1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/Template.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include <map>
43 #include <set>
44
45 using namespace clang;
46
47 //===----------------------------------------------------------------------===//
48 // CheckDefaultArgumentVisitor
49 //===----------------------------------------------------------------------===//
50
51 namespace {
52 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53 /// the default argument of a parameter to determine whether it
54 /// contains any ill-formed subexpressions. For example, this will
55 /// diagnose the use of local variables or parameters within the
56 /// default argument expression.
57 class CheckDefaultArgumentVisitor
58 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59 Expr *DefaultArg;
60 Sema *S;
61
62 public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)63 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64 : DefaultArg(defarg), S(s) {}
65
66 bool VisitExpr(Expr *Node);
67 bool VisitDeclRefExpr(DeclRefExpr *DRE);
68 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69 bool VisitLambdaExpr(LambdaExpr *Lambda);
70 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71 };
72
73 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)74 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75 bool IsInvalid = false;
76 for (Stmt::child_range I = Node->children(); I; ++I)
77 IsInvalid |= Visit(*I);
78 return IsInvalid;
79 }
80
81 /// VisitDeclRefExpr - Visit a reference to a declaration, to
82 /// determine whether this declaration can be used in the default
83 /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)84 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85 NamedDecl *Decl = DRE->getDecl();
86 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87 // C++ [dcl.fct.default]p9
88 // Default arguments are evaluated each time the function is
89 // called. The order of evaluation of function arguments is
90 // unspecified. Consequently, parameters of a function shall not
91 // be used in default argument expressions, even if they are not
92 // evaluated. Parameters of a function declared before a default
93 // argument expression are in scope and can hide namespace and
94 // class member names.
95 return S->Diag(DRE->getLocStart(),
96 diag::err_param_default_argument_references_param)
97 << Param->getDeclName() << DefaultArg->getSourceRange();
98 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99 // C++ [dcl.fct.default]p7
100 // Local variables shall not be used in default argument
101 // expressions.
102 if (VDecl->isLocalVarDecl())
103 return S->Diag(DRE->getLocStart(),
104 diag::err_param_default_argument_references_local)
105 << VDecl->getDeclName() << DefaultArg->getSourceRange();
106 }
107
108 return false;
109 }
110
111 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)112 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113 // C++ [dcl.fct.default]p8:
114 // The keyword this shall not be used in a default argument of a
115 // member function.
116 return S->Diag(ThisE->getLocStart(),
117 diag::err_param_default_argument_references_this)
118 << ThisE->getSourceRange();
119 }
120
VisitPseudoObjectExpr(PseudoObjectExpr * POE)121 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122 bool Invalid = false;
123 for (PseudoObjectExpr::semantics_iterator
124 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125 Expr *E = *i;
126
127 // Look through bindings.
128 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129 E = OVE->getSourceExpr();
130 assert(E && "pseudo-object binding without source expression?");
131 }
132
133 Invalid |= Visit(E);
134 }
135 return Invalid;
136 }
137
VisitLambdaExpr(LambdaExpr * Lambda)138 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139 // C++11 [expr.lambda.prim]p13:
140 // A lambda-expression appearing in a default argument shall not
141 // implicitly or explicitly capture any entity.
142 if (Lambda->capture_begin() == Lambda->capture_end())
143 return false;
144
145 return S->Diag(Lambda->getLocStart(),
146 diag::err_lambda_capture_default_arg);
147 }
148 }
149
150 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)151 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152 const CXXMethodDecl *Method) {
153 // If we have an MSAny spec already, don't bother.
154 if (!Method || ComputedEST == EST_MSAny)
155 return;
156
157 const FunctionProtoType *Proto
158 = Method->getType()->getAs<FunctionProtoType>();
159 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160 if (!Proto)
161 return;
162
163 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164
165 // If this function can throw any exceptions, make a note of that.
166 if (EST == EST_MSAny || EST == EST_None) {
167 ClearExceptions();
168 ComputedEST = EST;
169 return;
170 }
171
172 // FIXME: If the call to this decl is using any of its default arguments, we
173 // need to search them for potentially-throwing calls.
174
175 // If this function has a basic noexcept, it doesn't affect the outcome.
176 if (EST == EST_BasicNoexcept)
177 return;
178
179 // If we have a throw-all spec at this point, ignore the function.
180 if (ComputedEST == EST_None)
181 return;
182
183 // If we're still at noexcept(true) and there's a nothrow() callee,
184 // change to that specification.
185 if (EST == EST_DynamicNone) {
186 if (ComputedEST == EST_BasicNoexcept)
187 ComputedEST = EST_DynamicNone;
188 return;
189 }
190
191 // Check out noexcept specs.
192 if (EST == EST_ComputedNoexcept) {
193 FunctionProtoType::NoexceptResult NR =
194 Proto->getNoexceptSpec(Self->Context);
195 assert(NR != FunctionProtoType::NR_NoNoexcept &&
196 "Must have noexcept result for EST_ComputedNoexcept.");
197 assert(NR != FunctionProtoType::NR_Dependent &&
198 "Should not generate implicit declarations for dependent cases, "
199 "and don't know how to handle them anyway.");
200
201 // noexcept(false) -> no spec on the new function
202 if (NR == FunctionProtoType::NR_Throw) {
203 ClearExceptions();
204 ComputedEST = EST_None;
205 }
206 // noexcept(true) won't change anything either.
207 return;
208 }
209
210 assert(EST == EST_Dynamic && "EST case not considered earlier.");
211 assert(ComputedEST != EST_None &&
212 "Shouldn't collect exceptions when throw-all is guaranteed.");
213 ComputedEST = EST_Dynamic;
214 // Record the exceptions in this function's exception specification.
215 for (const auto &E : Proto->exceptions())
216 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
217 Exceptions.push_back(E);
218 }
219
CalledExpr(Expr * E)220 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221 if (!E || ComputedEST == EST_MSAny)
222 return;
223
224 // FIXME:
225 //
226 // C++0x [except.spec]p14:
227 // [An] implicit exception-specification specifies the type-id T if and
228 // only if T is allowed by the exception-specification of a function directly
229 // invoked by f's implicit definition; f shall allow all exceptions if any
230 // function it directly invokes allows all exceptions, and f shall allow no
231 // exceptions if every function it directly invokes allows no exceptions.
232 //
233 // Note in particular that if an implicit exception-specification is generated
234 // for a function containing a throw-expression, that specification can still
235 // be noexcept(true).
236 //
237 // Note also that 'directly invoked' is not defined in the standard, and there
238 // is no indication that we should only consider potentially-evaluated calls.
239 //
240 // Ultimately we should implement the intent of the standard: the exception
241 // specification should be the set of exceptions which can be thrown by the
242 // implicit definition. For now, we assume that any non-nothrow expression can
243 // throw any exception.
244
245 if (Self->canThrow(E))
246 ComputedEST = EST_None;
247 }
248
249 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)250 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251 SourceLocation EqualLoc) {
252 if (RequireCompleteType(Param->getLocation(), Param->getType(),
253 diag::err_typecheck_decl_incomplete_type)) {
254 Param->setInvalidDecl();
255 return true;
256 }
257
258 // C++ [dcl.fct.default]p5
259 // A default argument expression is implicitly converted (clause
260 // 4) to the parameter type. The default argument expression has
261 // the same semantic constraints as the initializer expression in
262 // a declaration of a variable of the parameter type, using the
263 // copy-initialization semantics (8.5).
264 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265 Param);
266 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267 EqualLoc);
268 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270 if (Result.isInvalid())
271 return true;
272 Arg = Result.getAs<Expr>();
273
274 CheckCompletedExpr(Arg, EqualLoc);
275 Arg = MaybeCreateExprWithCleanups(Arg);
276
277 // Okay: add the default argument to the parameter
278 Param->setDefaultArg(Arg);
279
280 // We have already instantiated this parameter; provide each of the
281 // instantiations with the uninstantiated default argument.
282 UnparsedDefaultArgInstantiationsMap::iterator InstPos
283 = UnparsedDefaultArgInstantiations.find(Param);
284 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288 // We're done tracking this parameter's instantiations.
289 UnparsedDefaultArgInstantiations.erase(InstPos);
290 }
291
292 return false;
293 }
294
295 /// ActOnParamDefaultArgument - Check whether the default argument
296 /// provided for a function parameter is well-formed. If so, attach it
297 /// to the parameter declaration.
298 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)299 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300 Expr *DefaultArg) {
301 if (!param || !DefaultArg)
302 return;
303
304 ParmVarDecl *Param = cast<ParmVarDecl>(param);
305 UnparsedDefaultArgLocs.erase(Param);
306
307 // Default arguments are only permitted in C++
308 if (!getLangOpts().CPlusPlus) {
309 Diag(EqualLoc, diag::err_param_default_argument)
310 << DefaultArg->getSourceRange();
311 Param->setInvalidDecl();
312 return;
313 }
314
315 // Check for unexpanded parameter packs.
316 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317 Param->setInvalidDecl();
318 return;
319 }
320
321 // C++11 [dcl.fct.default]p3
322 // A default argument expression [...] shall not be specified for a
323 // parameter pack.
324 if (Param->isParameterPack()) {
325 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
326 << DefaultArg->getSourceRange();
327 return;
328 }
329
330 // Check that the default argument is well-formed
331 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
332 if (DefaultArgChecker.Visit(DefaultArg)) {
333 Param->setInvalidDecl();
334 return;
335 }
336
337 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
338 }
339
340 /// ActOnParamUnparsedDefaultArgument - We've seen a default
341 /// argument for a function parameter, but we can't parse it yet
342 /// because we're inside a class definition. Note that this default
343 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)344 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
345 SourceLocation EqualLoc,
346 SourceLocation ArgLoc) {
347 if (!param)
348 return;
349
350 ParmVarDecl *Param = cast<ParmVarDecl>(param);
351 Param->setUnparsedDefaultArg();
352 UnparsedDefaultArgLocs[Param] = ArgLoc;
353 }
354
355 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
356 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param,SourceLocation EqualLoc)357 void Sema::ActOnParamDefaultArgumentError(Decl *param,
358 SourceLocation EqualLoc) {
359 if (!param)
360 return;
361
362 ParmVarDecl *Param = cast<ParmVarDecl>(param);
363 Param->setInvalidDecl();
364 UnparsedDefaultArgLocs.erase(Param);
365 Param->setDefaultArg(new(Context)
366 OpaqueValueExpr(EqualLoc,
367 Param->getType().getNonReferenceType(),
368 VK_RValue));
369 }
370
371 /// CheckExtraCXXDefaultArguments - Check for any extra default
372 /// arguments in the declarator, which is not a function declaration
373 /// or definition and therefore is not permitted to have default
374 /// arguments. This routine should be invoked for every declarator
375 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)376 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
377 // C++ [dcl.fct.default]p3
378 // A default argument expression shall be specified only in the
379 // parameter-declaration-clause of a function declaration or in a
380 // template-parameter (14.1). It shall not be specified for a
381 // parameter pack. If it is specified in a
382 // parameter-declaration-clause, it shall not occur within a
383 // declarator or abstract-declarator of a parameter-declaration.
384 bool MightBeFunction = D.isFunctionDeclarationContext();
385 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
386 DeclaratorChunk &chunk = D.getTypeObject(i);
387 if (chunk.Kind == DeclaratorChunk::Function) {
388 if (MightBeFunction) {
389 // This is a function declaration. It can have default arguments, but
390 // keep looking in case its return type is a function type with default
391 // arguments.
392 MightBeFunction = false;
393 continue;
394 }
395 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
396 ++argIdx) {
397 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
398 if (Param->hasUnparsedDefaultArg()) {
399 CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
400 SourceRange SR;
401 if (Toks->size() > 1)
402 SR = SourceRange((*Toks)[1].getLocation(),
403 Toks->back().getLocation());
404 else
405 SR = UnparsedDefaultArgLocs[Param];
406 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
407 << SR;
408 delete Toks;
409 chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
410 } else if (Param->getDefaultArg()) {
411 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
412 << Param->getDefaultArg()->getSourceRange();
413 Param->setDefaultArg(nullptr);
414 }
415 }
416 } else if (chunk.Kind != DeclaratorChunk::Paren) {
417 MightBeFunction = false;
418 }
419 }
420 }
421
functionDeclHasDefaultArgument(const FunctionDecl * FD)422 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
423 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
424 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
425 if (!PVD->hasDefaultArg())
426 return false;
427 if (!PVD->hasInheritedDefaultArg())
428 return true;
429 }
430 return false;
431 }
432
433 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
434 /// function, once we already know that they have the same
435 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
436 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)437 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
438 Scope *S) {
439 bool Invalid = false;
440
441 // C++ [dcl.fct.default]p4:
442 // For non-template functions, default arguments can be added in
443 // later declarations of a function in the same
444 // scope. Declarations in different scopes have completely
445 // distinct sets of default arguments. That is, declarations in
446 // inner scopes do not acquire default arguments from
447 // declarations in outer scopes, and vice versa. In a given
448 // function declaration, all parameters subsequent to a
449 // parameter with a default argument shall have default
450 // arguments supplied in this or previous declarations. A
451 // default argument shall not be redefined by a later
452 // declaration (not even to the same value).
453 //
454 // C++ [dcl.fct.default]p6:
455 // Except for member functions of class templates, the default arguments
456 // in a member function definition that appears outside of the class
457 // definition are added to the set of default arguments provided by the
458 // member function declaration in the class definition.
459 for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
460 ParmVarDecl *OldParam = Old->getParamDecl(p);
461 ParmVarDecl *NewParam = New->getParamDecl(p);
462
463 bool OldParamHasDfl = OldParam->hasDefaultArg();
464 bool NewParamHasDfl = NewParam->hasDefaultArg();
465
466 // The declaration context corresponding to the scope is the semantic
467 // parent, unless this is a local function declaration, in which case
468 // it is that surrounding function.
469 DeclContext *ScopeDC = New->isLocalExternDecl()
470 ? New->getLexicalDeclContext()
471 : New->getDeclContext();
472 if (S && !isDeclInScope(Old, ScopeDC, S) &&
473 !New->getDeclContext()->isRecord())
474 // Ignore default parameters of old decl if they are not in
475 // the same scope and this is not an out-of-line definition of
476 // a member function.
477 OldParamHasDfl = false;
478 if (New->isLocalExternDecl() != Old->isLocalExternDecl())
479 // If only one of these is a local function declaration, then they are
480 // declared in different scopes, even though isDeclInScope may think
481 // they're in the same scope. (If both are local, the scope check is
482 // sufficent, and if neither is local, then they are in the same scope.)
483 OldParamHasDfl = false;
484
485 if (OldParamHasDfl && NewParamHasDfl) {
486
487 unsigned DiagDefaultParamID =
488 diag::err_param_default_argument_redefinition;
489
490 // MSVC accepts that default parameters be redefined for member functions
491 // of template class. The new default parameter's value is ignored.
492 Invalid = true;
493 if (getLangOpts().MicrosoftExt) {
494 CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
495 if (MD && MD->getParent()->getDescribedClassTemplate()) {
496 // Merge the old default argument into the new parameter.
497 NewParam->setHasInheritedDefaultArg();
498 if (OldParam->hasUninstantiatedDefaultArg())
499 NewParam->setUninstantiatedDefaultArg(
500 OldParam->getUninstantiatedDefaultArg());
501 else
502 NewParam->setDefaultArg(OldParam->getInit());
503 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
504 Invalid = false;
505 }
506 }
507
508 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
509 // hint here. Alternatively, we could walk the type-source information
510 // for NewParam to find the last source location in the type... but it
511 // isn't worth the effort right now. This is the kind of test case that
512 // is hard to get right:
513 // int f(int);
514 // void g(int (*fp)(int) = f);
515 // void g(int (*fp)(int) = &f);
516 Diag(NewParam->getLocation(), DiagDefaultParamID)
517 << NewParam->getDefaultArgRange();
518
519 // Look for the function declaration where the default argument was
520 // actually written, which may be a declaration prior to Old.
521 for (auto Older = Old; OldParam->hasInheritedDefaultArg();) {
522 Older = Older->getPreviousDecl();
523 OldParam = Older->getParamDecl(p);
524 }
525
526 Diag(OldParam->getLocation(), diag::note_previous_definition)
527 << OldParam->getDefaultArgRange();
528 } else if (OldParamHasDfl) {
529 // Merge the old default argument into the new parameter.
530 // It's important to use getInit() here; getDefaultArg()
531 // strips off any top-level ExprWithCleanups.
532 NewParam->setHasInheritedDefaultArg();
533 if (OldParam->hasUnparsedDefaultArg())
534 NewParam->setUnparsedDefaultArg();
535 else if (OldParam->hasUninstantiatedDefaultArg())
536 NewParam->setUninstantiatedDefaultArg(
537 OldParam->getUninstantiatedDefaultArg());
538 else
539 NewParam->setDefaultArg(OldParam->getInit());
540 } else if (NewParamHasDfl) {
541 if (New->getDescribedFunctionTemplate()) {
542 // Paragraph 4, quoted above, only applies to non-template functions.
543 Diag(NewParam->getLocation(),
544 diag::err_param_default_argument_template_redecl)
545 << NewParam->getDefaultArgRange();
546 Diag(Old->getLocation(), diag::note_template_prev_declaration)
547 << false;
548 } else if (New->getTemplateSpecializationKind()
549 != TSK_ImplicitInstantiation &&
550 New->getTemplateSpecializationKind() != TSK_Undeclared) {
551 // C++ [temp.expr.spec]p21:
552 // Default function arguments shall not be specified in a declaration
553 // or a definition for one of the following explicit specializations:
554 // - the explicit specialization of a function template;
555 // - the explicit specialization of a member function template;
556 // - the explicit specialization of a member function of a class
557 // template where the class template specialization to which the
558 // member function specialization belongs is implicitly
559 // instantiated.
560 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
561 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
562 << New->getDeclName()
563 << NewParam->getDefaultArgRange();
564 } else if (New->getDeclContext()->isDependentContext()) {
565 // C++ [dcl.fct.default]p6 (DR217):
566 // Default arguments for a member function of a class template shall
567 // be specified on the initial declaration of the member function
568 // within the class template.
569 //
570 // Reading the tea leaves a bit in DR217 and its reference to DR205
571 // leads me to the conclusion that one cannot add default function
572 // arguments for an out-of-line definition of a member function of a
573 // dependent type.
574 int WhichKind = 2;
575 if (CXXRecordDecl *Record
576 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
577 if (Record->getDescribedClassTemplate())
578 WhichKind = 0;
579 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
580 WhichKind = 1;
581 else
582 WhichKind = 2;
583 }
584
585 Diag(NewParam->getLocation(),
586 diag::err_param_default_argument_member_template_redecl)
587 << WhichKind
588 << NewParam->getDefaultArgRange();
589 }
590 }
591 }
592
593 // DR1344: If a default argument is added outside a class definition and that
594 // default argument makes the function a special member function, the program
595 // is ill-formed. This can only happen for constructors.
596 if (isa<CXXConstructorDecl>(New) &&
597 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
598 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
599 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
600 if (NewSM != OldSM) {
601 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
602 assert(NewParam->hasDefaultArg());
603 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
604 << NewParam->getDefaultArgRange() << NewSM;
605 Diag(Old->getLocation(), diag::note_previous_declaration);
606 }
607 }
608
609 const FunctionDecl *Def;
610 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
611 // template has a constexpr specifier then all its declarations shall
612 // contain the constexpr specifier.
613 if (New->isConstexpr() != Old->isConstexpr()) {
614 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
615 << New << New->isConstexpr();
616 Diag(Old->getLocation(), diag::note_previous_declaration);
617 Invalid = true;
618 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
619 Old->isDefined(Def)) {
620 // C++11 [dcl.fcn.spec]p4:
621 // If the definition of a function appears in a translation unit before its
622 // first declaration as inline, the program is ill-formed.
623 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
624 Diag(Def->getLocation(), diag::note_previous_definition);
625 Invalid = true;
626 }
627
628 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
629 // argument expression, that declaration shall be a definition and shall be
630 // the only declaration of the function or function template in the
631 // translation unit.
632 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
633 functionDeclHasDefaultArgument(Old)) {
634 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
635 Diag(Old->getLocation(), diag::note_previous_declaration);
636 Invalid = true;
637 }
638
639 if (CheckEquivalentExceptionSpec(Old, New))
640 Invalid = true;
641
642 return Invalid;
643 }
644
645 /// \brief Merge the exception specifications of two variable declarations.
646 ///
647 /// This is called when there's a redeclaration of a VarDecl. The function
648 /// checks if the redeclaration might have an exception specification and
649 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)650 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
651 // Shortcut if exceptions are disabled.
652 if (!getLangOpts().CXXExceptions)
653 return;
654
655 assert(Context.hasSameType(New->getType(), Old->getType()) &&
656 "Should only be called if types are otherwise the same.");
657
658 QualType NewType = New->getType();
659 QualType OldType = Old->getType();
660
661 // We're only interested in pointers and references to functions, as well
662 // as pointers to member functions.
663 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
664 NewType = R->getPointeeType();
665 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
666 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
667 NewType = P->getPointeeType();
668 OldType = OldType->getAs<PointerType>()->getPointeeType();
669 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
670 NewType = M->getPointeeType();
671 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
672 }
673
674 if (!NewType->isFunctionProtoType())
675 return;
676
677 // There's lots of special cases for functions. For function pointers, system
678 // libraries are hopefully not as broken so that we don't need these
679 // workarounds.
680 if (CheckEquivalentExceptionSpec(
681 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
682 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
683 New->setInvalidDecl();
684 }
685 }
686
687 /// CheckCXXDefaultArguments - Verify that the default arguments for a
688 /// function declaration are well-formed according to C++
689 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)690 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
691 unsigned NumParams = FD->getNumParams();
692 unsigned p;
693
694 // Find first parameter with a default argument
695 for (p = 0; p < NumParams; ++p) {
696 ParmVarDecl *Param = FD->getParamDecl(p);
697 if (Param->hasDefaultArg())
698 break;
699 }
700
701 // C++11 [dcl.fct.default]p4:
702 // In a given function declaration, each parameter subsequent to a parameter
703 // with a default argument shall have a default argument supplied in this or
704 // a previous declaration or shall be a function parameter pack. A default
705 // argument shall not be redefined by a later declaration (not even to the
706 // same value).
707 unsigned LastMissingDefaultArg = 0;
708 for (; p < NumParams; ++p) {
709 ParmVarDecl *Param = FD->getParamDecl(p);
710 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
711 if (Param->isInvalidDecl())
712 /* We already complained about this parameter. */;
713 else if (Param->getIdentifier())
714 Diag(Param->getLocation(),
715 diag::err_param_default_argument_missing_name)
716 << Param->getIdentifier();
717 else
718 Diag(Param->getLocation(),
719 diag::err_param_default_argument_missing);
720
721 LastMissingDefaultArg = p;
722 }
723 }
724
725 if (LastMissingDefaultArg > 0) {
726 // Some default arguments were missing. Clear out all of the
727 // default arguments up to (and including) the last missing
728 // default argument, so that we leave the function parameters
729 // in a semantically valid state.
730 for (p = 0; p <= LastMissingDefaultArg; ++p) {
731 ParmVarDecl *Param = FD->getParamDecl(p);
732 if (Param->hasDefaultArg()) {
733 Param->setDefaultArg(nullptr);
734 }
735 }
736 }
737 }
738
739 // CheckConstexprParameterTypes - Check whether a function's parameter types
740 // are all literal types. If so, return true. If not, produce a suitable
741 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)742 static bool CheckConstexprParameterTypes(Sema &SemaRef,
743 const FunctionDecl *FD) {
744 unsigned ArgIndex = 0;
745 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
746 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
747 e = FT->param_type_end();
748 i != e; ++i, ++ArgIndex) {
749 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
750 SourceLocation ParamLoc = PD->getLocation();
751 if (!(*i)->isDependentType() &&
752 SemaRef.RequireLiteralType(ParamLoc, *i,
753 diag::err_constexpr_non_literal_param,
754 ArgIndex+1, PD->getSourceRange(),
755 isa<CXXConstructorDecl>(FD)))
756 return false;
757 }
758 return true;
759 }
760
761 /// \brief Get diagnostic %select index for tag kind for
762 /// record diagnostic message.
763 /// WARNING: Indexes apply to particular diagnostics only!
