAsSingle<TypeDecl>()) {
8337         if (getLangOpts().CPlusPlus11) {
8338           // Convert 'using X::Y;' to 'using Y = X::Y;'.
8339           Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
8340             << 0 // alias declaration
8341             << FixItHint::CreateInsertion(SS.getBeginLoc(),
8342                                           NameInfo.getName().getAsString() +
8343                                               " = ");
8344         } else {
8345           // Convert 'using X::Y;' to 'typedef X::Y Y;'.
8346           SourceLocation InsertLoc =
8347               PP.getLocForEndOfToken(NameInfo.getLocEnd());
8348           Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
8349             << 1 // typedef declaration
8350             << FixItHint::CreateReplacement(UsingLoc, "typedef")
8351             << FixItHint::CreateInsertion(
8352                    InsertLoc, " " + NameInfo.getName().getAsString());
8353         }
8354       } else if (R.getAsSingle<VarDecl>()) {
8355         // Don't provide a fixit outside C++11 mode; we don't want to suggest
8356         // repeating the type of the static data member here.
8357         FixItHint FixIt;
8358         if (getLangOpts().CPlusPlus11) {
8359           // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
8360           FixIt = FixItHint::CreateReplacement(
8361               UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
8362         }
8363 
8364         Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
8365           << 2 // reference declaration
8366           << FixIt;
8367       }
8368       return true;
8369     }
8370 
8371     // Otherwise, everything is known to be fine.
8372     return false;
8373   }
8374 
8375   // The current scope is a record.
8376 
8377   // If the named context is dependent, we can't decide much.
8378   if (!NamedContext) {
8379     // FIXME: in C++0x, we can diagnose if we can prove that the
8380     // nested-name-specifier does not refer to a base class, which is
8381     // still possible in some cases.
8382 
8383     // Otherwise we have to conservatively report that things might be
8384     // okay.
8385     return false;
8386   }
8387 
8388   if (!NamedContext->isRecord()) {
8389     // Ideally this would point at the last name in the specifier,
8390     // but we don't have that level of source info.
8391     Diag(SS.getRange().getBegin(),
8392          diag::err_using_decl_nested_name_specifier_is_not_class)
8393       << SS.getScopeRep() << SS.getRange();
8394     return true;
8395   }
8396 
8397   if (!NamedContext->isDependentContext() &&
8398       RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
8399     return true;
8400 
8401   if (getLangOpts().CPlusPlus11) {
8402     // C++0x [namespace.udecl]p3:
8403     //   In a using-declaration used as a member-declaration, the
8404     //   nested-name-specifier shall name a base class of the class
8405     //   being defined.
8406 
8407     if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
8408                                  cast<CXXRecordDecl>(NamedContext))) {
8409       if (CurContext == NamedContext) {
8410         Diag(NameLoc,
8411              diag::err_using_decl_nested_name_specifier_is_current_class)
8412           << SS.getRange();
8413         return true;
8414       }
8415 
8416       Diag(SS.getRange().getBegin(),
8417            diag::err_using_decl_nested_name_specifier_is_not_base_class)
8418         << SS.getScopeRep()
8419         << cast<CXXRecordDecl>(CurContext)
8420         << SS.getRange();
8421       return true;
8422     }
8423 
8424     return false;
8425   }
8426 
8427   // C++03 [namespace.udecl]p4:
8428   //   A using-declaration used as a member-declaration shall refer
8429   //   to a member of a base class of the class being defined [etc.].
8430 
8431   // Salient point: SS doesn't have to name a base class as long as
8432   // lookup only finds members from base classes.  Therefore we can
8433   // diagnose here only if we can prove that that can't happen,
8434   // i.e. if the class hierarchies provably don't intersect.
8435 
8436   // TODO: it would be nice if "definitely valid" results were cached
8437   // in the UsingDecl and UsingShadowDecl so that these checks didn't
8438   // need to be repeated.
8439 
8440   struct UserData {
8441     llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
8442 
8443     static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
8444       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8445       Data->Bases.insert(Base);
8446       return true;
8447     }
8448 
8449     bool hasDependentBases(const CXXRecordDecl *Class) {
8450       return !Class->forallBases(collect, this);
8451     }
8452 
8453     /// Returns true if the base is dependent or is one of the
8454     /// accumulated base classes.
8455     static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
8456       UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8457       return !Data->Bases.count(Base);
8458     }
8459 
8460     bool mightShareBases(const CXXRecordDecl *Class) {
8461       return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
8462     }
8463   };
8464 
8465   UserData Data;
8466 
8467   // Returns false if we find a dependent base.
8468   if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
8469     return false;
8470 
8471   // Returns false if the class has a dependent base or if it or one
8472   // of its bases is present in the base set of the current context.
8473   if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
8474     return false;
8475 
8476   Diag(SS.getRange().getBegin(),
8477        diag::err_using_decl_nested_name_specifier_is_not_base_class)
8478     << SS.getScopeRep()
8479     << cast<CXXRecordDecl>(CurContext)
8480     << SS.getRange();
8481 
8482   return true;
8483 }
8484 
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,AttributeList * AttrList,TypeResult Type,Decl * DeclFromDeclSpec)8485 Decl *Sema::ActOnAliasDeclaration(Scope *S,
8486                                   AccessSpecifier AS,
8487                                   MultiTemplateParamsArg TemplateParamLists,
8488                                   SourceLocation UsingLoc,
8489                                   UnqualifiedId &Name,
8490                                   AttributeList *AttrList,
8491                                   TypeResult Type,
8492                                   Decl *DeclFromDeclSpec) {
8493   // Skip up to the relevant declaration scope.
8494   while (S->getFlags() & Scope::TemplateParamScope)
8495     S = S->getParent();
8496   assert((S->getFlags() & Scope::DeclScope) &&
8497          "got alias-declaration outside of declaration scope");
8498 
8499   if (Type.isInvalid())
8500     return nullptr;
8501 
8502   bool Invalid = false;
8503   DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
8504   TypeSourceInfo *TInfo = nullptr;
8505   GetTypeFromParser(Type.get(), &TInfo);
8506 
8507   if (DiagnoseClassNameShadow(CurContext, NameInfo))
8508     return nullptr;
8509 
8510   if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
8511                                       UPPC_DeclarationType)) {
8512     Invalid = true;
8513     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8514                                              TInfo->getTypeLoc().getBeginLoc());
8515   }
8516 
8517   LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
8518   LookupName(Previous, S);
8519 
8520   // Warn about shadowing the name of a template parameter.
8521   if (Previous.isSingleResult() &&
8522       Previous.getFoundDecl()->isTemplateParameter()) {
8523     DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
8524     Previous.clear();
8525   }
8526 
8527   assert(Name.Kind == UnqualifiedId::IK_Identifier &&
8528          "name in alias declaration must be an identifier");
8529   TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
8530                                                Name.StartLocation,
8531                                                Name.Identifier, TInfo);
8532 
8533   NewTD->setAccess(AS);
8534 
8535   if (Invalid)
8536     NewTD->setInvalidDecl();
8537 
8538   ProcessDeclAttributeList(S, NewTD, AttrList);
8539 
8540   CheckTypedefForVariablyModifiedType(S, NewTD);
8541   Invalid |= NewTD->isInvalidDecl();
8542 
8543   bool Redeclaration = false;
8544 
8545   NamedDecl *NewND;
8546   if (TemplateParamLists.size()) {
8547     TypeAliasTemplateDecl *OldDecl = nullptr;
8548     TemplateParameterList *OldTemplateParams = nullptr;
8549 
8550     if (TemplateParamLists.size() != 1) {
8551       Diag(UsingLoc, diag::err_alias_template_extra_headers)
8552         << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
8553          TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
8554     }
8555     TemplateParameterList *TemplateParams = TemplateParamLists[0];
8556 
8557     // Only consider previous declarations in the same scope.
8558     FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
8559                          /*ExplicitInstantiationOrSpecialization*/false);
8560     if (!Previous.empty()) {
8561       Redeclaration = true;
8562 
8563       OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
8564       if (!OldDecl && !Invalid) {
8565         Diag(UsingLoc, diag::err_redefinition_different_kind)
8566           << Name.Identifier;
8567 
8568         NamedDecl *OldD = Previous.getRepresentativeDecl();
8569         if (OldD->getLocation().isValid())
8570           Diag(OldD->getLocation(), diag::note_previous_definition);
8571 
8572         Invalid = true;
8573       }
8574 
8575       if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
8576         if (TemplateParameterListsAreEqual(TemplateParams,
8577                                            OldDecl->getTemplateParameters(),
8578                                            /*Complain=*/true,
8579                                            TPL_TemplateMatch))
8580           OldTemplateParams = OldDecl->getTemplateParameters();
8581         else
8582           Invalid = true;
8583 
8584         TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
8585         if (!Invalid &&
8586             !Context.hasSameType(OldTD->getUnderlyingType(),
8587                                  NewTD->getUnderlyingType())) {
8588           // FIXME: The C++0x standard does not clearly say this is ill-formed,
8589           // but we can't reasonably accept it.
8590           Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
8591             << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
8592           if (OldTD->getLocation().isValid())
8593             Diag(OldTD->getLocation(), diag::note_previous_definition);
8594           Invalid = true;
8595         }
8596       }
8597     }
8598 
8599     // Merge any previous default template arguments into our parameters,
8600     // and check the parameter list.
8601     if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
8602                                    TPC_TypeAliasTemplate))
8603       return nullptr;
8604 
8605     TypeAliasTemplateDecl *NewDecl =
8606       TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
8607                                     Name.Identifier, TemplateParams,
8608                                     NewTD);
8609     NewTD->setDescribedAliasTemplate(NewDecl);
8610 
8611     NewDecl->setAccess(AS);
8612 
8613     if (Invalid)
8614       NewDecl->setInvalidDecl();
8615     else if (OldDecl)
8616       NewDecl->setPreviousDecl(OldDecl);
8617 
8618     NewND = NewDecl;
8619   } else {
8620     if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
8621       setTagNameForLinkagePurposes(TD, NewTD);
8622       handleTagNumbering(TD, S);
8623     }
8624     ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
8625     NewND = NewTD;
8626   }
8627 
8628   if (!Redeclaration)
8629     PushOnScopeChains(NewND, S);
8630 
8631   ActOnDocumentableDecl(NewND);
8632   return NewND;
8633 }
8634 
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)8635 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
8636                                    SourceLocation AliasLoc,
8637                                    IdentifierInfo *Alias, CXXScopeSpec &SS,
8638                                    SourceLocation IdentLoc,
8639                                    IdentifierInfo *Ident) {
8640 
8641   // Lookup the namespace name.
8642   LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
8643   LookupParsedName(R, S, &SS);
8644 
8645   if (R.isAmbiguous())
8646     return nullptr;
8647 
8648   if (R.empty()) {
8649     if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
8650       Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
8651       return nullptr;
8652     }
8653   }
8654   assert(!R.isAmbiguous() && !R.empty());
8655 
8656   // Check if we have a previous declaration with the same name.
8657   NamedDecl *PrevDecl = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
8658                                          ForRedeclaration);
8659   if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
8660     PrevDecl = nullptr;
8661 
8662   NamedDecl *ND = R.getFoundDecl();
8663 
8664   if (PrevDecl) {
8665     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
8666       // We already have an alias with the same name that points to the same
8667       // namespace; check that it matches.
8668       if (!AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
8669         Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
8670           << Alias;
8671         Diag(PrevDecl->getLocation(), diag::note_previous_namespace_alias)
8672           << AD->getNamespace();
8673         return nullptr;
8674       }
8675     } else {
8676       unsigned DiagID = isa<NamespaceDecl>(PrevDecl)
8677                             ? diag::err_redefinition
8678                             : diag::err_redefinition_different_kind;
8679       Diag(AliasLoc, DiagID) << Alias;
8680       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8681       return nullptr;
8682     }
8683   }
8684 
8685   // The use of a nested name specifier may trigger deprecation warnings.
8686   DiagnoseUseOfDecl(ND, IdentLoc);
8687 
8688   NamespaceAliasDecl *AliasDecl =
8689     NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
8690                                Alias, SS.getWithLocInContext(Context),
8691                                IdentLoc, ND);
8692   if (PrevDecl)
8693     AliasDecl->setPreviousDecl(cast<NamespaceAliasDecl>(PrevDecl));
8694 
8695   PushOnScopeChains(AliasDecl, S);
8696   return AliasDecl;
8697 }
8698 
8699 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)8700 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
8701                                                CXXMethodDecl *MD) {
8702   CXXRecordDecl *ClassDecl = MD->getParent();
8703 
8704   // C++ [except.spec]p14:
8705   //   An implicitly declared special member function (Clause 12) shall have an
8706   //   exception-specification. [...]
8707   ImplicitExceptionSpecification ExceptSpec(*this);
8708   if (ClassDecl->isInvalidDecl())
8709     return ExceptSpec;
8710 
8711   // Direct base-class constructors.
8712   for (const auto &B : ClassDecl->bases()) {
8713     if (B.isVirtual()) // Handled below.
8714       continue;
8715 
8716     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8717       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8718       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8719       // If this is a deleted function, add it anyway. This might be conformant
8720       // with the standard. This might not. I'm not sure. It might not matter.
8721       if (Constructor)
8722         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8723     }
8724   }
8725 
8726   // Virtual base-class constructors.
8727   for (const auto &B : ClassDecl->vbases()) {
8728     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8729       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8730       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8731       // If this is a deleted function, add it anyway. This might be conformant
8732       // with the standard. This might not. I'm not sure. It might not matter.
8733       if (Constructor)
8734         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8735     }
8736   }
8737 
8738   // Field constructors.
8739   for (const auto *F : ClassDecl->fields()) {
8740     if (F->hasInClassInitializer()) {
8741       if (Expr *E = F->getInClassInitializer())
8742         ExceptSpec.CalledExpr(E);
8743     } else if (const RecordType *RecordTy
8744               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8745       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8746       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8747       // If this is a deleted function, add it anyway. This might be conformant
8748       // with the standard. This might not. I'm not sure. It might not matter.
8749       // In particular, the problem is that this function never gets called. It
8750       // might just be ill-formed because this function attempts to refer to
8751       // a deleted function here.
8752       if (Constructor)
8753         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8754     }
8755   }
8756 
8757   return ExceptSpec;
8758 }
8759 
8760 Sema::ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(CXXConstructorDecl * CD)8761 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
8762   CXXRecordDecl *ClassDecl = CD->getParent();
8763 
8764   // C++ [except.spec]p14:
8765   //   An inheriting constructor [...] shall have an exception-specification. [...]
8766   ImplicitExceptionSpecification ExceptSpec(*this);
8767   if (ClassDecl->isInvalidDecl())
8768     return ExceptSpec;
8769 
8770   // Inherited constructor.
8771   const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8772   const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8773   // FIXME: Copying or moving the parameters could add extra exceptions to the
8774   // set, as could the default arguments for the inherited constructor. This
8775   // will be addressed when we implement the resolution of core issue 1351.
8776   ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8777 
8778   // Direct base-class constructors.
8779   for (const auto &B : ClassDecl->bases()) {
8780     if (B.isVirtual()) // Handled below.
8781       continue;
8782 
8783     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8784       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8785       if (BaseClassDecl == InheritedDecl)
8786         continue;
8787       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8788       if (Constructor)
8789         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8790     }
8791   }
8792 
8793   // Virtual base-class constructors.
8794   for (const auto &B : ClassDecl->vbases()) {
8795     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8796       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8797       if (BaseClassDecl == InheritedDecl)
8798         continue;
8799       CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8800       if (Constructor)
8801         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8802     }
8803   }
8804 
8805   // Field constructors.
8806   for (const auto *F : ClassDecl->fields()) {
8807     if (F->hasInClassInitializer()) {
8808       if (Expr *E = F->getInClassInitializer())
8809         ExceptSpec.CalledExpr(E);
8810     } else if (const RecordType *RecordTy
8811               = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8812       CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8813       CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8814       if (Constructor)
8815         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8816     }
8817   }
8818 
8819   return ExceptSpec;
8820 }
8821 
8822 namespace {
8823 /// RAII object to register a special member as being currently declared.
8824 struct DeclaringSpecialMember {
8825   Sema &S;
8826   Sema::SpecialMemberDecl D;
8827   bool WasAlreadyBeingDeclared;
8828 
DeclaringSpecialMember__anonb9d573a20e11::DeclaringSpecialMember8829   DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8830     : S(S), D(RD, CSM) {
8831     WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
8832     if (WasAlreadyBeingDeclared)
8833       // This almost never happens, but if it does, ensure that our cache
8834       // doesn't contain a stale result.
8835       S.SpecialMemberCache.clear();
8836 
8837     // FIXME: Register a note to be produced if we encounter an error while
8838     // declaring the special member.
8839   }
~DeclaringSpecialMember__anonb9d573a20e11::DeclaringSpecialMember8840   ~DeclaringSpecialMember() {
8841     if (!WasAlreadyBeingDeclared)
8842       S.SpecialMembersBeingDeclared.erase(D);
8843   }
8844 
8845   /// \brief Are we already trying to declare this special member?
isAlreadyBeingDeclared__anonb9d573a20e11::DeclaringSpecialMember8846   bool isAlreadyBeingDeclared() const {
8847     return WasAlreadyBeingDeclared;
8848   }
8849 };
8850 }
8851 
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)8852 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8853                                                      CXXRecordDecl *ClassDecl) {
8854   // C++ [class.ctor]p5:
8855   //   A default constructor for a class X is a constructor of class X
8856   //   that can be called without an argument. If there is no
8857   //   user-declared constructor for class X, a default constructor is
8858   //   implicitly declared. An implicitly-declared default constructor
8859   //   is an inline public member of its class.
8860   assert(ClassDecl->needsImplicitDefaultConstructor() &&
8861          "Should not build implicit default constructor!");
8862 
8863   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8864   if (DSM.isAlreadyBeingDeclared())
8865     return nullptr;
8866 
8867   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8868                                                      CXXDefaultConstructor,
8869                                                      false);
8870 
8871   // Create the actual constructor declaration.
8872   CanQualType ClassType
8873     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8874   SourceLocation ClassLoc = ClassDecl->getLocation();
8875   DeclarationName Name
8876     = Context.DeclarationNames.getCXXConstructorName(ClassType);
8877   DeclarationNameInfo NameInfo(Name, ClassLoc);
8878   CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8879       Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
8880       /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
8881       /*isImplicitlyDeclared=*/true, Constexpr);
8882   DefaultCon->setAccess(AS_public);
8883   DefaultCon->setDefaulted();
8884 
8885   if (getLangOpts().CUDA) {
8886     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
8887                                             DefaultCon,
8888                                             /* ConstRHS */ false,
8889                                             /* Diagnose */ false);
8890   }
8891 
8892   // Build an exception specification pointing back at this constructor.
8893   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8894   DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8895 
8896   // We don't need to use SpecialMemberIsTrivial here; triviality for default
8897   // constructors is easy to compute.
8898   DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8899 
8900   if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8901     SetDeclDeleted(DefaultCon, ClassLoc);
8902 
8903   // Note that we have declared this constructor.
8904   ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8905 
8906   if (Scope *S = getScopeForContext(ClassDecl))
8907     PushOnScopeChains(DefaultCon, S, false);
8908   ClassDecl->addDecl(DefaultCon);
8909 
8910   return DefaultCon;
8911 }
8912 
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)8913 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8914                                             CXXConstructorDecl *Constructor) {
8915   assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8916           !Constructor->doesThisDeclarationHaveABody() &&
8917           !Constructor->isDeleted()) &&
8918     "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8919 
8920   CXXRecordDecl *ClassDecl = Constructor->getParent();
8921   assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8922 
8923   SynthesizedFunctionScope Scope(*this, Constructor);
8924   DiagnosticErrorTrap Trap(Diags);
8925   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8926       Trap.hasErrorOccurred()) {
8927     Diag(CurrentLocation, diag::note_member_synthesized_at)
8928       << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8929     Constructor->setInvalidDecl();
8930     return;
8931   }
8932 
8933   // The exception specification is needed because we are defining the
8934   // function.
8935   ResolveExceptionSpec(CurrentLocation,
8936                        Constructor->getType()->castAs<FunctionProtoType>());
8937 
8938   SourceLocation Loc = Constructor->getLocEnd().isValid()
8939                            ? Constructor->getLocEnd()
8940                            : Constructor->getLocation();
8941   Constructor->setBody(new (Context) CompoundStmt(Loc));
8942 
8943   Constructor->markUsed(Context);
8944   MarkVTableUsed(CurrentLocation, ClassDecl);
8945 
8946   if (ASTMutationListener *L = getASTMutationListener()) {
8947     L->CompletedImplicitDefinition(Constructor);
8948   }
8949 
8950   DiagnoseUninitializedFields(*this, Constructor);
8951 }
8952 
ActOnFinishDelayedMemberInitializers(Decl * D)8953 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8954   // Perform any delayed checks on exception specifications.
8955   CheckDelayedMemberExceptionSpecs();
8956 }
8957 
8958 namespace {
8959 /// Information on inheriting constructors to declare.
8960 class InheritingConstructorInfo {
8961 public:
InheritingConstructorInfo(Sema & SemaRef,CXXRecordDecl * Derived)8962   InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8963       : SemaRef(SemaRef), Derived(Derived) {
8964     // Mark the constructors that we already have in the derived class.
8965     //
8966     // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8967     //   unless there is a user-declared constructor with the same signature in
8968     //   the class where the using-declaration appears.
8969     visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8970   }
8971 
inheritAll(CXXRecordDecl * RD)8972   void inheritAll(CXXRecordDecl *RD) {
8973     visitAll(RD, &InheritingConstructorInfo::inherit);
8974   }
8975 
8976 private:
8977   /// Information about an inheriting constructor.
8978   struct InheritingConstructor {
InheritingConstructor__anonb9d573a20f11::InheritingConstructorInfo::InheritingConstructor8979     InheritingConstructor()
8980       : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
8981 
8982     /// If \c true, a constructor with this signature is already declared
8983     /// in the derived class.
8984     bool DeclaredInDerived;
8985 
8986     /// The constructor which is inherited.
8987     const CXXConstructorDecl *BaseCtor;
8988 
8989     /// The derived constructor we declared.
8990     CXXConstructorDecl *DerivedCtor;
8991   };
8992 
8993   /// Inheriting constructors with a given canonical type. There can be at
8994   /// most one such non-template constructor, and any number of templated
8995   /// constructors.
8996   struct InheritingConstructorsForType {
8997     InheritingConstructor NonTemplate;
8998     SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8999         Templates;
9000 
getEntry__anonb9d573a20f11::InheritingConstructorInfo::InheritingConstructorsForType9001     InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
9002       if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
9003         TemplateParameterList *ParamList = FTD->getTemplateParameters();
9004         for (unsigned I = 0, N = Templates.size(); I != N; ++I)
9005           if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
9006                                                false, S.TPL_TemplateMatch))
9007             return Templates[I].second;
9008         Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
9009         return Templates.back().second;
9010       }
9011 
9012       return NonTemplate;
9013     }
9014   };
9015 
9016   /// Get or create the inheriting constructor record for a constructor.
getEntry(const CXXConstructorDecl * Ctor,QualType CtorType)9017   InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
9018                                   QualType CtorType) {
9019     return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
9020         .getEntry(SemaRef, Ctor);
9021   }
9022 
9023   typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
9024 
9025   /// Process all constructors for a class.
visitAll(const CXXRecordDecl * RD,VisitFn Callback)9026   void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
9027     for (const auto *Ctor : RD->ctors())
9028       (this->*Callback)(Ctor);
9029     for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9030              I(RD->decls_begin()), E(RD->decls_end());
9031          I != E; ++I) {
9032       const FunctionDecl *FD = (*I)->getTemplatedDecl();
9033       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
9034         (this->*Callback)(CD);
9035     }
9036   }
9037 
9038   /// Note that a constructor (or constructor template) was declared in Derived.
noteDeclaredInDerived(const CXXConstructorDecl * Ctor)9039   void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
9040     getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
9041   }
9042 
9043   /// Inherit a single constructor.
inherit(const CXXConstructorDecl * Ctor)9044   void inherit(const CXXConstructorDecl *Ctor) {
9045     const FunctionProtoType *CtorType =
9046         Ctor->getType()->castAs<FunctionProtoType>();
9047     ArrayRef<QualType> ArgTypes = CtorType->getParamTypes();
9048     FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
9049 
9050     SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
9051 
9052     // Core issue (no number yet): the ellipsis is always discarded.