764 ///
765 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)766 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
767 switch (Tag) {
768 case TTK_Struct: return 0;
769 case TTK_Interface: return 1;
770 case TTK_Class: return 2;
771 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
772 }
773 }
774
775 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
776 // the requirements of a constexpr function definition or a constexpr
777 // constructor definition. If so, return true. If not, produce appropriate
778 // diagnostics and return false.
779 //
780 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)781 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
782 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
783 if (MD && MD->isInstance()) {
784 // C++11 [dcl.constexpr]p4:
785 // The definition of a constexpr constructor shall satisfy the following
786 // constraints:
787 // - the class shall not have any virtual base classes;
788 const CXXRecordDecl *RD = MD->getParent();
789 if (RD->getNumVBases()) {
790 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
791 << isa<CXXConstructorDecl>(NewFD)
792 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
793 for (const auto &I : RD->vbases())
794 Diag(I.getLocStart(),
795 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
796 return false;
797 }
798 }
799
800 if (!isa<CXXConstructorDecl>(NewFD)) {
801 // C++11 [dcl.constexpr]p3:
802 // The definition of a constexpr function shall satisfy the following
803 // constraints:
804 // - it shall not be virtual;
805 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
806 if (Method && Method->isVirtual()) {
807 Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
808
809 // If it's not obvious why this function is virtual, find an overridden
810 // function which uses the 'virtual' keyword.
811 const CXXMethodDecl *WrittenVirtual = Method;
812 while (!WrittenVirtual->isVirtualAsWritten())
813 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
814 if (WrittenVirtual != Method)
815 Diag(WrittenVirtual->getLocation(),
816 diag::note_overridden_virtual_function);
817 return false;
818 }
819
820 // - its return type shall be a literal type;
821 QualType RT = NewFD->getReturnType();
822 if (!RT->isDependentType() &&
823 RequireLiteralType(NewFD->getLocation(), RT,
824 diag::err_constexpr_non_literal_return))
825 return false;
826 }
827
828 // - each of its parameter types shall be a literal type;
829 if (!CheckConstexprParameterTypes(*this, NewFD))
830 return false;
831
832 return true;
833 }
834
835 /// Check the given declaration statement is legal within a constexpr function
836 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
837 ///
838 /// \return true if the body is OK (maybe only as an extension), false if we
839 /// have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc)840 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
841 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
842 // C++11 [dcl.constexpr]p3 and p4:
843 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
844 // contain only
845 for (const auto *DclIt : DS->decls()) {
846 switch (DclIt->getKind()) {
847 case Decl::StaticAssert:
848 case Decl::Using:
849 case Decl::UsingShadow:
850 case Decl::UsingDirective:
851 case Decl::UnresolvedUsingTypename:
852 case Decl::UnresolvedUsingValue:
853 // - static_assert-declarations
854 // - using-declarations,
855 // - using-directives,
856 continue;
857
858 case Decl::Typedef:
859 case Decl::TypeAlias: {
860 // - typedef declarations and alias-declarations that do not define
861 // classes or enumerations,
862 const auto *TN = cast<TypedefNameDecl>(DclIt);
863 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
864 // Don't allow variably-modified types in constexpr functions.
865 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
866 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
867 << TL.getSourceRange() << TL.getType()
868 << isa<CXXConstructorDecl>(Dcl);
869 return false;
870 }
871 continue;
872 }
873
874 case Decl::Enum:
875 case Decl::CXXRecord:
876 // C++1y allows types to be defined, not just declared.
877 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
878 SemaRef.Diag(DS->getLocStart(),
879 SemaRef.getLangOpts().CPlusPlus14
880 ? diag::warn_cxx11_compat_constexpr_type_definition
881 : diag::ext_constexpr_type_definition)
882 << isa<CXXConstructorDecl>(Dcl);
883 continue;
884
885 case Decl::EnumConstant:
886 case Decl::IndirectField:
887 case Decl::ParmVar:
888 // These can only appear with other declarations which are banned in
889 // C++11 and permitted in C++1y, so ignore them.
890 continue;
891
892 case Decl::Var: {
893 // C++1y [dcl.constexpr]p3 allows anything except:
894 // a definition of a variable of non-literal type or of static or
895 // thread storage duration or for which no initialization is performed.
896 const auto *VD = cast<VarDecl>(DclIt);
897 if (VD->isThisDeclarationADefinition()) {
898 if (VD->isStaticLocal()) {
899 SemaRef.Diag(VD->getLocation(),
900 diag::err_constexpr_local_var_static)
901 << isa<CXXConstructorDecl>(Dcl)
902 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
903 return false;
904 }
905 if (!VD->getType()->isDependentType() &&
906 SemaRef.RequireLiteralType(
907 VD->getLocation(), VD->getType(),
908 diag::err_constexpr_local_var_non_literal_type,
909 isa<CXXConstructorDecl>(Dcl)))
910 return false;
911 if (!VD->getType()->isDependentType() &&
912 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
913 SemaRef.Diag(VD->getLocation(),
914 diag::err_constexpr_local_var_no_init)
915 << isa<CXXConstructorDecl>(Dcl);
916 return false;
917 }
918 }
919 SemaRef.Diag(VD->getLocation(),
920 SemaRef.getLangOpts().CPlusPlus14
921 ? diag::warn_cxx11_compat_constexpr_local_var
922 : diag::ext_constexpr_local_var)
923 << isa<CXXConstructorDecl>(Dcl);
924 continue;
925 }
926
927 case Decl::NamespaceAlias:
928 case Decl::Function:
929 // These are disallowed in C++11 and permitted in C++1y. Allow them
930 // everywhere as an extension.
931 if (!Cxx1yLoc.isValid())
932 Cxx1yLoc = DS->getLocStart();
933 continue;
934
935 default:
936 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
937 << isa<CXXConstructorDecl>(Dcl);
938 return false;
939 }
940 }
941
942 return true;
943 }
944
945 /// Check that the given field is initialized within a constexpr constructor.
946 ///
947 /// \param Dcl The constexpr constructor being checked.
948 /// \param Field The field being checked. This may be a member of an anonymous
949 /// struct or union nested within the class being checked.
950 /// \param Inits All declarations, including anonymous struct/union members and
951 /// indirect members, for which any initialization was provided.
952 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)953 static void CheckConstexprCtorInitializer(Sema &SemaRef,
954 const FunctionDecl *Dcl,
955 FieldDecl *Field,
956 llvm::SmallSet<Decl*, 16> &Inits,
957 bool &Diagnosed) {
958 if (Field->isInvalidDecl())
959 return;
960
961 if (Field->isUnnamedBitfield())
962 return;
963
964 // Anonymous unions with no variant members and empty anonymous structs do not
965 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
966 // indirect fields don't need initializing.
967 if (Field->isAnonymousStructOrUnion() &&
968 (Field->getType()->isUnionType()
969 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
970 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
971 return;
972
973 if (!Inits.count(Field)) {
974 if (!Diagnosed) {
975 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
976 Diagnosed = true;
977 }
978 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
979 } else if (Field->isAnonymousStructOrUnion()) {
980 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
981 for (auto *I : RD->fields())
982 // If an anonymous union contains an anonymous struct of which any member
983 // is initialized, all members must be initialized.
984 if (!RD->isUnion() || Inits.count(I))
985 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
986 }
987 }
988
989 /// Check the provided statement is allowed in a constexpr function
990 /// definition.
991 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc)992 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
993 SmallVectorImpl<SourceLocation> &ReturnStmts,
994 SourceLocation &Cxx1yLoc) {
995 // - its function-body shall be [...] a compound-statement that contains only
996 switch (S->getStmtClass()) {
997 case Stmt::NullStmtClass:
998 // - null statements,
999 return true;
1000
1001 case Stmt::DeclStmtClass:
1002 // - static_assert-declarations
1003 // - using-declarations,
1004 // - using-directives,
1005 // - typedef declarations and alias-declarations that do not define
1006 // classes or enumerations,
1007 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1008 return false;
1009 return true;
1010
1011 case Stmt::ReturnStmtClass:
1012 // - and exactly one return statement;
1013 if (isa<CXXConstructorDecl>(Dcl)) {
1014 // C++1y allows return statements in constexpr constructors.
1015 if (!Cxx1yLoc.isValid())
1016 Cxx1yLoc = S->getLocStart();
1017 return true;
1018 }
1019
1020 ReturnStmts.push_back(S->getLocStart());
1021 return true;
1022
1023 case Stmt::CompoundStmtClass: {
1024 // C++1y allows compound-statements.
1025 if (!Cxx1yLoc.isValid())
1026 Cxx1yLoc = S->getLocStart();
1027
1028 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1029 for (auto *BodyIt : CompStmt->body()) {
1030 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1031 Cxx1yLoc))
1032 return false;
1033 }
1034 return true;
1035 }
1036
1037 case Stmt::AttributedStmtClass:
1038 if (!Cxx1yLoc.isValid())
1039 Cxx1yLoc = S->getLocStart();
1040 return true;
1041
1042 case Stmt::IfStmtClass: {
1043 // C++1y allows if-statements.
1044 if (!Cxx1yLoc.isValid())
1045 Cxx1yLoc = S->getLocStart();
1046
1047 IfStmt *If = cast<IfStmt>(S);
1048 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1049 Cxx1yLoc))
1050 return false;
1051 if (If->getElse() &&
1052 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1053 Cxx1yLoc))
1054 return false;
1055 return true;
1056 }
1057
1058 case Stmt::WhileStmtClass:
1059 case Stmt::DoStmtClass:
1060 case Stmt::ForStmtClass:
1061 case Stmt::CXXForRangeStmtClass:
1062 case Stmt::ContinueStmtClass:
1063 // C++1y allows all of these. We don't allow them as extensions in C++11,
1064 // because they don't make sense without variable mutation.
1065 if (!SemaRef.getLangOpts().CPlusPlus14)
1066 break;
1067 if (!Cxx1yLoc.isValid())
1068 Cxx1yLoc = S->getLocStart();
1069 for (Stmt::child_range Children = S->children(); Children; ++Children)
1070 if (*Children &&
1071 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1072 Cxx1yLoc))
1073 return false;
1074 return true;
1075
1076 case Stmt::SwitchStmtClass:
1077 case Stmt::CaseStmtClass:
1078 case Stmt::DefaultStmtClass:
1079 case Stmt::BreakStmtClass:
1080 // C++1y allows switch-statements, and since they don't need variable
1081 // mutation, we can reasonably allow them in C++11 as an extension.
1082 if (!Cxx1yLoc.isValid())
1083 Cxx1yLoc = S->getLocStart();
1084 for (Stmt::child_range Children = S->children(); Children; ++Children)
1085 if (*Children &&
1086 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1087 Cxx1yLoc))
1088 return false;
1089 return true;
1090
1091 default:
1092 if (!isa<Expr>(S))
1093 break;
1094
1095 // C++1y allows expression-statements.
1096 if (!Cxx1yLoc.isValid())
1097 Cxx1yLoc = S->getLocStart();
1098 return true;
1099 }
1100
1101 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1102 << isa<CXXConstructorDecl>(Dcl);
1103 return false;
1104 }
1105
1106 /// Check the body for the given constexpr function declaration only contains
1107 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1108 ///
1109 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)1110 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1111 if (isa<CXXTryStmt>(Body)) {
1112 // C++11 [dcl.constexpr]p3:
1113 // The definition of a constexpr function shall satisfy the following
1114 // constraints: [...]
1115 // - its function-body shall be = delete, = default, or a
1116 // compound-statement
1117 //
1118 // C++11 [dcl.constexpr]p4:
1119 // In the definition of a constexpr constructor, [...]
1120 // - its function-body shall not be a function-try-block;
1121 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1122 << isa<CXXConstructorDecl>(Dcl);
1123 return false;
1124 }
1125
1126 SmallVector<SourceLocation, 4> ReturnStmts;
1127
1128 // - its function-body shall be [...] a compound-statement that contains only
1129 // [... list of cases ...]
1130 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1131 SourceLocation Cxx1yLoc;
1132 for (auto *BodyIt : CompBody->body()) {
1133 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1134 return false;
1135 }
1136
1137 if (Cxx1yLoc.isValid())
1138 Diag(Cxx1yLoc,
1139 getLangOpts().CPlusPlus14
1140 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1141 : diag::ext_constexpr_body_invalid_stmt)
1142 << isa<CXXConstructorDecl>(Dcl);
1143
1144 if (const CXXConstructorDecl *Constructor
1145 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1146 const CXXRecordDecl *RD = Constructor->getParent();
1147 // DR1359:
1148 // - every non-variant non-static data member and base class sub-object
1149 // shall be initialized;
1150 // DR1460:
1151 // - if the class is a union having variant members, exactly one of them
1152 // shall be initialized;
1153 if (RD->isUnion()) {
1154 if (Constructor->getNumCtorInitializers() == 0 &&
1155 RD->hasVariantMembers()) {
1156 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1157 return false;
1158 }
1159 } else if (!Constructor->isDependentContext() &&
1160 !Constructor->isDelegatingConstructor()) {
1161 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1162
1163 // Skip detailed checking if we have enough initializers, and we would
1164 // allow at most one initializer per member.
1165 bool AnyAnonStructUnionMembers = false;
1166 unsigned Fields = 0;
1167 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1168 E = RD->field_end(); I != E; ++I, ++Fields) {
1169 if (I->isAnonymousStructOrUnion()) {
1170 AnyAnonStructUnionMembers = true;
1171 break;
1172 }
1173 }
1174 // DR1460:
1175 // - if the class is a union-like class, but is not a union, for each of
1176 // its anonymous union members having variant members, exactly one of
1177 // them shall be initialized;
1178 if (AnyAnonStructUnionMembers ||
1179 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1180 // Check initialization of non-static data members. Base classes are
1181 // always initialized so do not need to be checked. Dependent bases
1182 // might not have initializers in the member initializer list.
1183 llvm::SmallSet<Decl*, 16> Inits;
1184 for (const auto *I: Constructor->inits()) {
1185 if (FieldDecl *FD = I->getMember())
1186 Inits.insert(FD);
1187 else if (IndirectFieldDecl *ID = I->getIndirectMember())
1188 Inits.insert(ID->chain_begin(), ID->chain_end());
1189 }
1190
1191 bool Diagnosed = false;
1192 for (auto *I : RD->fields())
1193 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1194 if (Diagnosed)
1195 return false;
1196 }
1197 }
1198 } else {
1199 if (ReturnStmts.empty()) {
1200 // C++1y doesn't require constexpr functions to contain a 'return'
1201 // statement. We still do, unless the return type might be void, because
1202 // otherwise if there's no return statement, the function cannot
1203 // be used in a core constant expression.
1204 bool OK = getLangOpts().CPlusPlus14 &&
1205 (Dcl->getReturnType()->isVoidType() ||
1206 Dcl->getReturnType()->isDependentType());
1207 Diag(Dcl->getLocation(),
1208 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1209 : diag::err_constexpr_body_no_return);
1210 return OK;
1211 }
1212 if (ReturnStmts.size() > 1) {
1213 Diag(ReturnStmts.back(),
1214 getLangOpts().CPlusPlus14
1215 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1216 : diag::ext_constexpr_body_multiple_return);
1217 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1218 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1219 }
1220 }
1221
1222 // C++11 [dcl.constexpr]p5:
1223 // if no function argument values exist such that the function invocation
1224 // substitution would produce a constant expression, the program is
1225 // ill-formed; no diagnostic required.
1226 // C++11 [dcl.constexpr]p3:
1227 // - every constructor call and implicit conversion used in initializing the
1228 // return value shall be one of those allowed in a constant expression.
1229 // C++11 [dcl.constexpr]p4:
1230 // - every constructor involved in initializing non-static data members and
1231 // base class sub-objects shall be a constexpr constructor.
1232 SmallVector<PartialDiagnosticAt, 8> Diags;
1233 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1234 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1235 << isa<CXXConstructorDecl>(Dcl);
1236 for (size_t I = 0, N = Diags.size(); I != N; ++I)
1237 Diag(Diags[I].first, Diags[I].second);
1238 // Don't return false here: we allow this for compatibility in
1239 // system headers.
1240 }
1241
1242 return true;
1243 }
1244
1245 /// isCurrentClassName - Determine whether the identifier II is the
1246 /// name of the class type currently being defined. In the case of
1247 /// nested classes, this will only return true if II is the name of
1248 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)1249 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1250 const CXXScopeSpec *SS) {
1251 assert(getLangOpts().CPlusPlus && "No class names in C!");
1252
1253 CXXRecordDecl *CurDecl;
1254 if (SS && SS->isSet() && !SS->isInvalid()) {
1255 DeclContext *DC = computeDeclContext(*SS, true);
1256 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1257 } else
1258 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1259
1260 if (CurDecl && CurDecl->getIdentifier())
1261 return &II == CurDecl->getIdentifier();
1262 return false;
1263 }
1264
1265 /// \brief Determine whether the identifier II is a typo for the name of
1266 /// the class type currently being defined. If so, update it to the identifier
1267 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)1268 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1269 assert(getLangOpts().CPlusPlus && "No class names in C!");
1270
1271 if (!getLangOpts().SpellChecking)
1272 return false;
1273
1274 CXXRecordDecl *CurDecl;
1275 if (SS && SS->isSet() && !SS->isInvalid()) {
1276 DeclContext *DC = computeDeclContext(*SS, true);
1277 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1278 } else
1279 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1280
1281 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1282 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1283 < II->getLength()) {
1284 II = CurDecl->getIdentifier();
1285 return true;
1286 }
1287
1288 return false;
1289 }
1290
1291 /// \brief Determine whether the given class is a base class of the given
1292 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)1293 static bool findCircularInheritance(const CXXRecordDecl *Class,
1294 const CXXRecordDecl *Current) {
1295 SmallVector<const CXXRecordDecl*, 8> Queue;
1296
1297 Class = Class->getCanonicalDecl();
1298 while (true) {
1299 for (const auto &I : Current->bases()) {
1300 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
1301 if (!Base)
1302 continue;
1303
1304 Base = Base->getDefinition();
1305 if (!Base)
1306 continue;
1307
1308 if (Base->getCanonicalDecl() == Class)
1309 return true;
1310
1311 Queue.push_back(Base);
1312 }
1313
1314 if (Queue.empty())
1315 return false;
1316
1317 Current = Queue.pop_back_val();
1318 }
1319
1320 return false;
1321 }
1322
1323 /// \brief Perform propagation of DLL attributes from a derived class to a
1324 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(Sema & S,CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)1325 static void propagateDLLAttrToBaseClassTemplate(
1326 Sema &S, CXXRecordDecl *Class, Attr *ClassAttr,
1327 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
1328 if (getDLLAttr(
1329 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
1330 // If the base class template has a DLL attribute, don't try to change it.
1331 return;
1332 }
1333
1334 if (BaseTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1335 // If the base class is not already specialized, we can do the propagation.
1336 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
1337 NewAttr->setInherited(true);
1338 BaseTemplateSpec->addAttr(NewAttr);
1339 return;
1340 }
1341
1342 bool DifferentAttribute = false;
1343 if (Attr *SpecializationAttr = getDLLAttr(BaseTemplateSpec)) {
1344 if (!SpecializationAttr->isInherited()) {
1345 // The template has previously been specialized or instantiated with an
1346 // explicit attribute. We should not try to change it.
1347 return;
1348 }
1349 if (SpecializationAttr->getKind() == ClassAttr->getKind()) {
1350 // The specialization already has the right attribute.
1351 return;
1352 }
1353 DifferentAttribute = true;
1354 }
1355
1356 // The template was previously instantiated or explicitly specialized without
1357 // a dll attribute, or the template was previously instantiated with a
1358 // different inherited attribute. It's too late for us to change the
1359 // attribute, so warn that this is unsupported.
1360 S.Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
1361 << BaseTemplateSpec->isExplicitSpecialization() << DifferentAttribute;
1362 S.Diag(ClassAttr->getLocation(), diag::note_attribute);
1363 if (BaseTemplateSpec->isExplicitSpecialization()) {
1364 S.Diag(BaseTemplateSpec->getLocation(),
1365 diag::note_template_class_explicit_specialization_was_here)
1366 << BaseTemplateSpec;
1367 } else {
1368 S.Diag(BaseTemplateSpec->getPointOfInstantiation(),
1369 diag::note_template_class_instantiation_was_here)
1370 << BaseTemplateSpec;
1371 }
1372 }
1373
1374 /// \brief Check the validity of a C++ base class specifier.
1375 ///
1376 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1377 /// and returns NULL otherwise.
1378 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1379 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1380 SourceRange SpecifierRange,
1381 bool Virtual, AccessSpecifier Access,
1382 TypeSourceInfo *TInfo,
1383 SourceLocation EllipsisLoc) {
1384 QualType BaseType = TInfo->getType();
1385
1386 // C++ [class.union]p1:
1387 // A union shall not have base classes.
1388 if (Class->isUnion()) {
1389 Diag(Class->getLocation(), diag::err_base_clause_on_union)
1390 << SpecifierRange;
1391 return nullptr;
1392 }
1393
1394 if (EllipsisLoc.isValid() &&
1395 !TInfo->getType()->containsUnexpandedParameterPack()) {
1396 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1397 << TInfo->getTypeLoc().getSourceRange();
1398 EllipsisLoc = SourceLocation();
1399 }
1400
1401 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1402
1403 if (BaseType->isDependentType()) {
1404 // Make sure that we don't have circular inheritance among our dependent
1405 // bases. For non-dependent bases, the check for completeness below handles
1406 // this.
1407 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1408 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1409 ((BaseDecl = BaseDecl->getDefinition()) &&
1410 findCircularInheritance(Class, BaseDecl))) {
1411 Diag(BaseLoc, diag::err_circular_inheritance)
1412 << BaseType << Context.getTypeDeclType(Class);
1413
1414 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1415 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1416 << BaseType;
1417
1418 return nullptr;
1419 }
1420 }
1421
1422 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1423 Class->getTagKind() == TTK_Class,
1424 Access, TInfo, EllipsisLoc);
1425 }
1426
1427 // Base specifiers must be record types.
1428 if (!BaseType->isRecordType()) {
1429 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1430 return nullptr;
1431 }
1432
1433 // C++ [class.union]p1:
1434 // A union shall not be used as a base class.
1435 if (BaseType->isUnionType()) {
1436 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1437 return nullptr;
1438 }
1439
1440 // For the MS ABI, propagate DLL attributes to base class templates.
1441 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1442 if (Attr *ClassAttr = getDLLAttr(Class)) {
1443 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1444 BaseType->getAsCXXRecordDecl())) {
1445 propagateDLLAttrToBaseClassTemplate(*this, Class, ClassAttr,
1446 BaseTemplate, BaseLoc);
1447 }
1448 }
1449 }
1450
1451 // C++ [class.derived]p2:
1452 // The class-name in a base-specifier shall not be an incompletely
1453 // defined class.
1454 if (RequireCompleteType(BaseLoc, BaseType,
1455 diag::err_incomplete_base_class, SpecifierRange)) {
1456 Class->setInvalidDecl();
1457 return nullptr;
1458 }
1459
1460 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1461 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1462 assert(BaseDecl && "Record type has no declaration");
1463 BaseDecl = BaseDecl->getDefinition();
1464 assert(BaseDecl && "Base type is not incomplete, but has no definition");
1465 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1466 assert(CXXBaseDecl && "Base type is not a C++ type");
1467
1468 // A class which contains a flexible array member is not suitable for use as a
1469 // base class:
1470 // - If the layout determines that a base comes before another base,
1471 // the flexible array member would index into the subsequent base.
1472 // - If the layout determines that base comes before the derived class,
1473 // the flexible array member would index into the derived class.
1474 if (CXXBaseDecl->hasFlexibleArrayMember()) {
1475 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
1476 << CXXBaseDecl->getDeclName();
1477 return nullptr;
1478 }
1479
1480 // C++ [class]p3:
1481 // If a class is marked final and it appears as a base-type-specifier in
1482 // base-clause, the program is ill-formed.
1483 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1484 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1485 << CXXBaseDecl->getDeclName()
1486 << FA->isSpelledAsSealed();
1487 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
1488 << CXXBaseDecl->getDeclName() << FA->getRange();
1489 return nullptr;
1490 }
1491
1492 if (BaseDecl->isInvalidDecl())
1493 Class->setInvalidDecl();
1494
1495 // Create the base specifier.
1496 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1497 Class->getTagKind() == TTK_Class,
1498 Access, TInfo, EllipsisLoc);
1499 }
1500
1501 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1502 /// one entry in the base class list of a class specifier, for
1503 /// example:
1504 /// class foo : public bar, virtual private baz {
1505 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1506 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1507 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1508 ParsedAttributes &Attributes,
1509 bool Virtual, AccessSpecifier Access,
1510 ParsedType basetype, SourceLocation BaseLoc,
1511 SourceLocation EllipsisLoc) {
1512 if (!classdecl)
1513 return true;
1514
1515 AdjustDeclIfTemplate(classdecl);
1516 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1517 if (!Class)
1518 return true;
1519
1520 // We haven't yet attached the base specifiers.
1521 Class->setIsParsingBaseSpecifiers();
1522
1523 // We do not support any C++11 attributes on base-specifiers yet.
1524 // Diagnose any attributes we see.
1525 if (!Attributes.empty()) {
1526 for (AttributeList *Attr = Attributes.getList(); Attr;
1527 Attr = Attr->getNext()) {
1528 if (Attr->isInvalid() ||
1529 Attr->getKind() == AttributeList::IgnoredAttribute)
1530 continue;
1531 Diag(Attr->getLoc(),
1532 Attr->getKind() == AttributeList::UnknownAttribute
1533 ? diag::warn_unknown_attribute_ignored
1534 : diag::err_base_specifier_attribute)
1535 << Attr->getName();
1536 }
1537 }
1538
1539 TypeSourceInfo *TInfo = nullptr;
1540 GetTypeFromParser(basetype, &TInfo);
1541
1542 if (EllipsisLoc.isInvalid() &&
1543 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1544 UPPC_BaseType))
1545 return true;
1546
1547 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1548 Virtual, Access, TInfo,
1549 EllipsisLoc))
1550 return BaseSpec;
1551 else
1552 Class->setInvalidDecl();
1553
1554 return true;
1555 }
1556
1557 /// Use small set to collect indirect bases. As this is only used
1558 /// locally, there's no need to abstract the small size parameter.
1559 typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
1560
1561 /// \brief Recursively add the bases of Type. Don't add Type itself.
1562 static void
NoteIndirectBases(ASTContext & Context,IndirectBaseSet & Set,const QualType & Type)1563 NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
1564 const QualType &Type)
1565 {
1566 // Even though the incoming type is a base, it might not be
1567 // a class -- it could be a template parm, for instance.
1568 if (auto Rec = Type->getAs<RecordType>()) {
1569 auto Decl = Rec->getAsCXXRecordDecl();
1570
1571 // Iterate over its bases.
1572 for (const auto &BaseSpec : Decl->bases()) {
1573 QualType Base = Context.getCanonicalType(BaseSpec.getType())
1574 .getUnqualifiedType();
1575 if (Set.insert(Base).second)
1576 // If we've not already seen it, recurse.
1577 NoteIndirectBases(Context, Set, Base);
1578 }
1579 }
1580 }
1581
1582 /// \brief Performs the actual work of attaching the given base class
1583 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1584 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1585 unsigned NumBases) {
1586 if (NumBases == 0)
1587 return false;
1588
1589 // Used to keep track of which base types we have already seen, so
1590 // that we can properly diagnose redundant direct base types. Note
1591 // that the key is always the unqualified canonical type of the base
1592 // class.
1593 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1594
1595 // Used to track indirect bases so we can see if a direct base is
1596 // ambiguous.
1597 IndirectBaseSet IndirectBaseTypes;
1598
1599 // Copy non-redundant base specifiers into permanent storage.
1600 unsigned NumGoodBases = 0;
1601 bool Invalid = false;
1602 for (unsigned idx = 0; idx < NumBases; ++idx) {
1603 QualType NewBaseType
1604 = Context.getCanonicalType(Bases[idx]->getType());
1605 NewBaseType = NewBaseType.getLocalUnqualifiedType();
1606
1607 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1608 if (KnownBase) {
1609 // C++ [class.mi]p3:
1610 // A class shall not be specified as a direct base class of a
1611 // derived class more than once.
1612 Diag(Bases[idx]->getLocStart(),
1613 diag::err_duplicate_base_class)
1614 << KnownBase->getType()
1615 << Bases[idx]->getSourceRange();
1616
1617 // Delete the duplicate base class specifier; we're going to
1618 // overwrite its pointer later.
1619 Context.Deallocate(Bases[idx]);
1620
1621 Invalid = true;
1622 } else {
1623 // Okay, add this new base class.
1624 KnownBase = Bases[idx];
1625 Bases[NumGoodBases++] = Bases[idx];
1626
1627 // Note this base's direct & indirect bases, if there could be ambiguity.
1628 if (NumBases > 1)
1629 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
1630
1631 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1632 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1633 if (Class->isInterface() &&
1634 (!RD->isInterface() ||
1635 KnownBase->getAccessSpecifier() != AS_public)) {
1636 // The Microsoft extension __interface does not permit bases that
1637 // are not themselves public interfaces.
1638 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1639 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1640 << RD->getSourceRange();
1641 Invalid = true;
1642 }
1643 if (RD->hasAttr<WeakAttr>())
1644 Class->addAttr(WeakAttr::CreateImplicit(Context));
1645 }
1646 }
1647 }
1648
1649 // Attach the remaining base class specifiers to the derived class.
1650 Class->setBases(Bases, NumGoodBases);
1651
1652 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
1653 // Check whether this direct base is inaccessible due to ambiguity.
1654 QualType BaseType = Bases[idx]->getType();
1655 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
1656 .getUnqualifiedType();
1657
1658 if (IndirectBaseTypes.count(CanonicalBase)) {
1659 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1660 /*DetectVirtual=*/true);
1661 bool found
1662 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
1663 assert(found);
1664 (void)found;
1665
1666 if (Paths.isAmbiguous(CanonicalBase))
1667 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
1668 << BaseType << getAmbiguousPathsDisplayString(Paths)
1669 << Bases[idx]->getSourceRange();
1670 else
1671 assert(Bases[idx]->isVirtual());
1672 }
1673
1674 // Delete the base class specifier, since its data has been copied
1675 // into the CXXRecordDecl.
1676 Context.Deallocate(Bases[idx]);
1677 }
1678
1679 return Invalid;
1680 }
1681
1682 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1683 /// class, after checking whether there are any duplicate base
1684 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1685 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1686 unsigned NumBases) {
1687 if (!ClassDecl || !Bases || !NumBases)
1688 return;
1689
1690 AdjustDeclIfTemplate(ClassDecl);
1691 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1692 }
1693
1694 /// \brief Determine whether the type \p Derived is a C++ class that is
1695 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base)1696 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1697 if (!getLangOpts().CPlusPlus)
1698 return false;
1699
1700 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1701 if (!DerivedRD)
1702 return false;
1703
1704 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1705 if (!BaseRD)
1706 return false;
1707
1708 // If either the base or the derived type is invalid, don't try to
1709 // check whether one is derived from the other.
1710 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1711 return false;
1712
1713 // FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
1714 return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1715 }
1716
1717 /// \brief Determine whether the type \p Derived is a C++ class that is
1718 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base,CXXBasePaths & Paths)1719 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1720 if (!getLangOpts().CPlusPlus)
1721 return false;
1722
1723 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1724 if (!DerivedRD)
1725 return false;
1726
1727 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1728 if (!BaseRD)
1729 return false;
1730
1731 return DerivedRD->isDerivedFrom(BaseRD, Paths);
1732 }
1733
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1734 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1735 CXXCastPath &BasePathArray) {
1736 assert(BasePathArray.empty() && "Base path array must be empty!");
1737 assert(Paths.isRecordingPaths() && "Must record paths!");
1738
1739 const CXXBasePath &Path = Paths.front();
1740
1741 // We first go backward and check if we have a virtual base.
1742 // FIXME: It would be better if CXXBasePath had the base specifier for
1743 // the nearest virtual base.
1744 unsigned Start = 0;
1745 for (unsigned I = Path.size(); I != 0; --I) {
1746 if (Path[I - 1].Base->isVirtual()) {
1747 Start = I - 1;
1748 break;
1749 }
1750 }
1751
1752 // Now add all bases.
1753 for (unsigned I = Start, E = Path.size(); I != E; ++I)
1754 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1755 }
1756
1757 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1758 /// conversion (where Derived and Base are class types) is
1759 /// well-formed, meaning that the conversion is unambiguous (and
1760 /// that all of the base classes are accessible). Returns true
1761 /// and emits a diagnostic if the code is ill-formed, returns false
1762 /// otherwise. Loc is the location where this routine should point to
1763 /// if there is an error, and Range is the source range to highlight
1764 /// if there is an error.
1765 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1766 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1767 unsigned InaccessibleBaseID,
1768 unsigned AmbigiousBaseConvID,
1769 SourceLocation Loc, SourceRange Range,
1770 DeclarationName Name,
1771 CXXCastPath *BasePath) {
1772 // First, determine whether the path from Derived to Base is
1773 // ambiguous. This is slightly more expensive than checking whether
1774 // the Derived to Base conversion exists, because here we need to
1775 // explore multiple paths to determine if there is an ambiguity.
1776 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1777 /*DetectVirtual=*/false);
1778 bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1779 assert(DerivationOkay &&
1780 "Can only be used with a derived-to-base conversion");
1781 (void)DerivationOkay;
1782
1783 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1784 if (InaccessibleBaseID) {
1785 // Check that the base class can be accessed.
1786 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1787 InaccessibleBaseID)) {
1788 case AR_inaccessible:
1789 return true;
1790 case AR_accessible:
1791 case AR_dependent:
1792 case AR_delayed:
1793 break;
1794 }
1795 }
1796
1797 // Build a base path if necessary.
1798 if (BasePath)
1799 BuildBasePathArray(Paths, *BasePath);
1800 return false;
1801 }
1802
1803 if (AmbigiousBaseConvID) {
1804 // We know that the derived-to-base conversion is ambiguous, and
1805 // we're going to produce a diagnostic. Perform the derived-to-base
1806 // search just one more time to compute all of the possible paths so
1807 // that we can print them out. This is more expensive than any of
1808 // the previous derived-to-base checks we've done, but at this point
1809 // performance isn't as much of an issue.
1810 Paths.clear();
1811 Paths.setRecordingPaths(true);
1812 bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1813 assert(StillOkay && "Can only be used with a derived-to-base conversion");
1814 (void)StillOkay;
1815
1816 // Build up a textual representation of the ambiguous paths, e.g.,
1817 // D -> B -> A, that will be used to illustrate the ambiguous
1818 // conversions in the diagnostic. We only print one of the paths
1819 // to each base class subobject.
1820 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1821
1822 Diag(Loc, AmbigiousBaseConvID)
1823 << Derived << Base << PathDisplayStr << Range << Name;
1824 }
1825 return true;
1826 }
1827
1828 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1829 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1830 SourceLocation Loc, SourceRange Range,
1831 CXXCastPath *BasePath,
1832 bool IgnoreAccess) {
1833 return CheckDerivedToBaseConversion(Derived, Base,
1834 IgnoreAccess ? 0
1835 : diag::err_upcast_to_inaccessible_base,
1836 diag::err_ambiguous_derived_to_base_conv,
1837 Loc, Range, DeclarationName(),
1838 BasePath);
1839 }
1840
1841
1842 /// @brief Builds a string representing ambiguous paths from a
1843 /// specific derived class to different subobjects of the same base
1844 /// class.
1845 ///
1846 /// This function builds a string that can be used in error messages
1847 /// to show the different paths that one can take through the
1848 /// inheritance hierarchy to go from the derived class to different
1849 /// subobjects of a base class. The result looks something like this:
1850 /// @code
1851 /// struct D -> struct B -> struct A
1852 /// struct D -> struct C -> struct A
1853 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1854 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1855 std::string PathDisplayStr;
1856 std::set<unsigned> DisplayedPaths;
1857 for (CXXBasePaths::paths_iterator Path = Paths.begin();
1858 Path != Paths.end(); ++Path) {
1859 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1860 // We haven't displayed a path to this particular base
1861 // class subobject yet.
1862 PathDisplayStr += "\n ";
1863 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1864 for (CXXBasePath::const_iterator Element = Path->begin();
1865 Element != Path->end(); ++Element)
1866 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1867 }
1868 }
1869
1870 return PathDisplayStr;
1871 }
1872
1873 //===----------------------------------------------------------------------===//
1874 // C++ class member Handling
1875 //===----------------------------------------------------------------------===//
1876
1877 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1878 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1879 SourceLocation ASLoc,
1880 SourceLocation ColonLoc,
1881 AttributeList *Attrs) {
1882 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1883 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1884 ASLoc, ColonLoc);
1885 CurContext->addHiddenDecl(ASDecl);
1886 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1887 }
1888
1889 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)1890 void Sema::CheckOverrideControl(NamedDecl *D) {
1891 if (D->isInvalidDecl())
1892 return;
1893
1894 // We only care about "override" and "final" declarations.
1895 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1896 return;
1897
1898 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1899
1900 // We can't check dependent instance methods.
1901 if (MD && MD->isInstance() &&
1902 (MD->getParent()->hasAnyDependentBases() ||
1903 MD->getType()->isDependentType()))
1904 return;
1905
1906 if (MD && !MD->isVirtual()) {
1907 // If we have a non-virtual method, check if if hides a virtual method.
1908 // (In that case, it's most likely the method has the wrong type.)
1909 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1910 FindHiddenVirtualMethods(MD, OverloadedMethods);
1911
1912 if (!OverloadedMethods.empty()) {
1913 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1914 Diag(OA->getLocation(),
1915 diag::override_keyword_hides_virtual_member_function)
1916 << "override" << (OverloadedMethods.size() > 1);
1917 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1918 Diag(FA->getLocation(),
1919 diag::override_keyword_hides_virtual_member_function)
1920 << (FA->isSpelledAsSealed() ? "sealed" : "final")
1921 << (OverloadedMethods.size() > 1);
1922 }
1923 NoteHiddenVirtualMethods(MD, OverloadedMethods);
1924 MD->setInvalidDecl();
1925 return;
1926 }
1927 // Fall through into the general case diagnostic.
1928 // FIXME: We might want to attempt typo correction here.
1929 }
1930
1931 if (!MD || !MD->isVirtual()) {
1932 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1933 Diag(OA->getLocation(),
1934 diag::override_keyword_only_allowed_on_virtual_member_functions)
1935 << "override" << FixItHint::CreateRemoval(OA->getLocation());
1936 D->dropAttr<OverrideAttr>();
1937 }
1938 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1939 Diag(FA->getLocation(),
1940 diag::override_keyword_only_allowed_on_virtual_member_functions)
1941 << (FA->isSpelledAsSealed() ? "sealed" : "final")
1942 << FixItHint::CreateRemoval(FA->getLocation());
1943 D->dropAttr<FinalAttr>();
1944 }
1945 return;
1946 }
1947
1948 // C++11 [class.virtual]p5:
1949 // If a function is marked with the virt-specifier override and
1950 // does not override a member function of a base class, the program is
1951 // ill-formed.
1952 bool HasOverriddenMethods =
1953 MD->begin_overridden_methods() != MD->end_overridden_methods();
1954 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1955 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1956 << MD->getDeclName();
1957 }
1958
DiagnoseAbsenceOfOverrideControl(NamedDecl * D)1959 void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
1960 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
1961 return;
1962 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1963 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() ||
1964 isa<CXXDestructorDecl>(MD))
1965 return;
1966
1967 SourceLocation Loc = MD->getLocation();
1968 SourceLocation SpellingLoc = Loc;
1969 if (getSourceManager().isMacroArgExpansion(Loc))
1970 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
1971 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
1972 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
1973 return;
1974
1975 if (MD->size_overridden_methods() > 0) {
1976 Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding)
1977 << MD->getDeclName();
1978 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
1979 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
1980 }
1981 }
1982
1983 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1984 /// function overrides a virtual member function marked 'final', according to
1985 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1986 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1987 const CXXMethodDecl *Old) {
1988 FinalAttr *FA = Old->getAttr<FinalAttr>();
1989 if (!FA)
1990 return false;
1991
1992 Diag(New->getLocation(), diag::err_final_function_overridden)
1993 << New->getDeclName()
1994 << FA->isSpelledAsSealed();
1995 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1996 return true;
1997 }
1998
InitializationHasSideEffects(const FieldDecl & FD)1999 static bool InitializationHasSideEffects(const FieldDecl &FD) {
2000 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2001 // FIXME: Destruction of ObjC lifetime types has side-effects.
2002 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2003 return !RD->isCompleteDefinition() ||
2004 !RD->hasTrivialDefaultConstructor() ||
2005 !RD->hasTrivialDestructor();
2006 return false;
2007 }
2008
getMSPropertyAttr(AttributeList * list)2009 static AttributeList *getMSPropertyAttr(AttributeList *list) {
2010 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2011 if (it->isDeclspecPropertyAttribute())
2012 return it;
2013 return nullptr;
2014 }
2015
2016 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2017 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2018 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
2019 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2020 /// present (but parsing it has been deferred).
2021 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)2022 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2023 MultiTemplateParamsArg TemplateParameterLists,
2024 Expr *BW, const VirtSpecifiers &VS,
2025 InClassInitStyle InitStyle) {
2026 const DeclSpec &DS = D.getDeclSpec();
2027 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2028 DeclarationName Name = NameInfo.getName();
2029 SourceLocation Loc = NameInfo.getLoc();
2030
2031 // For anonymous bitfields, the location should point to the type.
2032 if (Loc.isInvalid())
2033 Loc = D.getLocStart();
2034
2035 Expr *BitWidth = static_cast<Expr*>(BW);
2036
2037 assert(isa<CXXRecordDecl>(CurContext));
2038 assert(!DS.isFriendSpecified());
2039
2040 bool isFunc = D.isDeclarationOfFunction();
2041
2042 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2043 // The Microsoft extension __interface only permits public member functions
2044 // and prohibits constructors, destructors, operators, non-public member
2045 // functions, static methods and data members.
2046 unsigned InvalidDecl;
2047 bool ShowDeclName = true;
2048 if (!isFunc)
2049 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2050 else if (AS != AS_public)
2051 InvalidDecl = 2;
2052 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2053 InvalidDecl = 3;
2054 else switch (Name.getNameKind()) {
2055 case DeclarationName::CXXConstructorName:
2056 InvalidDecl = 4;
2057 ShowDeclName = false;
2058 break;
2059
2060 case DeclarationName::CXXDestructorName:
2061 InvalidDecl = 5;
2062 ShowDeclName = false;
2063 break;
2064
2065 case DeclarationName::CXXOperatorName:
2066 case DeclarationName::CXXConversionFunctionName:
2067 InvalidDecl = 6;
2068 break;
2069
2070 default:
2071 InvalidDecl = 0;
2072 break;
2073 }
2074
2075 if (InvalidDecl) {
2076 if (ShowDeclName)
2077 Diag(Loc, diag::err_invalid_member_in_interface)
2078 << (InvalidDecl-1) << Name;
2079 else
2080 Diag(Loc, diag::err_invalid_member_in_interface)
2081 << (InvalidDecl-1) << "";
2082 return nullptr;
2083 }
2084 }
2085
2086 // C++ 9.2p6: A member shall not be declared to have automatic storage
2087 // duration (auto, register) or with the extern storage-class-specifier.
2088 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2089 // data members and cannot be applied to names declared const or static,
2090 // and cannot be applied to reference members.
2091 switch (DS.getStorageClassSpec()) {
2092 case DeclSpec::SCS_unspecified:
2093 case DeclSpec::SCS_typedef:
2094 case DeclSpec::SCS_static:
2095 break;
2096 case DeclSpec::SCS_mutable:
2097 if (isFunc) {
2098 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2099
2100 // FIXME: It would be nicer if the keyword was ignored only for this
2101 // declarator. Otherwise we could get follow-up errors.
2102 D.getMutableDeclSpec().ClearStorageClassSpecs();
2103 }
2104 break;
2105 default:
2106 Diag(DS.getStorageClassSpecLoc(),
2107 diag::err_storageclass_invalid_for_member);
2108 D.getMutableDeclSpec().ClearStorageClassSpecs();
2109 break;
2110 }
2111
2112 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2113 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2114 !isFunc);
2115
2116 if (DS.isConstexprSpecified() && isInstField) {
2117 SemaDiagnosticBuilder B =
2118 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2119 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2120 if (InitStyle == ICIS_NoInit) {
2121 B << 0 << 0;
2122 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2123 B << FixItHint::CreateRemoval(ConstexprLoc);
2124 else {
2125 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2126 D.getMutableDeclSpec().ClearConstexprSpec();
2127 const char *PrevSpec;
2128 unsigned DiagID;
2129 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2130 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2131 (void)Failed;
2132 assert(!Failed && "Making a constexpr member const shouldn't fail");
2133 }
2134 } else {
2135 B << 1;
2136 const char *PrevSpec;
2137 unsigned DiagID;
2138 if (D.getMutableDeclSpec().SetStorageClassSpec(
2139 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2140 Context.getPrintingPolicy())) {
2141 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
2142 "This is the only DeclSpec that should fail to be applied");
2143 B << 1;
2144 } else {
2145 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2146 isInstField = false;
2147 }
2148 }
2149 }
2150
2151 NamedDecl *Member;
2152 if (isInstField) {
2153 CXXScopeSpec &SS = D.getCXXScopeSpec();
2154
2155 // Data members must have identifiers for names.
2156 if (!Name.isIdentifier()) {
2157 Diag(Loc, diag::err_bad_variable_name)
2158 << Name;
2159 return nullptr;
2160 }
2161
2162 IdentifierInfo *II = Name.getAsIdentifierInfo();
2163
2164 // Member field could not be with "template" keyword.
2165 // So TemplateParameterLists should be empty in this case.
2166 if (TemplateParameterLists.size()) {
2167 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2168 if (TemplateParams->size()) {
2169 // There is no such thing as a member field template.
2170 Diag(D.getIdentifierLoc(), diag::err_template_member)
2171 << II
2172 << SourceRange(TemplateParams->getTemplateLoc(),
2173 TemplateParams->getRAngleLoc());
2174 } else {
2175 // There is an extraneous 'template<>' for this member.
2176 Diag(TemplateParams->getTemplateLoc(),
2177 diag::err_template_member_noparams)
2178 << II
2179 << SourceRange(TemplateParams->getTemplateLoc(),
2180 TemplateParams->getRAngleLoc());
2181 }
2182 return nullptr;
2183 }
2184
2185 if (SS.isSet() && !SS.isInvalid()) {
2186 // The user provided a superfluous scope specifier inside a class
2187 // definition:
2188 //
2189 // class X {
2190 // int X::member;
2191 // };
2192 if (DeclContext *DC = computeDeclContext(SS, false))
2193 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2194 else
2195 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2196 << Name << SS.getRange();
2197
2198 SS.clear();
2199 }
2200
2201 AttributeList *MSPropertyAttr =
2202 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2203 if (MSPropertyAttr) {
2204 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2205 BitWidth, InitStyle, AS, MSPropertyAttr);
2206 if (!Member)
2207 return nullptr;
2208 isInstField = false;
2209 } else {
2210 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2211 BitWidth, InitStyle, AS);
2212 assert(Member && "HandleField never returns null");
2213 }
2214 } else {
2215 assert(InitStyle == ICIS_NoInit ||
2216 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2217
2218 Member = HandleDeclarator(S, D, TemplateParameterLists);
2219 if (!Member)
2220 return nullptr;
2221
2222 // Non-instance-fields can't have a bitfield.
2223 if (BitWidth) {
2224 if (Member->isInvalidDecl()) {
2225 // don't emit another diagnostic.
2226 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
2227 // C++ 9.6p3: A bit-field shall not be a static member.
2228 // "static member 'A' cannot be a bit-field"
2229 Diag(Loc, diag::err_static_not_bitfield)
2230 << Name << BitWidth->getSourceRange();
2231 } else if (isa<TypedefDecl>(Member)) {
2232 // "typedef member 'x' cannot be a bit-field"
2233 Diag(Loc, diag::err_typedef_not_bitfield)
2234 << Name << BitWidth->getSourceRange();
2235 } else {
2236 // A function typedef ("typedef int f(); f a;").