9053     if (EPI.Variadic) {
9054       SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
9055       SemaRef.Diag(Ctor->getLocation(),
9056                    diag::note_using_decl_constructor_ellipsis);
9057       EPI.Variadic = false;
9058     }
9059 
9060     // Declare a constructor for each number of parameters.
9061     //
9062     // C++11 [class.inhctor]p1:
9063     //   The candidate set of inherited constructors from the class X named in
9064     //   the using-declaration consists of [... modulo defects ...] for each
9065     //   constructor or constructor template of X, the set of constructors or
9066     //   constructor templates that results from omitting any ellipsis parameter
9067     //   specification and successively omitting parameters with a default
9068     //   argument from the end of the parameter-type-list
9069     unsigned MinParams = minParamsToInherit(Ctor);
9070     unsigned Params = Ctor->getNumParams();
9071     if (Params >= MinParams) {
9072       do
9073         declareCtor(UsingLoc, Ctor,
9074                     SemaRef.Context.getFunctionType(
9075                         Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
9076       while (Params > MinParams &&
9077              Ctor->getParamDecl(--Params)->hasDefaultArg());
9078     }
9079   }
9080 
9081   /// Find the using-declaration which specified that we should inherit the
9082   /// constructors of \p Base.
getUsingLoc(const CXXRecordDecl * Base)9083   SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
9084     // No fancy lookup required; just look for the base constructor name
9085     // directly within the derived class.
9086     ASTContext &Context = SemaRef.Context;
9087     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9088         Context.getCanonicalType(Context.getRecordType(Base)));
9089     DeclContext::lookup_result Decls = Derived->lookup(Name);
9090     return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
9091   }
9092 
minParamsToInherit(const CXXConstructorDecl * Ctor)9093   unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
9094     // C++11 [class.inhctor]p3:
9095     //   [F]or each constructor template in the candidate set of inherited
9096     //   constructors, a constructor template is implicitly declared
9097     if (Ctor->getDescribedFunctionTemplate())
9098       return 0;
9099 
9100     //   For each non-template constructor in the candidate set of inherited
9101     //   constructors other than a constructor having no parameters or a
9102     //   copy/move constructor having a single parameter, a constructor is
9103     //   implicitly declared [...]
9104     if (Ctor->getNumParams() == 0)
9105       return 1;
9106     if (Ctor->isCopyOrMoveConstructor())
9107       return 2;
9108 
9109     // Per discussion on core reflector, never inherit a constructor which
9110     // would become a default, copy, or move constructor of Derived either.
9111     const ParmVarDecl *PD = Ctor->getParamDecl(0);
9112     const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
9113     return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
9114   }
9115 
9116   /// Declare a single inheriting constructor, inheriting the specified
9117   /// constructor, with the given type.
declareCtor(SourceLocation UsingLoc,const CXXConstructorDecl * BaseCtor,QualType DerivedType)9118   void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
9119                    QualType DerivedType) {
9120     InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
9121 
9122     // C++11 [class.inhctor]p3:
9123     //   ... a constructor is implicitly declared with the same constructor
9124     //   characteristics unless there is a user-declared constructor with
9125     //   the same signature in the class where the using-declaration appears
9126     if (Entry.DeclaredInDerived)
9127       return;
9128 
9129     // C++11 [class.inhctor]p7:
9130     //   If two using-declarations declare inheriting constructors with the
9131     //   same signature, the program is ill-formed
9132     if (Entry.DerivedCtor) {
9133       if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
9134         // Only diagnose this once per constructor.
9135         if (Entry.DerivedCtor->isInvalidDecl())
9136           return;
9137         Entry.DerivedCtor->setInvalidDecl();
9138 
9139         SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
9140         SemaRef.Diag(BaseCtor->getLocation(),
9141                      diag::note_using_decl_constructor_conflict_current_ctor);
9142         SemaRef.Diag(Entry.BaseCtor->getLocation(),
9143                      diag::note_using_decl_constructor_conflict_previous_ctor);
9144         SemaRef.Diag(Entry.DerivedCtor->getLocation(),
9145                      diag::note_using_decl_constructor_conflict_previous_using);
9146       } else {
9147         // Core issue (no number): if the same inheriting constructor is
9148         // produced by multiple base class constructors from the same base
9149         // class, the inheriting constructor is defined as deleted.
9150         SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
9151       }
9152 
9153       return;
9154     }
9155 
9156     ASTContext &Context = SemaRef.Context;
9157     DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9158         Context.getCanonicalType(Context.getRecordType(Derived)));
9159     DeclarationNameInfo NameInfo(Name, UsingLoc);
9160 
9161     TemplateParameterList *TemplateParams = nullptr;
9162     if (const FunctionTemplateDecl *FTD =
9163             BaseCtor->getDescribedFunctionTemplate()) {
9164       TemplateParams = FTD->getTemplateParameters();
9165       // We're reusing template parameters from a different DeclContext. This
9166       // is questionable at best, but works out because the template depth in
9167       // both places is guaranteed to be 0.
9168       // FIXME: Rebuild the template parameters in the new context, and
9169       // transform the function type to refer to them.
9170     }
9171 
9172     // Build type source info pointing at the using-declaration. This is
9173     // required by template instantiation.
9174     TypeSourceInfo *TInfo =
9175         Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
9176     FunctionProtoTypeLoc ProtoLoc =
9177         TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
9178 
9179     CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
9180         Context, Derived, UsingLoc, NameInfo, DerivedType,
9181         TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
9182         /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
9183 
9184     // Build an unevaluated exception specification for this constructor.
9185     const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
9186     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9187     EPI.ExceptionSpec.Type = EST_Unevaluated;
9188     EPI.ExceptionSpec.SourceDecl = DerivedCtor;
9189     DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
9190                                                  FPT->getParamTypes(), EPI));
9191 
9192     // Build the parameter declarations.
9193     SmallVector<ParmVarDecl *, 16> ParamDecls;
9194     for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
9195       TypeSourceInfo *TInfo =
9196           Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
9197       ParmVarDecl *PD = ParmVarDecl::Create(
9198           Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
9199           FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
9200       PD->setScopeInfo(0, I);
9201       PD->setImplicit();
9202       ParamDecls.push_back(PD);
9203       ProtoLoc.setParam(I, PD);
9204     }
9205 
9206     // Set up the new constructor.
9207     DerivedCtor->setAccess(BaseCtor->getAccess());
9208     DerivedCtor->setParams(ParamDecls);
9209     DerivedCtor->setInheritedConstructor(BaseCtor);
9210     if (BaseCtor->isDeleted())
9211       SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
9212 
9213     // If this is a constructor template, build the template declaration.
9214     if (TemplateParams) {
9215       FunctionTemplateDecl *DerivedTemplate =
9216           FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
9217                                        TemplateParams, DerivedCtor);
9218       DerivedTemplate->setAccess(BaseCtor->getAccess());
9219       DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
9220       Derived->addDecl(DerivedTemplate);
9221     } else {
9222       Derived->addDecl(DerivedCtor);
9223     }
9224 
9225     Entry.BaseCtor = BaseCtor;
9226     Entry.DerivedCtor = DerivedCtor;
9227   }
9228 
9229   Sema &SemaRef;
9230   CXXRecordDecl *Derived;
9231   typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
9232   MapType Map;
9233 };
9234 }
9235 
DeclareInheritingConstructors(CXXRecordDecl * ClassDecl)9236 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
9237   // Defer declaring the inheriting constructors until the class is
9238   // instantiated.
9239   if (ClassDecl->isDependentContext())
9240     return;
9241 
9242   // Find base classes from which we might inherit constructors.
9243   SmallVector<CXXRecordDecl*, 4> InheritedBases;
9244   for (const auto &BaseIt : ClassDecl->bases())
9245     if (BaseIt.getInheritConstructors())
9246       InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
9247 
9248   // Go no further if we're not inheriting any constructors.
9249   if (InheritedBases.empty())
9250     return;
9251 
9252   // Declare the inherited constructors.
9253   InheritingConstructorInfo ICI(*this, ClassDecl);
9254   for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
9255     ICI.inheritAll(InheritedBases[I]);
9256 }
9257 
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)9258 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
9259                                        CXXConstructorDecl *Constructor) {
9260   CXXRecordDecl *ClassDecl = Constructor->getParent();
9261   assert(Constructor->getInheritedConstructor() &&
9262          !Constructor->doesThisDeclarationHaveABody() &&
9263          !Constructor->isDeleted());
9264 
9265   SynthesizedFunctionScope Scope(*this, Constructor);
9266   DiagnosticErrorTrap Trap(Diags);
9267   if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
9268       Trap.hasErrorOccurred()) {
9269     Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
9270       << Context.getTagDeclType(ClassDecl);
9271     Constructor->setInvalidDecl();
9272     return;
9273   }
9274 
9275   SourceLocation Loc = Constructor->getLocation();
9276   Constructor->setBody(new (Context) CompoundStmt(Loc));
9277 
9278   Constructor->markUsed(Context);
9279   MarkVTableUsed(CurrentLocation, ClassDecl);
9280 
9281   if (ASTMutationListener *L = getASTMutationListener()) {
9282     L->CompletedImplicitDefinition(Constructor);
9283   }
9284 }
9285 
9286 
9287 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl * MD)9288 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
9289   CXXRecordDecl *ClassDecl = MD->getParent();
9290 
9291   // C++ [except.spec]p14:
9292   //   An implicitly declared special member function (Clause 12) shall have
9293   //   an exception-specification.
9294   ImplicitExceptionSpecification ExceptSpec(*this);
9295   if (ClassDecl->isInvalidDecl())
9296     return ExceptSpec;
9297 
9298   // Direct base-class destructors.
9299   for (const auto &B : ClassDecl->bases()) {
9300     if (B.isVirtual()) // Handled below.
9301       continue;
9302 
9303     if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9304       ExceptSpec.CalledDecl(B.getLocStart(),
9305                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9306   }
9307 
9308   // Virtual base-class destructors.
9309   for (const auto &B : ClassDecl->vbases()) {
9310     if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9311       ExceptSpec.CalledDecl(B.getLocStart(),
9312                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9313   }
9314 
9315   // Field destructors.
9316   for (const auto *F : ClassDecl->fields()) {
9317     if (const RecordType *RecordTy
9318         = Context.getBaseElementType(F->getType())->getAs<RecordType>())
9319       ExceptSpec.CalledDecl(F->getLocation(),
9320                   LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
9321   }
9322 
9323   return ExceptSpec;
9324 }
9325 
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)9326 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
9327   // C++ [class.dtor]p2:
9328   //   If a class has no user-declared destructor, a destructor is
9329   //   declared implicitly. An implicitly-declared destructor is an
9330   //   inline public member of its class.
9331   assert(ClassDecl->needsImplicitDestructor());
9332 
9333   DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
9334   if (DSM.isAlreadyBeingDeclared())
9335     return nullptr;
9336 
9337   // Create the actual destructor declaration.
9338   CanQualType ClassType
9339     = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
9340   SourceLocation ClassLoc = ClassDecl->getLocation();
9341   DeclarationName Name
9342     = Context.DeclarationNames.getCXXDestructorName(ClassType);
9343   DeclarationNameInfo NameInfo(Name, ClassLoc);
9344   CXXDestructorDecl *Destructor
9345       = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
9346                                   QualType(), nullptr, /*isInline=*/true,
9347                                   /*isImplicitlyDeclared=*/true);
9348   Destructor->setAccess(AS_public);
9349   Destructor->setDefaulted();
9350 
9351   if (getLangOpts().CUDA) {
9352     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
9353                                             Destructor,
9354                                             /* ConstRHS */ false,
9355                                             /* Diagnose */ false);
9356   }
9357 
9358   // Build an exception specification pointing back at this destructor.
9359   FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
9360   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9361 
9362   AddOverriddenMethods(ClassDecl, Destructor);
9363 
9364   // We don't need to use SpecialMemberIsTrivial here; triviality for
9365   // destructors is easy to compute.
9366   Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
9367 
9368   if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
9369     SetDeclDeleted(Destructor, ClassLoc);
9370 
9371   // Note that we have declared this destructor.
9372   ++ASTContext::NumImplicitDestructorsDeclared;
9373 
9374   // Introduce this destructor into its scope.
9375   if (Scope *S = getScopeForContext(ClassDecl))
9376     PushOnScopeChains(Destructor, S, false);
9377   ClassDecl->addDecl(Destructor);
9378 
9379   return Destructor;
9380 }
9381 
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)9382 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
9383                                     CXXDestructorDecl *Destructor) {
9384   assert((Destructor->isDefaulted() &&
9385           !Destructor->doesThisDeclarationHaveABody() &&
9386           !Destructor->isDeleted()) &&
9387          "DefineImplicitDestructor - call it for implicit default dtor");
9388   CXXRecordDecl *ClassDecl = Destructor->getParent();
9389   assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
9390 
9391   if (Destructor->isInvalidDecl())
9392     return;
9393 
9394   SynthesizedFunctionScope Scope(*this, Destructor);
9395 
9396   DiagnosticErrorTrap Trap(Diags);
9397   MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9398                                          Destructor->getParent());
9399 
9400   if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
9401     Diag(CurrentLocation, diag::note_member_synthesized_at)
9402       << CXXDestructor << Context.getTagDeclType(ClassDecl);
9403 
9404     Destructor->setInvalidDecl();
9405     return;
9406   }
9407 
9408   // The exception specification is needed because we are defining the
9409   // function.
9410   ResolveExceptionSpec(CurrentLocation,
9411                        Destructor->getType()->castAs<FunctionProtoType>());
9412 
9413   SourceLocation Loc = Destructor->getLocEnd().isValid()
9414                            ? Destructor->getLocEnd()
9415                            : Destructor->getLocation();
9416   Destructor->setBody(new (Context) CompoundStmt(Loc));
9417   Destructor->markUsed(Context);
9418   MarkVTableUsed(CurrentLocation, ClassDecl);
9419 
9420   if (ASTMutationListener *L = getASTMutationListener()) {
9421     L->CompletedImplicitDefinition(Destructor);
9422   }
9423 }
9424 
9425 /// \brief Perform any semantic analysis which needs to be delayed until all
9426 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()9427 void Sema::ActOnFinishCXXMemberDecls() {
9428   // If the context is an invalid C++ class, just suppress these checks.
9429   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
9430     if (Record->isInvalidDecl()) {
9431       DelayedDefaultedMemberExceptionSpecs.clear();
9432       DelayedExceptionSpecChecks.clear();
9433       return;
9434     }
9435   }
9436 }
9437 
getDefaultArgExprsForConstructors(Sema & S,CXXRecordDecl * Class)9438 static void getDefaultArgExprsForConstructors(Sema &S, CXXRecordDecl *Class) {
9439   // Don't do anything for template patterns.
9440   if (Class->getDescribedClassTemplate())
9441     return;
9442 
9443   for (Decl *Member : Class->decls()) {
9444     auto *CD = dyn_cast<CXXConstructorDecl>(Member);
9445     if (!CD) {
9446       // Recurse on nested classes.
9447       if (auto *NestedRD = dyn_cast<CXXRecordDecl>(Member))
9448         getDefaultArgExprsForConstructors(S, NestedRD);
9449       continue;
9450     } else if (!CD->isDefaultConstructor() || !CD->hasAttr<DLLExportAttr>()) {
9451       continue;
9452     }
9453 
9454     for (unsigned I = 0, E = CD->getNumParams(); I != E; ++I) {
9455       // Skip any default arguments that we've already instantiated.
9456       if (S.Context.getDefaultArgExprForConstructor(CD, I))
9457         continue;
9458 
9459       Expr *DefaultArg = S.BuildCXXDefaultArgExpr(Class->getLocation(), CD,
9460                                                   CD->getParamDecl(I)).get();
9461       S.Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
9462     }
9463   }
9464 }
9465 
ActOnFinishCXXMemberDefaultArgs(Decl * D)9466 void Sema::ActOnFinishCXXMemberDefaultArgs(Decl *D) {
9467   auto *RD = dyn_cast<CXXRecordDecl>(D);
9468 
9469   // Default constructors that are annotated with __declspec(dllexport) which
9470   // have default arguments or don't use the standard calling convention are
9471   // wrapped with a thunk called the default constructor closure.
9472   if (RD && Context.getTargetInfo().getCXXABI().isMicrosoft())
9473     getDefaultArgExprsForConstructors(*this, RD);
9474 }
9475 
AdjustDestructorExceptionSpec(CXXRecordDecl * ClassDecl,CXXDestructorDecl * Destructor)9476 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
9477                                          CXXDestructorDecl *Destructor) {
9478   assert(getLangOpts().CPlusPlus11 &&
9479          "adjusting dtor exception specs was introduced in c++11");
9480 
9481   // C++11 [class.dtor]p3:
9482   //   A declaration of a destructor that does not have an exception-
9483   //   specification is implicitly considered to have the same exception-
9484   //   specification as an implicit declaration.
9485   const FunctionProtoType *DtorType = Destructor->getType()->
9486                                         getAs<FunctionProtoType>();
9487   if (DtorType->hasExceptionSpec())
9488     return;
9489 
9490   // Replace the destructor's type, building off the existing one. Fortunately,
9491   // the only thing of interest in the destructor type is its extended info.
9492   // The return and arguments are fixed.
9493   FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
9494   EPI.ExceptionSpec.Type = EST_Unevaluated;
9495   EPI.ExceptionSpec.SourceDecl = Destructor;
9496   Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9497 
9498   // FIXME: If the destructor has a body that could throw, and the newly created
9499   // spec doesn't allow exceptions, we should emit a warning, because this
9500   // change in behavior can break conforming C++03 programs at runtime.
9501   // However, we don't have a body or an exception specification yet, so it
9502   // needs to be done somewhere else.
9503 }
9504 
9505 namespace {
9506 /// \brief An abstract base class for all helper classes used in building the
9507 //  copy/move operators. These classes serve as factory functions and help us
9508 //  avoid using the same Expr* in the AST twice.
9509 class ExprBuilder {
9510   ExprBuilder(const ExprBuilder&) = delete;
9511   ExprBuilder &operator=(const ExprBuilder&) = delete;
9512 
9513 protected:
assertNotNull(Expr * E)9514   static Expr *assertNotNull(Expr *E) {
9515     assert(E && "Expression construction must not fail.");
9516     return E;
9517   }
9518 
9519 public:
ExprBuilder()9520   ExprBuilder() {}
~ExprBuilder()9521   virtual ~ExprBuilder() {}
9522 
9523   virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
9524 };
9525 
9526 class RefBuilder: public ExprBuilder {
9527   VarDecl *Var;
9528   QualType VarType;
9529 
9530 public:
build(Sema & S,SourceLocation Loc) const9531   Expr *build(Sema &S, SourceLocation Loc) const override {
9532     return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
9533   }
9534 
RefBuilder(VarDecl * Var,QualType VarType)9535   RefBuilder(VarDecl *Var, QualType VarType)
9536       : Var(Var), VarType(VarType) {}
9537 };
9538 
9539 class ThisBuilder: public ExprBuilder {
9540 public:
build(Sema & S,SourceLocation Loc) const9541   Expr *build(Sema &S, SourceLocation Loc) const override {
9542     return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
9543   }
9544 };
9545 
9546 class CastBuilder: public ExprBuilder {
9547   const ExprBuilder &Builder;
9548   QualType Type;
9549   ExprValueKind Kind;
9550   const CXXCastPath &Path;
9551 
9552 public:
build(Sema & S,SourceLocation Loc) const9553   Expr *build(Sema &S, SourceLocation Loc) const override {
9554     return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
9555                                              CK_UncheckedDerivedToBase, Kind,
9556                                              &Path).get());
9557   }
9558 
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)9559   CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
9560               const CXXCastPath &Path)
9561       : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
9562 };
9563 
9564 class DerefBuilder: public ExprBuilder {
9565   const ExprBuilder &Builder;
9566 
9567 public:
build(Sema & S,SourceLocation Loc) const9568   Expr *build(Sema &S, SourceLocation Loc) const override {
9569     return assertNotNull(
9570         S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
9571   }
9572 
DerefBuilder(const ExprBuilder & Builder)9573   DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9574 };
9575 
9576 class MemberBuilder: public ExprBuilder {
9577   const ExprBuilder &Builder;
9578   QualType Type;
9579   CXXScopeSpec SS;
9580   bool IsArrow;
9581   LookupResult &MemberLookup;
9582 
9583 public:
build(Sema & S,SourceLocation Loc) const9584   Expr *build(Sema &S, SourceLocation Loc) const override {
9585     return assertNotNull(S.BuildMemberReferenceExpr(
9586         Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
9587         nullptr, MemberLookup, nullptr).get());
9588   }
9589 
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)9590   MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
9591                 LookupResult &MemberLookup)
9592       : Builder(Builder), Type(Type), IsArrow(IsArrow),
9593         MemberLookup(MemberLookup) {}
9594 };
9595 
9596 class MoveCastBuilder: public ExprBuilder {
9597   const ExprBuilder &Builder;
9598 
9599 public:
build(Sema & S,SourceLocation Loc) const9600   Expr *build(Sema &S, SourceLocation Loc) const override {
9601     return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
9602   }
9603 
MoveCastBuilder(const ExprBuilder & Builder)9604   MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9605 };
9606 
9607 class LvalueConvBuilder: public ExprBuilder {
9608   const ExprBuilder &Builder;
9609 
9610 public:
build(Sema & S,SourceLocation Loc) const9611   Expr *build(Sema &S, SourceLocation Loc) const override {
9612     return assertNotNull(
9613         S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
9614   }
9615 
LvalueConvBuilder(const ExprBuilder & Builder)9616   LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9617 };
9618 
9619 class SubscriptBuilder: public ExprBuilder {
9620   const ExprBuilder &Base;
9621   const ExprBuilder &Index;
9622 
9623 public:
build(Sema & S,SourceLocation Loc) const9624   Expr *build(Sema &S, SourceLocation Loc) const override {
9625     return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
9626         Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
9627   }
9628 
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)9629   SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
9630       : Base(Base), Index(Index) {}
9631 };
9632 
9633 } // end anonymous namespace
9634 
9635 /// When generating a defaulted copy or move assignment operator, if a field
9636 /// should be copied with __builtin_memcpy rather than via explicit assignments,
9637 /// do so. This optimization only applies for arrays of scalars, and for arrays
9638 /// of class type where the selected copy/move-assignment operator is trivial.
9639 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)9640 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
9641                            const ExprBuilder &ToB, const ExprBuilder &FromB) {
9642   // Compute the size of the memory buffer to be copied.
9643   QualType SizeType = S.Context.getSizeType();
9644   llvm::APInt Size(S.Context.getTypeSize(SizeType),
9645                    S.Context.getTypeSizeInChars(T).getQuantity());
9646 
9647   // Take the address of the field references for "from" and "to". We
9648   // directly construct UnaryOperators here because semantic analysis
9649   // does not permit us to take the address of an xvalue.
9650   Expr *From = FromB.build(S, Loc);
9651   From = new (S.Context) UnaryOperator(From, UO_AddrOf,
9652                          S.Context.getPointerType(From->getType()),
9653                          VK_RValue, OK_Ordinary, Loc);
9654   Expr *To = ToB.build(S, Loc);
9655   To = new (S.Context) UnaryOperator(To, UO_AddrOf,
9656                        S.Context.getPointerType(To->getType()),
9657                        VK_RValue, OK_Ordinary, Loc);
9658 
9659   const Type *E = T->getBaseElementTypeUnsafe();
9660   bool NeedsCollectableMemCpy =
9661     E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
9662 
9663   // Create a reference to the __builtin_objc_memmove_collectable function
9664   StringRef MemCpyName = NeedsCollectableMemCpy ?
9665     "__builtin_objc_memmove_collectable" :
9666     "__builtin_memcpy";
9667   LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
9668                  Sema::LookupOrdinaryName);
9669   S.LookupName(R, S.TUScope, true);
9670 
9671   FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
9672   if (!MemCpy)
9673     // Something went horribly wrong earlier, and we will have complained
9674     // about it.
9675     return StmtError();
9676 
9677   ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
9678                                             VK_RValue, Loc, nullptr);
9679   assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
9680 
9681   Expr *CallArgs[] = {
9682     To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
9683   };
9684   ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
9685                                     Loc, CallArgs, Loc);
9686 
9687   assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
9688   return Call.getAs<Stmt>();
9689 }
9690 
9691 /// \brief Builds a statement that copies/moves the given entity from \p From to
9692 /// \c To.
9693 ///
9694 /// This routine is used to copy/move the members of a class with an
9695 /// implicitly-declared copy/move assignment operator. When the entities being
9696 /// copied are arrays, this routine builds for loops to copy them.
9697 ///
9698 /// \param S The Sema object used for type-checking.
9699 ///
9700 /// \param Loc The location where the implicit copy/move is being generated.
9701 ///
9702 /// \param T The type of the expressions being copied/moved. Both expressions
9703 /// must have this type.
9704 ///
9705 /// \param To The expression we are copying/moving to.
9706 ///
9707 /// \param From The expression we are copying/moving from.
9708 ///
9709 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
9710 /// Otherwise, it's a non-static member subobject.
9711 ///
9712 /// \param Copying Whether we're copying or moving.
9713 ///
9714 /// \param Depth Internal parameter recording the depth of the recursion.
9715 ///
9716 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
9717 /// if a memcpy should be used instead.
9718 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)9719 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
9720                                  const ExprBuilder &To, const ExprBuilder &From,
9721                                  bool CopyingBaseSubobject, bool Copying,
9722                                  unsigned Depth = 0) {
9723   // C++11 [class.copy]p28:
9724   //   Each subobject is assigned in the manner appropriate to its type:
9725   //
9726   //     - if the subobject is of class type, as if by a call to operator= with
9727   //       the subobject as the object expression and the corresponding
9728   //       subobject of x as a single function argument (as if by explicit
9729   //       qualification; that is, ignoring any possible virtual overriding
9730   //       functions in more derived classes);
9731   //
9732   // C++03 [class.copy]p13:
9733   //     - if the subobject is of class type, the copy assignment operator for
9734   //       the class is used (as if by explicit qualification; that is,
9735   //       ignoring any possible virtual overriding functions in more derived
9736   //       classes);
9737   if (const RecordType *RecordTy = T->getAs<RecordType>()) {
9738     CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
9739 
9740     // Look for operator=.
9741     DeclarationName Name
9742       = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9743     LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
9744     S.LookupQualifiedName(OpLookup, ClassDecl, false);
9745 
9746     // Prior to C++11, filter out any result that isn't a copy/move-assignment
9747     // operator.
9748     if (!S.getLangOpts().CPlusPlus11) {
9749       LookupResult::Filter F = OpLookup.makeFilter();
9750       while (F.hasNext()) {
9751         NamedDecl *D = F.next();
9752         if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
9753           if (Method->isCopyAssignmentOperator() ||
9754               (!Copying && Method->isMoveAssignmentOperator()))
9755             continue;
9756 
9757         F.erase();
9758       }
9759       F.done();
9760     }
9761 
9762     // Suppress the protected check (C++ [class.protected]) for each of the
9763     // assignment operators we found. This strange dance is required when
9764     // we're assigning via a base classes's copy-assignment operator. To
9765     // ensure that we're getting the right base class subobject (without
9766     // ambiguities), we need to cast "this" to that subobject type; to
9767     // ensure that we don't go through the virtual call mechanism, we need
9768     // to qualify the operator= name with the base class (see below). However,
9769     // this means that if the base class has a protected copy assignment
9770     // operator, the protected member access check will fail. So, we
9771     // rewrite "protected" access to "public" access in this case, since we
9772     // know by construction that we're calling from a derived class.
9773     if (CopyingBaseSubobject) {
9774       for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9775            L != LEnd; ++L) {
9776         if (L.getAccess() == AS_protected)
9777           L.setAccess(AS_public);
9778       }
9779     }
9780 
9781     // Create the nested-name-specifier that will be used to qualify the
9782     // reference to operator=; this is required to suppress the virtual
9783     // call mechanism.
9784     CXXScopeSpec SS;
9785     const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9786     SS.MakeTrivial(S.Context,
9787                    NestedNameSpecifier::Create(S.Context, nullptr, false,
9788                                                CanonicalT),
9789                    Loc);
9790 
9791     // Create the reference to operator=.
9792     ExprResult OpEqualRef
9793       = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9794                                    SS, /*TemplateKWLoc=*/SourceLocation(),
9795                                    /*FirstQualifierInScope=*/nullptr,
9796                                    OpLookup,
9797                                    /*TemplateArgs=*/nullptr,
9798                                    /*SuppressQualifierCheck=*/true);
9799     if (OpEqualRef.isInvalid())
9800       return StmtError();
9801 
9802     // Build the call to the assignment operator.
9803 
9804     Expr *FromInst = From.build(S, Loc);
9805     ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
9806                                                   OpEqualRef.getAs<Expr>(),
9807                                                   Loc, FromInst, Loc);
9808     if (Call.isInvalid())
9809       return StmtError();
9810 
9811     // If we built a call to a trivial 'operator=' while copying an array,
9812     // bail out. We'll replace the whole shebang with a memcpy.
9813     CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9814     if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9815       return StmtResult((Stmt*)nullptr);
9816 
9817     // Convert to an expression-statement, and clean up any produced
9818     // temporaries.
9819     return S.ActOnExprStmt(Call);
9820   }
9821 
9822   //     - if the subobject is of scalar type, the built-in assignment
9823   //       operator is used.
9824   const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9825   if (!ArrayTy) {
9826     ExprResult Assignment = S.CreateBuiltinBinOp(
9827         Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9828     if (Assignment.isInvalid())
9829       return StmtError();
9830     return S.ActOnExprStmt(Assignment);
9831   }
9832 
9833   //     - if the subobject is an array, each element is assigned, in the
9834   //       manner appropriate to the element type;
9835 
9836   // Construct a loop over the array bounds, e.g.,
9837   //
9838   //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9839   //
9840   // that will copy each of the array elements.
9841   QualType SizeType = S.Context.getSizeType();
9842 
9843   // Create the iteration variable.
9844   IdentifierInfo *IterationVarName = nullptr;
9845   {
9846     SmallString<8> Str;
9847     llvm::raw_svector_ostream OS(Str);
9848     OS << "__i" << Depth;
9849     IterationVarName = &S.Context.Idents.get(OS.str());
9850   }
9851   VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9852                                           IterationVarName, SizeType,
9853                             S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9854                                           SC_None);
9855 
9856   // Initialize the iteration variable to zero.
9857   llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9858   IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9859 
9860   // Creates a reference to the iteration variable.
9861   RefBuilder IterationVarRef(IterationVar, SizeType);
9862   LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9863 
9864   // Create the DeclStmt that holds the iteration variable.
9865   Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9866 
9867   // Subscript the "from" and "to" expressions with the iteration variable.
9868   SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9869   MoveCastBuilder FromIndexMove(FromIndexCopy);
9870   const ExprBuilder *FromIndex;
9871   if (Copying)
9872     FromIndex = &FromIndexCopy;
9873   else
9874     FromIndex = &FromIndexMove;
9875 
9876   SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9877 
9878   // Build the copy/move for an individual element of the array.
9879   StmtResult Copy =
9880     buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9881                                      ToIndex, *FromIndex, CopyingBaseSubobject,
9882                                      Copying, Depth + 1);
9883   // Bail out if copying fails or if we determined that we should use memcpy.
9884   if (Copy.isInvalid() || !Copy.get())
9885     return Copy;
9886 
9887   // Create the comparison against the array bound.
9888   llvm::APInt Upper
9889     = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9890   Expr *Comparison
9891     = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9892                      IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9893                                      BO_NE, S.Context.BoolTy,
9894                                      VK_RValue, OK_Ordinary, Loc, false);
9895 
9896   // Create the pre-increment of the iteration variable.
9897   Expr *Increment
9898     = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9899                                     SizeType, VK_LValue, OK_Ordinary, Loc);
9900 
9901   // Construct the loop that copies all elements of this array.
9902   return S.ActOnForStmt(Loc, Loc, InitStmt,
9903                         S.MakeFullExpr(Comparison),
9904                         nullptr, S.MakeFullDiscardedValueExpr(Increment),
9905                         Loc, Copy.get());
9906 }
9907 
9908 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)9909 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9910                       const ExprBuilder &To, const ExprBuilder &From,
9911                       bool CopyingBaseSubobject, bool Copying) {
9912   // Maybe we should use a memcpy?
9913   if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9914       T.isTriviallyCopyableType(S.Context))
9915     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9916 
9917   StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9918                                                      CopyingBaseSubobject,
9919                                                      Copying, 0));
9920 
9921   // If we ended up picking a trivial assignment operator for an array of a
9922   // non-trivially-copyable class type, just emit a memcpy.
9923   if (!Result.isInvalid() && !Result.get())
9924     return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9925 
9926   return Result;
9927 }
9928 
9929 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl * MD)9930 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9931   CXXRecordDecl *ClassDecl = MD->getParent();
9932 
9933   ImplicitExceptionSpecification ExceptSpec(*this);
9934   if (ClassDecl->isInvalidDecl())
9935     return ExceptSpec;
9936 
9937   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9938   assert(T->getNumParams() == 1 && "not a copy assignment op");
9939   unsigned ArgQuals =
9940       T->getParamType(0).getNonReferenceType().getCVRQualifiers();
9941 
9942   // C++ [except.spec]p14:
9943   //   An implicitly declared special member function (Clause 12) shall have an
9944   //   exception-specification. [...]
9945 
9946   // It is unspecified whether or not an implicit copy assignment operator
9947   // attempts to deduplicate calls to assignment operators of virtual bases are
9948   // made. As such, this exception specification is effectively unspecified.
9949   // Based on a similar decision made for constness in C++0x, we're erring on
9950   // the side of assuming such calls to be made regardless of whether they
9951   // actually happen.
9952   for (const auto &Base : ClassDecl->bases()) {
9953     if (Base.isVirtual())
9954       continue;
9955 
9956     CXXRecordDecl *BaseClassDecl
9957       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9958     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9959                                                             ArgQuals, false, 0))
9960       ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9961   }
9962 
9963   for (const auto &Base : ClassDecl->vbases()) {
9964     CXXRecordDecl *BaseClassDecl
9965       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9966     if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9967                                                             ArgQuals, false, 0))
9968       ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9969   }
9970 
9971   for (const auto *Field : ClassDecl->fields()) {
9972     QualType FieldType = Context.getBaseElementType(Field->getType());
9973     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9974       if (CXXMethodDecl *CopyAssign =
9975           LookupCopyingAssignment(FieldClassDecl,
9976                                   ArgQuals | FieldType.getCVRQualifiers(),
9977                                   false, 0))
9978         ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9979     }
9980   }
9981 
9982   return ExceptSpec;
9983 }
9984 
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)9985 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9986   // Note: The following rules are largely analoguous to the copy
9987   // constructor rules. Note that virtual bases are not taken into account
9988   // for determining the argument type of the operator. Note also that
9989   // operators taking an object instead of a reference are allowed.
9990   assert(ClassDecl->needsImplicitCopyAssignment());
9991 
9992   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9993   if (DSM.isAlreadyBeingDeclared())
9994     return nullptr;
9995 
9996   QualType ArgType = Context.getTypeDeclType(ClassDecl);
9997   QualType RetType = Context.getLValueReferenceType(ArgType);
9998   bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9999   if (Const)
10000     ArgType = ArgType.withConst();
10001   ArgType = Context.getLValueReferenceType(ArgType);
10002 
10003   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10004                                                      CXXCopyAssignment,
10005                                                      Const);
10006 
10007   //   An implicitly-declared copy assignment operator is an inline public
10008   //   member of its class.
10009   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10010   SourceLocation ClassLoc = ClassDecl->getLocation();
10011   DeclarationNameInfo NameInfo(Name, ClassLoc);
10012   CXXMethodDecl *CopyAssignment =
10013       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10014                             /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10015                             /*isInline=*/true, Constexpr, SourceLocation());
10016   CopyAssignment->setAccess(AS_public);
10017   CopyAssignment->setDefaulted();
10018   CopyAssignment->setImplicit();
10019 
10020   if (getLangOpts().CUDA) {
10021     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
10022                                             CopyAssignment,
10023                                             /* ConstRHS */ Const,
10024                                             /* Diagnose */ false);
10025   }
10026 
10027   // Build an exception specification pointing back at this member.
10028   FunctionProtoType::ExtProtoInfo EPI =
10029       getImplicitMethodEPI(*this, CopyAssignment);
10030   CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10031 
10032   // Add the parameter to the operator.
10033   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
10034                                                ClassLoc, ClassLoc,
10035                                                /*Id=*/nullptr, ArgType,
10036                                                /*TInfo=*/nullptr, SC_None,
10037                                                nullptr);
10038   CopyAssignment->setParams(FromParam);
10039 
10040   AddOverriddenMethods(ClassDecl, CopyAssignment);
10041 
10042   CopyAssignment->setTrivial(
10043     ClassDecl->needsOverloadResolutionForCopyAssignment()
10044       ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
10045       : ClassDecl->hasTrivialCopyAssignment());
10046 
10047   if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
10048     SetDeclDeleted(CopyAssignment, ClassLoc);
10049 
10050   // Note that we have added this copy-assignment operator.
10051   ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
10052 
10053   if (Scope *S = getScopeForContext(ClassDecl))
10054     PushOnScopeChains(CopyAssignment, S, false);
10055   ClassDecl->addDecl(CopyAssignment);
10056 
10057   return CopyAssignment;
10058 }
10059 
10060 /// Diagnose an implicit copy operation for a class which is odr-used, but
10061 /// which is deprecated because the class has a user-declared copy constructor,
10062 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp,SourceLocation UseLoc)10063 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
10064                                             SourceLocation UseLoc) {
10065   assert(CopyOp->isImplicit());
10066 
10067   CXXRecordDecl *RD = CopyOp->getParent();
10068   CXXMethodDecl *UserDeclaredOperation = nullptr;
10069 
10070   // In Microsoft mode, assignment operations don't affect constructors and
10071   // vice versa.
10072   if (RD->hasUserDeclaredDestructor()) {
10073     UserDeclaredOperation = RD->getDestructor();
10074   } else if (!isa<CXXConstructorDecl>(CopyOp) &&
10075              RD->hasUserDeclaredCopyConstructor() &&
10076              !S.getLangOpts().MSVCCompat) {
10077     // Find any user-declared copy constructor.
10078     for (auto *I : RD->ctors()) {
10079       if (I->isCopyConstructor()) {
10080         UserDeclaredOperation = I;
10081         break;
10082       }
10083     }
10084     assert(UserDeclaredOperation);
10085   } else if (isa<CXXConstructorDecl>(CopyOp) &&
10086              RD->hasUserDeclaredCopyAssignment() &&
10087              !S.getLangOpts().MSVCCompat) {
10088     // Find any user-declared move assignment operator.
10089     for (auto *I : RD->methods()) {
10090       if (I->isCopyAssignmentOperator()) {
10091         UserDeclaredOperation = I;
10092         break;
10093       }
10094     }
10095     assert(UserDeclaredOperation);
10096   }
10097 
10098   if (UserDeclaredOperation) {
10099     S.Diag(UserDeclaredOperation->getLocation(),
10100          diag::warn_deprecated_copy_operation)
10101       << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
10102       << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
10103     S.Diag(UseLoc, diag::note_member_synthesized_at)
10104       << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
10105                                           : Sema::CXXCopyAssignment)
10106       << RD;
10107   }
10108 }
10109 
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)10110 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
10111                                         CXXMethodDecl *CopyAssignOperator) {
10112   assert((CopyAssignOperator->isDefaulted() &&
10113           CopyAssignOperator->isOverloadedOperator() &&
10114           CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
10115           !CopyAssignOperator->doesThisDeclarationHaveABody() &&
10116           !CopyAssignOperator->isDeleted()) &&
10117          "DefineImplicitCopyAssignment called for wrong function");
10118 
10119   CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
10120 
10121   if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
10122     CopyAssignOperator->setInvalidDecl();
10123     return;
10124   }
10125 
10126   // C++11 [class.copy]p18:
10127   //   The [definition of an implicitly declared copy assignment operator] is
10128   //   deprecated if the class has a user-declared copy constructor or a
10129   //   user-declared destructor.
10130   if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
10131     diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
10132 
10133   CopyAssignOperator->markUsed(Context);
10134 
10135   SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
10136   DiagnosticErrorTrap Trap(Diags);
10137 
10138   // C++0x [class.copy]p30:
10139   //   The implicitly-defined or explicitly-defaulted copy assignment operator
10140   //   for a non-union class X performs memberwise copy assignment of its
10141   //   subobjects. The direct base classes of X are assigned first, in the
10142   //   order of their declaration in the base-specifier-list, and then the
10143   //   immediate non-static data members of X are assigned, in the order in
10144   //   which they were declared in the class definition.
10145 
10146   // The statements that form the synthesized function body.
10147   SmallVector<Stmt*, 8> Statements;
10148 
10149   // The parameter for the "other" object, which we are copying from.
10150   ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
10151   Qualifiers OtherQuals = Other->getType().getQualifiers();
10152   QualType OtherRefType = Other->getType();
10153   if (const LValueReferenceType *OtherRef
10154                                 = OtherRefType->getAs<LValueReferenceType>()) {
10155     OtherRefType = OtherRef->getPointeeType();
10156     OtherQuals = OtherRefType.getQualifiers();
10157   }
10158 
10159   // Our location for everything implicitly-generated.
10160   SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
10161                            ? CopyAssignOperator->getLocEnd()
10162                            : CopyAssignOperator->getLocation();
10163 
10164   // Builds a DeclRefExpr for the "other" object.
10165   RefBuilder OtherRef(Other, OtherRefType);
10166 
10167   // Builds the "this" pointer.
10168   ThisBuilder This;
10169 
10170   // Assign base classes.
10171   bool Invalid = false;
10172   for (auto &Base : ClassDecl->bases()) {
10173     // Form the assignment:
10174     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
10175     QualType BaseType = Base.getType().getUnqualifiedType();
10176     if (!BaseType->isRecordType()) {
10177       Invalid = true;
10178       continue;
10179     }
10180 
10181     CXXCastPath BasePath;
10182     BasePath.push_back(&Base);
10183 
10184     // Construct the "from" expression, which is an implicit cast to the
10185     // appropriately-qualified base type.
10186     CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
10187                      VK_LValue, BasePath);
10188 
10189     // Dereference "this".
10190     DerefBuilder DerefThis(This);
10191     CastBuilder To(DerefThis,
10192                    Context.getCVRQualifiedType(
10193                        BaseType, CopyAssignOperator->getTypeQualifiers()),
10194                    VK_LValue, BasePath);
10195 
10196     // Build the copy.
10197     StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
10198                                             To, From,
10199                                             /*CopyingBaseSubobject=*/true,
10200                                             /*Copying=*/true);
10201     if (Copy.isInvalid()) {
10202       Diag(CurrentLocation, diag::note_member_synthesized_at)
10203         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10204       CopyAssignOperator->setInvalidDecl();
10205       return;
10206     }
10207 
10208     // Success! Record the copy.
10209     Statements.push_back(Copy.getAs<Expr>());
10210   }
10211 
10212   // Assign non-static members.
10213   for (auto *Field : ClassDecl->fields()) {
10214     if (Field->isUnnamedBitfield())
10215       continue;
10216 
10217     if (Field->isInvalidDecl()) {
10218       Invalid = true;
10219       continue;
10220     }
10221 
10222     // Check for members of reference type; we can't copy those.
10223     if (Field->getType()->isReferenceType()) {
10224       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10225         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10226       Diag(Field->getLocation(), diag::note_declared_at);
10227       Diag(CurrentLocation, diag::note_member_synthesized_at)
10228         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10229       Invalid = true;
10230       continue;
10231     }
10232 
10233     // Check for members of const-qualified, non-class type.
10234     QualType BaseType = Context.getBaseElementType(Field->getType());
10235     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10236       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10237         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10238       Diag(Field->getLocation(), diag::note_declared_at);
10239       Diag(CurrentLocation, diag::note_member_synthesized_at)
10240         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10241       Invalid = true;
10242       continue;
10243     }
10244 
10245     // Suppress assigning zero-width bitfields.
10246     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10247       continue;
10248 
10249     QualType FieldType = Field->getType().getNonReferenceType();
10250     if (FieldType->isIncompleteArrayType()) {
10251       assert(ClassDecl->hasFlexibleArrayMember() &&
10252              "Incomplete array type is not valid");
10253       continue;
10254     }
10255 
10256     // Build references to the field in the object we're copying from and to.
10257     CXXScopeSpec SS; // Intentionally empty
10258     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10259                               LookupMemberName);
10260     MemberLookup.addDecl(Field);
10261     MemberLookup.resolveKind();
10262 
10263     MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
10264 
10265     MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
10266 
10267     // Build the copy of this field.
10268     StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
10269                                             To, From,
10270                                             /*CopyingBaseSubobject=*/false,
10271                                             /*Copying=*/true);
10272     if (Copy.isInvalid()) {
10273       Diag(CurrentLocation, diag::note_member_synthesized_at)
10274         << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10275       CopyAssignOperator->setInvalidDecl();
10276       return;
10277     }
10278 
10279     // Success! Record the copy.
10280     Statements.push_back(Copy.getAs<Stmt>());
10281   }
10282 
10283   if (!Invalid) {
10284     // Add a "return *this;"
10285     ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10286 
10287     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10288     if (Return.isInvalid())
10289       Invalid = true;
10290     else {
10291       Statements.push_back(Return.getAs<Stmt>());
10292 
10293       if (Trap.hasErrorOccurred()) {
10294         Diag(CurrentLocation, diag::note_member_synthesized_at)
10295           << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10296         Invalid = true;
10297       }
10298     }
10299   }
10300 
10301   // The exception specification is needed because we are defining the
10302   // function.
10303   ResolveExceptionSpec(CurrentLocation,
10304                        CopyAssignOperator->getType()->castAs<FunctionProtoType>());
10305 
10306   if (Invalid) {
10307     CopyAssignOperator->setInvalidDecl();
10308     return;
10309   }
10310 
10311   StmtResult Body;
10312   {
10313     CompoundScopeRAII CompoundScope(*this);
10314     Body = ActOnCompoundStmt(Loc, Loc, Statements,
10315                              /*isStmtExpr=*/false);
10316     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10317   }
10318   CopyAssignOperator->setBody(Body.getAs<Stmt>());
10319 
10320   if (ASTMutationListener *L = getASTMutationListener()) {
10321     L->CompletedImplicitDefinition(CopyAssignOperator);
10322   }
10323 }
10324 
10325 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl * MD)10326 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
10327   CXXRecordDecl *ClassDecl = MD->getParent();
10328 
10329   ImplicitExceptionSpecification ExceptSpec(*this);
10330   if (ClassDecl->isInvalidDecl())
10331     return ExceptSpec;
10332 
10333   // C++0x [except.spec]p14:
10334   //   An implicitly declared special member function (Clause 12) shall have an
10335   //   exception-specification. [...]
10336 
10337   // It is unspecified whether or not an implicit move assignment operator
10338   // attempts to deduplicate calls to assignment operators of virtual bases are
10339   // made. As such, this exception specification is effectively unspecified.
10340   // Based on a similar decision made for constness in C++0x, we're erring on
10341   // the side of assuming such calls to be made regardless of whether they
10342   // actually happen.