2237 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2238 Diag(Loc, diag::err_not_integral_type_bitfield)
2239 << Name << cast<ValueDecl>(Member)->getType()
2240 << BitWidth->getSourceRange();
2241 }
2242
2243 BitWidth = nullptr;
2244 Member->setInvalidDecl();
2245 }
2246
2247 Member->setAccess(AS);
2248
2249 // If we have declared a member function template or static data member
2250 // template, set the access of the templated declaration as well.
2251 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2252 FunTmpl->getTemplatedDecl()->setAccess(AS);
2253 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2254 VarTmpl->getTemplatedDecl()->setAccess(AS);
2255 }
2256
2257 if (VS.isOverrideSpecified())
2258 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
2259 if (VS.isFinalSpecified())
2260 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2261 VS.isFinalSpelledSealed()));
2262
2263 if (VS.getLastLocation().isValid()) {
2264 // Update the end location of a method that has a virt-specifiers.
2265 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2266 MD->setRangeEnd(VS.getLastLocation());
2267 }
2268
2269 CheckOverrideControl(Member);
2270
2271 assert((Name || isInstField) && "No identifier for non-field ?");
2272
2273 if (isInstField) {
2274 FieldDecl *FD = cast<FieldDecl>(Member);
2275 FieldCollector->Add(FD);
2276
2277 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
2278 // Remember all explicit private FieldDecls that have a name, no side
2279 // effects and are not part of a dependent type declaration.
2280 if (!FD->isImplicit() && FD->getDeclName() &&
2281 FD->getAccess() == AS_private &&
2282 !FD->hasAttr<UnusedAttr>() &&
2283 !FD->getParent()->isDependentContext() &&
2284 !InitializationHasSideEffects(*FD))
2285 UnusedPrivateFields.insert(FD);
2286 }
2287 }
2288
2289 return Member;
2290 }
2291
2292 namespace {
2293 class UninitializedFieldVisitor
2294 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2295 Sema &S;
2296 // List of Decls to generate a warning on. Also remove Decls that become
2297 // initialized.
2298 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
2299 // List of base classes of the record. Classes are removed after their
2300 // initializers.
2301 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
2302 // Vector of decls to be removed from the Decl set prior to visiting the
2303 // nodes. These Decls may have been initialized in the prior initializer.
2304 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
2305 // If non-null, add a note to the warning pointing back to the constructor.
2306 const CXXConstructorDecl *Constructor;
2307 // Variables to hold state when processing an initializer list. When
2308 // InitList is true, special case initialization of FieldDecls matching
2309 // InitListFieldDecl.
2310 bool InitList;
2311 FieldDecl *InitListFieldDecl;
2312 llvm::SmallVector<unsigned, 4> InitFieldIndex;
2313
2314 public:
2315 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSetImpl<ValueDecl * > & Decls,llvm::SmallPtrSetImpl<QualType> & BaseClasses)2316 UninitializedFieldVisitor(Sema &S,
2317 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
2318 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
2319 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
2320 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
2321
2322 // Returns true if the use of ME is not an uninitialized use.
IsInitListMemberExprInitialized(MemberExpr * ME,bool CheckReferenceOnly)2323 bool IsInitListMemberExprInitialized(MemberExpr *ME,
2324 bool CheckReferenceOnly) {
2325 llvm::SmallVector<FieldDecl*, 4> Fields;
2326 bool ReferenceField = false;
2327 while (ME) {
2328 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
2329 if (!FD)
2330 return false;
2331 Fields.push_back(FD);
2332 if (FD->getType()->isReferenceType())
2333 ReferenceField = true;
2334 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
2335 }
2336
2337 // Binding a reference to an unintialized field is not an
2338 // uninitialized use.
2339 if (CheckReferenceOnly && !ReferenceField)
2340 return true;
2341
2342 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
2343 // Discard the first field since it is the field decl that is being
2344 // initialized.
2345 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
2346 UsedFieldIndex.push_back((*I)->getFieldIndex());
2347 }
2348
2349 for (auto UsedIter = UsedFieldIndex.begin(),
2350 UsedEnd = UsedFieldIndex.end(),
2351 OrigIter = InitFieldIndex.begin(),
2352 OrigEnd = InitFieldIndex.end();
2353 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
2354 if (*UsedIter < *OrigIter)
2355 return true;
2356 if (*UsedIter > *OrigIter)
2357 break;
2358 }
2359
2360 return false;
2361 }
2362
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly,bool AddressOf)2363 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
2364 bool AddressOf) {
2365 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2366 return;
2367
2368 // FieldME is the inner-most MemberExpr that is not an anonymous struct
2369 // or union.
2370 MemberExpr *FieldME = ME;
2371
2372 bool AllPODFields = FieldME->getType().isPODType(S.Context);
2373
2374 Expr *Base = ME;
2375 while (MemberExpr *SubME =
2376 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
2377
2378 if (isa<VarDecl>(SubME->getMemberDecl()))
2379 return;
2380
2381 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
2382 if (!FD->isAnonymousStructOrUnion())
2383 FieldME = SubME;
2384
2385 if (!FieldME->getType().isPODType(S.Context))
2386 AllPODFields = false;
2387
2388 Base = SubME->getBase();
2389 }
2390
2391 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
2392 return;
2393
2394 if (AddressOf && AllPODFields)
2395 return;
2396
2397 ValueDecl* FoundVD = FieldME->getMemberDecl();
2398
2399 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
2400 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
2401 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
2402 }
2403
2404 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
2405 QualType T = BaseCast->getType();
2406 if (T->isPointerType() &&
2407 BaseClasses.count(T->getPointeeType())) {
2408 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
2409 << T->getPointeeType() << FoundVD;
2410 }
2411 }
2412 }
2413
2414 if (!Decls.count(FoundVD))
2415 return;
2416
2417 const bool IsReference = FoundVD->getType()->isReferenceType();
2418
2419 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
2420 // Special checking for initializer lists.
2421 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
2422 return;
2423 }
2424 } else {
2425 // Prevent double warnings on use of unbounded references.
2426 if (CheckReferenceOnly && !IsReference)
2427 return;
2428 }
2429
2430 unsigned diag = IsReference
2431 ? diag::warn_reference_field_is_uninit
2432 : diag::warn_field_is_uninit;
2433 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
2434 if (Constructor)
2435 S.Diag(Constructor->getLocation(),
2436 diag::note_uninit_in_this_constructor)
2437 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
2438
2439 }
2440
HandleValue(Expr * E,bool AddressOf)2441 void HandleValue(Expr *E, bool AddressOf) {
2442 E = E->IgnoreParens();
2443
2444 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2445 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
2446 AddressOf /*AddressOf*/);
2447 return;
2448 }
2449
2450 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2451 Visit(CO->getCond());
2452 HandleValue(CO->getTrueExpr(), AddressOf);
2453 HandleValue(CO->getFalseExpr(), AddressOf);
2454 return;
2455 }
2456
2457 if (BinaryConditionalOperator *BCO =
2458 dyn_cast<BinaryConditionalOperator>(E)) {
2459 Visit(BCO->getCond());
2460 HandleValue(BCO->getFalseExpr(), AddressOf);
2461 return;
2462 }
2463
2464 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
2465 HandleValue(OVE->getSourceExpr(), AddressOf);
2466 return;
2467 }
2468
2469 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2470 switch (BO->getOpcode()) {
2471 default:
2472 break;
2473 case(BO_PtrMemD):
2474 case(BO_PtrMemI):
2475 HandleValue(BO->getLHS(), AddressOf);
2476 Visit(BO->getRHS());
2477 return;
2478 case(BO_Comma):
2479 Visit(BO->getLHS());
2480 HandleValue(BO->getRHS(), AddressOf);
2481 return;
2482 }
2483 }
2484
2485 Visit(E);
2486 }
2487
CheckInitListExpr(InitListExpr * ILE)2488 void CheckInitListExpr(InitListExpr *ILE) {
2489 InitFieldIndex.push_back(0);
2490 for (auto Child : ILE->children()) {
2491 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
2492 CheckInitListExpr(SubList);
2493 } else {
2494 Visit(Child);
2495 }
2496 ++InitFieldIndex.back();
2497 }
2498 InitFieldIndex.pop_back();
2499 }
2500
CheckInitializer(Expr * E,const CXXConstructorDecl * FieldConstructor,FieldDecl * Field,const Type * BaseClass)2501 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
2502 FieldDecl *Field, const Type *BaseClass) {
2503 // Remove Decls that may have been initialized in the previous
2504 // initializer.
2505 for (ValueDecl* VD : DeclsToRemove)
2506 Decls.erase(VD);
2507 DeclsToRemove.clear();
2508
2509 Constructor = FieldConstructor;
2510 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
2511
2512 if (ILE && Field) {
2513 InitList = true;
2514 InitListFieldDecl = Field;
2515 InitFieldIndex.clear();
2516 CheckInitListExpr(ILE);
2517 } else {
2518 InitList = false;
2519 Visit(E);
2520 }
2521
2522 if (Field)
2523 Decls.erase(Field);
2524 if (BaseClass)
2525 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
2526 }
2527
VisitMemberExpr(MemberExpr * ME)2528 void VisitMemberExpr(MemberExpr *ME) {
2529 // All uses of unbounded reference fields will warn.
2530 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
2531 }
2532
VisitImplicitCastExpr(ImplicitCastExpr * E)2533 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2534 if (E->getCastKind() == CK_LValueToRValue) {
2535 HandleValue(E->getSubExpr(), false /*AddressOf*/);
2536 return;
2537 }
2538
2539 Inherited::VisitImplicitCastExpr(E);
2540 }
2541
VisitCXXConstructExpr(CXXConstructExpr * E)2542 void VisitCXXConstructExpr(CXXConstructExpr *E) {
2543 if (E->getConstructor()->isCopyConstructor()) {
2544 Expr *ArgExpr = E->getArg(0);
2545 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
2546 if (ILE->getNumInits() == 1)
2547 ArgExpr = ILE->getInit(0);
2548 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
2549 if (ICE->getCastKind() == CK_NoOp)
2550 ArgExpr = ICE->getSubExpr();
2551 HandleValue(ArgExpr, false /*AddressOf*/);
2552 return;
2553 }
2554 Inherited::VisitCXXConstructExpr(E);
2555 }
2556
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)2557 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2558 Expr *Callee = E->getCallee();
2559 if (isa<MemberExpr>(Callee)) {
2560 HandleValue(Callee, false /*AddressOf*/);
2561 for (auto Arg : E->arguments())
2562 Visit(Arg);
2563 return;
2564 }
2565
2566 Inherited::VisitCXXMemberCallExpr(E);
2567 }
2568
VisitCallExpr(CallExpr * E)2569 void VisitCallExpr(CallExpr *E) {
2570 // Treat std::move as a use.
2571 if (E->getNumArgs() == 1) {
2572 if (FunctionDecl *FD = E->getDirectCallee()) {
2573 if (FD->isInStdNamespace() && FD->getIdentifier() &&
2574 FD->getIdentifier()->isStr("move")) {
2575 HandleValue(E->getArg(0), false /*AddressOf*/);
2576 return;
2577 }
2578 }
2579 }
2580
2581 Inherited::VisitCallExpr(E);
2582 }
2583
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)2584 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
2585 Expr *Callee = E->getCallee();
2586
2587 if (isa<UnresolvedLookupExpr>(Callee))
2588 return Inherited::VisitCXXOperatorCallExpr(E);
2589
2590 Visit(Callee);
2591 for (auto Arg : E->arguments())
2592 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
2593 }
2594
VisitBinaryOperator(BinaryOperator * E)2595 void VisitBinaryOperator(BinaryOperator *E) {
2596 // If a field assignment is detected, remove the field from the
2597 // uninitiailized field set.
2598 if (E->getOpcode() == BO_Assign)
2599 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2600 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2601 if (!FD->getType()->isReferenceType())
2602 DeclsToRemove.push_back(FD);
2603
2604 if (E->isCompoundAssignmentOp()) {
2605 HandleValue(E->getLHS(), false /*AddressOf*/);
2606 Visit(E->getRHS());
2607 return;
2608 }
2609
2610 Inherited::VisitBinaryOperator(E);
2611 }
2612
VisitUnaryOperator(UnaryOperator * E)2613 void VisitUnaryOperator(UnaryOperator *E) {
2614 if (E->isIncrementDecrementOp()) {
2615 HandleValue(E->getSubExpr(), false /*AddressOf*/);
2616 return;
2617 }
2618 if (E->getOpcode() == UO_AddrOf) {
2619 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
2620 HandleValue(ME->getBase(), true /*AddressOf*/);
2621 return;
2622 }
2623 }
2624
2625 Inherited::VisitUnaryOperator(E);
2626 }
2627 };
2628
2629 // Diagnose value-uses of fields to initialize themselves, e.g.
2630 // foo(foo)
2631 // where foo is not also a parameter to the constructor.
2632 // Also diagnose across field uninitialized use such as
2633 // x(y), y(x)
2634 // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)2635 static void DiagnoseUninitializedFields(
2636 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
2637
2638 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
2639 Constructor->getLocation())) {
2640 return;
2641 }
2642
2643 if (Constructor->isInvalidDecl())
2644 return;
2645
2646 const CXXRecordDecl *RD = Constructor->getParent();
2647
2648 if (RD->getDescribedClassTemplate())
2649 return;
2650
2651 // Holds fields that are uninitialized.
2652 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
2653
2654 // At the beginning, all fields are uninitialized.
2655 for (auto *I : RD->decls()) {
2656 if (auto *FD = dyn_cast<FieldDecl>(I)) {
2657 UninitializedFields.insert(FD);
2658 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
2659 UninitializedFields.insert(IFD->getAnonField());
2660 }
2661 }
2662
2663 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
2664 for (auto I : RD->bases())
2665 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
2666
2667 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2668 return;
2669
2670 UninitializedFieldVisitor UninitializedChecker(SemaRef,
2671 UninitializedFields,
2672 UninitializedBaseClasses);
2673
2674 for (const auto *FieldInit : Constructor->inits()) {
2675 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
2676 break;
2677
2678 Expr *InitExpr = FieldInit->getInit();
2679 if (!InitExpr)
2680 continue;
2681
2682 if (CXXDefaultInitExpr *Default =
2683 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
2684 InitExpr = Default->getExpr();
2685 if (!InitExpr)
2686 continue;
2687 // In class initializers will point to the constructor.
2688 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
2689 FieldInit->getAnyMember(),
2690 FieldInit->getBaseClass());
2691 } else {
2692 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
2693 FieldInit->getAnyMember(),
2694 FieldInit->getBaseClass());
2695 }
2696 }
2697 }
2698 } // namespace
2699
2700 /// \brief Enter a new C++ default initializer scope. After calling this, the
2701 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
2702 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()2703 void Sema::ActOnStartCXXInClassMemberInitializer() {
2704 // Create a synthetic function scope to represent the call to the constructor
2705 // that notionally surrounds a use of this initializer.
2706 PushFunctionScope();
2707 }
2708
2709 /// \brief This is invoked after parsing an in-class initializer for a
2710 /// non-static C++ class member, and after instantiating an in-class initializer
2711 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)2712 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
2713 SourceLocation InitLoc,
2714 Expr *InitExpr) {
2715 // Pop the notional constructor scope we created earlier.
2716 PopFunctionScopeInfo(nullptr, D);
2717
2718 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2719 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
2720 "must set init style when field is created");
2721
2722 if (!InitExpr) {
2723 D->setInvalidDecl();
2724 if (FD)
2725 FD->removeInClassInitializer();
2726 return;
2727 }
2728
2729 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2730 FD->setInvalidDecl();
2731 FD->removeInClassInitializer();
2732 return;
2733 }
2734
2735 ExprResult Init = InitExpr;
2736 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2737 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2738 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2739 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2740 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2741 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2742 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2743 if (Init.isInvalid()) {
2744 FD->setInvalidDecl();
2745 return;
2746 }
2747 }
2748
2749 // C++11 [class.base.init]p7:
2750 // The initialization of each base and member constitutes a
2751 // full-expression.
2752 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
2753 if (Init.isInvalid()) {
2754 FD->setInvalidDecl();
2755 return;
2756 }
2757
2758 InitExpr = Init.get();
2759
2760 FD->setInClassInitializer(InitExpr);
2761 }
2762
2763 /// \brief Find the direct and/or virtual base specifiers that
2764 /// correspond to the given base type, for use in base initialization
2765 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)2766 static bool FindBaseInitializer(Sema &SemaRef,
2767 CXXRecordDecl *ClassDecl,
2768 QualType BaseType,
2769 const CXXBaseSpecifier *&DirectBaseSpec,
2770 const CXXBaseSpecifier *&VirtualBaseSpec) {
2771 // First, check for a direct base class.
2772 DirectBaseSpec = nullptr;
2773 for (const auto &Base : ClassDecl->bases()) {
2774 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
2775 // We found a direct base of this type. That's what we're
2776 // initializing.
2777 DirectBaseSpec = &Base;
2778 break;
2779 }
2780 }
2781
2782 // Check for a virtual base class.
2783 // FIXME: We might be able to short-circuit this if we know in advance that
2784 // there are no virtual bases.
2785 VirtualBaseSpec = nullptr;
2786 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2787 // We haven't found a base yet; search the class hierarchy for a
2788 // virtual base class.
2789 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2790 /*DetectVirtual=*/false);
2791 if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2792 BaseType, Paths)) {
2793 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2794 Path != Paths.end(); ++Path) {
2795 if (Path->back().Base->isVirtual()) {
2796 VirtualBaseSpec = Path->back().Base;
2797 break;
2798 }
2799 }
2800 }
2801 }
2802
2803 return DirectBaseSpec || VirtualBaseSpec;
2804 }
2805
2806 /// \brief Handle a C++ member initializer using braced-init-list syntax.
2807 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)2808 Sema::ActOnMemInitializer(Decl *ConstructorD,
2809 Scope *S,
2810 CXXScopeSpec &SS,
2811 IdentifierInfo *MemberOrBase,
2812 ParsedType TemplateTypeTy,
2813 const DeclSpec &DS,
2814 SourceLocation IdLoc,
2815 Expr *InitList,
2816 SourceLocation EllipsisLoc) {
2817 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2818 DS, IdLoc, InitList,
2819 EllipsisLoc);
2820 }
2821
2822 /// \brief Handle a C++ member initializer using parentheses syntax.
2823 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)2824 Sema::ActOnMemInitializer(Decl *ConstructorD,
2825 Scope *S,
2826 CXXScopeSpec &SS,
2827 IdentifierInfo *MemberOrBase,
2828 ParsedType TemplateTypeTy,
2829 const DeclSpec &DS,
2830 SourceLocation IdLoc,
2831 SourceLocation LParenLoc,
2832 ArrayRef<Expr *> Args,
2833 SourceLocation RParenLoc,
2834 SourceLocation EllipsisLoc) {
2835 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2836 Args, RParenLoc);
2837 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2838 DS, IdLoc, List, EllipsisLoc);
2839 }
2840
2841 namespace {
2842
2843 // Callback to only accept typo corrections that can be a valid C++ member
2844 // intializer: either a non-static field member or a base class.
2845 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2846 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)2847 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2848 : ClassDecl(ClassDecl) {}
2849
ValidateCandidate(const TypoCorrection & candidate)2850 bool ValidateCandidate(const TypoCorrection &candidate) override {
2851 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2852 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2853 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2854 return isa<TypeDecl>(ND);
2855 }
2856 return false;
2857 }
2858
2859 private:
2860 CXXRecordDecl *ClassDecl;
2861 };
2862
2863 }
2864
2865 /// \brief Handle a C++ member initializer.
2866 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)2867 Sema::BuildMemInitializer(Decl *ConstructorD,
2868 Scope *S,
2869 CXXScopeSpec &SS,
2870 IdentifierInfo *MemberOrBase,
2871 ParsedType TemplateTypeTy,
2872 const DeclSpec &DS,
2873 SourceLocation IdLoc,
2874 Expr *Init,
2875 SourceLocation EllipsisLoc) {
2876 ExprResult Res = CorrectDelayedTyposInExpr(Init);
2877 if (!Res.isUsable())
2878 return true;
2879 Init = Res.get();
2880
2881 if (!ConstructorD)
2882 return true;
2883
2884 AdjustDeclIfTemplate(ConstructorD);
2885
2886 CXXConstructorDecl *Constructor
2887 = dyn_cast<CXXConstructorDecl>(ConstructorD);
2888 if (!Constructor) {
2889 // The user wrote a constructor initializer on a function that is
2890 // not a C++ constructor. Ignore the error for now, because we may
2891 // have more member initializers coming; we'll diagnose it just
2892 // once in ActOnMemInitializers.
2893 return true;
2894 }
2895
2896 CXXRecordDecl *ClassDecl = Constructor->getParent();
2897
2898 // C++ [class.base.init]p2:
2899 // Names in a mem-initializer-id are looked up in the scope of the
2900 // constructor's class and, if not found in that scope, are looked
2901 // up in the scope containing the constructor's definition.
2902 // [Note: if the constructor's class contains a member with the
2903 // same name as a direct or virtual base class of the class, a
2904 // mem-initializer-id naming the member or base class and composed
2905 // of a single identifier refers to the class member. A
2906 // mem-initializer-id for the hidden base class may be specified
2907 // using a qualified name. ]
2908 if (!SS.getScopeRep() && !TemplateTypeTy) {
2909 // Look for a member, first.
2910 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
2911 if (!Result.empty()) {
2912 ValueDecl *Member;
2913 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2914 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2915 if (EllipsisLoc.isValid())
2916 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2917 << MemberOrBase
2918 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2919
2920 return BuildMemberInitializer(Member, Init, IdLoc);
2921 }
2922 }
2923 }
2924 // It didn't name a member, so see if it names a class.
2925 QualType BaseType;
2926 TypeSourceInfo *TInfo = nullptr;
2927
2928 if (TemplateTypeTy) {
2929 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2930 } else if (DS.getTypeSpecType() == TST_decltype) {
2931 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2932 } else {
2933 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2934 LookupParsedName(R, S, &SS);
2935
2936 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2937 if (!TyD) {
2938 if (R.isAmbiguous()) return true;
2939
2940 // We don't want access-control diagnostics here.
2941 R.suppressDiagnostics();
2942
2943 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2944 bool NotUnknownSpecialization = false;
2945 DeclContext *DC = computeDeclContext(SS, false);
2946 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2947 NotUnknownSpecialization = !Record->hasAnyDependentBases();
2948
2949 if (!NotUnknownSpecialization) {
2950 // When the scope specifier can refer to a member of an unknown
2951 // specialization, we take it as a type name.
2952 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2953 SS.getWithLocInContext(Context),
2954 *MemberOrBase, IdLoc);
2955 if (BaseType.isNull())
2956 return true;
2957
2958 R.clear();
2959 R.setLookupName(MemberOrBase);
2960 }
2961 }
2962
2963 // If no results were found, try to correct typos.
2964 TypoCorrection Corr;
2965 if (R.empty() && BaseType.isNull() &&
2966 (Corr = CorrectTypo(
2967 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2968 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
2969 CTK_ErrorRecovery, ClassDecl))) {
2970 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2971 // We have found a non-static data member with a similar
2972 // name to what was typed; complain and initialize that
2973 // member.
2974 diagnoseTypo(Corr,
2975 PDiag(diag::err_mem_init_not_member_or_class_suggest)
2976 << MemberOrBase << true);
2977 return BuildMemberInitializer(Member, Init, IdLoc);
2978 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2979 const CXXBaseSpecifier *DirectBaseSpec;
2980 const CXXBaseSpecifier *VirtualBaseSpec;
2981 if (FindBaseInitializer(*this, ClassDecl,
2982 Context.getTypeDeclType(Type),
2983 DirectBaseSpec, VirtualBaseSpec)) {
2984 // We have found a direct or virtual base class with a
2985 // similar name to what was typed; complain and initialize
2986 // that base class.