10343   // Note that a move constructor is not implicitly declared when there are
10344   // virtual bases, but it can still be user-declared and explicitly defaulted.
10345   for (const auto &Base : ClassDecl->bases()) {
10346     if (Base.isVirtual())
10347       continue;
10348 
10349     CXXRecordDecl *BaseClassDecl
10350       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10351     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10352                                                            0, false, 0))
10353       ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10354   }
10355 
10356   for (const auto &Base : ClassDecl->vbases()) {
10357     CXXRecordDecl *BaseClassDecl
10358       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10359     if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10360                                                            0, false, 0))
10361       ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10362   }
10363 
10364   for (const auto *Field : ClassDecl->fields()) {
10365     QualType FieldType = Context.getBaseElementType(Field->getType());
10366     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10367       if (CXXMethodDecl *MoveAssign =
10368               LookupMovingAssignment(FieldClassDecl,
10369                                      FieldType.getCVRQualifiers(),
10370                                      false, 0))
10371         ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
10372     }
10373   }
10374 
10375   return ExceptSpec;
10376 }
10377 
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)10378 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
10379   assert(ClassDecl->needsImplicitMoveAssignment());
10380 
10381   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
10382   if (DSM.isAlreadyBeingDeclared())
10383     return nullptr;
10384 
10385   // Note: The following rules are largely analoguous to the move
10386   // constructor rules.
10387 
10388   QualType ArgType = Context.getTypeDeclType(ClassDecl);
10389   QualType RetType = Context.getLValueReferenceType(ArgType);
10390   ArgType = Context.getRValueReferenceType(ArgType);
10391 
10392   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10393                                                      CXXMoveAssignment,
10394                                                      false);
10395 
10396   //   An implicitly-declared move assignment operator is an inline public
10397   //   member of its class.
10398   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10399   SourceLocation ClassLoc = ClassDecl->getLocation();
10400   DeclarationNameInfo NameInfo(Name, ClassLoc);
10401   CXXMethodDecl *MoveAssignment =
10402       CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10403                             /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10404                             /*isInline=*/true, Constexpr, SourceLocation());
10405   MoveAssignment->setAccess(AS_public);
10406   MoveAssignment->setDefaulted();
10407   MoveAssignment->setImplicit();
10408 
10409   if (getLangOpts().CUDA) {
10410     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
10411                                             MoveAssignment,
10412                                             /* ConstRHS */ false,
10413                                             /* Diagnose */ false);
10414   }
10415 
10416   // Build an exception specification pointing back at this member.
10417   FunctionProtoType::ExtProtoInfo EPI =
10418       getImplicitMethodEPI(*this, MoveAssignment);
10419   MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10420 
10421   // Add the parameter to the operator.
10422   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
10423                                                ClassLoc, ClassLoc,
10424                                                /*Id=*/nullptr, ArgType,
10425                                                /*TInfo=*/nullptr, SC_None,
10426                                                nullptr);
10427   MoveAssignment->setParams(FromParam);
10428 
10429   AddOverriddenMethods(ClassDecl, MoveAssignment);
10430 
10431   MoveAssignment->setTrivial(
10432     ClassDecl->needsOverloadResolutionForMoveAssignment()
10433       ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
10434       : ClassDecl->hasTrivialMoveAssignment());
10435 
10436   if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
10437     ClassDecl->setImplicitMoveAssignmentIsDeleted();
10438     SetDeclDeleted(MoveAssignment, ClassLoc);
10439   }
10440 
10441   // Note that we have added this copy-assignment operator.
10442   ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
10443 
10444   if (Scope *S = getScopeForContext(ClassDecl))
10445     PushOnScopeChains(MoveAssignment, S, false);
10446   ClassDecl->addDecl(MoveAssignment);
10447 
10448   return MoveAssignment;
10449 }
10450 
10451 /// Check if we're implicitly defining a move assignment operator for a class
10452 /// with virtual bases. Such a move assignment might move-assign the virtual
10453 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)10454 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
10455                                                SourceLocation CurrentLocation) {
10456   assert(!Class->isDependentContext() && "should not define dependent move");
10457 
10458   // Only a virtual base could get implicitly move-assigned multiple times.
10459   // Only a non-trivial move assignment can observe this. We only want to
10460   // diagnose if we implicitly define an assignment operator that assigns
10461   // two base classes, both of which move-assign the same virtual base.
10462   if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
10463       Class->getNumBases() < 2)
10464     return;
10465 
10466   llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
10467   typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
10468   VBaseMap VBases;
10469 
10470   for (auto &BI : Class->bases()) {
10471     Worklist.push_back(&BI);
10472     while (!Worklist.empty()) {
10473       CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
10474       CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
10475 
10476       // If the base has no non-trivial move assignment operators,
10477       // we don't care about moves from it.
10478       if (!Base->hasNonTrivialMoveAssignment())
10479         continue;
10480 
10481       // If there's nothing virtual here, skip it.
10482       if (!BaseSpec->isVirtual() && !Base->getNumVBases())
10483         continue;
10484 
10485       // If we're not actually going to call a move assignment for this base,
10486       // or the selected move assignment is trivial, skip it.
10487       Sema::SpecialMemberOverloadResult *SMOR =
10488         S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
10489                               /*ConstArg*/false, /*VolatileArg*/false,
10490                               /*RValueThis*/true, /*ConstThis*/false,
10491                               /*VolatileThis*/false);
10492       if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
10493           !SMOR->getMethod()->isMoveAssignmentOperator())
10494         continue;
10495 
10496       if (BaseSpec->isVirtual()) {
10497         // We're going to move-assign this virtual base, and its move
10498         // assignment operator is not trivial. If this can happen for
10499         // multiple distinct direct bases of Class, diagnose it. (If it
10500         // only happens in one base, we'll diagnose it when synthesizing
10501         // that base class's move assignment operator.)
10502         CXXBaseSpecifier *&Existing =
10503             VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
10504                 .first->second;
10505         if (Existing && Existing != &BI) {
10506           S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
10507             << Class << Base;
10508           S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
10509             << (Base->getCanonicalDecl() ==
10510                 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10511             << Base << Existing->getType() << Existing->getSourceRange();
10512           S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
10513             << (Base->getCanonicalDecl() ==
10514                 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10515             << Base << BI.getType() << BaseSpec->getSourceRange();
10516 
10517           // Only diagnose each vbase once.
10518           Existing = nullptr;
10519         }
10520       } else {
10521         // Only walk over bases that have defaulted move assignment operators.
10522         // We assume that any user-provided move assignment operator handles
10523         // the multiple-moves-of-vbase case itself somehow.
10524         if (!SMOR->getMethod()->isDefaulted())
10525           continue;
10526 
10527         // We're going to move the base classes of Base. Add them to the list.
10528         for (auto &BI : Base->bases())
10529           Worklist.push_back(&BI);
10530       }
10531     }
10532   }
10533 }
10534 
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)10535 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
10536                                         CXXMethodDecl *MoveAssignOperator) {
10537   assert((MoveAssignOperator->isDefaulted() &&
10538           MoveAssignOperator->isOverloadedOperator() &&
10539           MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
10540           !MoveAssignOperator->doesThisDeclarationHaveABody() &&
10541           !MoveAssignOperator->isDeleted()) &&
10542          "DefineImplicitMoveAssignment called for wrong function");
10543 
10544   CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
10545 
10546   if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
10547     MoveAssignOperator->setInvalidDecl();
10548     return;
10549   }
10550 
10551   MoveAssignOperator->markUsed(Context);
10552 
10553   SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
10554   DiagnosticErrorTrap Trap(Diags);
10555 
10556   // C++0x [class.copy]p28:
10557   //   The implicitly-defined or move assignment operator for a non-union class
10558   //   X performs memberwise move assignment of its subobjects. The direct base
10559   //   classes of X are assigned first, in the order of their declaration in the
10560   //   base-specifier-list, and then the immediate non-static data members of X
10561   //   are assigned, in the order in which they were declared in the class
10562   //   definition.
10563 
10564   // Issue a warning if our implicit move assignment operator will move
10565   // from a virtual base more than once.
10566   checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
10567 
10568   // The statements that form the synthesized function body.
10569   SmallVector<Stmt*, 8> Statements;
10570 
10571   // The parameter for the "other" object, which we are move from.
10572   ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
10573   QualType OtherRefType = Other->getType()->
10574       getAs<RValueReferenceType>()->getPointeeType();
10575   assert(!OtherRefType.getQualifiers() &&
10576          "Bad argument type of defaulted move assignment");
10577 
10578   // Our location for everything implicitly-generated.
10579   SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
10580                            ? MoveAssignOperator->getLocEnd()
10581                            : MoveAssignOperator->getLocation();
10582 
10583   // Builds a reference to the "other" object.
10584   RefBuilder OtherRef(Other, OtherRefType);
10585   // Cast to rvalue.
10586   MoveCastBuilder MoveOther(OtherRef);
10587 
10588   // Builds the "this" pointer.
10589   ThisBuilder This;
10590 
10591   // Assign base classes.
10592   bool Invalid = false;
10593   for (auto &Base : ClassDecl->bases()) {
10594     // C++11 [class.copy]p28:
10595     //   It is unspecified whether subobjects representing virtual base classes
10596     //   are assigned more than once by the implicitly-defined copy assignment
10597     //   operator.
10598     // FIXME: Do not assign to a vbase that will be assigned by some other base
10599     // class. For a move-assignment, this can result in the vbase being moved
10600     // multiple times.
10601 
10602     // Form the assignment:
10603     //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
10604     QualType BaseType = Base.getType().getUnqualifiedType();
10605     if (!BaseType->isRecordType()) {
10606       Invalid = true;
10607       continue;
10608     }
10609 
10610     CXXCastPath BasePath;
10611     BasePath.push_back(&Base);
10612 
10613     // Construct the "from" expression, which is an implicit cast to the
10614     // appropriately-qualified base type.
10615     CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
10616 
10617     // Dereference "this".
10618     DerefBuilder DerefThis(This);
10619 
10620     // Implicitly cast "this" to the appropriately-qualified base type.
10621     CastBuilder To(DerefThis,
10622                    Context.getCVRQualifiedType(
10623                        BaseType, MoveAssignOperator->getTypeQualifiers()),
10624                    VK_LValue, BasePath);
10625 
10626     // Build the move.
10627     StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
10628                                             To, From,
10629                                             /*CopyingBaseSubobject=*/true,
10630                                             /*Copying=*/false);
10631     if (Move.isInvalid()) {
10632       Diag(CurrentLocation, diag::note_member_synthesized_at)
10633         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10634       MoveAssignOperator->setInvalidDecl();
10635       return;
10636     }
10637 
10638     // Success! Record the move.
10639     Statements.push_back(Move.getAs<Expr>());
10640   }
10641 
10642   // Assign non-static members.
10643   for (auto *Field : ClassDecl->fields()) {
10644     if (Field->isUnnamedBitfield())
10645       continue;
10646 
10647     if (Field->isInvalidDecl()) {
10648       Invalid = true;
10649       continue;
10650     }
10651 
10652     // Check for members of reference type; we can't move those.
10653     if (Field->getType()->isReferenceType()) {
10654       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10655         << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10656       Diag(Field->getLocation(), diag::note_declared_at);
10657       Diag(CurrentLocation, diag::note_member_synthesized_at)
10658         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10659       Invalid = true;
10660       continue;
10661     }
10662 
10663     // Check for members of const-qualified, non-class type.
10664     QualType BaseType = Context.getBaseElementType(Field->getType());
10665     if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10666       Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10667         << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10668       Diag(Field->getLocation(), diag::note_declared_at);
10669       Diag(CurrentLocation, diag::note_member_synthesized_at)
10670         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10671       Invalid = true;
10672       continue;
10673     }
10674 
10675     // Suppress assigning zero-width bitfields.
10676     if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10677       continue;
10678 
10679     QualType FieldType = Field->getType().getNonReferenceType();
10680     if (FieldType->isIncompleteArrayType()) {
10681       assert(ClassDecl->hasFlexibleArrayMember() &&
10682              "Incomplete array type is not valid");
10683       continue;
10684     }
10685 
10686     // Build references to the field in the object we're copying from and to.
10687     LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10688                               LookupMemberName);
10689     MemberLookup.addDecl(Field);
10690     MemberLookup.resolveKind();
10691     MemberBuilder From(MoveOther, OtherRefType,
10692                        /*IsArrow=*/false, MemberLookup);
10693     MemberBuilder To(This, getCurrentThisType(),
10694                      /*IsArrow=*/true, MemberLookup);
10695 
10696     assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
10697         "Member reference with rvalue base must be rvalue except for reference "
10698         "members, which aren't allowed for move assignment.");
10699 
10700     // Build the move of this field.
10701     StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
10702                                             To, From,
10703                                             /*CopyingBaseSubobject=*/false,
10704                                             /*Copying=*/false);
10705     if (Move.isInvalid()) {
10706       Diag(CurrentLocation, diag::note_member_synthesized_at)
10707         << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10708       MoveAssignOperator->setInvalidDecl();
10709       return;
10710     }
10711 
10712     // Success! Record the copy.
10713     Statements.push_back(Move.getAs<Stmt>());
10714   }
10715 
10716   if (!Invalid) {
10717     // Add a "return *this;"
10718     ExprResult ThisObj =
10719         CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10720 
10721     StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10722     if (Return.isInvalid())
10723       Invalid = true;
10724     else {
10725       Statements.push_back(Return.getAs<Stmt>());
10726 
10727       if (Trap.hasErrorOccurred()) {
10728         Diag(CurrentLocation, diag::note_member_synthesized_at)
10729           << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10730         Invalid = true;
10731       }
10732     }
10733   }
10734 
10735   // The exception specification is needed because we are defining the
10736   // function.
10737   ResolveExceptionSpec(CurrentLocation,
10738                        MoveAssignOperator->getType()->castAs<FunctionProtoType>());
10739 
10740   if (Invalid) {
10741     MoveAssignOperator->setInvalidDecl();
10742     return;
10743   }
10744 
10745   StmtResult Body;
10746   {
10747     CompoundScopeRAII CompoundScope(*this);
10748     Body = ActOnCompoundStmt(Loc, Loc, Statements,
10749                              /*isStmtExpr=*/false);
10750     assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10751   }
10752   MoveAssignOperator->setBody(Body.getAs<Stmt>());
10753 
10754   if (ASTMutationListener *L = getASTMutationListener()) {
10755     L->CompletedImplicitDefinition(MoveAssignOperator);
10756   }
10757 }
10758 
10759 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl * MD)10760 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10761   CXXRecordDecl *ClassDecl = MD->getParent();
10762 
10763   ImplicitExceptionSpecification ExceptSpec(*this);
10764   if (ClassDecl->isInvalidDecl())
10765     return ExceptSpec;
10766 
10767   const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10768   assert(T->getNumParams() >= 1 && "not a copy ctor");
10769   unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
10770 
10771   // C++ [except.spec]p14:
10772   //   An implicitly declared special member function (Clause 12) shall have an
10773   //   exception-specification. [...]
10774   for (const auto &Base : ClassDecl->bases()) {
10775     // Virtual bases are handled below.
10776     if (Base.isVirtual())
10777       continue;
10778 
10779     CXXRecordDecl *BaseClassDecl
10780       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10781     if (CXXConstructorDecl *CopyConstructor =
10782           LookupCopyingConstructor(BaseClassDecl, Quals))
10783       ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10784   }
10785   for (const auto &Base : ClassDecl->vbases()) {
10786     CXXRecordDecl *BaseClassDecl
10787       = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10788     if (CXXConstructorDecl *CopyConstructor =
10789           LookupCopyingConstructor(BaseClassDecl, Quals))
10790       ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10791   }
10792   for (const auto *Field : ClassDecl->fields()) {
10793     QualType FieldType = Context.getBaseElementType(Field->getType());
10794     if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10795       if (CXXConstructorDecl *CopyConstructor =
10796               LookupCopyingConstructor(FieldClassDecl,
10797                                        Quals | FieldType.getCVRQualifiers()))
10798       ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10799     }
10800   }
10801 
10802   return ExceptSpec;
10803 }
10804 
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)10805 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10806                                                     CXXRecordDecl *ClassDecl) {
10807   // C++ [class.copy]p4:
10808   //   If the class definition does not explicitly declare a copy
10809   //   constructor, one is declared implicitly.
10810   assert(ClassDecl->needsImplicitCopyConstructor());
10811 
10812   DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10813   if (DSM.isAlreadyBeingDeclared())
10814     return nullptr;
10815 
10816   QualType ClassType = Context.getTypeDeclType(ClassDecl);
10817   QualType ArgType = ClassType;
10818   bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10819   if (Const)
10820     ArgType = ArgType.withConst();
10821   ArgType = Context.getLValueReferenceType(ArgType);
10822 
10823   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10824                                                      CXXCopyConstructor,
10825                                                      Const);
10826 
10827   DeclarationName Name
10828     = Context.DeclarationNames.getCXXConstructorName(
10829                                            Context.getCanonicalType(ClassType));
10830   SourceLocation ClassLoc = ClassDecl->getLocation();
10831   DeclarationNameInfo NameInfo(Name, ClassLoc);
10832 
10833   //   An implicitly-declared copy constructor is an inline public
10834   //   member of its class.
10835   CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10836       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10837       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10838       Constexpr);
10839   CopyConstructor->setAccess(AS_public);
10840   CopyConstructor->setDefaulted();
10841 
10842   if (getLangOpts().CUDA) {
10843     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
10844                                             CopyConstructor,
10845                                             /* ConstRHS */ Const,
10846                                             /* Diagnose */ false);
10847   }
10848 
10849   // Build an exception specification pointing back at this member.
10850   FunctionProtoType::ExtProtoInfo EPI =
10851       getImplicitMethodEPI(*this, CopyConstructor);
10852   CopyConstructor->setType(
10853       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10854 
10855   // Add the parameter to the constructor.
10856   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10857                                                ClassLoc, ClassLoc,
10858                                                /*IdentifierInfo=*/nullptr,
10859                                                ArgType, /*TInfo=*/nullptr,
10860                                                SC_None, nullptr);
10861   CopyConstructor->setParams(FromParam);
10862 
10863   CopyConstructor->setTrivial(
10864     ClassDecl->needsOverloadResolutionForCopyConstructor()
10865       ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10866       : ClassDecl->hasTrivialCopyConstructor());
10867 
10868   if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10869     SetDeclDeleted(CopyConstructor, ClassLoc);
10870 
10871   // Note that we have declared this constructor.
10872   ++ASTContext::NumImplicitCopyConstructorsDeclared;
10873 
10874   if (Scope *S = getScopeForContext(ClassDecl))
10875     PushOnScopeChains(CopyConstructor, S, false);
10876   ClassDecl->addDecl(CopyConstructor);
10877 
10878   return CopyConstructor;
10879 }
10880 
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)10881 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10882                                    CXXConstructorDecl *CopyConstructor) {
10883   assert((CopyConstructor->isDefaulted() &&
10884           CopyConstructor->isCopyConstructor() &&
10885           !CopyConstructor->doesThisDeclarationHaveABody() &&
10886           !CopyConstructor->isDeleted()) &&
10887          "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10888 
10889   CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10890   assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10891 
10892   // C++11 [class.copy]p7:
10893   //   The [definition of an implicitly declared copy constructor] is
10894   //   deprecated if the class has a user-declared copy assignment operator
10895   //   or a user-declared destructor.
10896   if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10897     diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10898 
10899   SynthesizedFunctionScope Scope(*this, CopyConstructor);
10900   DiagnosticErrorTrap Trap(Diags);
10901 
10902   if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10903       Trap.hasErrorOccurred()) {
10904     Diag(CurrentLocation, diag::note_member_synthesized_at)
10905       << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10906     CopyConstructor->setInvalidDecl();
10907   }  else {
10908     SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
10909                              ? CopyConstructor->getLocEnd()
10910                              : CopyConstructor->getLocation();
10911     Sema::CompoundScopeRAII CompoundScope(*this);
10912     CopyConstructor->setBody(
10913         ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
10914   }
10915 
10916   // The exception specification is needed because we are defining the
10917   // function.
10918   ResolveExceptionSpec(CurrentLocation,
10919                        CopyConstructor->getType()->castAs<FunctionProtoType>());
10920 
10921   CopyConstructor->markUsed(Context);
10922   MarkVTableUsed(CurrentLocation, ClassDecl);
10923 
10924   if (ASTMutationListener *L = getASTMutationListener()) {
10925     L->CompletedImplicitDefinition(CopyConstructor);
10926   }
10927 }
10928 
10929 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl * MD)10930 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10931   CXXRecordDecl *ClassDecl = MD->getParent();
10932 
10933   // C++ [except.spec]p14:
10934   //   An implicitly declared special member function (Clause 12) shall have an
10935   //   exception-specification. [...]
10936   ImplicitExceptionSpecification ExceptSpec(*this);
10937   if (ClassDecl->isInvalidDecl())
10938     return ExceptSpec;
10939 
10940   // Direct base-class constructors.
10941   for (const auto &B : ClassDecl->bases()) {
10942     if (B.isVirtual()) // Handled below.
10943       continue;
10944 
10945     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10946       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10947       CXXConstructorDecl *Constructor =
10948           LookupMovingConstructor(BaseClassDecl, 0);
10949       // If this is a deleted function, add it anyway. This might be conformant
10950       // with the standard. This might not. I'm not sure. It might not matter.
10951       if (Constructor)
10952         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10953     }
10954   }
10955 
10956   // Virtual base-class constructors.
10957   for (const auto &B : ClassDecl->vbases()) {
10958     if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10959       CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10960       CXXConstructorDecl *Constructor =
10961           LookupMovingConstructor(BaseClassDecl, 0);
10962       // If this is a deleted function, add it anyway. This might be conformant
10963       // with the standard. This might not. I'm not sure. It might not matter.
10964       if (Constructor)
10965         ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10966     }
10967   }
10968 
10969   // Field constructors.
10970   for (const auto *F : ClassDecl->fields()) {
10971     QualType FieldType = Context.getBaseElementType(F->getType());
10972     if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10973       CXXConstructorDecl *Constructor =
10974           LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10975       // If this is a deleted function, add it anyway. This might be conformant
10976       // with the standard. This might not. I'm not sure. It might not matter.
10977       // In particular, the problem is that this function never gets called. It
10978       // might just be ill-formed because this function attempts to refer to
10979       // a deleted function here.
10980       if (Constructor)
10981         ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10982     }
10983   }
10984 
10985   return ExceptSpec;
10986 }
10987 
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)10988 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10989                                                     CXXRecordDecl *ClassDecl) {
10990   assert(ClassDecl->needsImplicitMoveConstructor());
10991 
10992   DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10993   if (DSM.isAlreadyBeingDeclared())
10994     return nullptr;
10995 
10996   QualType ClassType = Context.getTypeDeclType(ClassDecl);
10997   QualType ArgType = Context.getRValueReferenceType(ClassType);
10998 
10999   bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11000                                                      CXXMoveConstructor,
11001                                                      false);
11002 
11003   DeclarationName Name
11004     = Context.DeclarationNames.getCXXConstructorName(
11005                                            Context.getCanonicalType(ClassType));
11006   SourceLocation ClassLoc = ClassDecl->getLocation();
11007   DeclarationNameInfo NameInfo(Name, ClassLoc);
11008 
11009   // C++11 [class.copy]p11:
11010   //   An implicitly-declared copy/move constructor is an inline public
11011   //   member of its class.
11012   CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
11013       Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
11014       /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
11015       Constexpr);
11016   MoveConstructor->setAccess(AS_public);
11017   MoveConstructor->setDefaulted();
11018 
11019   if (getLangOpts().CUDA) {
11020     inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
11021                                             MoveConstructor,
11022                                             /* ConstRHS */ false,
11023                                             /* Diagnose */ false);
11024   }
11025 
11026   // Build an exception specification pointing back at this member.