2987 diagnoseTypo(Corr,
2988 PDiag(diag::err_mem_init_not_member_or_class_suggest)
2989 << MemberOrBase << false,
2990 PDiag() /*Suppress note, we provide our own.*/);
2991
2992 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2993 : VirtualBaseSpec;
2994 Diag(BaseSpec->getLocStart(),
2995 diag::note_base_class_specified_here)
2996 << BaseSpec->getType()
2997 << BaseSpec->getSourceRange();
2998
2999 TyD = Type;
3000 }
3001 }
3002 }
3003
3004 if (!TyD && BaseType.isNull()) {
3005 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3006 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3007 return true;
3008 }
3009 }
3010
3011 if (BaseType.isNull()) {
3012 BaseType = Context.getTypeDeclType(TyD);
3013 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3014 if (SS.isSet())
3015 // FIXME: preserve source range information
3016 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3017 BaseType);
3018 }
3019 }
3020
3021 if (!TInfo)
3022 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3023
3024 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3025 }
3026
3027 /// Checks a member initializer expression for cases where reference (or
3028 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3029 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3030 Expr *Init,
3031 SourceLocation IdLoc) {
3032 QualType MemberTy = Member->getType();
3033
3034 // We only handle pointers and references currently.
3035 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3036 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3037 return;
3038
3039 const bool IsPointer = MemberTy->isPointerType();
3040 if (IsPointer) {
3041 if (const UnaryOperator *Op
3042 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3043 // The only case we're worried about with pointers requires taking the
3044 // address.
3045 if (Op->getOpcode() != UO_AddrOf)
3046 return;
3047
3048 Init = Op->getSubExpr();
3049 } else {
3050 // We only handle address-of expression initializers for pointers.
3051 return;
3052 }
3053 }
3054
3055 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3056 // We only warn when referring to a non-reference parameter declaration.
3057 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3058 if (!Parameter || Parameter->getType()->isReferenceType())
3059 return;
3060
3061 S.Diag(Init->getExprLoc(),
3062 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3063 : diag::warn_bind_ref_member_to_parameter)
3064 << Member << Parameter << Init->getSourceRange();
3065 } else {
3066 // Other initializers are fine.
3067 return;
3068 }
3069
3070 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3071 << (unsigned)IsPointer;
3072 }
3073
3074 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)3075 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3076 SourceLocation IdLoc) {
3077 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3078 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3079 assert((DirectMember || IndirectMember) &&
3080 "Member must be a FieldDecl or IndirectFieldDecl");
3081
3082 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3083 return true;
3084
3085 if (Member->isInvalidDecl())
3086 return true;
3087
3088 MultiExprArg Args;
3089 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3090 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3091 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3092 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3093 } else {
3094 // Template instantiation doesn't reconstruct ParenListExprs for us.
3095 Args = Init;
3096 }
3097
3098 SourceRange InitRange = Init->getSourceRange();
3099
3100 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3101 // Can't check initialization for a member of dependent type or when
3102 // any of the arguments are type-dependent expressions.
3103 DiscardCleanupsInEvaluationContext();
3104 } else {
3105 bool InitList = false;
3106 if (isa<InitListExpr>(Init)) {
3107 InitList = true;
3108 Args = Init;
3109 }
3110
3111 // Initialize the member.
3112 InitializedEntity MemberEntity =
3113 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3114 : InitializedEntity::InitializeMember(IndirectMember,
3115 nullptr);
3116 InitializationKind Kind =
3117 InitList ? InitializationKind::CreateDirectList(IdLoc)
3118 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3119 InitRange.getEnd());
3120
3121 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3122 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3123 nullptr);
3124 if (MemberInit.isInvalid())
3125 return true;
3126
3127 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3128
3129 // C++11 [class.base.init]p7:
3130 // The initialization of each base and member constitutes a
3131 // full-expression.
3132 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3133 if (MemberInit.isInvalid())
3134 return true;
3135
3136 Init = MemberInit.get();
3137 }
3138
3139 if (DirectMember) {
3140 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3141 InitRange.getBegin(), Init,
3142 InitRange.getEnd());
3143 } else {
3144 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3145 InitRange.getBegin(), Init,
3146 InitRange.getEnd());
3147 }
3148 }
3149
3150 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)3151 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3152 CXXRecordDecl *ClassDecl) {
3153 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3154 if (!LangOpts.CPlusPlus11)
3155 return Diag(NameLoc, diag::err_delegating_ctor)
3156 << TInfo->getTypeLoc().getLocalSourceRange();
3157 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3158
3159 bool InitList = true;
3160 MultiExprArg Args = Init;
3161 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3162 InitList = false;
3163 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3164 }
3165
3166 SourceRange InitRange = Init->getSourceRange();
3167 // Initialize the object.
3168 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
3169 QualType(ClassDecl->getTypeForDecl(), 0));
3170 InitializationKind Kind =
3171 InitList ? InitializationKind::CreateDirectList(NameLoc)
3172 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
3173 InitRange.getEnd());
3174 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
3175 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
3176 Args, nullptr);
3177 if (DelegationInit.isInvalid())
3178 return true;
3179
3180 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
3181 "Delegating constructor with no target?");
3182
3183 // C++11 [class.base.init]p7:
3184 // The initialization of each base and member constitutes a
3185 // full-expression.
3186 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
3187 InitRange.getBegin());
3188 if (DelegationInit.isInvalid())
3189 return true;
3190
3191 // If we are in a dependent context, template instantiation will
3192 // perform this type-checking again. Just save the arguments that we
3193 // received in a ParenListExpr.
3194 // FIXME: This isn't quite ideal, since our ASTs don't capture all
3195 // of the information that we have about the base
3196 // initializer. However, deconstructing the ASTs is a dicey process,
3197 // and this approach is far more likely to get the corner cases right.
3198 if (CurContext->isDependentContext())
3199 DelegationInit = Init;
3200
3201 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
3202 DelegationInit.getAs<Expr>(),
3203 InitRange.getEnd());
3204 }
3205
3206 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)3207 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
3208 Expr *Init, CXXRecordDecl *ClassDecl,
3209 SourceLocation EllipsisLoc) {
3210 SourceLocation BaseLoc
3211 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
3212
3213 if (!BaseType->isDependentType() && !BaseType->isRecordType())
3214 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
3215 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3216
3217 // C++ [class.base.init]p2:
3218 // [...] Unless the mem-initializer-id names a nonstatic data
3219 // member of the constructor's class or a direct or virtual base
3220 // of that class, the mem-initializer is ill-formed. A
3221 // mem-initializer-list can initialize a base class using any
3222 // name that denotes that base class type.
3223 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
3224
3225 SourceRange InitRange = Init->getSourceRange();
3226 if (EllipsisLoc.isValid()) {
3227 // This is a pack expansion.
3228 if (!BaseType->containsUnexpandedParameterPack()) {
3229 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
3230 << SourceRange(BaseLoc, InitRange.getEnd());
3231
3232 EllipsisLoc = SourceLocation();
3233 }
3234 } else {
3235 // Check for any unexpanded parameter packs.
3236 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
3237 return true;
3238
3239 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3240 return true;
3241 }
3242
3243 // Check for direct and virtual base classes.
3244 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
3245 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
3246 if (!Dependent) {
3247 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
3248 BaseType))
3249 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
3250
3251 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
3252 VirtualBaseSpec);
3253
3254 // C++ [base.class.init]p2:
3255 // Unless the mem-initializer-id names a nonstatic data member of the
3256 // constructor's class or a direct or virtual base of that class, the
3257 // mem-initializer is ill-formed.
3258 if (!DirectBaseSpec && !VirtualBaseSpec) {
3259 // If the class has any dependent bases, then it's possible that
3260 // one of those types will resolve to the same type as
3261 // BaseType. Therefore, just treat this as a dependent base
3262 // class initialization. FIXME: Should we try to check the
3263 // initialization anyway? It seems odd.
3264 if (ClassDecl->hasAnyDependentBases())
3265 Dependent = true;
3266 else
3267 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
3268 << BaseType << Context.getTypeDeclType(ClassDecl)
3269 << BaseTInfo->getTypeLoc().getLocalSourceRange();
3270 }
3271 }
3272
3273 if (Dependent) {
3274 DiscardCleanupsInEvaluationContext();
3275
3276 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3277 /*IsVirtual=*/false,
3278 InitRange.getBegin(), Init,
3279 InitRange.getEnd(), EllipsisLoc);
3280 }
3281
3282 // C++ [base.class.init]p2:
3283 // If a mem-initializer-id is ambiguous because it designates both
3284 // a direct non-virtual base class and an inherited virtual base
3285 // class, the mem-initializer is ill-formed.
3286 if (DirectBaseSpec && VirtualBaseSpec)
3287 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
3288 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
3289
3290 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
3291 if (!BaseSpec)
3292 BaseSpec = VirtualBaseSpec;
3293
3294 // Initialize the base.
3295 bool InitList = true;
3296 MultiExprArg Args = Init;
3297 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3298 InitList = false;
3299 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3300 }
3301
3302 InitializedEntity BaseEntity =
3303 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
3304 InitializationKind Kind =
3305 InitList ? InitializationKind::CreateDirectList(BaseLoc)
3306 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
3307 InitRange.getEnd());
3308 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
3309 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
3310 if (BaseInit.isInvalid())
3311 return true;
3312
3313 // C++11 [class.base.init]p7:
3314 // The initialization of each base and member constitutes a
3315 // full-expression.
3316 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
3317 if (BaseInit.isInvalid())
3318 return true;
3319
3320 // If we are in a dependent context, template instantiation will
3321 // perform this type-checking again. Just save the arguments that we
3322 // received in a ParenListExpr.
3323 // FIXME: This isn't quite ideal, since our ASTs don't capture all
3324 // of the information that we have about the base
3325 // initializer. However, deconstructing the ASTs is a dicey process,
3326 // and this approach is far more likely to get the corner cases right.
3327 if (CurContext->isDependentContext())
3328 BaseInit = Init;
3329
3330 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3331 BaseSpec->isVirtual(),
3332 InitRange.getBegin(),
3333 BaseInit.getAs<Expr>(),
3334 InitRange.getEnd(), EllipsisLoc);
3335 }
3336
3337 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())3338 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
3339 if (T.isNull()) T = E->getType();
3340 QualType TargetType = SemaRef.BuildReferenceType(
3341 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
3342 SourceLocation ExprLoc = E->getLocStart();
3343 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
3344 TargetType, ExprLoc);
3345
3346 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
3347 SourceRange(ExprLoc, ExprLoc),
3348 E->getSourceRange()).get();
3349 }
3350
3351 /// ImplicitInitializerKind - How an implicit base or member initializer should
3352 /// initialize its base or member.
3353 enum ImplicitInitializerKind {
3354 IIK_Default,
3355 IIK_Copy,
3356 IIK_Move,
3357 IIK_Inherit
3358 };
3359
3360 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)3361 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3362 ImplicitInitializerKind ImplicitInitKind,
3363 CXXBaseSpecifier *BaseSpec,
3364 bool IsInheritedVirtualBase,
3365 CXXCtorInitializer *&CXXBaseInit) {
3366 InitializedEntity InitEntity
3367 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
3368 IsInheritedVirtualBase);
3369
3370 ExprResult BaseInit;
3371
3372 switch (ImplicitInitKind) {
3373 case IIK_Inherit: {
3374 const CXXRecordDecl *Inherited =
3375 Constructor->getInheritedConstructor()->getParent();
3376 const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
3377 if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
3378 // C++11 [class.inhctor]p8:
3379 // Each expression in the expression-list is of the form
3380 // static_cast<T&&>(p), where p is the name of the corresponding
3381 // constructor parameter and T is the declared type of p.
3382 SmallVector<Expr*, 16> Args;
3383 for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
3384 ParmVarDecl *PD = Constructor->getParamDecl(I);
3385 ExprResult ArgExpr =
3386 SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
3387 VK_LValue, SourceLocation());
3388 if (ArgExpr.isInvalid())
3389 return true;
3390 Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
3391 }
3392
3393 InitializationKind InitKind = InitializationKind::CreateDirect(
3394 Constructor->getLocation(), SourceLocation(), SourceLocation());
3395 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
3396 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
3397 break;
3398 }
3399 }
3400 // Fall through.
3401 case IIK_Default: {
3402 InitializationKind InitKind
3403 = InitializationKind::CreateDefault(Constructor->getLocation());
3404 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3405 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3406 break;
3407 }
3408
3409 case IIK_Move:
3410 case IIK_Copy: {
3411 bool Moving = ImplicitInitKind == IIK_Move;
3412 ParmVarDecl *Param = Constructor->getParamDecl(0);
3413 QualType ParamType = Param->getType().getNonReferenceType();
3414
3415 Expr *CopyCtorArg =
3416 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3417 SourceLocation(), Param, false,
3418 Constructor->getLocation(), ParamType,
3419 VK_LValue, nullptr);
3420
3421 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
3422
3423 // Cast to the base class to avoid ambiguities.
3424 QualType ArgTy =
3425 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3426 ParamType.getQualifiers());
3427
3428 if (Moving) {
3429 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3430 }
3431
3432 CXXCastPath BasePath;
3433 BasePath.push_back(BaseSpec);
3434 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3435 CK_UncheckedDerivedToBase,
3436 Moving ? VK_XValue : VK_LValue,
3437 &BasePath).get();
3438
3439 InitializationKind InitKind
3440 = InitializationKind::CreateDirect(Constructor->getLocation(),
3441 SourceLocation(), SourceLocation());
3442 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3443 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3444 break;
3445 }
3446 }
3447
3448 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3449 if (BaseInit.isInvalid())
3450 return true;
3451
3452 CXXBaseInit =
3453 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3454 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3455 SourceLocation()),
3456 BaseSpec->isVirtual(),
3457 SourceLocation(),
3458 BaseInit.getAs<Expr>(),
3459 SourceLocation(),
3460 SourceLocation());
3461
3462 return false;
3463 }
3464
RefersToRValueRef(Expr * MemRef)3465 static bool RefersToRValueRef(Expr *MemRef) {
3466 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3467 return Referenced->getType()->isRValueReferenceType();
3468 }
3469
3470 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)3471 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3472 ImplicitInitializerKind ImplicitInitKind,
3473 FieldDecl *Field, IndirectFieldDecl *Indirect,
3474 CXXCtorInitializer *&CXXMemberInit) {
3475 if (Field->isInvalidDecl())
3476 return true;
3477
3478 SourceLocation Loc = Constructor->getLocation();
3479
3480 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3481 bool Moving = ImplicitInitKind == IIK_Move;
3482 ParmVarDecl *Param = Constructor->getParamDecl(0);
3483 QualType ParamType = Param->getType().getNonReferenceType();
3484
3485 // Suppress copying zero-width bitfields.
3486 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3487 return false;
3488
3489 Expr *MemberExprBase =
3490 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3491 SourceLocation(), Param, false,
3492 Loc, ParamType, VK_LValue, nullptr);
3493
3494 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3495
3496 if (Moving) {
3497 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3498 }
3499
3500 // Build a reference to this field within the parameter.
3501 CXXScopeSpec SS;
3502 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3503 Sema::LookupMemberName);
3504 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3505 : cast<ValueDecl>(Field), AS_public);
3506 MemberLookup.resolveKind();
3507 ExprResult CtorArg
3508 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3509 ParamType, Loc,
3510 /*IsArrow=*/false,
3511 SS,
3512 /*TemplateKWLoc=*/SourceLocation(),
3513 /*FirstQualifierInScope=*/nullptr,
3514 MemberLookup,
3515 /*TemplateArgs=*/nullptr);
3516 if (CtorArg.isInvalid())
3517 return true;
3518
3519 // C++11 [class.copy]p15:
3520 // - if a member m has rvalue reference type T&&, it is direct-initialized
3521 // with static_cast<T&&>(x.m);
3522 if (RefersToRValueRef(CtorArg.get())) {
3523 CtorArg = CastForMoving(SemaRef, CtorArg.get());
3524 }
3525
3526 // When the field we are copying is an array, create index variables for
3527 // each dimension of the array. We use these index variables to subscript
3528 // the source array, and other clients (e.g., CodeGen) will perform the
3529 // necessary iteration with these index variables.
3530 SmallVector<VarDecl *, 4> IndexVariables;
3531 QualType BaseType = Field->getType();
3532 QualType SizeType = SemaRef.Context.getSizeType();
3533 bool InitializingArray = false;
3534 while (const ConstantArrayType *Array
3535 = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3536 InitializingArray = true;
3537 // Create the iteration variable for this array index.
3538 IdentifierInfo *IterationVarName = nullptr;
3539 {
3540 SmallString<8> Str;
3541 llvm::raw_svector_ostream OS(Str);
3542 OS << "__i" << IndexVariables.size();
3543 IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3544 }
3545 VarDecl *IterationVar
3546 = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3547 IterationVarName, SizeType,
3548 SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3549 SC_None);
3550 IndexVariables.push_back(IterationVar);
3551
3552 // Create a reference to the iteration variable.
3553 ExprResult IterationVarRef
3554 = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3555 assert(!IterationVarRef.isInvalid() &&
3556 "Reference to invented variable cannot fail!");
3557 IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
3558 assert(!IterationVarRef.isInvalid() &&
3559 "Conversion of invented variable cannot fail!");
3560
3561 // Subscript the array with this iteration variable.
3562 CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
3563 IterationVarRef.get(),
3564 Loc);
3565 if (CtorArg.isInvalid())
3566 return true;
3567
3568 BaseType = Array->getElementType();
3569 }
3570
3571 // The array subscript expression is an lvalue, which is wrong for moving.
3572 if (Moving && InitializingArray)
3573 CtorArg = CastForMoving(SemaRef, CtorArg.get());
3574
3575 // Construct the entity that we will be initializing. For an array, this
3576 // will be first element in the array, which may require several levels
3577 // of array-subscript entities.
3578 SmallVector<InitializedEntity, 4> Entities;
3579 Entities.reserve(1 + IndexVariables.size());
3580 if (Indirect)
3581 Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3582 else
3583 Entities.push_back(InitializedEntity::InitializeMember(Field));
3584 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3585 Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3586 0,
3587 Entities.back()));
3588
3589 // Direct-initialize to use the copy constructor.
3590 InitializationKind InitKind =
3591 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3592
3593 Expr *CtorArgE = CtorArg.getAs<Expr>();
3594 InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
3595 CtorArgE);
3596
3597 ExprResult MemberInit
3598 = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3599 MultiExprArg(&CtorArgE, 1));
3600 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3601 if (MemberInit.isInvalid())
3602 return true;
3603
3604 if (Indirect) {
3605 assert(IndexVariables.size() == 0 &&
3606 "Indirect field improperly initialized");
3607 CXXMemberInit
3608 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3609 Loc, Loc,
3610 MemberInit.getAs<Expr>(),
3611 Loc);
3612 } else
3613 CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3614 Loc, MemberInit.getAs<Expr>(),
3615 Loc,
3616 IndexVariables.data(),
3617 IndexVariables.size());
3618 return false;
3619 }
3620
3621 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3622 "Unhandled implicit init kind!");
3623
3624 QualType FieldBaseElementType =
3625 SemaRef.Context.getBaseElementType(Field->getType());
3626
3627 if (FieldBaseElementType->isRecordType()) {
3628 InitializedEntity InitEntity
3629 = Indirect? InitializedEntity::InitializeMember(Indirect)
3630 : InitializedEntity::InitializeMember(Field);
3631 InitializationKind InitKind =
3632 InitializationKind::CreateDefault(Loc);
3633
3634 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3635 ExprResult MemberInit =
3636 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3637
3638 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3639 if (MemberInit.isInvalid())
3640 return true;
3641
3642 if (Indirect)
3643 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3644 Indirect, Loc,
3645 Loc,
3646 MemberInit.get(),
3647 Loc);
3648 else
3649 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3650 Field, Loc, Loc,
3651 MemberInit.get(),
3652 Loc);
3653 return false;
3654 }
3655
3656 if (!Field->getParent()->isUnion()) {
3657 if (FieldBaseElementType->isReferenceType()) {
3658 SemaRef.Diag(Constructor->getLocation(),
3659 diag::err_uninitialized_member_in_ctor)
3660 << (int)Constructor->isImplicit()
3661 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3662 << 0 << Field->getDeclName();
3663 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3664 return true;
3665 }
3666
3667 if (FieldBaseElementType.isConstQualified()) {
3668 SemaRef.Diag(Constructor->getLocation(),
3669 diag::err_uninitialized_member_in_ctor)
3670 << (int)Constructor->isImplicit()
3671 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3672 << 1 << Field->getDeclName();
3673 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3674 return true;
3675 }
3676 }
3677
3678 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3679 FieldBaseElementType->isObjCRetainableType() &&
3680 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3681 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3682 // ARC:
3683 // Default-initialize Objective-C pointers to NULL.
3684 CXXMemberInit
3685 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3686 Loc, Loc,
3687 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3688 Loc);
3689 return false;
3690 }
3691
3692 // Nothing to initialize.
3693 CXXMemberInit = nullptr;
3694 return false;
3695 }
3696
3697 namespace {
3698 struct BaseAndFieldInfo {
3699 Sema &S;
3700 CXXConstructorDecl *Ctor;
3701 bool AnyErrorsInInits;
3702 ImplicitInitializerKind IIK;
3703 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3704 SmallVector<CXXCtorInitializer*, 8> AllToInit;
3705 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
3706
BaseAndFieldInfo__anonb9d573a20411::BaseAndFieldInfo3707 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3708 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3709 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3710 if (Generated && Ctor->isCopyConstructor())
3711 IIK = IIK_Copy;
3712 else if (Generated && Ctor->isMoveConstructor())
3713 IIK = IIK_Move;
3714 else if (Ctor->getInheritedConstructor())
3715 IIK = IIK_Inherit;
3716 else
3717 IIK = IIK_Default;
3718 }
3719
isImplicitCopyOrMove__anonb9d573a20411::BaseAndFieldInfo3720 bool isImplicitCopyOrMove() const {
3721 switch (IIK) {
3722 case IIK_Copy:
3723 case IIK_Move:
3724 return true;
3725
3726 case IIK_Default:
3727 case IIK_Inherit:
3728 return false;
3729 }
3730
3731 llvm_unreachable("Invalid ImplicitInitializerKind!");
3732 }
3733
addFieldInitializer__anonb9d573a20411::BaseAndFieldInfo3734 bool addFieldInitializer(CXXCtorInitializer *Init) {
3735 AllToInit.push_back(Init);
3736
3737 // Check whether this initializer makes the field "used".
3738 if (Init->getInit()->HasSideEffects(S.Context))
3739 S.UnusedPrivateFields.remove(Init->getAnyMember());
3740
3741 return false;
3742 }
3743
isInactiveUnionMember__anonb9d573a20411::BaseAndFieldInfo3744 bool isInactiveUnionMember(FieldDecl *Field) {
3745 RecordDecl *Record = Field->getParent();
3746 if (!Record->isUnion())
3747 return false;
3748
3749 if (FieldDecl *Active =
3750 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
3751 return Active != Field->getCanonicalDecl();
3752
3753 // In an implicit copy or move constructor, ignore any in-class initializer.
3754 if (isImplicitCopyOrMove())
3755 return true;
3756
3757 // If there's no explicit initialization, the field is active only if it
3758 // has an in-class initializer...
3759 if (Field->hasInClassInitializer())
3760 return false;
3761 // ... or it's an anonymous struct or union whose class has an in-class
3762 // initializer.
3763 if (!Field->isAnonymousStructOrUnion())
3764 return true;
3765 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
3766 return !FieldRD->hasInClassInitializer();
3767 }
3768
3769 /// \brief Determine whether the given field is, or is within, a union member
3770 /// that is inactive (because there was an initializer given for a different
3771 /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anonb9d573a20411::BaseAndFieldInfo3772 bool isWithinInactiveUnionMember(FieldDecl *Field,
3773 IndirectFieldDecl *Indirect) {
3774 if (!Indirect)
3775 return isInactiveUnionMember(Field);
3776
3777 for (auto *C : Indirect->chain()) {
3778 FieldDecl *Field = dyn_cast<FieldDecl>(C);
3779 if (Field && isInactiveUnionMember(Field))
3780 return true;
3781 }
3782 return false;
3783 }
3784 };
3785 }
3786
3787 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
3788 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)3789 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3790 if (T->isIncompleteArrayType())
3791 return true;
3792
3793 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3794 if (!ArrayT->getSize())
3795 return true;
3796
3797 T = ArrayT->getElementType();
3798 }
3799
3800 return false;
3801 }
3802
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)3803 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3804 FieldDecl *Field,
3805 IndirectFieldDecl *Indirect = nullptr) {
3806 if (Field->isInvalidDecl())
3807 return false;
3808
3809 // Overwhelmingly common case: we have a direct initializer for this field.
3810 if (CXXCtorInitializer *Init =
3811 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
3812 return Info.addFieldInitializer(Init);
3813
3814 // C++11 [class.base.init]p8:
3815 // if the entity is a non-static data member that has a
3816 // brace-or-equal-initializer and either
3817 // -- the constructor's class is a union and no other variant member of that
3818 // union is designated by a mem-initializer-id or
3819 // -- the constructor's class is not a union, and, if the entity is a member
3820 // of an anonymous union, no other member of that union is designated by
3821 // a mem-initializer-id,
3822 // the entity is initialized as specified in [dcl.init].
3823 //
3824 // We also apply the same rules to handle anonymous structs within anonymous
3825 // unions.
3826 if (Info.isWithinInactiveUnionMember(Field, Indirect))
3827 return false;
3828
3829 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3830 ExprResult DIE =
3831 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
3832 if (DIE.isInvalid())
3833 return true;
3834 CXXCtorInitializer *Init;
3835 if (Indirect)
3836 Init = new (SemaRef.Context)
3837 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
3838 SourceLocation(), DIE.get(), SourceLocation());
3839 else
3840 Init = new (SemaRef.Context)
3841 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
3842 SourceLocation(), DIE.get(), SourceLocation());
3843 return Info.addFieldInitializer(Init);
3844 }
3845
3846 // Don't initialize incomplete or zero-length arrays.
3847 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3848 return false;
3849
3850 // Don't try to build an implicit initializer if there were semantic
3851 // errors in any of the initializers (and therefore we might be
3852 // missing some that the user actually wrote).
3853 if (Info.AnyErrorsInInits)
3854 return false;
3855
3856 CXXCtorInitializer *Init = nullptr;
3857 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3858 Indirect, Init))
3859 return true;
3860
3861 if (!Init)
3862 return false;
3863
3864 return Info.addFieldInitializer(Init);
3865 }
3866
3867 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)3868 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3869 CXXCtorInitializer *Initializer) {
3870 assert(Initializer->isDelegatingInitializer());
3871 Constructor->setNumCtorInitializers(1);
3872 CXXCtorInitializer **initializer =
3873 new (Context) CXXCtorInitializer*[1];
3874 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3875 Constructor->setCtorInitializers(initializer);
3876
3877 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3878 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3879 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3880 }
3881
3882 DelegatingCtorDecls.push_back(Constructor);
3883
3884 DiagnoseUninitializedFields(*this, Constructor);
3885
3886 return false;
3887 }
3888
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)3889 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3890 ArrayRef<CXXCtorInitializer *> Initializers) {
3891 if (Constructor->isDependentContext()) {
3892 // Just store the initializers as written, they will be checked during
3893 // instantiation.
3894 if (!Initializers.empty()) {
3895 Constructor->setNumCtorInitializers(Initializers.size());
3896 CXXCtorInitializer **baseOrMemberInitializers =
3897 new (Context) CXXCtorInitializer*[Initializers.size()];
3898 memcpy(baseOrMemberInitializers, Initializers.data(),
3899 Initializers.size() * sizeof(CXXCtorInitializer*));
3900 Constructor->setCtorInitializers(baseOrMemberInitializers);
3901 }
3902
3903 // Let template instantiation know whether we had errors.
3904 if (AnyErrors)
3905 Constructor->setInvalidDecl();
3906
3907 return false;
3908 }
3909
3910 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3911
3912 // We need to build the initializer AST according to order of construction
3913 // and not what user specified in the Initializers list.
3914 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3915 if (!ClassDecl)
3916 return true;
3917
3918 bool HadError = false;
3919
3920 for (unsigned i = 0; i < Initializers.size(); i++) {
3921 CXXCtorInitializer *Member = Initializers[i];
3922
3923 if (Member->isBaseInitializer())
3924 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3925 else {
3926 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
3927
3928 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
3929 for (auto *C : F->chain()) {
3930 FieldDecl *FD = dyn_cast<FieldDecl>(C);
3931 if (FD && FD->getParent()->isUnion())
3932 Info.ActiveUnionMember.insert(std::make_pair(
3933 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3934 }
3935 } else if (FieldDecl *FD = Member->getMember()) {
3936 if (FD->getParent()->isUnion())
3937 Info.ActiveUnionMember.insert(std::make_pair(
3938 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3939 }
3940 }
3941 }
3942
3943 // Keep track of the direct virtual bases.
3944 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3945 for (auto &I : ClassDecl->bases()) {
3946 if (I.isVirtual())
3947 DirectVBases.insert(&I);
3948 }
3949
3950 // Push virtual bases before others.
3951 for (auto &VBase : ClassDecl->vbases()) {
3952 if (CXXCtorInitializer *Value
3953 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
3954 // [class.base.init]p7, per DR257:
3955 // A mem-initializer where the mem-initializer-id names a virtual base
3956 // class is ignored during execution of a constructor of any class that
3957 // is not the most derived class.
3958 if (ClassDecl->isAbstract()) {
3959 // FIXME: Provide a fixit to remove the base specifier. This requires
3960 // tracking the location of the associated comma for a base specifier.
3961 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3962 << VBase.getType() << ClassDecl;
3963 DiagnoseAbstractType(ClassDecl);
3964 }
3965
3966 Info.AllToInit.push_back(Value);
3967 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3968 // [class.base.init]p8, per DR257:
3969 // If a given [...] base class is not named by a mem-initializer-id
3970 // [...] and the entity is not a virtual base class of an abstract
3971 // class, then [...] the entity is default-initialized.
3972 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
3973 CXXCtorInitializer *CXXBaseInit;
3974 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3975 &VBase, IsInheritedVirtualBase,
3976 CXXBaseInit)) {
3977 HadError = true;
3978 continue;
3979 }
3980
3981 Info.AllToInit.push_back(CXXBaseInit);
3982 }
3983 }
3984
3985 // Non-virtual bases.
3986 for (auto &Base : ClassDecl->bases()) {
3987 // Virtuals are in the virtual base list and already constructed.
3988 if (Base.isVirtual())
3989 continue;
3990
3991 if (CXXCtorInitializer *Value
3992 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
3993 Info.AllToInit.push_back(Value);
3994 } else if (!AnyErrors) {
3995 CXXCtorInitializer *CXXBaseInit;
3996 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3997 &Base, /*IsInheritedVirtualBase=*/false,
3998 CXXBaseInit)) {
3999 HadError = true;
4000 continue;
4001 }
4002
4003 Info.AllToInit.push_back(CXXBaseInit);
4004 }
4005 }
4006
4007 // Fields.
4008 for (auto *Mem : ClassDecl->decls()) {
4009 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4010 // C++ [class.bit]p2:
4011 // A declaration for a bit-field that omits the identifier declares an
4012 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4013 // initialized.
4014 if (F->isUnnamedBitfield())
4015 continue;
4016
4017 // If we're not generating the implicit copy/move constructor, then we'll
4018 // handle anonymous struct/union fields based on their individual
4019 // indirect fields.
4020 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4021 continue;
4022
4023 if (CollectFieldInitializer(*this, Info, F))
4024 HadError = true;
4025 continue;
4026 }
4027
4028 // Beyond this point, we only consider default initialization.
4029 if (Info.isImplicitCopyOrMove())
4030 continue;
4031
4032 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4033 if (F->getType()->isIncompleteArrayType()) {
4034 assert(ClassDecl->hasFlexibleArrayMember() &&
4035 "Incomplete array type is not valid");
4036 continue;
4037 }
4038
4039 // Initialize each field of an anonymous struct individually.
4040 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4041 HadError = true;
4042
4043 continue;
4044 }
4045 }
4046
4047 unsigned NumInitializers = Info.AllToInit.size();
4048 if (NumInitializers > 0) {
4049 Constructor->setNumCtorInitializers(NumInitializers);
4050 CXXCtorInitializer **baseOrMemberInitializers =
4051 new (Context) CXXCtorInitializer*[NumInitializers];
4052 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4053 NumInitializers * sizeof(CXXCtorInitializer*));
4054 Constructor->setCtorInitializers(baseOrMemberInitializers);
4055
4056 // Constructors implicitly reference the base and member
4057 // destructors.
4058 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4059 Constructor->getParent());
4060 }
4061
4062 return HadError;
4063 }
4064
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)4065 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4066 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4067 const RecordDecl *RD = RT->getDecl();
4068 if (RD->isAnonymousStructOrUnion()) {
4069 for (auto *Field : RD->fields())
4070 PopulateKeysForFields(Field, IdealInits);
4071 return;
4072 }
4073 }
4074 IdealInits.push_back(Field->getCanonicalDecl());
4075 }
4076
GetKeyForBase(ASTContext & Context,QualType BaseType)4077 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4078 return Context.getCanonicalType(BaseType).getTypePtr();
4079 }
4080
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)4081 static const void *GetKeyForMember(ASTContext &Context,
4082 CXXCtorInitializer *Member) {
4083 if (!Member->isAnyMemberInitializer())
4084 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4085
4086 return Member->getAnyMember()->getCanonicalDecl();
4087 }
4088
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)4089 static void DiagnoseBaseOrMemInitializerOrder(
4090 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4091 ArrayRef<CXXCtorInitializer *> Inits) {
4092 if (Constructor->getDeclContext()->isDependentContext())
4093 return;
4094
4095 // Don't check initializers order unless the warning is enabled at the
4096 // location of at least one initializer.
4097 bool ShouldCheckOrder = false;
4098 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4099 CXXCtorInitializer *Init = Inits[InitIndex];
4100 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4101 Init->getSourceLocation())) {
4102 ShouldCheckOrder = true;
4103 break;
4104 }
4105 }
4106 if (!ShouldCheckOrder)
4107 return;
4108
4109 // Build the list of bases and members in the order that they'll
4110 // actually be initialized. The explicit initializers should be in
4111 // this same order but may be missing things.
4112 SmallVector<const void*, 32> IdealInitKeys;
4113
4114 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4115
4116 // 1. Virtual bases.
4117 for (const auto &VBase : ClassDecl->vbases())
4118 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4119
4120 // 2. Non-virtual bases.
4121 for (const auto &Base : ClassDecl->bases()) {
4122 if (Base.isVirtual())
4123 continue;
4124 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4125 }
4126
4127 // 3. Direct fields.
4128 for (auto *Field : ClassDecl->fields()) {
4129 if (Field->isUnnamedBitfield())
4130 continue;
4131
4132 PopulateKeysForFields(Field, IdealInitKeys);
4133 }
4134
4135 unsigned NumIdealInits = IdealInitKeys.size();
4136 unsigned IdealIndex = 0;
4137
4138 CXXCtorInitializer *PrevInit = nullptr;
4139 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4140 CXXCtorInitializer *Init = Inits[InitIndex];
4141 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4142
4143 // Scan forward to try to find this initializer in the idealized
4144 // initializers list.
4145 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4146 if (InitKey == IdealInitKeys[IdealIndex])
4147 break;
4148
4149 // If we didn't find this initializer, it must be because we
4150 // scanned past it on a previous iteration. That can only
4151 // happen if we're out of order; emit a warning.
4152 if (IdealIndex == NumIdealInits && PrevInit) {
4153 Sema::SemaDiagnosticBuilder D =
4154 SemaRef.Diag(PrevInit->getSourceLocation(),
4155 diag::warn_initializer_out_of_order);
4156
4157 if (PrevInit->isAnyMemberInitializer())
4158 D << 0 << PrevInit->getAnyMember()->getDeclName();
4159 else
4160 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4161
4162 if (Init->isAnyMemberInitializer())
4163 D << 0 << Init->getAnyMember()->getDeclName();
4164 else
4165 D << 1 << Init->getTypeSourceInfo()->getType();
4166
4167 // Move back to the initializer's location in the ideal list.
4168 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4169 if (InitKey == IdealInitKeys[IdealIndex])
4170 break;
4171
4172 assert(IdealIndex != NumIdealInits &&
4173 "initializer not found in initializer list");
4174 }
4175
4176 PrevInit = Init;
4177 }
4178 }
4179
4180 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)4181 bool CheckRedundantInit(Sema &S,
4182 CXXCtorInitializer *Init,
4183 CXXCtorInitializer *&PrevInit) {
4184 if (!PrevInit) {
4185 PrevInit = Init;
4186 return false;
4187 }
4188
4189 if (FieldDecl *Field = Init->getAnyMember())
4190 S.Diag(Init->getSourceLocation(),
4191 diag::err_multiple_mem_initialization)
4192 << Field->getDeclName()
4193 << Init->getSourceRange();
4194 else {
4195 const Type *BaseClass = Init->getBaseClass();
4196 assert(BaseClass && "neither field nor base");
4197 S.Diag(Init->getSourceLocation(),
4198 diag::err_multiple_base_initialization)
4199 << QualType(BaseClass, 0)
4200 << Init->getSourceRange();
4201 }
4202 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4203 << 0 << PrevInit->getSourceRange();
4204
4205 return true;
4206 }
4207
4208 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4209 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4210
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)4211 bool CheckRedundantUnionInit(Sema &S,
4212 CXXCtorInitializer *Init,
4213 RedundantUnionMap &Unions) {
4214 FieldDecl *Field = Init->getAnyMember();
4215 RecordDecl *Parent = Field->getParent();
4216 NamedDecl *Child = Field;
4217
4218 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4219 if (Parent->isUnion()) {
4220 UnionEntry &En = Unions[Parent];
4221 if (En.first && En.first != Child) {
4222 S.Diag(Init->getSourceLocation(),
4223 diag::err_multiple_mem_union_initialization)
4224 << Field->getDeclName()
4225 << Init->getSourceRange();
4226 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4227 << 0 << En.second->getSourceRange();
4228 return true;
4229 }
4230 if (!En.first) {
4231 En.first = Child;
4232 En.second = Init;
4233 }
4234 if (!Parent->isAnonymousStructOrUnion())
4235 return false;
4236 }
4237
4238 Child = Parent;
4239 Parent = cast<RecordDecl>(Parent->getDeclContext());
4240 }
4241
4242 return false;
4243 }
4244 }
4245
4246 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)4247 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4248 SourceLocation ColonLoc,
4249 ArrayRef<CXXCtorInitializer*> MemInits,
4250 bool AnyErrors) {
4251 if (!ConstructorDecl)
4252 return;
4253
4254 AdjustDeclIfTemplate(ConstructorDecl);
4255
4256 CXXConstructorDecl *Constructor
4257 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
4258
4259 if (!Constructor) {
4260 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
4261 return;
4262 }
4263
4264 // Mapping for the duplicate initializers check.
4265 // For member initializers, this is keyed with a FieldDecl*.
4266 // For base initializers, this is keyed with a Type*.
4267 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
4268
4269 // Mapping for the inconsistent anonymous-union initializers check.
4270 RedundantUnionMap MemberUnions;
4271
4272 bool HadError = false;
4273 for (unsigned i = 0; i < MemInits.size(); i++) {
4274 CXXCtorInitializer *Init = MemInits[i];
4275
4276 // Set the source order index.
4277 Init->setSourceOrder(i);
4278
4279 if (Init->isAnyMemberInitializer()) {
4280 const void *Key = GetKeyForMember(Context, Init);
4281 if (CheckRedundantInit(*this, Init, Members[Key]) ||
4282 CheckRedundantUnionInit(*this, Init, MemberUnions))
4283 HadError = true;
4284 } else if (Init->isBaseInitializer()) {
4285 const void *Key = GetKeyForMember(Context, Init);
4286 if (CheckRedundantInit(*this, Init, Members[Key]))
4287 HadError = true;
4288 } else {
4289 assert(Init->isDelegatingInitializer());
4290 // This must be the only initializer
4291 if (MemInits.size() != 1) {
4292 Diag(Init->getSourceLocation(),
4293 diag::err_delegating_initializer_alone)
4294 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
4295 // We will treat this as being the only initializer.
4296 }
4297 SetDelegatingInitializer(Constructor, MemInits[i]);
4298 // Return immediately as the initializer is set.
4299 return;
4300 }
4301 }
4302
4303 if (HadError)
4304 return;
4305
4306 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
4307
4308 SetCtorInitializers(Constructor, AnyErrors, MemInits);
4309
4310 DiagnoseUninitializedFields(*this, Constructor);
4311 }
4312
4313 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)4314 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
4315 CXXRecordDecl *ClassDecl) {
4316 // Ignore dependent contexts. Also ignore unions, since their members never
4317 // have destructors implicitly called.
4318 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
4319 return;
4320
4321 // FIXME: all the access-control diagnostics are positioned on the
4322 // field/base declaration. That's probably good; that said, the
4323 // user might reasonably want to know why the destructor is being
4324 // emitted, and we currently don't say.
4325
4326 // Non-static data members.
4327 for (auto *Field : ClassDecl->fields()) {
4328 if (Field->isInvalidDecl())
4329 continue;
4330
4331 // Don't destroy incomplete or zero-length arrays.
4332 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
4333 continue;
4334
4335 QualType FieldType = Context.getBaseElementType(Field->getType());
4336
4337 const RecordType* RT = FieldType->getAs<RecordType>();
4338 if (!RT)
4339 continue;
4340
4341 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4342 if (FieldClassDecl->isInvalidDecl())
4343 continue;
4344 if (FieldClassDecl->hasIrrelevantDestructor())
4345 continue;
4346 // The destructor for an implicit anonymous union member is never invoked.
4347 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
4348 continue;
4349
4350 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
4351 assert(Dtor && "No dtor found for FieldClassDecl!");
4352 CheckDestructorAccess(Field->getLocation(), Dtor,
4353 PDiag(diag::err_access_dtor_field)
4354 << Field->getDeclName()
4355 << FieldType);
4356
4357 MarkFunctionReferenced(Location, Dtor);
4358 DiagnoseUseOfDecl(Dtor, Location);
4359 }
4360
4361 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
4362
4363 // Bases.
4364 for (const auto &Base : ClassDecl->bases()) {
4365 // Bases are always records in a well-formed non-dependent class.
4366 const RecordType *RT = Base.getType()->getAs<RecordType>();
4367
4368 // Remember direct virtual bases.
4369 if (Base.isVirtual())
4370 DirectVirtualBases.insert(RT);
4371
4372 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4373 // If our base class is invalid, we probably can't get its dtor anyway.
4374 if (BaseClassDecl->isInvalidDecl())
4375 continue;
4376 if (BaseClassDecl->hasIrrelevantDestructor())
4377 continue;
4378
4379 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4380 assert(Dtor && "No dtor found for BaseClassDecl!");
4381
4382 // FIXME: caret should be on the start of the class name
4383 CheckDestructorAccess(Base.getLocStart(), Dtor,
4384 PDiag(diag::err_access_dtor_base)
4385 << Base.getType()
4386 << Base.getSourceRange(),
4387 Context.getTypeDeclType(ClassDecl));
4388
4389 MarkFunctionReferenced(Location, Dtor);
4390 DiagnoseUseOfDecl(Dtor, Location);
4391 }
4392
4393 // Virtual bases.
4394 for (const auto &VBase : ClassDecl->vbases()) {
4395 // Bases are always records in a well-formed non-dependent class.
4396 const RecordType *RT = VBase.getType()->castAs<RecordType>();
4397
4398 // Ignore direct virtual bases.
4399 if (DirectVirtualBases.count(RT))
4400 continue;
4401
4402 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4403 // If our base class is invalid, we probably can't get its dtor anyway.
4404 if (BaseClassDecl->isInvalidDecl())
4405 continue;
4406 if (BaseClassDecl->hasIrrelevantDestructor())
4407 continue;
4408
4409 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4410 assert(Dtor && "No dtor found for BaseClassDecl!");
4411 if (CheckDestructorAccess(
4412 ClassDecl->getLocation(), Dtor,
4413 PDiag(diag::err_access_dtor_vbase)
4414 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
4415 Context.getTypeDeclType(ClassDecl)) ==
4416 AR_accessible) {
4417 CheckDerivedToBaseConversion(
4418 Context.getTypeDeclType(ClassDecl), VBase.getType(),
4419 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4420 SourceRange(), DeclarationName(), nullptr);
4421 }
4422
4423 MarkFunctionReferenced(Location, Dtor);
4424 DiagnoseUseOfDecl(Dtor, Location);
4425 }
4426 }
4427
ActOnDefaultCtorInitializers(Decl * CDtorDecl)4428 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4429 if (!CDtorDecl)
4430 return;
4431
4432 if (CXXConstructorDecl *Constructor
4433 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
4434 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4435 DiagnoseUninitializedFields(*this, Constructor);
4436 }
4437 }
4438
RequireNonAbstractType(SourceLocation Loc,QualType T,unsigned DiagID,AbstractDiagSelID SelID)4439 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4440 unsigned DiagID, AbstractDiagSelID SelID) {
4441 class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4442 unsigned DiagID;
4443 AbstractDiagSelID SelID;
4444
4445 public:
4446 NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4447 : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4448
4449 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
4450 if (Suppressed) return;
4451 if (SelID == -1)
4452 S.Diag(Loc, DiagID) << T;
4453 else
4454 S.Diag(Loc, DiagID) << SelID << T;
4455 }
4456 } Diagnoser(DiagID, SelID);
4457
4458 return RequireNonAbstractType(Loc, T, Diagnoser);
4459 }
4460
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)4461 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4462 TypeDiagnoser &Diagnoser) {
4463 if (!getLangOpts().CPlusPlus)
4464 return false;
4465
4466 if (const ArrayType *AT = Context.getAsArrayType(T))
4467 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4468
4469 if (const PointerType *PT = T->getAs<PointerType>()) {
4470 // Find the innermost pointer type.
4471 while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4472 PT = T;
4473
4474 if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4475 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4476 }
4477
4478 const RecordType *RT = T->getAs<RecordType>();
4479 if (!RT)
4480 return false;
4481
4482 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4483
4484 // We can't answer whether something is abstract until it has a
4485 // definition. If it's currently being defined, we'll walk back
4486 // over all the declarations when we have a full definition.
4487 const CXXRecordDecl *Def = RD->getDefinition();
4488 if (!Def || Def->isBeingDefined())
4489 return false;
4490
4491 if (!RD->isAbstract())
4492 return false;
4493
4494 Diagnoser.diagnose(*this, Loc, T);
4495 DiagnoseAbstractType(RD);
4496
4497 return true;
4498 }
4499
DiagnoseAbstractType(const CXXRecordDecl * RD)4500 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4501 // Check if we've already emitted the list of pure virtual functions
4502 // for this class.
4503 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4504 return;
4505
4506 // If the diagnostic is suppressed, don't emit the notes. We're only
4507 // going to emit them once, so try to attach them to a diagnostic we're
4508 // actually going to show.
4509 if (Diags.isLastDiagnosticIgnored())
4510 return;
4511
4512 CXXFinalOverriderMap FinalOverriders;
4513 RD->getFinalOverriders(FinalOverriders);
4514
4515 // Keep a set of seen pure methods so we won't diagnose the same method
4516 // more than once.
4517 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4518
4519 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4520 MEnd = FinalOverriders.end();
4521 M != MEnd;
4522 ++M) {
4523 for (OverridingMethods::iterator SO = M->second.begin(),
4524 SOEnd = M->second.end();
4525 SO != SOEnd; ++SO) {
4526 // C++ [class.abstract]p4:
4527 // A class is abstract if it contains or inherits at least one
4528 // pure virtual function for which the final overrider is pure
4529 // virtual.