11027   FunctionProtoType::ExtProtoInfo EPI =
11028       getImplicitMethodEPI(*this, MoveConstructor);
11029   MoveConstructor->setType(
11030       Context.getFunctionType(Context.VoidTy, ArgType, EPI));
11031 
11032   // Add the parameter to the constructor.
11033   ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
11034                                                ClassLoc, ClassLoc,
11035                                                /*IdentifierInfo=*/nullptr,
11036                                                ArgType, /*TInfo=*/nullptr,
11037                                                SC_None, nullptr);
11038   MoveConstructor->setParams(FromParam);
11039 
11040   MoveConstructor->setTrivial(
11041     ClassDecl->needsOverloadResolutionForMoveConstructor()
11042       ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
11043       : ClassDecl->hasTrivialMoveConstructor());
11044 
11045   if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
11046     ClassDecl->setImplicitMoveConstructorIsDeleted();
11047     SetDeclDeleted(MoveConstructor, ClassLoc);
11048   }
11049 
11050   // Note that we have declared this constructor.
11051   ++ASTContext::NumImplicitMoveConstructorsDeclared;
11052 
11053   if (Scope *S = getScopeForContext(ClassDecl))
11054     PushOnScopeChains(MoveConstructor, S, false);
11055   ClassDecl->addDecl(MoveConstructor);
11056 
11057   return MoveConstructor;
11058 }
11059 
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)11060 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
11061                                    CXXConstructorDecl *MoveConstructor) {
11062   assert((MoveConstructor->isDefaulted() &&
11063           MoveConstructor->isMoveConstructor() &&
11064           !MoveConstructor->doesThisDeclarationHaveABody() &&
11065           !MoveConstructor->isDeleted()) &&
11066          "DefineImplicitMoveConstructor - call it for implicit move ctor");
11067 
11068   CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
11069   assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
11070 
11071   SynthesizedFunctionScope Scope(*this, MoveConstructor);
11072   DiagnosticErrorTrap Trap(Diags);
11073 
11074   if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
11075       Trap.hasErrorOccurred()) {
11076     Diag(CurrentLocation, diag::note_member_synthesized_at)
11077       << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
11078     MoveConstructor->setInvalidDecl();
11079   }  else {
11080     SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
11081                              ? MoveConstructor->getLocEnd()
11082                              : MoveConstructor->getLocation();
11083     Sema::CompoundScopeRAII CompoundScope(*this);
11084     MoveConstructor->setBody(ActOnCompoundStmt(
11085         Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
11086   }
11087 
11088   // The exception specification is needed because we are defining the
11089   // function.
11090   ResolveExceptionSpec(CurrentLocation,
11091                        MoveConstructor->getType()->castAs<FunctionProtoType>());
11092 
11093   MoveConstructor->markUsed(Context);
11094   MarkVTableUsed(CurrentLocation, ClassDecl);
11095 
11096   if (ASTMutationListener *L = getASTMutationListener()) {
11097     L->CompletedImplicitDefinition(MoveConstructor);
11098   }
11099 }
11100 
isImplicitlyDeleted(FunctionDecl * FD)11101 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
11102   return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
11103 }
11104 
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11105 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
11106                             SourceLocation CurrentLocation,
11107                             CXXConversionDecl *Conv) {
11108   CXXRecordDecl *Lambda = Conv->getParent();
11109   CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
11110   // If we are defining a specialization of a conversion to function-ptr
11111   // cache the deduced template arguments for this specialization
11112   // so that we can use them to retrieve the corresponding call-operator
11113   // and static-invoker.
11114   const TemplateArgumentList *DeducedTemplateArgs = nullptr;
11115 
11116   // Retrieve the corresponding call-operator specialization.
11117   if (Lambda->isGenericLambda()) {
11118     assert(Conv->isFunctionTemplateSpecialization());
11119     FunctionTemplateDecl *CallOpTemplate =
11120         CallOp->getDescribedFunctionTemplate();
11121     DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
11122     void *InsertPos = nullptr;
11123     FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
11124                                                 DeducedTemplateArgs->asArray(),
11125                                                 InsertPos);
11126     assert(CallOpSpec &&
11127           "Conversion operator must have a corresponding call operator");
11128     CallOp = cast<CXXMethodDecl>(CallOpSpec);
11129   }
11130   // Mark the call operator referenced (and add to pending instantiations
11131   // if necessary).
11132   // For both the conversion and static-invoker template specializations
11133   // we construct their body's in this function, so no need to add them
11134   // to the PendingInstantiations.
11135   MarkFunctionReferenced(CurrentLocation, CallOp);
11136 
11137   SynthesizedFunctionScope Scope(*this, Conv);
11138   DiagnosticErrorTrap Trap(Diags);
11139 
11140   // Retrieve the static invoker...
11141   CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
11142   // ... and get the corresponding specialization for a generic lambda.
11143   if (Lambda->isGenericLambda()) {
11144     assert(DeducedTemplateArgs &&
11145       "Must have deduced template arguments from Conversion Operator");
11146     FunctionTemplateDecl *InvokeTemplate =
11147                           Invoker->getDescribedFunctionTemplate();
11148     void *InsertPos = nullptr;
11149     FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
11150                                                 DeducedTemplateArgs->asArray(),
11151                                                 InsertPos);
11152     assert(InvokeSpec &&
11153       "Must have a corresponding static invoker specialization");
11154     Invoker = cast<CXXMethodDecl>(InvokeSpec);
11155   }
11156   // Construct the body of the conversion function { return __invoke; }.
11157   Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
11158                                         VK_LValue, Conv->getLocation()).get();
11159    assert(FunctionRef && "Can't refer to __invoke function?");
11160    Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
11161    Conv->setBody(new (Context) CompoundStmt(Context, Return,
11162                                             Conv->getLocation(),
11163                                             Conv->getLocation()));
11164 
11165   Conv->markUsed(Context);
11166   Conv->setReferenced();
11167 
11168   // Fill in the __invoke function with a dummy implementation. IR generation
11169   // will fill in the actual details.
11170   Invoker->markUsed(Context);
11171   Invoker->setReferenced();
11172   Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
11173 
11174   if (ASTMutationListener *L = getASTMutationListener()) {
11175     L->CompletedImplicitDefinition(Conv);
11176     L->CompletedImplicitDefinition(Invoker);
11177    }
11178 }
11179 
11180 
11181 
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11182 void Sema::DefineImplicitLambdaToBlockPointerConversion(
11183        SourceLocation CurrentLocation,
11184        CXXConversionDecl *Conv)
11185 {
11186   assert(!Conv->getParent()->isGenericLambda());
11187 
11188   Conv->markUsed(Context);
11189 
11190   SynthesizedFunctionScope Scope(*this, Conv);
11191   DiagnosticErrorTrap Trap(Diags);
11192 
11193   // Copy-initialize the lambda object as needed to capture it.
11194   Expr *This = ActOnCXXThis(CurrentLocation).get();
11195   Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
11196 
11197   ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
11198                                                         Conv->getLocation(),
11199                                                         Conv, DerefThis);
11200 
11201   // If we're not under ARC, make sure we still get the _Block_copy/autorelease
11202   // behavior.  Note that only the general conversion function does this
11203   // (since it's unusable otherwise); in the case where we inline the
11204   // block literal, it has block literal lifetime semantics.
11205   if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
11206     BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
11207                                           CK_CopyAndAutoreleaseBlockObject,
11208                                           BuildBlock.get(), nullptr, VK_RValue);
11209 
11210   if (BuildBlock.isInvalid()) {
11211     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11212     Conv->setInvalidDecl();
11213     return;
11214   }
11215 
11216   // Create the return statement that returns the block from the conversion
11217   // function.
11218   StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
11219   if (Return.isInvalid()) {
11220     Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11221     Conv->setInvalidDecl();
11222     return;
11223   }
11224 
11225   // Set the body of the conversion function.
11226   Stmt *ReturnS = Return.get();
11227   Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
11228                                            Conv->getLocation(),
11229                                            Conv->getLocation()));
11230 
11231   // We're done; notify the mutation listener, if any.
11232   if (ASTMutationListener *L = getASTMutationListener()) {
11233     L->CompletedImplicitDefinition(Conv);
11234   }
11235 }
11236 
11237 /// \brief Determine whether the given list arguments contains exactly one
11238 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)11239 static bool hasOneRealArgument(MultiExprArg Args) {
11240   switch (Args.size()) {
11241   case 0:
11242     return false;
11243 
11244   default:
11245     if (!Args[1]->isDefaultArgument())
11246       return false;
11247 
11248     // fall through
11249   case 1:
11250     return !Args[0]->isDefaultArgument();
11251   }
11252 
11253   return false;
11254 }
11255 
11256 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11257 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11258                             CXXConstructorDecl *Constructor,
11259                             MultiExprArg ExprArgs,
11260                             bool HadMultipleCandidates,
11261                             bool IsListInitialization,
11262                             bool IsStdInitListInitialization,
11263                             bool RequiresZeroInit,
11264                             unsigned ConstructKind,
11265                             SourceRange ParenRange) {
11266   bool Elidable = false;
11267 
11268   // C++0x [class.copy]p34:
11269   //   When certain criteria are met, an implementation is allowed to
11270   //   omit the copy/move construction of a class object, even if the
11271   //   copy/move constructor and/or destructor for the object have
11272   //   side effects. [...]
11273   //     - when a temporary class object that has not been bound to a
11274   //       reference (12.2) would be copied/moved to a class object
11275   //       with the same cv-unqualified type, the copy/move operation
11276   //       can be omitted by constructing the temporary object
11277   //       directly into the target of the omitted copy/move
11278   if (ConstructKind == CXXConstructExpr::CK_Complete &&
11279       Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
11280     Expr *SubExpr = ExprArgs[0];
11281     Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
11282   }
11283 
11284   return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
11285                                Elidable, ExprArgs, HadMultipleCandidates,
11286                                IsListInitialization,
11287                                IsStdInitListInitialization, RequiresZeroInit,
11288                                ConstructKind, ParenRange);
11289 }
11290 
11291 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
11292 /// including handling of its default argument expressions.
11293 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11294 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11295                             CXXConstructorDecl *Constructor, bool Elidable,
11296                             MultiExprArg ExprArgs,
11297                             bool HadMultipleCandidates,
11298                             bool IsListInitialization,
11299                             bool IsStdInitListInitialization,
11300                             bool RequiresZeroInit,
11301                             unsigned ConstructKind,
11302                             SourceRange ParenRange) {
11303   MarkFunctionReferenced(ConstructLoc, Constructor);
11304   return CXXConstructExpr::Create(
11305       Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
11306       HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
11307       RequiresZeroInit,
11308       static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
11309       ParenRange);
11310 }
11311 
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)11312 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
11313   assert(Field->hasInClassInitializer());
11314 
11315   // If we already have the in-class initializer nothing needs to be done.
11316   if (Field->getInClassInitializer())
11317     return CXXDefaultInitExpr::Create(Context, Loc, Field);
11318 
11319   // Maybe we haven't instantiated the in-class initializer. Go check the
11320   // pattern FieldDecl to see if it has one.
11321   CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
11322 
11323   if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
11324     CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
11325     DeclContext::lookup_result Lookup =
11326         ClassPattern->lookup(Field->getDeclName());
11327     assert(Lookup.size() == 1);
11328     FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]);
11329     if (InstantiateInClassInitializer(Loc, Field, Pattern,
11330                                       getTemplateInstantiationArgs(Field)))
11331       return ExprError();
11332     return CXXDefaultInitExpr::Create(Context, Loc, Field);
11333   }
11334 
11335   // DR1351:
11336   //   If the brace-or-equal-initializer of a non-static data member
11337   //   invokes a defaulted default constructor of its class or of an
11338   //   enclosing class in a potentially evaluated subexpression, the
11339   //   program is ill-formed.
11340   //
11341   // This resolution is unworkable: the exception specification of the
11342   // default constructor can be needed in an unevaluated context, in
11343   // particular, in the operand of a noexcept-expression, and we can be
11344   // unable to compute an exception specification for an enclosed class.
11345   //
11346   // Any attempt to resolve the exception specification of a defaulted default
11347   // constructor before the initializer is lexically complete will ultimately
11348   // come here at which point we can diagnose it.
11349   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
11350   if (OutermostClass == ParentRD) {
11351     Diag(Field->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed)
11352         << ParentRD << Field;
11353   } else {
11354     Diag(Field->getLocEnd(),
11355          diag::err_in_class_initializer_not_yet_parsed_outer_class)
11356         << ParentRD << OutermostClass << Field;
11357   }
11358 
11359   return ExprError();
11360 }
11361 
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)11362 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
11363   if (VD->isInvalidDecl()) return;
11364 
11365   CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
11366   if (ClassDecl->isInvalidDecl()) return;
11367   if (ClassDecl->hasIrrelevantDestructor()) return;
11368   if (ClassDecl->isDependentContext()) return;
11369 
11370   CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
11371   MarkFunctionReferenced(VD->getLocation(), Destructor);
11372   CheckDestructorAccess(VD->getLocation(), Destructor,
11373                         PDiag(diag::err_access_dtor_var)
11374                         << VD->getDeclName()
11375                         << VD->getType());
11376   DiagnoseUseOfDecl(Destructor, VD->getLocation());
11377 
11378   if (Destructor->isTrivial()) return;
11379   if (!VD->hasGlobalStorage()) return;
11380 
11381   // Emit warning for non-trivial dtor in global scope (a real global,
11382   // class-static, function-static).
11383   Diag(VD->getLocation(), diag::warn_exit_time_destructor);
11384 
11385   // TODO: this should be re-enabled for static locals by !CXAAtExit
11386   if (!VD->isStaticLocal())
11387     Diag(VD->getLocation(), diag::warn_global_destructor);
11388 }
11389 
11390 /// \brief Given a constructor and the set of arguments provided for the
11391 /// constructor, convert the arguments and add any required default arguments
11392 /// to form a proper call to this constructor.
11393 ///
11394 /// \returns true if an error occurred, false otherwise.
11395 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)11396 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
11397                               MultiExprArg ArgsPtr,
11398                               SourceLocation Loc,
11399                               SmallVectorImpl<Expr*> &ConvertedArgs,
11400                               bool AllowExplicit,
11401                               bool IsListInitialization) {
11402   // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
11403   unsigned NumArgs = ArgsPtr.size();
11404   Expr **Args = ArgsPtr.data();
11405 
11406   const FunctionProtoType *Proto
11407     = Constructor->getType()->getAs<FunctionProtoType>();
11408   assert(Proto && "Constructor without a prototype?");
11409   unsigned NumParams = Proto->getNumParams();
11410 
11411   // If too few arguments are available, we'll fill in the rest with defaults.
11412   if (NumArgs < NumParams)
11413     ConvertedArgs.reserve(NumParams);
11414   else
11415     ConvertedArgs.reserve(NumArgs);
11416 
11417   VariadicCallType CallType =
11418     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
11419   SmallVector<Expr *, 8> AllArgs;
11420   bool Invalid = GatherArgumentsForCall(Loc, Constructor,
11421                                         Proto, 0,
11422                                         llvm::makeArrayRef(Args, NumArgs),
11423                                         AllArgs,
11424                                         CallType, AllowExplicit,
11425                                         IsListInitialization);
11426   ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
11427 
11428   DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
11429 
11430   CheckConstructorCall(Constructor,
11431                        llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
11432                        Proto, Loc);
11433 
11434   return Invalid;
11435 }
11436 
11437 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)11438 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
11439                                        const FunctionDecl *FnDecl) {
11440   const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
11441   if (isa<NamespaceDecl>(DC)) {
11442     return SemaRef.Diag(FnDecl->getLocation(),
11443                         diag::err_operator_new_delete_declared_in_namespace)
11444       << FnDecl->getDeclName();
11445   }
11446 
11447   if (isa<TranslationUnitDecl>(DC) &&
11448       FnDecl->getStorageClass() == SC_Static) {
11449     return SemaRef.Diag(FnDecl->getLocation(),
11450                         diag::err_operator_new_delete_declared_static)
11451       << FnDecl->getDeclName();
11452   }
11453 
11454   return false;
11455 }
11456 
11457 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)11458 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
11459                             CanQualType ExpectedResultType,
11460                             CanQualType ExpectedFirstParamType,
11461                             unsigned DependentParamTypeDiag,
11462                             unsigned InvalidParamTypeDiag) {
11463   QualType ResultType =
11464       FnDecl->getType()->getAs<FunctionType>()->getReturnType();
11465 
11466   // Check that the result type is not dependent.
11467   if (ResultType->isDependentType())
11468     return SemaRef.Diag(FnDecl->getLocation(),
11469                         diag::err_operator_new_delete_dependent_result_type)
11470     << FnDecl->getDeclName() << ExpectedResultType;
11471 
11472   // Check that the result type is what we expect.
11473   if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
11474     return SemaRef.Diag(FnDecl->getLocation(),
11475                         diag::err_operator_new_delete_invalid_result_type)
11476     << FnDecl->getDeclName() << ExpectedResultType;
11477 
11478   // A function template must have at least 2 parameters.
11479   if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
11480     return SemaRef.Diag(FnDecl->getLocation(),
11481                       diag::err_operator_new_delete_template_too_few_parameters)
11482         << FnDecl->getDeclName();
11483 
11484   // The function decl must have at least 1 parameter.
11485   if (FnDecl->getNumParams() == 0)
11486     return SemaRef.Diag(FnDecl->getLocation(),
11487                         diag::err_operator_new_delete_too_few_parameters)
11488       << FnDecl->getDeclName();
11489 
11490   // Check the first parameter type is not dependent.
11491   QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
11492   if (FirstParamType->isDependentType())
11493     return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
11494       << FnDecl->getDeclName() << ExpectedFirstParamType;
11495 
11496   // Check that the first parameter type is what we expect.
11497   if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
11498       ExpectedFirstParamType)
11499     return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
11500     << FnDecl->getDeclName() << ExpectedFirstParamType;
11501 
11502   return false;
11503 }
11504 
11505 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)11506 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
11507   // C++ [basic.stc.dynamic.allocation]p1:
11508   //   A program is ill-formed if an allocation function is declared in a
11509   //   namespace scope other than global scope or declared static in global
11510   //   scope.
11511   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11512     return true;
11513 
11514   CanQualType SizeTy =
11515     SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
11516 
11517   // C++ [basic.stc.dynamic.allocation]p1:
11518   //  The return type shall be void*. The first parameter shall have type
11519   //  std::size_t.
11520   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
11521                                   SizeTy,
11522                                   diag::err_operator_new_dependent_param_type,
11523                                   diag::err_operator_new_param_type))
11524     return true;
11525 
11526   // C++ [basic.stc.dynamic.allocation]p1:
11527   //  The first parameter shall not have an associated default argument.
11528   if (FnDecl->getParamDecl(0)->hasDefaultArg())
11529     return SemaRef.Diag(FnDecl->getLocation(),
11530                         diag::err_operator_new_default_arg)
11531       << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
11532 
11533   return false;
11534 }
11535 
11536 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)11537 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
11538   // C++ [basic.stc.dynamic.deallocation]p1:
11539   //   A program is ill-formed if deallocation functions are declared in a
11540   //   namespace scope other than global scope or declared static in global
11541   //   scope.
11542   if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11543     return true;
11544 
11545   // C++ [basic.stc.dynamic.deallocation]p2:
11546   //   Each deallocation function shall return void and its first parameter
11547   //   shall be void*.
11548   if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
11549                                   SemaRef.Context.VoidPtrTy,
11550                                  diag::err_operator_delete_dependent_param_type,
11551                                  diag::err_operator_delete_param_type))
11552     return true;
11553 
11554   return false;
11555 }
11556 
11557 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
11558 /// of this overloaded operator is well-formed. If so, returns false;
11559 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)11560 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
11561   assert(FnDecl && FnDecl->isOverloadedOperator() &&
11562          "Expected an overloaded operator declaration");
11563 
11564   OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
11565 
11566   // C++ [over.oper]p5:
11567   //   The allocation and deallocation functions, operator new,
11568   //   operator new[], operator delete and operator delete[], are
11569   //   described completely in 3.7.3. The attributes and restrictions
11570   //   found in the rest of this subclause do not apply to them unless
11571   //   explicitly stated in 3.7.3.
11572   if (Op == OO_Delete || Op == OO_Array_Delete)
11573     return CheckOperatorDeleteDeclaration(*this, FnDecl);
11574 
11575   if (Op == OO_New || Op == OO_Array_New)
11576     return CheckOperatorNewDeclaration(*this, FnDecl);
11577 
11578   // C++ [over.oper]p6:
11579   //   An operator function shall either be a non-static member
11580   //   function or be a non-member function and have at least one
11581   //   parameter whose type is a class, a reference to a class, an
11582   //   enumeration, or a reference to an enumeration.
11583   if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
11584     if (MethodDecl->isStatic())
11585       return Diag(FnDecl->getLocation(),
11586                   diag::err_operator_overload_static) << FnDecl->getDeclName();
11587   } else {
11588     bool ClassOrEnumParam = false;
11589     for (auto Param : FnDecl->params()) {
11590       QualType ParamType = Param->getType().getNonReferenceType();
11591       if (ParamType->isDependentType() || ParamType->isRecordType() ||
11592           ParamType->isEnumeralType()) {
11593         ClassOrEnumParam = true;
11594         break;
11595       }
11596     }
11597 
11598     if (!ClassOrEnumParam)
11599       return Diag(FnDecl->getLocation(),
11600                   diag::err_operator_overload_needs_class_or_enum)
11601         << FnDecl->getDeclName();
11602   }
11603 
11604   // C++ [over.oper]p8:
11605   //   An operator function cannot have default arguments (8.3.6),
11606   //   except where explicitly stated below.
11607   //
11608   // Only the function-call operator allows default arguments
11609   // (C++ [over.call]p1).
11610   if (Op != OO_Call) {
11611     for (auto Param : FnDecl->params()) {
11612       if (Param->hasDefaultArg())
11613         return Diag(Param->getLocation(),
11614                     diag::err_operator_overload_default_arg)
11615           << FnDecl->getDeclName() << Param->getDefaultArgRange();
11616     }
11617   }
11618 
11619   static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
11620     { false, false, false }
11621 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11622     , { Unary, Binary, MemberOnly }
11623 #include "clang/Basic/OperatorKinds.def"
11624   };
11625 
11626   bool CanBeUnaryOperator = OperatorUses[Op][0];
11627   bool CanBeBinaryOperator = OperatorUses[Op][1];
11628   bool MustBeMemberOperator = OperatorUses[Op][2];
11629 
11630   // C++ [over.oper]p8:
11631   //   [...] Operator functions cannot have more or fewer parameters
11632   //   than the number required for the corresponding operator, as
11633   //   described in the rest of this subclause.
11634   unsigned NumParams = FnDecl->getNumParams()
11635                      + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
11636   if (Op != OO_Call &&
11637       ((NumParams == 1 && !CanBeUnaryOperator) ||
11638        (NumParams == 2 && !CanBeBinaryOperator) ||
11639        (NumParams < 1) || (NumParams > 2))) {
11640     // We have the wrong number of parameters.
11641     unsigned ErrorKind;
11642     if (CanBeUnaryOperator && CanBeBinaryOperator) {
11643       ErrorKind = 2;  // 2 -> unary or binary.
11644     } else if (CanBeUnaryOperator) {
11645       ErrorKind = 0;  // 0 -> unary
11646     } else {
11647       assert(CanBeBinaryOperator &&
11648              "All non-call overloaded operators are unary or binary!");
11649       ErrorKind = 1;  // 1 -> binary
11650     }
11651 
11652     return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
11653       << FnDecl->getDeclName() << NumParams << ErrorKind;
11654   }
11655 
11656   // Overloaded operators other than operator() cannot be variadic.
11657   if (Op != OO_Call &&
11658       FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
11659     return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
11660       << FnDecl->getDeclName();
11661   }
11662 
11663   // Some operators must be non-static member functions.