4530
4531 //
4532 if (SO->second.size() != 1)
4533 continue;
4534
4535 if (!SO->second.front().Method->isPure())
4536 continue;
4537
4538 if (!SeenPureMethods.insert(SO->second.front().Method).second)
4539 continue;
4540
4541 Diag(SO->second.front().Method->getLocation(),
4542 diag::note_pure_virtual_function)
4543 << SO->second.front().Method->getDeclName() << RD->getDeclName();
4544 }
4545 }
4546
4547 if (!PureVirtualClassDiagSet)
4548 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4549 PureVirtualClassDiagSet->insert(RD);
4550 }
4551
4552 namespace {
4553 struct AbstractUsageInfo {
4554 Sema &S;
4555 CXXRecordDecl *Record;
4556 CanQualType AbstractType;
4557 bool Invalid;
4558
AbstractUsageInfo__anonb9d573a20611::AbstractUsageInfo4559 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4560 : S(S), Record(Record),
4561 AbstractType(S.Context.getCanonicalType(
4562 S.Context.getTypeDeclType(Record))),
4563 Invalid(false) {}
4564
DiagnoseAbstractType__anonb9d573a20611::AbstractUsageInfo4565 void DiagnoseAbstractType() {
4566 if (Invalid) return;
4567 S.DiagnoseAbstractType(Record);
4568 Invalid = true;
4569 }
4570
4571 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4572 };
4573
4574 struct CheckAbstractUsage {
4575 AbstractUsageInfo &Info;
4576 const NamedDecl *Ctx;
4577
CheckAbstractUsage__anonb9d573a20611::CheckAbstractUsage4578 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4579 : Info(Info), Ctx(Ctx) {}
4580
Visit__anonb9d573a20611::CheckAbstractUsage4581 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4582 switch (TL.getTypeLocClass()) {
4583 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4584 #define TYPELOC(CLASS, PARENT) \
4585 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4586 #include "clang/AST/TypeLocNodes.def"
4587 }
4588 }
4589
Check__anonb9d573a20611::CheckAbstractUsage4590 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4591 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
4592 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
4593 if (!TL.getParam(I))
4594 continue;
4595
4596 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
4597 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4598 }
4599 }
4600
Check__anonb9d573a20611::CheckAbstractUsage4601 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4602 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4603 }
4604
Check__anonb9d573a20611::CheckAbstractUsage4605 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4606 // Visit the type parameters from a permissive context.
4607 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4608 TemplateArgumentLoc TAL = TL.getArgLoc(I);
4609 if (TAL.getArgument().getKind() == TemplateArgument::Type)
4610 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4611 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4612 // TODO: other template argument types?
4613 }
4614 }
4615
4616 // Visit pointee types from a permissive context.
4617 #define CheckPolymorphic(Type) \
4618 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4619 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4620 }
4621 CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anonb9d573a20611::CheckAbstractUsage4622 CheckPolymorphic(ReferenceTypeLoc)
4623 CheckPolymorphic(MemberPointerTypeLoc)
4624 CheckPolymorphic(BlockPointerTypeLoc)
4625 CheckPolymorphic(AtomicTypeLoc)
4626
4627 /// Handle all the types we haven't given a more specific
4628 /// implementation for above.
4629 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4630 // Every other kind of type that we haven't called out already
4631 // that has an inner type is either (1) sugar or (2) contains that
4632 // inner type in some way as a subobject.
4633 if (TypeLoc Next = TL.getNextTypeLoc())
4634 return Visit(Next, Sel);
4635
4636 // If there's no inner type and we're in a permissive context,
4637 // don't diagnose.
4638 if (Sel == Sema::AbstractNone) return;
4639
4640 // Check whether the type matches the abstract type.
4641 QualType T = TL.getType();
4642 if (T->isArrayType()) {
4643 Sel = Sema::AbstractArrayType;
4644 T = Info.S.Context.getBaseElementType(T);
4645 }
4646 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4647 if (CT != Info.AbstractType) return;
4648
4649 // It matched; do some magic.
4650 if (Sel == Sema::AbstractArrayType) {
4651 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4652 << T << TL.getSourceRange();
4653 } else {
4654 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4655 << Sel << T << TL.getSourceRange();
4656 }
4657 Info.DiagnoseAbstractType();
4658 }
4659 };
4660
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)4661 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4662 Sema::AbstractDiagSelID Sel) {
4663 CheckAbstractUsage(*this, D).Visit(TL, Sel);
4664 }
4665
4666 }
4667
4668 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)4669 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4670 CXXMethodDecl *MD) {
4671 // No need to do the check on definitions, which require that
4672 // the return/param types be complete.
4673 if (MD->doesThisDeclarationHaveABody())
4674 return;
4675
4676 // For safety's sake, just ignore it if we don't have type source
4677 // information. This should never happen for non-implicit methods,
4678 // but...
4679 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4680 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4681 }
4682
4683 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)4684 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4685 CXXRecordDecl *RD) {
4686 for (auto *D : RD->decls()) {
4687 if (D->isImplicit()) continue;
4688
4689 // Methods and method templates.
4690 if (isa<CXXMethodDecl>(D)) {
4691 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4692 } else if (isa<FunctionTemplateDecl>(D)) {
4693 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4694 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4695
4696 // Fields and static variables.
4697 } else if (isa<FieldDecl>(D)) {
4698 FieldDecl *FD = cast<FieldDecl>(D);
4699 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4700 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4701 } else if (isa<VarDecl>(D)) {
4702 VarDecl *VD = cast<VarDecl>(D);
4703 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4704 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4705
4706 // Nested classes and class templates.
4707 } else if (isa<CXXRecordDecl>(D)) {
4708 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4709 } else if (isa<ClassTemplateDecl>(D)) {
4710 CheckAbstractClassUsage(Info,
4711 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4712 }
4713 }
4714 }
4715
4716 /// \brief Check class-level dllimport/dllexport attribute.
checkDLLAttribute(Sema & S,CXXRecordDecl * Class)4717 static void checkDLLAttribute(Sema &S, CXXRecordDecl *Class) {
4718 Attr *ClassAttr = getDLLAttr(Class);
4719
4720 // MSVC inherits DLL attributes to partial class template specializations.
4721 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
4722 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
4723 if (Attr *TemplateAttr =
4724 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
4725 auto *A = cast<InheritableAttr>(TemplateAttr->clone(S.getASTContext()));
4726 A->setInherited(true);
4727 ClassAttr = A;
4728 }
4729 }
4730 }
4731
4732 if (!ClassAttr)
4733 return;
4734
4735 if (!Class->isExternallyVisible()) {
4736 S.Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
4737 << Class << ClassAttr;
4738 return;
4739 }
4740
4741 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
4742 !ClassAttr->isInherited()) {
4743 // Diagnose dll attributes on members of class with dll attribute.
4744 for (Decl *Member : Class->decls()) {
4745 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
4746 continue;
4747 InheritableAttr *MemberAttr = getDLLAttr(Member);
4748 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
4749 continue;
4750
4751 S.Diag(MemberAttr->getLocation(),
4752 diag::err_attribute_dll_member_of_dll_class)
4753 << MemberAttr << ClassAttr;
4754 S.Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
4755 Member->setInvalidDecl();
4756 }
4757 }
4758
4759 if (Class->getDescribedClassTemplate())
4760 // Don't inherit dll attribute until the template is instantiated.
4761 return;
4762
4763 // The class is either imported or exported.
4764 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
4765 const bool ClassImported = !ClassExported;
4766
4767 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
4768
4769 // Don't dllexport explicit class template instantiation declarations.
4770 if (ClassExported && TSK == TSK_ExplicitInstantiationDeclaration) {
4771 Class->dropAttr<DLLExportAttr>();
4772 return;
4773 }
4774
4775 // Force declaration of implicit members so they can inherit the attribute.
4776 S.ForceDeclarationOfImplicitMembers(Class);
4777
4778 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
4779 // seem to be true in practice?
4780
4781 for (Decl *Member : Class->decls()) {
4782 VarDecl *VD = dyn_cast<VarDecl>(Member);
4783 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
4784
4785 // Only methods and static fields inherit the attributes.
4786 if (!VD && !MD)
4787 continue;
4788
4789 if (MD) {
4790 // Don't process deleted methods.
4791 if (MD->isDeleted())
4792 continue;
4793
4794 if (MD->isMoveAssignmentOperator() && ClassImported && MD->isInlined()) {
4795 // Current MSVC versions don't export the move assignment operators, so
4796 // don't attempt to import them if we have a definition.
4797 continue;
4798 }
4799
4800 if (MD->isInlined() &&
4801 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4802 // MinGW does not import or export inline methods.
4803 continue;
4804 }
4805 }
4806
4807 if (!getDLLAttr(Member)) {
4808 auto *NewAttr =
4809 cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
4810 NewAttr->setInherited(true);
4811 Member->addAttr(NewAttr);
4812 }
4813
4814 if (MD && ClassExported) {
4815 if (MD->isUserProvided()) {
4816 // Instantiate non-default class member functions ...
4817
4818 // .. except for certain kinds of template specializations.
4819 if (TSK == TSK_ExplicitInstantiationDeclaration)
4820 continue;
4821 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
4822 continue;
4823
4824 S.MarkFunctionReferenced(Class->getLocation(), MD);
4825
4826 // The function will be passed to the consumer when its definition is
4827 // encountered.
4828 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
4829 MD->isCopyAssignmentOperator() ||
4830 MD->isMoveAssignmentOperator()) {
4831 // Synthesize and instantiate non-trivial implicit methods, explicitly
4832 // defaulted methods, and the copy and move assignment operators. The
4833 // latter are exported even if they are trivial, because the address of
4834 // an operator can be taken and should compare equal accross libraries.
4835 DiagnosticErrorTrap Trap(S.Diags);
4836 S.MarkFunctionReferenced(Class->getLocation(), MD);
4837 if (Trap.hasErrorOccurred()) {
4838 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
4839 << Class->getName() << !S.getLangOpts().CPlusPlus11;
4840 break;
4841 }
4842
4843 // There is no later point when we will see the definition of this
4844 // function, so pass it to the consumer now.
4845 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
4846 }
4847 }
4848 }
4849 }
4850
4851 /// \brief Perform semantic checks on a class definition that has been
4852 /// completing, introducing implicitly-declared members, checking for
4853 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)4854 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4855 if (!Record)
4856 return;
4857
4858 if (Record->isAbstract() && !Record->isInvalidDecl()) {
4859 AbstractUsageInfo Info(*this, Record);
4860 CheckAbstractClassUsage(Info, Record);
4861 }
4862
4863 // If this is not an aggregate type and has no user-declared constructor,
4864 // complain about any non-static data members of reference or const scalar
4865 // type, since they will never get initializers.
4866 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4867 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4868 !Record->isLambda()) {
4869 bool Complained = false;
4870 for (const auto *F : Record->fields()) {
4871 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4872 continue;
4873
4874 if (F->getType()->isReferenceType() ||
4875 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4876 if (!Complained) {
4877 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4878 << Record->getTagKind() << Record;
4879 Complained = true;
4880 }
4881
4882 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4883 << F->getType()->isReferenceType()
4884 << F->getDeclName();
4885 }
4886 }
4887 }
4888
4889 if (Record->getIdentifier()) {
4890 // C++ [class.mem]p13:
4891 // If T is the name of a class, then each of the following shall have a
4892 // name different from T:
4893 // - every member of every anonymous union that is a member of class T.
4894 //
4895 // C++ [class.mem]p14:
4896 // In addition, if class T has a user-declared constructor (12.1), every
4897 // non-static data member of class T shall have a name different from T.
4898 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4899 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4900 ++I) {
4901 NamedDecl *D = *I;
4902 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4903 isa<IndirectFieldDecl>(D)) {
4904 Diag(D->getLocation(), diag::err_member_name_of_class)
4905 << D->getDeclName();
4906 break;
4907 }
4908 }
4909 }
4910
4911 // Warn if the class has virtual methods but non-virtual public destructor.
4912 if (Record->isPolymorphic() && !Record->isDependentType()) {
4913 CXXDestructorDecl *dtor = Record->getDestructor();
4914 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
4915 !Record->hasAttr<FinalAttr>())
4916 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4917 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4918 }
4919
4920 if (Record->isAbstract()) {
4921 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4922 Diag(Record->getLocation(), diag::warn_abstract_final_class)
4923 << FA->isSpelledAsSealed();
4924 DiagnoseAbstractType(Record);
4925 }
4926 }
4927
4928 bool HasMethodWithOverrideControl = false,
4929 HasOverridingMethodWithoutOverrideControl = false;
4930 if (!Record->isDependentType()) {
4931 for (auto *M : Record->methods()) {
4932 // See if a method overloads virtual methods in a base
4933 // class without overriding any.
4934 if (!M->isStatic())
4935 DiagnoseHiddenVirtualMethods(M);
4936 if (M->hasAttr<OverrideAttr>())
4937 HasMethodWithOverrideControl = true;
4938 else if (M->size_overridden_methods() > 0)
4939 HasOverridingMethodWithoutOverrideControl = true;
4940 // Check whether the explicitly-defaulted special members are valid.
4941 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4942 CheckExplicitlyDefaultedSpecialMember(M);
4943
4944 // For an explicitly defaulted or deleted special member, we defer
4945 // determining triviality until the class is complete. That time is now!
4946 if (!M->isImplicit() && !M->isUserProvided()) {
4947 CXXSpecialMember CSM = getSpecialMember(M);
4948 if (CSM != CXXInvalid) {
4949 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
4950
4951 // Inform the class that we've finished declaring this member.
4952 Record->finishedDefaultedOrDeletedMember(M);
4953 }
4954 }
4955 }
4956 }
4957
4958 if (HasMethodWithOverrideControl &&
4959 HasOverridingMethodWithoutOverrideControl) {
4960 // At least one method has the 'override' control declared.
4961 // Diagnose all other overridden methods which do not have 'override' specified on them.
4962 for (auto *M : Record->methods())
4963 DiagnoseAbsenceOfOverrideControl(M);
4964 }
4965
4966 // ms_struct is a request to use the same ABI rules as MSVC. Check
4967 // whether this class uses any C++ features that are implemented
4968 // completely differently in MSVC, and if so, emit a diagnostic.
4969 // That diagnostic defaults to an error, but we allow projects to
4970 // map it down to a warning (or ignore it). It's a fairly common
4971 // practice among users of the ms_struct pragma to mass-annotate
4972 // headers, sweeping up a bunch of types that the project doesn't
4973 // really rely on MSVC-compatible layout for. We must therefore
4974 // support "ms_struct except for C++ stuff" as a secondary ABI.
4975 if (Record->isMsStruct(Context) &&
4976 (Record->isPolymorphic() || Record->getNumBases())) {
4977 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
4978 }
4979
4980 // Declare inheriting constructors. We do this eagerly here because:
4981 // - The standard requires an eager diagnostic for conflicting inheriting
4982 // constructors from different classes.
4983 // - The lazy declaration of the other implicit constructors is so as to not
4984 // waste space and performance on classes that are not meant to be
4985 // instantiated (e.g. meta-functions). This doesn't apply to classes that
4986 // have inheriting constructors.
4987 DeclareInheritingConstructors(Record);
4988
4989 checkDLLAttribute(*this, Record);
4990 }
4991
4992 /// Look up the special member function that would be called by a special
4993 /// member function for a subobject of class type.
4994 ///
4995 /// \param Class The class type of the subobject.
4996 /// \param CSM The kind of special member function.
4997 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
4998 /// \param ConstRHS True if this is a copy operation with a const object
4999 /// on its RHS, that is, if the argument to the outer special member
5000 /// function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)5001 static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
5002 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5003 unsigned FieldQuals, bool ConstRHS) {
5004 unsigned LHSQuals = 0;
5005 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5006 LHSQuals = FieldQuals;
5007
5008 unsigned RHSQuals = FieldQuals;
5009 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5010 RHSQuals = 0;
5011 else if (ConstRHS)
5012 RHSQuals |= Qualifiers::Const;
5013
5014 return S.LookupSpecialMember(Class, CSM,
5015 RHSQuals & Qualifiers::Const,
5016 RHSQuals & Qualifiers::Volatile,
5017 false,
5018 LHSQuals & Qualifiers::Const,
5019 LHSQuals & Qualifiers::Volatile);
5020 }
5021
5022 /// Is the special member function which would be selected to perform the
5023 /// specified operation on the specified class type a constexpr constructor?
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS)5024 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5025 Sema::CXXSpecialMember CSM,
5026 unsigned Quals, bool ConstRHS) {
5027 Sema::SpecialMemberOverloadResult *SMOR =
5028 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
5029 if (!SMOR || !SMOR->getMethod())
5030 // A constructor we wouldn't select can't be "involved in initializing"
5031 // anything.
5032 return true;
5033 return SMOR->getMethod()->isConstexpr();
5034 }
5035
5036 /// Determine whether the specified special member function would be constexpr
5037 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)5038 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5039 Sema::CXXSpecialMember CSM,
5040 bool ConstArg) {
5041 if (!S.getLangOpts().CPlusPlus11)
5042 return false;
5043
5044 // C++11 [dcl.constexpr]p4:
5045 // In the definition of a constexpr constructor [...]
5046 bool Ctor = true;
5047 switch (CSM) {
5048 case Sema::CXXDefaultConstructor:
5049 // Since default constructor lookup is essentially trivial (and cannot
5050 // involve, for instance, template instantiation), we compute whether a
5051 // defaulted default constructor is constexpr directly within CXXRecordDecl.
5052 //
5053 // This is important for performance; we need to know whether the default
5054 // constructor is constexpr to determine whether the type is a literal type.
5055 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
5056
5057 case Sema::CXXCopyConstructor:
5058 case Sema::CXXMoveConstructor:
5059 // For copy or move constructors, we need to perform overload resolution.
5060 break;
5061
5062 case Sema::CXXCopyAssignment:
5063 case Sema::CXXMoveAssignment:
5064 if (!S.getLangOpts().CPlusPlus14)
5065 return false;
5066 // In C++1y, we need to perform overload resolution.
5067 Ctor = false;
5068 break;
5069
5070 case Sema::CXXDestructor:
5071 case Sema::CXXInvalid:
5072 return false;
5073 }
5074
5075 // -- if the class is a non-empty union, or for each non-empty anonymous
5076 // union member of a non-union class, exactly one non-static data member
5077 // shall be initialized; [DR1359]
5078 //
5079 // If we squint, this is guaranteed, since exactly one non-static data member
5080 // will be initialized (if the constructor isn't deleted), we just don't know
5081 // which one.
5082 if (Ctor && ClassDecl->isUnion())
5083 return true;
5084
5085 // -- the class shall not have any virtual base classes;
5086 if (Ctor && ClassDecl->getNumVBases())
5087 return false;
5088
5089 // C++1y [class.copy]p26:
5090 // -- [the class] is a literal type, and
5091 if (!Ctor && !ClassDecl->isLiteral())
5092 return false;
5093
5094 // -- every constructor involved in initializing [...] base class
5095 // sub-objects shall be a constexpr constructor;
5096 // -- the assignment operator selected to copy/move each direct base
5097 // class is a constexpr function, and
5098 for (const auto &B : ClassDecl->bases()) {
5099 const RecordType *BaseType = B.getType()->getAs<RecordType>();
5100 if (!BaseType) continue;
5101
5102 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5103 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
5104 return false;
5105 }
5106
5107 // -- every constructor involved in initializing non-static data members
5108 // [...] shall be a constexpr constructor;
5109 // -- every non-static data member and base class sub-object shall be
5110 // initialized
5111 // -- for each non-static data member of X that is of class type (or array
5112 // thereof), the assignment operator selected to copy/move that member is
5113 // a constexpr function
5114 for (const auto *F : ClassDecl->fields()) {
5115 if (F->isInvalidDecl())
5116 continue;
5117 QualType BaseType = S.Context.getBaseElementType(F->getType());
5118 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
5119 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5120 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
5121 BaseType.getCVRQualifiers(),
5122 ConstArg && !F->isMutable()))
5123 return false;
5124 }
5125 }
5126
5127 // All OK, it's constexpr!
5128 return true;
5129 }
5130
5131 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD)5132 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
5133 switch (S.getSpecialMember(MD)) {
5134 case Sema::CXXDefaultConstructor:
5135 return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
5136 case Sema::CXXCopyConstructor:
5137 return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
5138 case Sema::CXXCopyAssignment:
5139 return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
5140 case Sema::CXXMoveConstructor:
5141 return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
5142 case Sema::CXXMoveAssignment:
5143 return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
5144 case Sema::CXXDestructor:
5145 return S.ComputeDefaultedDtorExceptionSpec(MD);
5146 case Sema::CXXInvalid:
5147 break;
5148 }
5149 assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
5150 "only special members have implicit exception specs");
5151 return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
5152 }
5153
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)5154 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
5155 CXXMethodDecl *MD) {
5156 FunctionProtoType::ExtProtoInfo EPI;
5157
5158 // Build an exception specification pointing back at this member.
5159 EPI.ExceptionSpec.Type = EST_Unevaluated;
5160 EPI.ExceptionSpec.SourceDecl = MD;
5161
5162 // Set the calling convention to the default for C++ instance methods.
5163 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
5164 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5165 /*IsCXXMethod=*/true));
5166 return EPI;
5167 }
5168
EvaluateImplicitExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)5169 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
5170 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
5171 if (FPT->getExceptionSpecType() != EST_Unevaluated)
5172 return;
5173
5174 // Evaluate the exception specification.
5175 auto ESI = computeImplicitExceptionSpec(*this, Loc, MD).getExceptionSpec();
5176
5177 // Update the type of the special member to use it.
5178 UpdateExceptionSpec(MD, ESI);
5179
5180 // A user-provided destructor can be defined outside the class. When that
5181 // happens, be sure to update the exception specification on both
5182 // declarations.
5183 const FunctionProtoType *CanonicalFPT =
5184 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
5185 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
5186 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
5187 }
5188
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD)5189 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
5190 CXXRecordDecl *RD = MD->getParent();
5191 CXXSpecialMember CSM = getSpecialMember(MD);
5192
5193 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
5194 "not an explicitly-defaulted special member");
5195
5196 // Whether this was the first-declared instance of the constructor.
5197 // This affects whether we implicitly add an exception spec and constexpr.
5198 bool First = MD == MD->getCanonicalDecl();
5199
5200 bool HadError = false;
5201
5202 // C++11 [dcl.fct.def.default]p1:
5203 // A function that is explicitly defaulted shall
5204 // -- be a special member function (checked elsewhere),
5205 // -- have the same type (except for ref-qualifiers, and except that a
5206 // copy operation can take a non-const reference) as an implicit
5207 // declaration, and
5208 // -- not have default arguments.
5209 unsigned ExpectedParams = 1;
5210 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
5211 ExpectedParams = 0;
5212 if (MD->getNumParams() != ExpectedParams) {
5213 // This also checks for default arguments: a copy or move constructor with a
5214 // default argument is classified as a default constructor, and assignment
5215 // operations and destructors can't have default arguments.
5216 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
5217 << CSM << MD->getSourceRange();
5218 HadError = true;
5219 } else if (MD->isVariadic()) {
5220 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
5221 << CSM << MD->getSourceRange();
5222 HadError = true;
5223 }
5224
5225 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
5226
5227 bool CanHaveConstParam = false;
5228 if (CSM == CXXCopyConstructor)
5229 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
5230 else if (CSM == CXXCopyAssignment)
5231 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
5232
5233 QualType ReturnType = Context.VoidTy;
5234 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
5235 // Check for return type matching.
5236 ReturnType = Type->getReturnType();
5237 QualType ExpectedReturnType =
5238 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
5239 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
5240 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
5241 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
5242 HadError = true;
5243 }
5244
5245 // A defaulted special member cannot have cv-qualifiers.
5246 if (Type->getTypeQuals()) {
5247 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
5248 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
5249 HadError = true;
5250 }
5251 }
5252
5253 // Check for parameter type matching.
5254 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
5255 bool HasConstParam = false;
5256 if (ExpectedParams && ArgType->isReferenceType()) {
5257 // Argument must be reference to possibly-const T.
5258 QualType ReferentType = ArgType->getPointeeType();
5259 HasConstParam = ReferentType.isConstQualified();
5260
5261 if (ReferentType.isVolatileQualified()) {
5262 Diag(MD->getLocation(),
5263 diag::err_defaulted_special_member_volatile_param) << CSM;
5264 HadError = true;
5265 }
5266
5267 if (HasConstParam && !CanHaveConstParam) {
5268 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
5269 Diag(MD->getLocation(),
5270 diag::err_defaulted_special_member_copy_const_param)
5271 << (CSM == CXXCopyAssignment);
5272 // FIXME: Explain why this special member can't be const.
5273 } else {
5274 Diag(MD->getLocation(),
5275 diag::err_defaulted_special_member_move_const_param)
5276 << (CSM == CXXMoveAssignment);
5277 }
5278 HadError = true;
5279 }
5280 } else if (ExpectedParams) {
5281 // A copy assignment operator can take its argument by value, but a
5282 // defaulted one cannot.