11664   if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
11665     return Diag(FnDecl->getLocation(),
11666                 diag::err_operator_overload_must_be_member)
11667       << FnDecl->getDeclName();
11668   }
11669 
11670   // C++ [over.inc]p1:
11671   //   The user-defined function called operator++ implements the
11672   //   prefix and postfix ++ operator. If this function is a member
11673   //   function with no parameters, or a non-member function with one
11674   //   parameter of class or enumeration type, it defines the prefix
11675   //   increment operator ++ for objects of that type. If the function
11676   //   is a member function with one parameter (which shall be of type
11677   //   int) or a non-member function with two parameters (the second
11678   //   of which shall be of type int), it defines the postfix
11679   //   increment operator ++ for objects of that type.
11680   if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
11681     ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
11682     QualType ParamType = LastParam->getType();
11683 
11684     if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
11685         !ParamType->isDependentType())
11686       return Diag(LastParam->getLocation(),
11687                   diag::err_operator_overload_post_incdec_must_be_int)
11688         << LastParam->getType() << (Op == OO_MinusMinus);
11689   }
11690 
11691   return false;
11692 }
11693 
11694 /// CheckLiteralOperatorDeclaration - Check whether the declaration
11695 /// of this literal operator function is well-formed. If so, returns
11696 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)11697 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
11698   if (isa<CXXMethodDecl>(FnDecl)) {
11699     Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
11700       << FnDecl->getDeclName();
11701     return true;
11702   }
11703 
11704   if (FnDecl->isExternC()) {
11705     Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
11706     return true;
11707   }
11708 
11709   bool Valid = false;
11710 
11711   // This might be the definition of a literal operator template.
11712   FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
11713   // This might be a specialization of a literal operator template.
11714   if (!TpDecl)
11715     TpDecl = FnDecl->getPrimaryTemplate();
11716 
11717   // template <char...> type operator "" name() and
11718   // template <class T, T...> type operator "" name() are the only valid
11719   // template signatures, and the only valid signatures with no parameters.
11720   if (TpDecl) {
11721     if (FnDecl->param_size() == 0) {
11722       // Must have one or two template parameters
11723       TemplateParameterList *Params = TpDecl->getTemplateParameters();
11724       if (Params->size() == 1) {
11725         NonTypeTemplateParmDecl *PmDecl =
11726           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
11727 
11728         // The template parameter must be a char parameter pack.
11729         if (PmDecl && PmDecl->isTemplateParameterPack() &&
11730             Context.hasSameType(PmDecl->getType(), Context.CharTy))
11731           Valid = true;
11732       } else if (Params->size() == 2) {
11733         TemplateTypeParmDecl *PmType =
11734           dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
11735         NonTypeTemplateParmDecl *PmArgs =
11736           dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
11737 
11738         // The second template parameter must be a parameter pack with the
11739         // first template parameter as its type.
11740         if (PmType && PmArgs &&
11741             !PmType->isTemplateParameterPack() &&
11742             PmArgs->isTemplateParameterPack()) {
11743           const TemplateTypeParmType *TArgs =
11744             PmArgs->getType()->getAs<TemplateTypeParmType>();
11745           if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
11746               TArgs->getIndex() == PmType->getIndex()) {
11747             Valid = true;
11748             if (ActiveTemplateInstantiations.empty())
11749               Diag(FnDecl->getLocation(),
11750                    diag::ext_string_literal_operator_template);
11751           }
11752         }
11753       }
11754     }
11755   } else if (FnDecl->param_size()) {
11756     // Check the first parameter
11757     FunctionDecl::param_iterator Param = FnDecl->param_begin();
11758 
11759     QualType T = (*Param)->getType().getUnqualifiedType();
11760 
11761     // unsigned long long int, long double, and any character type are allowed
11762     // as the only parameters.
11763     if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
11764         Context.hasSameType(T, Context.LongDoubleTy) ||
11765         Context.hasSameType(T, Context.CharTy) ||
11766         Context.hasSameType(T, Context.WideCharTy) ||
11767         Context.hasSameType(T, Context.Char16Ty) ||
11768         Context.hasSameType(T, Context.Char32Ty)) {
11769       if (++Param == FnDecl->param_end())
11770         Valid = true;
11771       goto FinishedParams;
11772     }
11773 
11774     // Otherwise it must be a pointer to const; let's strip those qualifiers.
11775     const PointerType *PT = T->getAs<PointerType>();
11776     if (!PT)
11777       goto FinishedParams;
11778     T = PT->getPointeeType();
11779     if (!T.isConstQualified() || T.isVolatileQualified())
11780       goto FinishedParams;
11781     T = T.getUnqualifiedType();
11782 
11783     // Move on to the second parameter;
11784     ++Param;
11785 
11786     // If there is no second parameter, the first must be a const char *
11787     if (Param == FnDecl->param_end()) {
11788       if (Context.hasSameType(T, Context.CharTy))
11789         Valid = true;
11790       goto FinishedParams;
11791     }
11792 
11793     // const char *, const wchar_t*, const char16_t*, and const char32_t*
11794     // are allowed as the first parameter to a two-parameter function
11795     if (!(Context.hasSameType(T, Context.CharTy) ||
11796           Context.hasSameType(T, Context.WideCharTy) ||
11797           Context.hasSameType(T, Context.Char16Ty) ||
11798           Context.hasSameType(T, Context.Char32Ty)))
11799       goto FinishedParams;
11800 
11801     // The second and final parameter must be an std::size_t
11802     T = (*Param)->getType().getUnqualifiedType();
11803     if (Context.hasSameType(T, Context.getSizeType()) &&
11804         ++Param == FnDecl->param_end())
11805       Valid = true;
11806   }
11807 
11808   // FIXME: This diagnostic is absolutely terrible.
11809 FinishedParams:
11810   if (!Valid) {
11811     Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11812       << FnDecl->getDeclName();
11813     return true;
11814   }
11815 
11816   // A parameter-declaration-clause containing a default argument is not
11817   // equivalent to any of the permitted forms.
11818   for (auto Param : FnDecl->params()) {
11819     if (Param->hasDefaultArg()) {
11820       Diag(Param->getDefaultArgRange().getBegin(),
11821            diag::err_literal_operator_default_argument)
11822         << Param->getDefaultArgRange();
11823       break;
11824     }
11825   }
11826 
11827   StringRef LiteralName
11828     = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11829   if (LiteralName[0] != '_') {
11830     // C++11 [usrlit.suffix]p1:
11831     //   Literal suffix identifiers that do not start with an underscore
11832     //   are reserved for future standardization.
11833     Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11834       << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11835   }
11836 
11837   return false;
11838 }
11839 
11840 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11841 /// linkage specification, including the language and (if present)
11842 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
11843 /// language string literal. LBraceLoc, if valid, provides the location of
11844 /// the '{' brace. Otherwise, this linkage specification does not
11845 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)11846 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11847                                            Expr *LangStr,
11848                                            SourceLocation LBraceLoc) {
11849   StringLiteral *Lit = cast<StringLiteral>(LangStr);
11850   if (!Lit->isAscii()) {
11851     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
11852       << LangStr->getSourceRange();
11853     return nullptr;
11854   }
11855 
11856   StringRef Lang = Lit->getString();
11857   LinkageSpecDecl::LanguageIDs Language;
11858   if (Lang == "C")
11859     Language = LinkageSpecDecl::lang_c;
11860   else if (Lang == "C++")
11861     Language = LinkageSpecDecl::lang_cxx;
11862   else {
11863     Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
11864       << LangStr->getSourceRange();
11865     return nullptr;
11866   }
11867 
11868   // FIXME: Add all the various semantics of linkage specifications
11869 
11870   LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
11871                                                LangStr->getExprLoc(), Language,
11872                                                LBraceLoc.isValid());
11873   CurContext->addDecl(D);
11874   PushDeclContext(S, D);
11875   return D;
11876 }
11877 
11878 /// ActOnFinishLinkageSpecification - Complete the definition of
11879 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
11880 /// valid, it's the position of the closing '}' brace in a linkage
11881 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)11882 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11883                                             Decl *LinkageSpec,
11884                                             SourceLocation RBraceLoc) {
11885   if (RBraceLoc.isValid()) {
11886     LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11887     LSDecl->setRBraceLoc(RBraceLoc);
11888   }
11889   PopDeclContext();
11890   return LinkageSpec;
11891 }
11892 
ActOnEmptyDeclaration(Scope * S,AttributeList * AttrList,SourceLocation SemiLoc)11893 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11894                                   AttributeList *AttrList,
11895                                   SourceLocation SemiLoc) {
11896   Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11897   // Attribute declarations appertain to empty declaration so we handle
11898   // them here.
11899   if (AttrList)
11900     ProcessDeclAttributeList(S, ED, AttrList);
11901 
11902   CurContext->addDecl(ED);
11903   return ED;
11904 }
11905 
11906 /// \brief Perform semantic analysis for the variable declaration that
11907 /// occurs within a C++ catch clause, returning the newly-created
11908 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)11909 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11910                                          TypeSourceInfo *TInfo,
11911                                          SourceLocation StartLoc,
11912                                          SourceLocation Loc,
11913                                          IdentifierInfo *Name) {
11914   bool Invalid = false;
11915   QualType ExDeclType = TInfo->getType();
11916 
11917   // Arrays and functions decay.
11918   if (ExDeclType->isArrayType())
11919     ExDeclType = Context.getArrayDecayedType(ExDeclType);
11920   else if (ExDeclType->isFunctionType())
11921     ExDeclType = Context.getPointerType(ExDeclType);
11922 
11923   // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11924   // The exception-declaration shall not denote a pointer or reference to an
11925   // incomplete type, other than [cv] void*.
11926   // N2844 forbids rvalue references.
11927   if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11928     Diag(Loc, diag::err_catch_rvalue_ref);
11929     Invalid = true;
11930   }
11931 
11932   QualType BaseType = ExDeclType;
11933   int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11934   unsigned DK = diag::err_catch_incomplete;
11935   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11936     BaseType = Ptr->getPointeeType();
11937     Mode = 1;
11938     DK = diag::err_catch_incomplete_ptr;
11939   } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11940     // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11941     BaseType = Ref->getPointeeType();
11942     Mode = 2;
11943     DK = diag::err_catch_incomplete_ref;
11944   }
11945   if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11946       !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11947     Invalid = true;
11948 
11949   if (!Invalid && !ExDeclType->isDependentType() &&
11950       RequireNonAbstractType(Loc, ExDeclType,
11951                              diag::err_abstract_type_in_decl,
11952                              AbstractVariableType))
11953     Invalid = true;
11954 
11955   // Only the non-fragile NeXT runtime currently supports C++ catches
11956   // of ObjC types, and no runtime supports catching ObjC types by value.
11957   if (!Invalid && getLangOpts().ObjC1) {
11958     QualType T = ExDeclType;
11959     if (const ReferenceType *RT = T->getAs<ReferenceType>())
11960       T = RT->getPointeeType();
11961 
11962     if (T->isObjCObjectType()) {
11963       Diag(Loc, diag::err_objc_object_catch);
11964       Invalid = true;
11965     } else if (T->isObjCObjectPointerType()) {
11966       // FIXME: should this be a test for macosx-fragile specifically?
11967       if (getLangOpts().ObjCRuntime.isFragile())
11968         Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11969     }
11970   }
11971 
11972   VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11973                                     ExDeclType, TInfo, SC_None);
11974   ExDecl->setExceptionVariable(true);
11975 
11976   // In ARC, infer 'retaining' for variables of retainable type.
11977   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11978     Invalid = true;
11979 
11980   if (!Invalid && !ExDeclType->isDependentType()) {
11981     if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11982       // Insulate this from anything else we might currently be parsing.
11983       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11984 
11985       // C++ [except.handle]p16:
11986       //   The object declared in an exception-declaration or, if the
11987       //   exception-declaration does not specify a name, a temporary (12.2) is
11988       //   copy-initialized (8.5) from the exception object. [...]
11989       //   The object is destroyed when the handler exits, after the destruction
11990       //   of any automatic objects initialized within the handler.
11991       //
11992       // We just pretend to initialize the object with itself, then make sure
11993       // it can be destroyed later.
11994       QualType initType = Context.getExceptionObjectType(ExDeclType);
11995 
11996       InitializedEntity entity =
11997         InitializedEntity::InitializeVariable(ExDecl);
11998       InitializationKind initKind =
11999         InitializationKind::CreateCopy(Loc, SourceLocation());
12000 
12001       Expr *opaqueValue =
12002         new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
12003       InitializationSequence sequence(*this, entity, initKind, opaqueValue);
12004       ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
12005       if (result.isInvalid())
12006         Invalid = true;
12007       else {
12008         // If the constructor used was non-trivial, set this as the
12009         // "initializer".
12010         CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
12011         if (!construct->getConstructor()->isTrivial()) {
12012           Expr *init = MaybeCreateExprWithCleanups(construct);
12013           ExDecl->setInit(init);
12014         }
12015 
12016         // And make sure it's destructable.
12017         FinalizeVarWithDestructor(ExDecl, recordType);
12018       }
12019     }
12020   }
12021 
12022   if (Invalid)
12023     ExDecl->setInvalidDecl();
12024 
12025   return ExDecl;
12026 }
12027 
12028 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
12029 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)12030 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
12031   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12032   bool Invalid = D.isInvalidType();
12033 
12034   // Check for unexpanded parameter packs.
12035   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12036                                       UPPC_ExceptionType)) {
12037     TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12038                                              D.getIdentifierLoc());
12039     Invalid = true;
12040   }
12041 
12042   IdentifierInfo *II = D.getIdentifier();
12043   if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
12044                                              LookupOrdinaryName,
12045                                              ForRedeclaration)) {
12046     // The scope should be freshly made just for us. There is just no way
12047     // it contains any previous declaration, except for function parameters in
12048     // a function-try-block's catch statement.
12049     assert(!S->isDeclScope(PrevDecl));
12050     if (isDeclInScope(PrevDecl, CurContext, S)) {
12051       Diag(D.getIdentifierLoc(), diag::err_redefinition)
12052         << D.getIdentifier();
12053       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12054       Invalid = true;
12055     } else if (PrevDecl->isTemplateParameter())
12056       // Maybe we will complain about the shadowed template parameter.
12057       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12058   }
12059 
12060   if (D.getCXXScopeSpec().isSet() && !Invalid) {
12061     Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
12062       << D.getCXXScopeSpec().getRange();
12063     Invalid = true;
12064   }
12065 
12066   VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
12067                                               D.getLocStart(),
12068                                               D.getIdentifierLoc(),
12069                                               D.getIdentifier());
12070   if (Invalid)
12071     ExDecl->setInvalidDecl();
12072 
12073   // Add the exception declaration into this scope.
12074   if (II)
12075     PushOnScopeChains(ExDecl, S);
12076   else
12077     CurContext->addDecl(ExDecl);
12078 
12079   ProcessDeclAttributes(S, ExDecl, D);
12080   return ExDecl;
12081 }
12082 
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)12083 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12084                                          Expr *AssertExpr,
12085                                          Expr *AssertMessageExpr,
12086                                          SourceLocation RParenLoc) {
12087   StringLiteral *AssertMessage =
12088       AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
12089 
12090   if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
12091     return nullptr;
12092 
12093   return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
12094                                       AssertMessage, RParenLoc, false);
12095 }
12096 
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)12097 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12098                                          Expr *AssertExpr,
12099                                          StringLiteral *AssertMessage,
12100                                          SourceLocation RParenLoc,
12101                                          bool Failed) {
12102   assert(AssertExpr != nullptr && "Expected non-null condition");
12103   if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
12104       !Failed) {
12105     // In a static_assert-declaration, the constant-expression shall be a
12106     // constant expression that can be contextually converted to bool.
12107     ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
12108     if (Converted.isInvalid())
12109       Failed = true;
12110 
12111     llvm::APSInt Cond;
12112     if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
12113           diag::err_static_assert_expression_is_not_constant,
12114           /*AllowFold=*/false).isInvalid())
12115       Failed = true;
12116 
12117     if (!Failed && !Cond) {
12118       SmallString<256> MsgBuffer;
12119       llvm::raw_svector_ostream Msg(MsgBuffer);
12120       if (AssertMessage)
12121         AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
12122       Diag(StaticAssertLoc, diag::err_static_assert_failed)
12123         << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
12124       Failed = true;
12125     }
12126   }
12127 
12128   Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
12129                                         AssertExpr, AssertMessage, RParenLoc,
12130                                         Failed);
12131 
12132   CurContext->addDecl(Decl);
12133   return Decl;
12134 }
12135 
12136 /// \brief Perform semantic analysis of the given friend type declaration.
12137 ///
12138 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)12139 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
12140                                       SourceLocation FriendLoc,
12141                                       TypeSourceInfo *TSInfo) {
12142   assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
12143 
12144   QualType T = TSInfo->getType();
12145   SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
12146 
12147   // C++03 [class.friend]p2:
12148   //   An elaborated-type-specifier shall be used in a friend declaration
12149   //   for a class.*
12150   //
12151   //   * The class-key of the elaborated-type-specifier is required.
12152   if (!ActiveTemplateInstantiations.empty()) {
12153     // Do not complain about the form of friend template types during
12154     // template instantiation; we will already have complained when the
12155     // template was declared.
12156   } else {
12157     if (!T->isElaboratedTypeSpecifier()) {
12158       // If we evaluated the type to a record type, suggest putting
12159       // a tag in front.
12160       if (const RecordType *RT = T->getAs<RecordType>()) {
12161         RecordDecl *RD = RT->getDecl();
12162 
12163         SmallString<16> InsertionText(" ");
12164         InsertionText += RD->getKindName();
12165 
12166         Diag(TypeRange.getBegin(),
12167              getLangOpts().CPlusPlus11 ?
12168                diag::warn_cxx98_compat_unelaborated_friend_type :
12169                diag::ext_unelaborated_friend_type)
12170           << (unsigned) RD->getTagKind()
12171           << T
12172           << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
12173                                         InsertionText);
12174       } else {
12175         Diag(FriendLoc,
12176              getLangOpts().CPlusPlus11 ?
12177                diag::warn_cxx98_compat_nonclass_type_friend :
12178                diag::ext_nonclass_type_friend)
12179           << T
12180           << TypeRange;
12181       }
12182     } else if (T->getAs<EnumType>()) {
12183       Diag(FriendLoc,
12184            getLangOpts().CPlusPlus11 ?
12185              diag::warn_cxx98_compat_enum_friend :
12186              diag::ext_enum_friend)
12187         << T
12188         << TypeRange;
12189     }
12190 
12191     // C++11 [class.friend]p3:
12192     //   A friend declaration that does not declare a function shall have one
12193     //   of the following forms:
12194     //     friend elaborated-type-specifier ;
12195     //     friend simple-type-specifier ;
12196     //     friend typename-specifier ;
12197     if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
12198       Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
12199   }
12200 
12201   //   If the type specifier in a friend declaration designates a (possibly
12202   //   cv-qualified) class type, that class is declared as a friend; otherwise,
12203   //   the friend declaration is ignored.
12204   return FriendDecl::Create(Context, CurContext,
12205                             TSInfo->getTypeLoc().getLocStart(), TSInfo,
12206                             FriendLoc);
12207 }
12208 
12209 /// Handle a friend tag declaration where the scope specifier was
12210 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)12211 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
12212                                     unsigned TagSpec, SourceLocation TagLoc,
12213                                     CXXScopeSpec &SS,
12214                                     IdentifierInfo *Name,
12215                                     SourceLocation NameLoc,
12216                                     AttributeList *Attr,
12217                                     MultiTemplateParamsArg TempParamLists) {
12218   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
12219 
12220   bool isExplicitSpecialization = false;
12221   bool Invalid = false;
12222 
12223   if (TemplateParameterList *TemplateParams =
12224           MatchTemplateParametersToScopeSpecifier(
12225               TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
12226               isExplicitSpecialization, Invalid)) {
12227     if (TemplateParams->size() > 0) {
12228       // This is a declaration of a class template.
12229       if (Invalid)
12230         return nullptr;
12231 
12232       return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
12233                                 NameLoc, Attr, TemplateParams, AS_public,
12234                                 /*ModulePrivateLoc=*/SourceLocation(),
12235                                 FriendLoc, TempParamLists.size() - 1,
12236                                 TempParamLists.data()).get();
12237     } else {
12238       // The "template<>" header is extraneous.
12239       Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
12240         << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
12241       isExplicitSpecialization = true;
12242     }
12243   }
12244 
12245   if (Invalid) return nullptr;
12246 
12247   bool isAllExplicitSpecializations = true;
12248   for (unsigned I = TempParamLists.size(); I-- > 0; ) {
12249     if (TempParamLists[I]->size()) {
12250       isAllExplicitSpecializations = false;
12251       break;
12252     }
12253   }
12254 
12255   // FIXME: don't ignore attributes.
12256 
12257   // If it's explicit specializations all the way down, just forget
12258   // about the template header and build an appropriate non-templated
12259   // friend.  TODO: for source fidelity, remember the headers.
12260   if (isAllExplicitSpecializations) {
12261     if (SS.isEmpty()) {
12262       bool Owned = false;
12263       bool IsDependent = false;
12264       return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
12265                       Attr, AS_public,
12266                       /*ModulePrivateLoc=*/SourceLocation(),
12267                       MultiTemplateParamsArg(), Owned, IsDependent,
12268                       /*ScopedEnumKWLoc=*/SourceLocation(),
12269                       /*ScopedEnumUsesClassTag=*/false,
12270                       /*UnderlyingType=*/TypeResult(),
12271                       /*IsTypeSpecifier=*/false);
12272     }
12273 
12274     NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12275     ElaboratedTypeKeyword Keyword
12276       = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12277     QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
12278                                    *Name, NameLoc);
12279     if (T.isNull())
12280       return nullptr;
12281 
12282     TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12283     if (isa<DependentNameType>(T)) {
12284       DependentNameTypeLoc TL =
12285           TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12286       TL.setElaboratedKeywordLoc(TagLoc);
12287       TL.setQualifierLoc(QualifierLoc);
12288       TL.setNameLoc(NameLoc);
12289     } else {
12290       ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
12291       TL.setElaboratedKeywordLoc(TagLoc);
12292       TL.setQualifierLoc(QualifierLoc);
12293       TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
12294     }
12295 
12296     FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12297                                             TSI, FriendLoc, TempParamLists);
12298     Friend->setAccess(AS_public);
12299     CurContext->addDecl(Friend);
12300     return Friend;
12301   }
12302 
12303   assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
12304 
12305 
12306 
12307   // Handle the case of a templated-scope friend class.  e.g.
12308   //   template <class T> class A<T>::B;
12309   // FIXME: we don't support these right now.
12310   Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
12311     << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
12312   ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12313   QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
12314   TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12315   DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12316   TL.setElaboratedKeywordLoc(TagLoc);
12317   TL.setQualifierLoc(SS.getWithLocInContext(Context));
12318   TL.setNameLoc(NameLoc);
12319 
12320   FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12321                                           TSI, FriendLoc, TempParamLists);
12322   Friend->setAccess(AS_public);
12323   Friend->setUnsupportedFriend(true);
12324   CurContext->addDecl(Friend);
12325   return Friend;
12326 }
12327 
12328 
12329 /// Handle a friend type declaration.  This works in tandem with
12330 /// ActOnTag.
12331 ///
12332 /// Notes on friend class templates:
12333 ///
12334 /// We generally treat friend class declarations as if they were
12335 /// declaring a class.  So, for example, the elaborated type specifier
12336 /// in a friend declaration is required to obey the restrictions of a
12337 /// class-head (i.e. no typedefs in the scope chain), template
12338 /// parameters are required to match up with simple template-ids, &c.
12339 /// However, unlike when declaring a template specialization, it's
12340 /// okay to refer to a template specialization without an empty
12341 /// template parameter declaration, e.g.
12342 ///   friend class A<T>::B<unsigned>;
12343 /// We permit this as a special case; if there are any template
12344 /// parameters present at all, require proper matching, i.e.
12345 ///   template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)12346 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
12347                                 MultiTemplateParamsArg TempParams) {
12348   SourceLocation Loc = DS.getLocStart();
12349 
12350   assert(DS.isFriendSpecified());
12351   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12352 
12353   // Try to convert the decl specifier to a type.  This works for
12354   // friend templates because ActOnTag never produces a ClassTemplateDecl
12355   // for a TUK_Friend.
12356   Declarator TheDeclarator(DS, Declarator::MemberContext);
12357   TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
12358   QualType T = TSI->getType();
12359   if (TheDeclarator.isInvalidType())
12360     return nullptr;
12361 
12362   if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
12363     return nullptr;
12364 
12365   // This is definitely an error in C++98.  It's probably meant to
12366   // be forbidden in C++0x, too, but the specification is just
12367   // poorly written.
12368   //
12369   // The problem is with declarations like the following:
12370   //   template <T> friend A<T>::foo;
12371   // where deciding whether a class C is a friend or not now hinges
12372   // on whether there exists an instantiation of A that causes
12373   // 'foo' to equal C.  There are restrictions on class-heads
12374   // (which we declare (by fiat) elaborated friend declarations to
12375   // be) that makes this tractable.
12376   //
12377   // FIXME: handle "template <> friend class A<T>;", which
12378   // is possibly well-formed?  Who even knows?
12379   if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
12380     Diag(Loc, diag::err_tagless_friend_type_template)
12381       << DS.getSourceRange();
12382     return nullptr;
12383   }
12384 
12385   // C++98 [class.friend]p1: A friend of a class is a function
12386   //   or class that is not a member of the class . . .
12387   // This is fixed in DR77, which just barely didn't make the C++03
12388   // deadline.  It's also a very silly restriction that seriously
12389   // affects inner classes and which nobody else seems to implement;
12390   // thus we never diagnose it, not even in -pedantic.
12391   //
12392   // But note that we could warn about it: it's always useless to
12393   // friend one of your own members (it's not, however, worthless to
12394   // friend a member of an arbitrary specialization of your template).
12395 
12396   Decl *D;
12397   if (unsigned NumTempParamLists = TempParams.size())
12398     D = FriendTemplateDecl::Create(Context, CurContext, Loc,
12399                                    NumTempParamLists,
12400                                    TempParams.data(),
12401                                    TSI,
12402                                    DS.getFriendSpecLoc());
12403   else
12404     D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
12405 
12406   if (!D)
12407     return nullptr;
12408 
12409   D->setAccess(AS_public);
12410   CurContext->addDecl(D);
12411 
12412   return D;
12413 }
12414 
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)12415 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
12416                                         MultiTemplateParamsArg TemplateParams) {
12417   const DeclSpec &DS = D.getDeclSpec();
12418 
12419   assert(DS.isFriendSpecified());
12420   assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12421 
12422   SourceLocation Loc = D.getIdentifierLoc();
12423   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12424 
12425   // C++ [class.friend]p1
12426   //   A friend of a class is a function or class....
12427   // Note that this sees through typedefs, which is intended.
12428   // It *doesn't* see through dependent types, which is correct
12429   // according to [temp.arg.type]p3:
12430   //   If a declaration acquires a function type through a
12431   //   type dependent on a template-parameter and this causes
12432   //   a declaration that does not use the syntactic form of a
12433   //   function declarator to have a function type, the program
12434   //   is ill-formed.
12435   if (!TInfo->getType()->isFunctionType()) {
12436     Diag(Loc, diag::err_unexpected_friend);
12437 
12438     // It might be worthwhile to try to recover by creating an
12439     // appropriate declaration.
12440     return nullptr;
12441   }
12442 
12443   // C++ [namespace.memdef]p3
12444   //  - If a friend declaration in a non-local class first declares a
12445   //    class or function, the friend class or function is a member
12446   //    of the innermost enclosing namespace.
12447   //  - The name of the friend is not found by simple name lookup
12448   //    until a matching declaration is provided in that namespace
12449   //    scope (either before or after the class declaration granting
12450   //    friendship).
12451   //  - If a friend function is called, its name may be found by the
12452   //    name lookup that considers functions from namespaces and
12453   //    classes associated with the types of the function arguments.
12454   //  - When looking for a prior declaration of a class or a function
12455   //    declared as a friend, scopes outside the innermost enclosing
12456   //    namespace scope are not considered.
12457 
12458   CXXScopeSpec &SS = D.getCXXScopeSpec();
12459   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
12460   DeclarationName Name = NameInfo.getName();
12461   assert(Name);
12462 
12463   // Check for unexpanded parameter packs.
12464   if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
12465       DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
12466       DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
12467     return nullptr;
12468 
12469   // The context we found the declaration in, or in which we should
12470   // create the declaration.
12471   DeclContext *DC;
12472   Scope *DCScope = S;
12473   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12474                         ForRedeclaration);
12475 
12476   // There are five cases here.
12477   //   - There's no scope specifier and we're in a local class. Only look
12478   //     for functions declared in the immediately-enclosing block scope.
12479   // We recover from invalid scope qualifiers as if they just weren't there.
12480   FunctionDecl *FunctionContainingLocalClass = nullptr;
12481   if ((SS.isInvalid() || !SS.isSet()) &&
12482       (FunctionContainingLocalClass =
12483            cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
12484     // C++11 [class.friend]p11:
12485     //   If a friend declaration appears in a local class and the name
12486     //   specified is an unqualified name, a prior declaration is
12487     //   looked up without considering scopes that are outside the
12488     //   innermost enclosing non-class scope. For a friend function
12489     //   declaration, if there is no prior declaration, the program is
12490     //   ill-formed.
12491 
12492     // Find the innermost enclosing non-class scope. This is the block
12493     // scope containing the local class definition (or for a nested class,
12494     // the outer local class).
12495     DCScope = S->getFnParent();
12496 
12497     // Look up the function name in the scope.
12498     Previous.clear(LookupLocalFriendName);
12499     LookupName(Previous, S, /*AllowBuiltinCreation*/false);
12500 
12501     if (!Previous.empty()) {
12502       // All possible previous declarations must have the same context:
12503       // either they were declared at block scope or they are members of
12504       // one of the enclosing local classes.
12505       DC = Previous.getRepresentativeDecl()->getDeclContext();
12506     } else {
12507       // This is ill-formed, but provide the context that we would have
12508       // declared the function in, if we were permitted to, for error recovery.
12509       DC = FunctionContainingLocalClass;
12510     }
12511     adjustContextForLocalExternDecl(DC);
12512 
12513     // C++ [class.friend]p6:
12514     //   A function can be defined in a friend declaration of a class if and
12515     //   only if the class is a non-local class (9.8), the function name is
12516     //   unqualified, and the function has namespace scope.
12517     if (D.isFunctionDefinition()) {
12518       Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
12519     }
12520 
12521   //   - There's no scope specifier, in which case we just go to the
12522   //     appropriate scope and look for a function or function template
12523   //     there as appropriate.
12524   } else if (SS.isInvalid() || !SS.isSet()) {
12525     // C++11 [namespace.memdef]p3:
12526     //   If the name in a friend declaration is neither qualified nor
12527     //   a template-id and the declaration is a function or an
12528     //   elaborated-type-specifier, the lookup to determine whether
12529     //   the entity has been previously declared shall not consider
12530     //   any scopes outside the innermost enclosing namespace.
12531     bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
12532 
12533     // Find the appropriate context according to the above.
12534     DC = CurContext;
12535 
12536     // Skip class contexts.  If someone can cite chapter and verse
12537     // for this behavior, that would be nice --- it's what GCC and
12538     // EDG do, and it seems like a reasonable intent, but the spec
12539     // really only says that checks for unqualified existing
12540     // declarations should stop at the nearest enclosing namespace,
12541     // not that they should only consider the nearest enclosing
12542     // namespace.
12543     while (DC->isRecord())
12544       DC = DC->getParent();
12545 
12546     DeclContext *LookupDC = DC;
12547     while (LookupDC->isTransparentContext())
12548       LookupDC = LookupDC->getParent();
12549 
12550     while (true) {
12551       LookupQualifiedName(Previous, LookupDC);
12552 
12553       if (!Previous.empty()) {
12554         DC = LookupDC;
12555         break;
12556       }
12557 
12558       if (isTemplateId) {
12559         if (isa<TranslationUnitDecl>(LookupDC)) break;
12560       } else {
12561         if (LookupDC->isFileContext()) break;
12562       }
12563       LookupDC = LookupDC->getParent();
12564     }
12565 
12566     DCScope = getScopeForDeclContext(S, DC);
12567 
12568   //   - There's a non-dependent scope specifier, in which case we
12569   //     compute it and do a previous lookup there for a function
12570   //     or function template.
12571   } else if (!SS.getScopeRep()->isDependent()) {
12572     DC = computeDeclContext(SS);
12573     if (!DC) return nullptr;
12574 
12575     if (RequireCompleteDeclContext(SS, DC)) return nullptr;
12576 
12577     LookupQualifiedName(Previous, DC);
12578 
12579     // Ignore things found implicitly in the wrong scope.
12580     // TODO: better diagnostics for this case.  Suggesting the right
12581     // qualified scope would be nice...
12582     LookupResult::Filter F = Previous.makeFilter();
12583     while (F.hasNext()) {
12584       NamedDecl *D = F.next();
12585       if (!DC->InEnclosingNamespaceSetOf(
12586               D->getDeclContext()->getRedeclContext()))
12587         F.erase();
12588     }
12589     F.done();
12590 
12591     if (Previous.empty()) {
12592       D.setInvalidType();
12593       Diag(Loc, diag::err_qualified_friend_not_found)
12594           << Name << TInfo->getType();
12595       return nullptr;
12596     }
12597 
12598     // C++ [class.friend]p1: A friend of a class is a function or
12599     //   class that is not a member of the class . . .
12600     if (DC->Equals(CurContext))
12601       Diag(DS.getFriendSpecLoc(),
12602            getLangOpts().CPlusPlus11 ?
12603              diag::warn_cxx98_compat_friend_is_member :
12604              diag::err_friend_is_member);
12605 
12606     if (D.isFunctionDefinition()) {
12607       // C++ [class.friend]p6:
12608       //   A function can be defined in a friend declaration of a class if and
12609       //   only if the class is a non-local class (9.8), the function name is
12610       //   unqualified, and the function has namespace scope.
12611       SemaDiagnosticBuilder DB
12612         = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
12613 
12614       DB << SS.getScopeRep();
12615       if (DC->isFileContext())
12616         DB << FixItHint::CreateRemoval(SS.getRange());
12617       SS.clear();
12618     }
12619 
12620   //   - There's a scope specifier that does not match any template
12621   //     parameter lists, in which case we use some arbitrary context,
12622   //     create a method or method template, and wait for instantiation.
12623   //   - There's a scope specifier that does match some template
12624   //     parameter lists, which we don't handle right now.
12625   } else {
12626     if (D.isFunctionDefinition()) {
12627       // C++ [class.friend]p6:
12628       //   A function can be defined in a friend declaration of a class if and
12629       //   only if the class is a non-local class (9.8), the function name is
12630       //   unqualified, and the function has namespace scope.
12631       Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
12632         << SS.getScopeRep();
12633     }
12634 
12635     DC = CurContext;
12636     assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
12637   }
12638 
12639   if (!DC->isRecord()) {
12640     // This implies that it has to be an operator or function.
12641     if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
12642         D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
12643         D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
12644       Diag(Loc, diag::err_introducing_special_friend) <<
12645         (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
12646          D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
12647       return nullptr;
12648     }
12649   }
12650 
12651   // FIXME: This is an egregious hack to cope with cases where the scope stack
12652   // does not contain the declaration context, i.e., in an out-of-line
12653   // definition of a class.
12654   Scope FakeDCScope(S, Scope::DeclScope, Diags);
12655   if (!DCScope) {
12656     FakeDCScope.setEntity(DC);
12657     DCScope = &FakeDCScope;
12658   }
12659 
12660   bool AddToScope = true;
12661   NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
12662                                           TemplateParams, AddToScope);
12663   if (!ND) return nullptr;
12664 
12665   assert(ND->getLexicalDeclContext() == CurContext);
12666 
12667   // If we performed typo correction, we might have added a scope specifier
12668   // and changed the decl context.
12669   DC = ND->getDeclContext();
12670 
12671   // Add the function declaration to the appropriate lookup tables,
12672   // adjusting the redeclarations list as necessary.  We don't
12673   // want to do this yet if the friending class is dependent.
12674   //
12675   // Also update the scope-based lookup if the target context's
12676   // lookup context is in lexical scope.
12677   if (!CurContext->isDependentContext()) {
12678     DC = DC->getRedeclContext();
12679     DC->makeDeclVisibleInContext(ND);
12680     if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12681       PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
12682   }
12683 
12684   FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
12685                                        D.getIdentifierLoc(), ND,
12686                                        DS.getFriendSpecLoc());
12687   FrD->setAccess(AS_public);
12688   CurContext->addDecl(FrD);
12689 
12690   if (ND->isInvalidDecl()) {
12691     FrD->setInvalidDecl();
12692   } else {
12693     if (DC->isRecord()) CheckFriendAccess(ND);
12694 
12695     FunctionDecl *FD;
12696     if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
12697       FD = FTD->getTemplatedDecl();
12698     else
12699       FD = cast<FunctionDecl>(ND);
12700 
12701     // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
12702     // default argument expression, that declaration shall be a definition
12703     // and shall be the only declaration of the function or function
12704     // template in the translation unit.
12705     if (functionDeclHasDefaultArgument(FD)) {
12706       if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
12707         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
12708         Diag(OldFD->getLocation(), diag::note_previous_declaration);
12709       } else if (!D.isFunctionDefinition())
12710         Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
12711     }
12712 
12713     // Mark templated-scope function declarations as unsupported.
12714     if (FD->getNumTemplateParameterLists() && SS.isValid()) {
12715       Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
12716         << SS.getScopeRep() << SS.getRange()
12717         << cast<CXXRecordDecl>(CurContext);
12718       FrD->setUnsupportedFriend(true);
12719     }
12720   }
12721 
12722   return ND;
12723 }
12724 
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)12725 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
12726   AdjustDeclIfTemplate(Dcl);
12727 
12728   FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
12729   if (!Fn) {
12730     Diag(DelLoc, diag::err_deleted_non_function);
12731     return;
12732   }
12733 
12734   if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
12735     // Don't consider the implicit declaration we generate for explicit
12736     // specializations. FIXME: Do not generate these implicit declarations.
12737     if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
12738          Prev->getPreviousDecl()) &&
12739         !Prev->isDefined()) {
12740       Diag(DelLoc, diag::err_deleted_decl_not_first);
12741       Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
12742            Prev->isImplicit() ? diag::note_previous_implicit_declaration
12743                               : diag::note_previous_declaration);
12744     }
12745     // If the declaration wasn't the first, we delete the function anyway for
12746     // recovery.
12747     Fn = Fn->getCanonicalDecl();
12748   }
12749 
12750   // dllimport/dllexport cannot be deleted.
12751   if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
12752     Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
12753     Fn->setInvalidDecl();
12754   }
12755 
12756   if (Fn->isDeleted())
12757     return;
12758 
12759   // See if we're deleting a function which is already known to override a
12760   // non-deleted virtual function.
12761   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
12762     bool IssuedDiagnostic = false;
12763     for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
12764                                         E = MD->end_overridden_methods();
12765          I != E; ++I) {
12766       if (!(*MD->begin_overridden_methods())->isDeleted()) {
12767         if (!IssuedDiagnostic) {
12768           Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
12769           IssuedDiagnostic = true;
12770         }
12771         Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
12772       }
12773     }
12774   }
12775 
12776   // C++11 [basic.start.main]p3:
12777   //   A program that defines main as deleted [...] is ill-formed.
12778   if (Fn->isMain())
12779     Diag(DelLoc, diag::err_deleted_main);
12780 
12781   Fn->setDeletedAsWritten();
12782 }
12783 
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)12784 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
12785   CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
12786 
12787   if (MD) {
12788     if (MD->getParent()->isDependentType()) {
12789       MD->setDefaulted();
12790       MD->setExplicitlyDefaulted();
12791       return;
12792     }
12793 
12794     CXXSpecialMember Member = getSpecialMember(MD);
12795     if (Member == CXXInvalid) {
12796       if (!MD->isInvalidDecl())
12797         Diag(DefaultLoc, diag::err_default_special_members);
12798       return;
12799     }
12800 
12801     MD->setDefaulted();
12802     MD->setExplicitlyDefaulted();
12803 
12804     // If this definition appears within the record, do the checking when
12805     // the record is complete.
12806     const FunctionDecl *Primary = MD;
12807     if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
12808       // Find the uninstantiated declaration that actually had the '= default'
12809       // on it.
12810       Pattern->isDefined(Primary);
12811 
12812     // If the method was defaulted on its first declaration, we will have
12813     // already performed the checking in CheckCompletedCXXClass. Such a
12814     // declaration doesn't trigger an implicit definition.
12815     if (Primary == Primary->getCanonicalDecl())
12816       return;
12817 
12818     CheckExplicitlyDefaultedSpecialMember(MD);
12819 
12820     if (MD->isInvalidDecl())
12821       return;
12822 
12823     switch (Member) {
12824     case CXXDefaultConstructor:
12825       DefineImplicitDefaultConstructor(DefaultLoc,
12826                                        cast<CXXConstructorDecl>(MD));
12827       break;
12828     case CXXCopyConstructor:
12829       DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12830       break;
12831     case CXXCopyAssignment:
12832       DefineImplicitCopyAssignment(DefaultLoc, MD);
12833       break;
12834     case CXXDestructor:
12835       DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12836       break;
12837     case CXXMoveConstructor:
12838       DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12839       break;
12840     case CXXMoveAssignment:
12841       DefineImplicitMoveAssignment(DefaultLoc, MD);
12842       break;
12843     case CXXInvalid:
12844       llvm_unreachable("Invalid special member.");
12845     }
12846   } else {
12847     Diag(DefaultLoc, diag::err_default_special_members);
12848   }
12849 }
12850 
SearchForReturnInStmt(Sema & Self,Stmt * S)12851 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12852   for (Stmt::child_range CI = S->children(); CI; ++CI) {
12853     Stmt *SubStmt = *CI;
12854     if (!SubStmt)
12855       continue;
12856     if (isa<ReturnStmt>(SubStmt))
12857       Self.Diag(SubStmt->getLocStart(),
12858            diag::err_return_in_constructor_handler);
12859     if (!isa<Expr>(SubStmt))
12860       SearchForReturnInStmt(Self, SubStmt);
12861   }
12862 }
12863 
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)12864 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12865   for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12866     CXXCatchStmt *Handler = TryBlock->getHandler(I);
12867     SearchForReturnInStmt(*this, Handler);
12868   }
12869 }
12870 
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)12871 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12872                                              const CXXMethodDecl *Old) {
12873   const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12874   const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12875 
12876   CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12877 
12878   // If the calling conventions match, everything is fine
12879   if (NewCC == OldCC)
12880     return false;
12881 
12882   // If the calling conventions mismatch because the new function is static,
12883   // suppress the calling convention mismatch error; the error about static
12884   // function override (err_static_overrides_virtual from
12885   // Sema::CheckFunctionDeclaration) is more clear.
12886   if (New->getStorageClass() == SC_Static)
12887     return false;
12888 
12889   Diag(New->getLocation(),
12890        diag::err_conflicting_overriding_cc_attributes)
12891     << New->getDeclName() << New->getType() << Old->getType();
12892   Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12893   return true;
12894 }
12895 
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)12896 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12897                                              const CXXMethodDecl *Old) {
12898   QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
12899   QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
12900 
12901   if (Context.hasSameType(NewTy, OldTy) ||
12902       NewTy->isDependentType() || OldTy->isDependentType())
12903     return false;
12904 
12905   // Check if the return types are covariant
12906   QualType NewClassTy, OldClassTy;
12907 
12908   /// Both types must be pointers or references to classes.
12909   if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12910     if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12911       NewClassTy = NewPT->getPointeeType();
12912       OldClassTy = OldPT->getPointeeType();
12913     }
12914   } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12915     if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12916       if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12917         NewClassTy = NewRT->getPointeeType();
12918         OldClassTy = OldRT->getPointeeType();
12919       }
12920     }
12921   }
12922 
12923   // The return types aren't either both pointers or references to a class type.
12924   if (NewClassTy.isNull()) {
12925     Diag(New->getLocation(),
12926          diag::err_different_return_type_for_overriding_virtual_function)
12927         << New->getDeclName() << NewTy << OldTy
12928         << New->getReturnTypeSourceRange();
12929     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12930         << Old->getReturnTypeSourceRange();
12931 
12932     return true;
12933   }
12934 
12935   // C++ [class.virtual]p6:
12936   //   If the return type of D::f differs from the return type of B::f, the
12937   //   class type in the return type of D::f shall be complete at the point of
12938   //   declaration of D::f or shall be the class type D.
12939   if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12940     if (!RT->isBeingDefined() &&
12941         RequireCompleteType(New->getLocation(), NewClassTy,
12942                             diag::err_covariant_return_incomplete,
12943                             New->getDeclName()))
12944     return true;
12945   }
12946 
12947   if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12948     // Check if the new class derives from the old class.
12949     if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12950       Diag(New->getLocation(), diag::err_covariant_return_not_derived)
12951           << New->getDeclName() << NewTy << OldTy
12952           << New->getReturnTypeSourceRange();
12953       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12954           << Old->getReturnTypeSourceRange();
12955       return true;
12956     }
12957 
12958     // Check if we the conversion from derived to base is valid.
12959     if (CheckDerivedToBaseConversion(
12960             NewClassTy, OldClassTy,
12961             diag::err_covariant_return_inaccessible_base,
12962             diag::err_covariant_return_ambiguous_derived_to_base_conv,
12963             New->getLocation(), New->getReturnTypeSourceRange(),
12964             New->getDeclName(), nullptr)) {
12965       // FIXME: this note won't trigger for delayed access control
12966       // diagnostics, and it's impossible to get an undelayed error
12967       // here from access control during the original parse because
12968       // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12969       Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12970           << Old->getReturnTypeSourceRange();
12971       return true;
12972     }
12973   }
12974 
12975   // The qualifiers of the return types must be the same.
12976   if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12977     Diag(New->getLocation(),
12978          diag::err_covariant_return_type_different_qualifications)
12979         << New->getDeclName() << NewTy << OldTy
12980         << New->getReturnTypeSourceRange();
12981     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12982         << Old->getReturnTypeSourceRange();
12983     return true;
12984   };
12985 
12986 
12987   // The new class type must have the same or less qualifiers as the old type.
12988   if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12989     Diag(New->getLocation(),
12990          diag::err_covariant_return_type_class_type_more_qualified)
12991         << New->getDeclName() << NewTy << OldTy
12992         << New->getReturnTypeSourceRange();
12993     Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12994         << Old->getReturnTypeSourceRange();
12995     return true;
12996   };
12997 
12998   return false;
12999 }
13000 
13001 /// \brief Mark the given method pure.
13002 ///
13003 /// \param Method the method to be marked pure.
13004 ///
13005 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)13006 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
13007   SourceLocation EndLoc = InitRange.getEnd();
13008   if (EndLoc.isValid())
13009     Method->setRangeEnd(EndLoc);
13010 
13011   if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
13012     Method->setPure();
13013     return false;
13014   }
13015 
13016   if (!Method->isInvalidDecl())
13017     Diag(Method->getLocation(), diag::err_non_virtual_pure)
13018       << Method->getDeclName() << InitRange;
13019   return true;
13020 }
13021 
13022 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(const Decl * D)13023 static bool isStaticDataMember(const Decl *D) {
13024   if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
13025     return Var->isStaticDataMember();
13026 
13027   return false;
13028 }
13029 
13030 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
13031 /// an initializer for the out-of-line declaration 'Dcl'.  The scope
13032 /// is a fresh scope pushed for just this purpose.
13033 ///
13034 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
13035 /// static data member of class X, names should be looked up in the scope of
13036 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)13037 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
13038   // If there is no declaration, there was an error parsing it.
13039   if (!D || D->isInvalidDecl())
13040     return;
13041 
13042   // We will always have a nested name specifier here, but this declaration
13043   // might not be out of line if the specifier names the current namespace:
13044   //   extern int n;
13045   //   int ::n = 0;
13046   if (D->isOutOfLine())
13047     EnterDeclaratorContext(S, D->getDeclContext());
13048 
13049   // If we are parsing the initializer for a static data member, push a
13050   // new expression evaluation context that is associated with this static
13051   // data member.
13052   if (isStaticDataMember(D))
13053     PushExpressionEvaluationContext(PotentiallyEvaluated, D);
13054 }
13055 
13056 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
13057 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)13058 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
13059   // If there is no declaration, there was an error parsing it.
13060   if (!D || D->isInvalidDecl())
13061     return;
13062 
13063   if (isStaticDataMember(D))
13064     PopExpressionEvaluationContext();
13065 
13066   if (D->isOutOfLine())
13067     ExitDeclaratorContext(S);
13068 }
13069 
13070 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
13071 /// C++ if/switch/while/for statement.
13072 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)13073 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
13074   // C++ 6.4p2:
13075   // The declarator shall not specify a function or an array.
13076   // The type-specifier-seq shall not contain typedef and shall not declare a
13077   // new class or enumeration.
13078   assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
13079          "Parser allowed 'typedef' as storage class of condition decl.");
13080 
13081   Decl *Dcl = ActOnDeclarator(S, D);
13082   if (!Dcl)
13083     return true;
13084 
13085   if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
13086     Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
13087       << D.getSourceRange();
13088     return true;
13089   }
13090 
13091   return Dcl;
13092 }
13093 
LoadExternalVTableUses()13094 void Sema::LoadExternalVTableUses() {
13095   if (!ExternalSource)
13096     return;
13097 
13098   SmallVector<ExternalVTableUse, 4> VTables;
13099   ExternalSource->ReadUsedVTables(VTables);
13100   SmallVector<VTableUse, 4> NewUses;
13101   for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
13102     llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
13103       = VTablesUsed.find(VTables[I].Record);
13104     // Even if a definition wasn't required before, it may be required now.
13105     if (Pos != VTablesUsed.end()) {
13106       if (!Pos->second && VTables[I].DefinitionRequired)
13107         Pos->second = true;
13108       continue;
13109     }
13110 
13111     VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
13112     NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
13113   }
13114 
13115   VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
13116 }
13117 
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)13118 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
13119                           bool DefinitionRequired) {
13120   // Ignore any vtable uses in unevaluated operands or for classes that do
13121   // not have a vtable.
13122   if (!Class->isDynamicClass() || Class->isDependentContext() ||
13123       CurContext->isDependentContext() || isUnevaluatedContext())
13124     return;
13125 
13126   // Try to insert this class into the map.
13127   LoadExternalVTableUses();
13128   Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13129   std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
13130     Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
13131   if (!Pos.second) {
13132     // If we already had an entry, check to see if we are promoting this vtable
13133     // to require a definition. If so, we need to reappend to the VTableUses
13134     // list, since we may have already processed the first entry.
13135     if (DefinitionRequired && !Pos.first->second) {
13136       Pos.first->second = true;
13137     } else {
13138       // Otherwise, we can early exit.
13139       return;
13140     }
13141   } else {
13142     // The Microsoft ABI requires that we perform the destructor body
13143     // checks (i.e. operator delete() lookup) when the vtable is marked used, as
13144     // the deleting destructor is emitted with the vtable, not with the
13145     // destructor definition as in the Itanium ABI.
13146     // If it has a definition, we do the check at that point instead.
13147     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13148         Class->hasUserDeclaredDestructor() &&
13149         !Class->getDestructor()->isDefined() &&
13150         !Class->getDestructor()->isDeleted()) {
13151       CXXDestructorDecl *DD = Class->getDestructor();
13152       ContextRAII SavedContext(*this, DD);
13153       CheckDestructor(DD);
13154     }
13155   }
13156 
13157   // Local classes need to have their virtual members marked
13158   // immediately. For all other classes, we mark their virtual members
13159   // at the end of the translation unit.
13160   if (Class->isLocalClass())
13161     MarkVirtualMembersReferenced(Loc, Class);
13162   else
13163     VTableUses.push_back(std::make_pair(Class, Loc));
13164 }
13165 
DefineUsedVTables()13166 bool Sema::DefineUsedVTables() {
13167   LoadExternalVTableUses();
13168   if (VTableUses.empty())
13169     return false;
13170 
13171   // Note: The VTableUses vector could grow as a result of marking
13172   // the members of a class as "used", so we check the size each
13173   // time through the loop and prefer indices (which are stable) to
13174   // iterators (which are not).
13175   bool DefinedAnything = false;
13176   for (unsigned I = 0; I != VTableUses.size(); ++I) {
13177     CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
13178     if (!Class)
13179       continue;
13180 
13181     SourceLocation Loc = VTableUses[I].second;
13182 
13183     bool DefineVTable = true;
13184 
13185     // If this class has a key function, but that key function is
13186     // defined in another translation unit, we don't need to emit the
13187     // vtable even though we're using it.
13188     const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
13189     if (KeyFunction && !KeyFunction->hasBody()) {
13190       // The key function is in another translation unit.
13191       DefineVTable = false;
13192       TemplateSpecializationKind TSK =
13193           KeyFunction->getTemplateSpecializationKind();
13194       assert(TSK != TSK_ExplicitInstantiationDefinition &&
13195              TSK != TSK_ImplicitInstantiation &&
13196              "Instantiations don't have key functions");
13197       (void)TSK;
13198     } else if (!KeyFunction) {
13199       // If we have a class with no key function that is the subject
13200       // of an explicit instantiation declaration, suppress the
13201       // vtable; it will live with the explicit instantiation
13202       // definition.
13203       bool IsExplicitInstantiationDeclaration
13204         = Class->getTemplateSpecializationKind()
13205                                       == TSK_ExplicitInstantiationDeclaration;
13206       for (auto R : Class->redecls()) {
13207         TemplateSpecializationKind TSK
13208           = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
13209         if (TSK == TSK_ExplicitInstantiationDeclaration)
13210           IsExplicitInstantiationDeclaration = true;
13211         else if (TSK == TSK_ExplicitInstantiationDefinition) {
13212           IsExplicitInstantiationDeclaration = false;
13213           break;
13214         }
13215       }
13216 
13217       if (IsExplicitInstantiationDeclaration)
13218         DefineVTable = false;
13219     }
13220 
13221     // The exception specifications for all virtual members may be needed even
13222     // if we are not providing an authoritative form of the vtable in this TU.
13223     // We may choose to emit it available_externally anyway.
13224     if (!DefineVTable) {
13225       MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
13226       continue;
13227     }
13228 
13229     // Mark all of the virtual members of this class as referenced, so
13230     // that we can build a vtable. Then, tell the AST consumer that a
13231     // vtable for this class is required.
13232     DefinedAnything = true;
13233     MarkVirtualMembersReferenced(Loc, Class);
13234     CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13235     if (VTablesUsed[Canonical])
13236       Consumer.HandleVTable(Class);
13237 
13238     // Optionally warn if we're emitting a weak vtable.
13239     if (Class->isExternallyVisible() &&
13240         Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
13241       const FunctionDecl *KeyFunctionDef = nullptr;
13242       if (!KeyFunction ||
13243           (KeyFunction->hasBody(KeyFunctionDef) &&
13244            KeyFunctionDef->isInlined()))
13245         Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
13246              TSK_ExplicitInstantiationDefinition
13247              ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
13248           << Class;
13249     }
13250   }
13251   VTableUses.clear();
13252 
13253   return DefinedAnything;
13254 }
13255 
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)13256 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
13257                                                  const CXXRecordDecl *RD) {
13258   for (const auto *I : RD->methods())
13259     if (I->isVirtual() && !I->isPure())
13260       ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
13261 }
13262 
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)13263 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
13264                                         const CXXRecordDecl *RD) {
13265   // Mark all functions which will appear in RD's vtable as used.
13266   CXXFinalOverriderMap FinalOverriders;
13267   RD->getFinalOverriders(FinalOverriders);
13268   for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
13269                                             E = FinalOverriders.end();
13270        I != E; ++I) {
13271     for (OverridingMethods::const_iterator OI = I->second.begin(),
13272                                            OE = I->second.end();
13273          OI != OE; ++OI) {
13274       assert(OI->second.size() > 0 && "no final overrider");
13275       CXXMethodDecl *Overrider = OI->second.front().Method;
13276 
13277       // C++ [basic.def.odr]p2:
13278       //   [...] A virtual member function is used if it is not pure. [...]
13279       if (!Overrider->isPure())
13280         MarkFunctionReferenced(Loc, Overrider);
13281     }
13282   }
13283 
13284   // Only classes that have virtual bases need a VTT.
13285   if (RD->getNumVBases() == 0)
13286     return;
13287 
13288   for (const auto &I : RD->bases()) {
13289     const CXXRecordDecl *Base =
13290         cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
13291     if (Base->getNumVBases() == 0)
13292       continue;
13293     MarkVirtualMembersReferenced(Loc, Base);
13294   }
13295 }
13296 
13297 /// SetIvarInitializers - This routine builds initialization ASTs for the
13298 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)13299 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
13300   if (!getLangOpts().CPlusPlus)
13301     return;
13302   if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
13303     SmallVector<ObjCIvarDecl*, 8> ivars;
13304     CollectIvarsToConstructOrDestruct(OID, ivars);
13305     if (ivars.empty())
13306       return;
13307     SmallVector<CXXCtorInitializer*, 32> AllToInit;
13308     for (unsigned i = 0; i < ivars.size(); i++) {
13309       FieldDecl *Field = ivars[i];
13310       if (Field->isInvalidDecl())
13311         continue;
13312 
13313       CXXCtorInitializer *Member;
13314       InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
13315       InitializationKind InitKind =
13316         InitializationKind::CreateDefault(ObjCImplementation->getLocation());
13317 
13318       InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
13319       ExprResult MemberInit =
13320         InitSeq.Perform(*this, InitEntity, InitKind, None);
13321       MemberInit = MaybeCreateExprWithCleanups(MemberInit);
13322       // Note, MemberInit could actually come back empty if no initialization
13323       // is required (e.g., because it would call a trivial default constructor)
13324       if (!MemberInit.get() || MemberInit.isInvalid())
13325         continue;
13326 
13327       Member =
13328         new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
13329                                          SourceLocation(),
13330                                          MemberInit.getAs<Expr>(),
13331                                          SourceLocation());
13332       AllToInit.push_back(Member);
13333 
13334       // Be sure that the destructor is accessible and is marked as referenced.
13335       if (const RecordType *RecordTy =
13336               Context.getBaseElementType(Field->getType())
13337                   ->getAs<RecordType>()) {
13338         CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
13339         if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
13340           MarkFunctionReferenced(Field->getLocation(), Destructor);
13341           CheckDestructorAccess(Field->getLocation(), Destructor,
13342                             PDiag(diag::err_access_dtor_ivar)
13343                               << Context.getBaseElementType(Field->getType()));
13344         }
13345       }
13346     }
13347     ObjCImplementation->setIvarInitializers(Context,
13348                                             AllToInit.data(), AllToInit.size());
13349   }
13350 }
13351 
13352 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)13353 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
13354                            llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
13355                            llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
13356                            llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
13357                            Sema &S) {
13358   if (Ctor->isInvalidDecl())
13359     return;
13360 
13361   CXXConstructorDecl *Target = Ctor->getTargetConstructor();
13362 
13363   // Target may not be determinable yet, for instance if this is a dependent
13364   // call in an uninstantiated template.
13365   if (Target) {
13366     const FunctionDecl *FNTarget = nullptr;
13367     (void)Target->hasBody(FNTarget);
13368     Target = const_cast<CXXConstructorDecl*>(
13369       cast_or_null<CXXConstructorDecl>(FNTarget));
13370   }
13371 
13372   CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
13373                      // Avoid dereferencing a null pointer here.
13374                      *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
13375 
13376   if (!Current.insert(Canonical).second)
13377     return;
13378 
13379   // We know that beyond here, we aren't chaining into a cycle.
13380   if (!Target || !Target->isDelegatingConstructor() ||
13381       Target->isInvalidDecl() || Valid.count(TCanonical)) {
13382     Valid.insert(Current.begin(), Current.end());
13383     Current.clear();
13384   // We've hit a cycle.
13385   } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
13386              Current.count(TCanonical)) {
13387     // If we haven't diagnosed this cycle yet, do so now.
13388     if (!Invalid.count(TCanonical)) {
13389       S.Diag((*Ctor->init_begin())->getSourceLocation(),
13390              diag::warn_delegating_ctor_cycle)
13391         << Ctor;
13392 
13393       // Don't add a note for a function delegating directly to itself.
13394       if (TCanonical != Canonical)
13395         S.Diag(Target->getLocation(), diag::note_it_delegates_to);
13396 
13397       CXXConstructorDecl *C = Target;
13398       while (C->getCanonicalDecl() != Canonical) {
13399         const FunctionDecl *FNTarget = nullptr;
13400         (void)C->getTargetConstructor()->hasBody(FNTarget);
13401         assert(FNTarget && "Ctor cycle through bodiless function");
13402 
13403         C = const_cast<CXXConstructorDecl*>(
13404           cast<CXXConstructorDecl>(FNTarget));
13405         S.Diag(C->getLocation(), diag::note_which_delegates_to);
13406       }
13407     }
13408 
13409     Invalid.insert(Current.begin(), Current.end());
13410     Current.clear();
13411   } else {
13412     DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
13413   }
13414 }
13415 
13416 
CheckDelegatingCtorCycles()13417 void Sema::CheckDelegatingCtorCycles() {
13418   llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
13419 
13420   for (DelegatingCtorDeclsType::iterator
13421          I = DelegatingCtorDecls.begin(ExternalSource),
13422          E = DelegatingCtorDecls.end();
13423        I != E; ++I)
13424     DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
13425 
13426   for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
13427                                                          CE = Invalid.end();
13428        CI != CE; ++CI)
13429     (*CI)->setInvalidDecl();
13430 }
13431 
13432 namespace {
13433   /// \brief AST visitor that finds references to the 'this' expression.
13434   class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
13435     Sema &S;
13436 
13437   public:
FindCXXThisExpr(Sema & S)13438     explicit FindCXXThisExpr(Sema &S) : S(S) { }
13439 
VisitCXXThisExpr(CXXThisExpr * E)13440     bool VisitCXXThisExpr(CXXThisExpr *E) {
13441       S.Diag(E->getLocation(), diag::err_this_static_member_func)
13442         << E->isImplicit();
13443       return false;
13444     }
13445   };
13446 }
13447 
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)13448 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
13449   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13450   if (!TSInfo)
13451     return false;
13452 
13453   TypeLoc TL = TSInfo->getTypeLoc();
13454   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13455   if (!ProtoTL)
13456     return false;
13457 
13458   // C++11 [expr.prim.general]p3:
13459   //   [The expression this] shall not appear before the optional
13460   //   cv-qualifier-seq and it shall not appear within the declaration of a
13461   //   static member function (although its type and value category are defined
13462   //   within a static member function as they are within a non-static member
13463   //   function). [ Note: this is because declaration matching does not occur
13464   //  until the complete declarator is known. - end note ]
13465   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13466   FindCXXThisExpr Finder(*this);
13467 
13468   // If the return type came after the cv-qualifier-seq, check it now.
13469   if (Proto->hasTrailingReturn() &&
13470       !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
13471     return true;
13472 
13473   // Check the exception specification.
13474   if (checkThisInStaticMemberFunctionExceptionSpec(Method))
13475     return true;
13476 
13477   return checkThisInStaticMemberFunctionAttributes(Method);
13478 }
13479 
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)13480 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
13481   TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13482   if (!TSInfo)
13483     return false;
13484 
13485   TypeLoc TL = TSInfo->getTypeLoc();
13486   FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13487   if (!ProtoTL)
13488     return false;
13489 
13490   const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13491   FindCXXThisExpr Finder(*this);
13492 
13493   switch (Proto->getExceptionSpecType()) {
13494   case EST_Unparsed:
13495   case EST_Uninstantiated:
13496   case EST_Unevaluated:
13497   case EST_BasicNoexcept:
13498   case EST_DynamicNone:
13499   case EST_MSAny:
13500   case EST_None:
13501     break;
13502 
13503   case EST_ComputedNoexcept:
13504     if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
13505       return true;
13506 
13507   case EST_Dynamic:
13508     for (const auto &E : Proto->exceptions()) {
13509       if (!Finder.TraverseType(E))
13510         return true;
13511     }
13512     break;
13513   }
13514 
13515   return false;
13516 }
13517 
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)13518 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
13519   FindCXXThisExpr Finder(*this);
13520 
13521   // Check attributes.
13522   for (const auto *A : Method->attrs()) {
13523     // FIXME: This should be emitted by tblgen.
13524     Expr *Arg = nullptr;
13525     ArrayRef<Expr *> Args;
13526     if (const auto *G = dyn_cast<GuardedByAttr>(A))
13527       Arg = G->getArg();
13528     else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
13529       Arg = G->getArg();
13530     else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
13531       Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
13532     else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
13533       Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
13534     else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
13535       Arg = ETLF->getSuccessValue();
13536       Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
13537     } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
13538       Arg = STLF->getSuccessValue();
13539       Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
13540     } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
13541       Arg = LR->getArg();
13542     else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
13543       Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
13544     else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
13545       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13546     else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
13547       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13548     else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
13549       Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13550     else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
13551       Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13552 
13553     if (Arg && !Finder.TraverseStmt(Arg))
13554       return true;
13555 
13556     for (unsigned I = 0, N = Args.size(); I != N; ++I) {
13557       if (!Finder.TraverseStmt(Args[I]))
13558         return true;
13559     }
13560   }
13561 
13562   return false;
13563 }
13564 
checkExceptionSpecification(bool IsTopLevel,ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExceptionSpecInfo & ESI)13565 void Sema::checkExceptionSpecification(
13566     bool IsTopLevel, ExceptionSpecificationType EST,
13567     ArrayRef<ParsedType> DynamicExceptions,
13568     ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
13569     SmallVectorImpl<QualType> &Exceptions,
13570     FunctionProtoType::ExceptionSpecInfo &ESI) {
13571   Exceptions.clear();
13572   ESI.Type = EST;
13573   if (EST == EST_Dynamic) {
13574     Exceptions.reserve(DynamicExceptions.size());
13575     for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
13576       // FIXME: Preserve type source info.
13577       QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
13578 
13579       if (IsTopLevel) {
13580         SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13581         collectUnexpandedParameterPacks(ET, Unexpanded);
13582         if (!Unexpanded.empty()) {
13583           DiagnoseUnexpandedParameterPacks(
13584               DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
13585               Unexpanded);
13586           continue;
13587         }
13588       }
13589 
13590       // Check that the type is valid for an exception spec, and
13591       // drop it if not.
13592       if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
13593         Exceptions.push_back(ET);
13594     }
13595     ESI.Exceptions = Exceptions;
13596     return;
13597   }
13598 
13599   if (EST == EST_ComputedNoexcept) {
13600     // If an error occurred, there's no expression here.
13601     if (NoexceptExpr) {
13602       assert((NoexceptExpr->isTypeDependent() ||
13603               NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
13604               Context.BoolTy) &&
13605              "Parser should have made sure that the expression is boolean");
13606       if (IsTopLevel && NoexceptExpr &&
13607           DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
13608         ESI.Type = EST_BasicNoexcept;
13609         return;
13610       }
13611 
13612       if (!NoexceptExpr->isValueDependent())
13613         NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
13614                          diag::err_noexcept_needs_constant_expression,
13615                          /*AllowFold*/ false).get();
13616       ESI.NoexceptExpr = NoexceptExpr;
13617     }
13618     return;
13619   }
13620 }
13621 
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)13622 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
13623              ExceptionSpecificationType EST,
13624              SourceRange SpecificationRange,
13625              ArrayRef<ParsedType> DynamicExceptions,
13626              ArrayRef<SourceRange> DynamicExceptionRanges,
13627              Expr *NoexceptExpr) {
13628   if (!MethodD)
13629     return;
13630 
13631   // Dig out the method we're referring to.
13632   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
13633     MethodD = FunTmpl->getTemplatedDecl();
13634 
13635   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
13636   if (!Method)
13637     return;
13638 
13639   // Check the exception specification.
13640   llvm::SmallVector<QualType, 4> Exceptions;
13641   FunctionProtoType::ExceptionSpecInfo ESI;
13642   checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
13643                               DynamicExceptionRanges, NoexceptExpr, Exceptions,
13644                               ESI);
13645 
13646   // Update the exception specification on the function type.
13647   Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
13648 
13649   if (Method->isStatic())
13650     checkThisInStaticMemberFunctionExceptionSpec(Method);
13651 
13652   if (Method->isVirtual()) {
13653     // Check overrides, which we previously had to delay.
13654     for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
13655                                      OEnd = Method->end_overridden_methods();
13656          O != OEnd; ++O)
13657       CheckOverridingFunctionExceptionSpec(Method, *O);
13658   }
13659 }
13660 
13661 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
13662 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,AttributeList * MSPropertyAttr)13663 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
13664                                        SourceLocation DeclStart,
13665                                        Declarator &D, Expr *BitWidth,
13666                                        InClassInitStyle InitStyle,
13667                                        AccessSpecifier AS,
13668                                        AttributeList *MSPropertyAttr) {
13669   IdentifierInfo *II = D.getIdentifier();
13670   if (!II) {
13671     Diag(DeclStart, diag::err_anonymous_property);
13672     return nullptr;
13673   }
13674   SourceLocation Loc = D.getIdentifierLoc();
13675 
13676   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13677   QualType T = TInfo->getType();
13678   if (getLangOpts().CPlusPlus) {
13679     CheckExtraCXXDefaultArguments(D);
13680 
13681     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
13682                                         UPPC_DataMemberType)) {
13683       D.setInvalidType();
13684       T = Context.IntTy;
13685       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
13686     }
13687   }
13688 
13689   DiagnoseFunctionSpecifiers(D.getDeclSpec());
13690 
13691   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
13692     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
13693          diag::err_invalid_thread)
13694       << DeclSpec::getSpecifierName(TSCS);
13695 
13696   // Check to see if this name was declared as a member previously
13697   NamedDecl *PrevDecl = nullptr;
13698   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
13699   LookupName(Previous, S);
13700   switch (Previous.getResultKind()) {
13701   case LookupResult::Found:
13702   case LookupResult::FoundUnresolvedValue:
13703     PrevDecl = Previous.getAsSingle<NamedDecl>();
13704     break;
13705 
13706   case LookupResult::FoundOverloaded:
13707     PrevDecl = Previous.getRepresentativeDecl();
13708     break;
13709 
13710   case LookupResult::NotFound:
13711   case LookupResult::NotFoundInCurrentInstantiation:
13712   case LookupResult::Ambiguous:
13713     break;
13714   }
13715 
13716   if (PrevDecl && PrevDecl->isTemplateParameter()) {
13717     // Maybe we will complain about the shadowed template parameter.
13718     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13719     // Just pretend that we didn't see the previous declaration.
13720     PrevDecl = nullptr;
13721   }
13722 
13723   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
13724     PrevDecl = nullptr;
13725 
13726   SourceLocation TSSL = D.getLocStart();
13727   const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
13728   MSPropertyDecl *NewPD = MSPropertyDecl::Create(
13729       Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
13730   ProcessDeclAttributes(TUScope, NewPD, D);
13731   NewPD->setAccess(AS);
13732 
13733   if (NewPD->isInvalidDecl())
13734     Record->setInvalidDecl();
13735 
13736   if (D.getDeclSpec().isModulePrivateSpecified())
13737     NewPD->setModulePrivate();
13738 
13739   if (NewPD->isInvalidDecl() && PrevDecl) {
13740     // Don't introduce NewFD into scope; there's already something
13741     // with the same name in the same scope.
13742   } else if (II) {
13743     PushOnScopeChains(NewPD, S);
13744   } else
13745     Record->addDecl(NewPD);
13746 
13747   return NewPD;
13748 }
13749