5283 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
5284 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
5285 HadError = true;
5286 }
5287
5288 // C++11 [dcl.fct.def.default]p2:
5289 // An explicitly-defaulted function may be declared constexpr only if it
5290 // would have been implicitly declared as constexpr,
5291 // Do not apply this rule to members of class templates, since core issue 1358
5292 // makes such functions always instantiate to constexpr functions. For
5293 // functions which cannot be constexpr (for non-constructors in C++11 and for
5294 // destructors in C++1y), this is checked elsewhere.
5295 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
5296 HasConstParam);
5297 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
5298 : isa<CXXConstructorDecl>(MD)) &&
5299 MD->isConstexpr() && !Constexpr &&
5300 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
5301 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
5302 // FIXME: Explain why the special member can't be constexpr.
5303 HadError = true;
5304 }
5305
5306 // and may have an explicit exception-specification only if it is compatible
5307 // with the exception-specification on the implicit declaration.
5308 if (Type->hasExceptionSpec()) {
5309 // Delay the check if this is the first declaration of the special member,
5310 // since we may not have parsed some necessary in-class initializers yet.
5311 if (First) {
5312 // If the exception specification needs to be instantiated, do so now,
5313 // before we clobber it with an EST_Unevaluated specification below.
5314 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
5315 InstantiateExceptionSpec(MD->getLocStart(), MD);
5316 Type = MD->getType()->getAs<FunctionProtoType>();
5317 }
5318 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
5319 } else
5320 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
5321 }
5322
5323 // If a function is explicitly defaulted on its first declaration,
5324 if (First) {
5325 // -- it is implicitly considered to be constexpr if the implicit
5326 // definition would be,
5327 MD->setConstexpr(Constexpr);
5328
5329 // -- it is implicitly considered to have the same exception-specification
5330 // as if it had been implicitly declared,
5331 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
5332 EPI.ExceptionSpec.Type = EST_Unevaluated;
5333 EPI.ExceptionSpec.SourceDecl = MD;
5334 MD->setType(Context.getFunctionType(ReturnType,
5335 llvm::makeArrayRef(&ArgType,
5336 ExpectedParams),
5337 EPI));
5338 }
5339
5340 if (ShouldDeleteSpecialMember(MD, CSM)) {
5341 if (First) {
5342 SetDeclDeleted(MD, MD->getLocation());
5343 } else {
5344 // C++11 [dcl.fct.def.default]p4:
5345 // [For a] user-provided explicitly-defaulted function [...] if such a
5346 // function is implicitly defined as deleted, the program is ill-formed.
5347 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
5348 ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
5349 HadError = true;
5350 }
5351 }
5352
5353 if (HadError)
5354 MD->setInvalidDecl();
5355 }
5356
5357 /// Check whether the exception specification provided for an
5358 /// explicitly-defaulted special member matches the exception specification
5359 /// that would have been generated for an implicit special member, per
5360 /// C++11 [dcl.fct.def.default]p2.
CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl * MD,const FunctionProtoType * SpecifiedType)5361 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
5362 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
5363 // If the exception specification was explicitly specified but hadn't been
5364 // parsed when the method was defaulted, grab it now.
5365 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
5366 SpecifiedType =
5367 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
5368
5369 // Compute the implicit exception specification.
5370 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5371 /*IsCXXMethod=*/true);
5372 FunctionProtoType::ExtProtoInfo EPI(CC);
5373 EPI.ExceptionSpec = computeImplicitExceptionSpec(*this, MD->getLocation(), MD)
5374 .getExceptionSpec();
5375 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
5376 Context.getFunctionType(Context.VoidTy, None, EPI));
5377
5378 // Ensure that it matches.
5379 CheckEquivalentExceptionSpec(
5380 PDiag(diag::err_incorrect_defaulted_exception_spec)
5381 << getSpecialMember(MD), PDiag(),
5382 ImplicitType, SourceLocation(),
5383 SpecifiedType, MD->getLocation());
5384 }
5385
CheckDelayedMemberExceptionSpecs()5386 void Sema::CheckDelayedMemberExceptionSpecs() {
5387 decltype(DelayedExceptionSpecChecks) Checks;
5388 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
5389
5390 std::swap(Checks, DelayedExceptionSpecChecks);
5391 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
5392
5393 // Perform any deferred checking of exception specifications for virtual
5394 // destructors.
5395 for (auto &Check : Checks)
5396 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
5397
5398 // Check that any explicitly-defaulted methods have exception specifications
5399 // compatible with their implicit exception specifications.
5400 for (auto &Spec : Specs)
5401 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
5402 }
5403
5404 namespace {
5405 struct SpecialMemberDeletionInfo {
5406 Sema &S;
5407 CXXMethodDecl *MD;
5408 Sema::CXXSpecialMember CSM;
5409 bool Diagnose;
5410
5411 // Properties of the special member, computed for convenience.
5412 bool IsConstructor, IsAssignment, IsMove, ConstArg;
5413 SourceLocation Loc;
5414
5415 bool AllFieldsAreConst;
5416
SpecialMemberDeletionInfo__anonb9d573a20711::SpecialMemberDeletionInfo5417 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
5418 Sema::CXXSpecialMember CSM, bool Diagnose)
5419 : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
5420 IsConstructor(false), IsAssignment(false), IsMove(false),
5421 ConstArg(false), Loc(MD->getLocation()),
5422 AllFieldsAreConst(true) {
5423 switch (CSM) {
5424 case Sema::CXXDefaultConstructor:
5425 case Sema::CXXCopyConstructor:
5426 IsConstructor = true;
5427 break;
5428 case Sema::CXXMoveConstructor:
5429 IsConstructor = true;
5430 IsMove = true;
5431 break;
5432 case Sema::CXXCopyAssignment:
5433 IsAssignment = true;
5434 break;
5435 case Sema::CXXMoveAssignment:
5436 IsAssignment = true;
5437 IsMove = true;
5438 break;
5439 case Sema::CXXDestructor:
5440 break;
5441 case Sema::CXXInvalid:
5442 llvm_unreachable("invalid special member kind");
5443 }
5444
5445 if (MD->getNumParams()) {
5446 if (const ReferenceType *RT =
5447 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
5448 ConstArg = RT->getPointeeType().isConstQualified();
5449 }
5450 }
5451
inUnion__anonb9d573a20711::SpecialMemberDeletionInfo5452 bool inUnion() const { return MD->getParent()->isUnion(); }
5453
5454 /// Look up the corresponding special member in the given class.
lookupIn__anonb9d573a20711::SpecialMemberDeletionInfo5455 Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
5456 unsigned Quals, bool IsMutable) {
5457 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
5458 ConstArg && !IsMutable);
5459 }
5460
5461 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
5462
5463 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
5464 bool shouldDeleteForField(FieldDecl *FD);
5465 bool shouldDeleteForAllConstMembers();
5466
5467 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
5468 unsigned Quals);
5469 bool shouldDeleteForSubobjectCall(Subobject Subobj,
5470 Sema::SpecialMemberOverloadResult *SMOR,
5471 bool IsDtorCallInCtor);
5472
5473 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
5474 };
5475 }
5476
5477 /// Is the given special member inaccessible when used on the given
5478 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)5479 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
5480 CXXMethodDecl *target) {
5481 /// If we're operating on a base class, the object type is the
5482 /// type of this special member.
5483 QualType objectTy;
5484 AccessSpecifier access = target->getAccess();
5485 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
5486 objectTy = S.Context.getTypeDeclType(MD->getParent());
5487 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
5488
5489 // If we're operating on a field, the object type is the type of the field.
5490 } else {
5491 objectTy = S.Context.getTypeDeclType(target->getParent());
5492 }
5493
5494 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
5495 }
5496
5497 /// Check whether we should delete a special member due to the implicit
5498 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)5499 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
5500 Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
5501 bool IsDtorCallInCtor) {
5502 CXXMethodDecl *Decl = SMOR->getMethod();
5503 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5504
5505 int DiagKind = -1;
5506
5507 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
5508 DiagKind = !Decl ? 0 : 1;
5509 else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5510 DiagKind = 2;
5511 else if (!isAccessible(Subobj, Decl))
5512 DiagKind = 3;
5513 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
5514 !Decl->isTrivial()) {
5515 // A member of a union must have a trivial corresponding special member.
5516 // As a weird special case, a destructor call from a union's constructor
5517 // must be accessible and non-deleted, but need not be trivial. Such a
5518 // destructor is never actually called, but is semantically checked as
5519 // if it were.
5520 DiagKind = 4;
5521 }
5522
5523 if (DiagKind == -1)
5524 return false;
5525
5526 if (Diagnose) {
5527 if (Field) {
5528 S.Diag(Field->getLocation(),
5529 diag::note_deleted_special_member_class_subobject)
5530 << CSM << MD->getParent() << /*IsField*/true
5531 << Field << DiagKind << IsDtorCallInCtor;
5532 } else {
5533 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5534 S.Diag(Base->getLocStart(),
5535 diag::note_deleted_special_member_class_subobject)
5536 << CSM << MD->getParent() << /*IsField*/false
5537 << Base->getType() << DiagKind << IsDtorCallInCtor;
5538 }
5539
5540 if (DiagKind == 1)
5541 S.NoteDeletedFunction(Decl);
5542 // FIXME: Explain inaccessibility if DiagKind == 3.
5543 }
5544
5545 return true;
5546 }
5547
5548 /// Check whether we should delete a special member function due to having a
5549 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)5550 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5551 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5552 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5553 bool IsMutable = Field && Field->isMutable();
5554
5555 // C++11 [class.ctor]p5:
5556 // -- any direct or virtual base class, or non-static data member with no
5557 // brace-or-equal-initializer, has class type M (or array thereof) and
5558 // either M has no default constructor or overload resolution as applied
5559 // to M's default constructor results in an ambiguity or in a function
5560 // that is deleted or inaccessible
5561 // C++11 [class.copy]p11, C++11 [class.copy]p23:
5562 // -- a direct or virtual base class B that cannot be copied/moved because
5563 // overload resolution, as applied to B's corresponding special member,
5564 // results in an ambiguity or a function that is deleted or inaccessible
5565 // from the defaulted special member
5566 // C++11 [class.dtor]p5:
5567 // -- any direct or virtual base class [...] has a type with a destructor
5568 // that is deleted or inaccessible
5569 if (!(CSM == Sema::CXXDefaultConstructor &&
5570 Field && Field->hasInClassInitializer()) &&
5571 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
5572 false))
5573 return true;
5574
5575 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5576 // -- any direct or virtual base class or non-static data member has a
5577 // type with a destructor that is deleted or inaccessible
5578 if (IsConstructor) {
5579 Sema::SpecialMemberOverloadResult *SMOR =
5580 S.LookupSpecialMember(Class, Sema::CXXDestructor,
5581 false, false, false, false, false);
5582 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5583 return true;
5584 }
5585
5586 return false;
5587 }
5588
5589 /// Check whether we should delete a special member function due to the class
5590 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)5591 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5592 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5593 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5594 }
5595
5596 /// Check whether we should delete a special member function due to the class
5597 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)5598 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5599 QualType FieldType = S.Context.getBaseElementType(FD->getType());
5600 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5601
5602 if (CSM == Sema::CXXDefaultConstructor) {
5603 // For a default constructor, all references must be initialized in-class
5604 // and, if a union, it must have a non-const member.
5605 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5606 if (Diagnose)
5607 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5608 << MD->getParent() << FD << FieldType << /*Reference*/0;
5609 return true;
5610 }
5611 // C++11 [class.ctor]p5: any non-variant non-static data member of
5612 // const-qualified type (or array thereof) with no
5613 // brace-or-equal-initializer does not have a user-provided default
5614 // constructor.
5615 if (!inUnion() && FieldType.isConstQualified() &&
5616 !FD->hasInClassInitializer() &&
5617 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5618 if (Diagnose)
5619 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5620 << MD->getParent() << FD << FD->getType() << /*Const*/1;
5621 return true;
5622 }
5623
5624 if (inUnion() && !FieldType.isConstQualified())
5625 AllFieldsAreConst = false;
5626 } else if (CSM == Sema::CXXCopyConstructor) {
5627 // For a copy constructor, data members must not be of rvalue reference
5628 // type.
5629 if (FieldType->isRValueReferenceType()) {
5630 if (Diagnose)
5631 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5632 << MD->getParent() << FD << FieldType;
5633 return true;
5634 }
5635 } else if (IsAssignment) {
5636 // For an assignment operator, data members must not be of reference type.
5637 if (FieldType->isReferenceType()) {
5638 if (Diagnose)
5639 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5640 << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5641 return true;
5642 }
5643 if (!FieldRecord && FieldType.isConstQualified()) {
5644 // C++11 [class.copy]p23:
5645 // -- a non-static data member of const non-class type (or array thereof)
5646 if (Diagnose)
5647 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5648 << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5649 return true;
5650 }
5651 }
5652
5653 if (FieldRecord) {
5654 // Some additional restrictions exist on the variant members.
5655 if (!inUnion() && FieldRecord->isUnion() &&
5656 FieldRecord->isAnonymousStructOrUnion()) {
5657 bool AllVariantFieldsAreConst = true;
5658
5659 // FIXME: Handle anonymous unions declared within anonymous unions.
5660 for (auto *UI : FieldRecord->fields()) {
5661 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5662
5663 if (!UnionFieldType.isConstQualified())
5664 AllVariantFieldsAreConst = false;
5665
5666 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5667 if (UnionFieldRecord &&
5668 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
5669 UnionFieldType.getCVRQualifiers()))
5670 return true;
5671 }
5672
5673 // At least one member in each anonymous union must be non-const
5674 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5675 !FieldRecord->field_empty()) {
5676 if (Diagnose)
5677 S.Diag(FieldRecord->getLocation(),
5678 diag::note_deleted_default_ctor_all_const)
5679 << MD->getParent() << /*anonymous union*/1;
5680 return true;
5681 }
5682
5683 // Don't check the implicit member of the anonymous union type.
5684 // This is technically non-conformant, but sanity demands it.
5685 return false;
5686 }
5687
5688 if (shouldDeleteForClassSubobject(FieldRecord, FD,
5689 FieldType.getCVRQualifiers()))
5690 return true;
5691 }
5692
5693 return false;
5694 }
5695
5696 /// C++11 [class.ctor] p5:
5697 /// A defaulted default constructor for a class X is defined as deleted if
5698 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()5699 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5700 // This is a silly definition, because it gives an empty union a deleted
5701 // default constructor. Don't do that.
5702 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5703 !MD->getParent()->field_empty()) {
5704 if (Diagnose)
5705 S.Diag(MD->getParent()->getLocation(),
5706 diag::note_deleted_default_ctor_all_const)
5707 << MD->getParent() << /*not anonymous union*/0;
5708 return true;
5709 }
5710 return false;
5711 }
5712
5713 /// Determine whether a defaulted special member function should be defined as
5714 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5715 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5716 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5717 bool Diagnose) {
5718 if (MD->isInvalidDecl())
5719 return false;
5720 CXXRecordDecl *RD = MD->getParent();
5721 assert(!RD->isDependentType() && "do deletion after instantiation");
5722 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5723 return false;
5724
5725 // C++11 [expr.lambda.prim]p19:
5726 // The closure type associated with a lambda-expression has a
5727 // deleted (8.4.3) default constructor and a deleted copy
5728 // assignment operator.
5729 if (RD->isLambda() &&
5730 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5731 if (Diagnose)
5732 Diag(RD->getLocation(), diag::note_lambda_decl);
5733 return true;
5734 }
5735
5736 // For an anonymous struct or union, the copy and assignment special members
5737 // will never be used, so skip the check. For an anonymous union declared at
5738 // namespace scope, the constructor and destructor are used.
5739 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5740 RD->isAnonymousStructOrUnion())
5741 return false;
5742
5743 // C++11 [class.copy]p7, p18:
5744 // If the class definition declares a move constructor or move assignment
5745 // operator, an implicitly declared copy constructor or copy assignment
5746 // operator is defined as deleted.
5747 if (MD->isImplicit() &&
5748 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5749 CXXMethodDecl *UserDeclaredMove = nullptr;
5750
5751 // In Microsoft mode, a user-declared move only causes the deletion of the
5752 // corresponding copy operation, not both copy operations.
5753 if (RD->hasUserDeclaredMoveConstructor() &&
5754 (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
5755 if (!Diagnose) return true;
5756
5757 // Find any user-declared move constructor.
5758 for (auto *I : RD->ctors()) {
5759 if (I->isMoveConstructor()) {
5760 UserDeclaredMove = I;
5761 break;
5762 }
5763 }
5764 assert(UserDeclaredMove);
5765 } else if (RD->hasUserDeclaredMoveAssignment() &&
5766 (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
5767 if (!Diagnose) return true;
5768
5769 // Find any user-declared move assignment operator.
5770 for (auto *I : RD->methods()) {
5771 if (I->isMoveAssignmentOperator()) {
5772 UserDeclaredMove = I;
5773 break;
5774 }
5775 }
5776 assert(UserDeclaredMove);
5777 }
5778
5779 if (UserDeclaredMove) {
5780 Diag(UserDeclaredMove->getLocation(),
5781 diag::note_deleted_copy_user_declared_move)
5782 << (CSM == CXXCopyAssignment) << RD
5783 << UserDeclaredMove->isMoveAssignmentOperator();
5784 return true;
5785 }
5786 }
5787
5788 // Do access control from the special member function
5789 ContextRAII MethodContext(*this, MD);
5790
5791 // C++11 [class.dtor]p5:
5792 // -- for a virtual destructor, lookup of the non-array deallocation function
5793 // results in an ambiguity or in a function that is deleted or inaccessible
5794 if (CSM == CXXDestructor && MD->isVirtual()) {
5795 FunctionDecl *OperatorDelete = nullptr;
5796 DeclarationName Name =
5797 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5798 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5799 OperatorDelete, false)) {
5800 if (Diagnose)
5801 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5802 return true;
5803 }
5804 }
5805
5806 SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5807
5808 for (auto &BI : RD->bases())
5809 if (!BI.isVirtual() &&
5810 SMI.shouldDeleteForBase(&BI))
5811 return true;
5812
5813 // Per DR1611, do not consider virtual bases of constructors of abstract
5814 // classes, since we are not going to construct them.
5815 if (!RD->isAbstract() || !SMI.IsConstructor) {
5816 for (auto &BI : RD->vbases())
5817 if (SMI.shouldDeleteForBase(&BI))
5818 return true;
5819 }
5820
5821 for (auto *FI : RD->fields())
5822 if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5823 SMI.shouldDeleteForField(FI))
5824 return true;
5825
5826 if (SMI.shouldDeleteForAllConstMembers())
5827 return true;
5828
5829 if (getLangOpts().CUDA) {
5830 // We should delete the special member in CUDA mode if target inference
5831 // failed.
5832 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
5833 Diagnose);
5834 }
5835
5836 return false;
5837 }
5838
5839 /// Perform lookup for a special member of the specified kind, and determine
5840 /// whether it is trivial. If the triviality can be determined without the
5841 /// lookup, skip it. This is intended for use when determining whether a
5842 /// special member of a containing object is trivial, and thus does not ever
5843 /// perform overload resolution for default constructors.
5844 ///
5845 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5846 /// member that was most likely to be intended to be trivial, if any.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXMethodDecl ** Selected)5847 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5848 Sema::CXXSpecialMember CSM, unsigned Quals,
5849 bool ConstRHS, CXXMethodDecl **Selected) {
5850 if (Selected)
5851 *Selected = nullptr;
5852
5853 switch (CSM) {
5854 case Sema::CXXInvalid:
5855 llvm_unreachable("not a special member");
5856
5857 case Sema::CXXDefaultConstructor:
5858 // C++11 [class.ctor]p5:
5859 // A default constructor is trivial if:
5860 // - all the [direct subobjects] have trivial default constructors
5861 //
5862 // Note, no overload resolution is performed in this case.
5863 if (RD->hasTrivialDefaultConstructor())
5864 return true;
5865
5866 if (Selected) {
5867 // If there's a default constructor which could have been trivial, dig it
5868 // out. Otherwise, if there's any user-provided default constructor, point
5869 // to that as an example of why there's not a trivial one.
5870 CXXConstructorDecl *DefCtor = nullptr;
5871 if (RD->needsImplicitDefaultConstructor())
5872 S.DeclareImplicitDefaultConstructor(RD);
5873 for (auto *CI : RD->ctors()) {
5874 if (!CI->isDefaultConstructor())
5875 continue;
5876 DefCtor = CI;
5877 if (!DefCtor->isUserProvided())
5878 break;
5879 }
5880
5881 *Selected = DefCtor;
5882 }
5883
5884 return false;
5885
5886 case Sema::CXXDestructor:
5887 // C++11 [class.dtor]p5:
5888 // A destructor is trivial if:
5889 // - all the direct [subobjects] have trivial destructors
5890 if (RD->hasTrivialDestructor())
5891 return true;
5892
5893 if (Selected) {
5894 if (RD->needsImplicitDestructor())
5895 S.DeclareImplicitDestructor(RD);
5896 *Selected = RD->getDestructor();
5897 }
5898
5899 return false;
5900
5901 case Sema::CXXCopyConstructor:
5902 // C++11 [class.copy]p12:
5903 // A copy constructor is trivial if:
5904 // - the constructor selected to copy each direct [subobject] is trivial
5905 if (RD->hasTrivialCopyConstructor()) {
5906 if (Quals == Qualifiers::Const)
5907 // We must either select the trivial copy constructor or reach an
5908 // ambiguity; no need to actually perform overload resolution.
5909 return true;
5910 } else if (!Selected) {
5911 return false;
5912 }
5913 // In C++98, we are not supposed to perform overload resolution here, but we
5914 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5915 // cases like B as having a non-trivial copy constructor:
5916 // struct A { template<typename T> A(T&); };
5917 // struct B { mutable A a; };
5918 goto NeedOverloadResolution;
5919
5920 case Sema::CXXCopyAssignment:
5921 // C++11 [class.copy]p25:
5922 // A copy assignment operator is trivial if:
5923 // - the assignment operator selected to copy each direct [subobject] is
5924 // trivial
5925 if (RD->hasTrivialCopyAssignment()) {
5926 if (Quals == Qualifiers::Const)
5927 return true;
5928 } else if (!Selected) {
5929 return false;
5930 }
5931 // In C++98, we are not supposed to perform overload resolution here, but we
5932 // treat that as a language defect.
5933 goto NeedOverloadResolution;
5934
5935 case Sema::CXXMoveConstructor:
5936 case Sema::CXXMoveAssignment:
5937 NeedOverloadResolution:
5938 Sema::SpecialMemberOverloadResult *SMOR =
5939 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
5940
5941 // The standard doesn't describe how to behave if the lookup is ambiguous.
5942 // We treat it as not making the member non-trivial, just like the standard
5943 // mandates for the default constructor. This should rarely matter, because
5944 // the member will also be deleted.
5945 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5946 return true;
5947
5948 if (!SMOR->getMethod()) {
5949 assert(SMOR->getKind() ==
5950 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5951 return false;
5952 }
5953
5954 // We deliberately don't check if we found a deleted special member. We're
5955 // not supposed to!
5956 if (Selected)
5957 *Selected = SMOR->getMethod();
5958 return SMOR->getMethod()->isTrivial();
5959 }
5960
5961 llvm_unreachable("unknown special method kind");
5962 }
5963
findUserDeclaredCtor(CXXRecordDecl * RD)5964 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5965 for (auto *CI : RD->ctors())
5966 if (!CI->isImplicit())
5967 return CI;
5968
5969 // Look for constructor templates.
5970 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5971 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5972 if (CXXConstructorDecl *CD =
5973 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5974 return CD;
5975 }
5976
5977 return nullptr;
5978 }
5979
5980 /// The kind of subobject we are checking for triviality. The values of this
5981 /// enumeration are used in diagnostics.
5982 enum TrivialSubobjectKind {
5983 /// The subobject is a base class.
5984 TSK_BaseClass,
5985 /// The subobject is a non-static data member.
5986 TSK_Field,
5987 /// The object is actually the complete object.
5988 TSK_CompleteObject
5989 };
5990
5991 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,bool Diagnose)5992 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5993 QualType SubType, bool ConstRHS,
5994 Sema::CXXSpecialMember CSM,
5995 TrivialSubobjectKind Kind,
5996 bool Diagnose) {
5997 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5998 if (!SubRD)
5999 return true;
6000
6001 CXXMethodDecl *Selected;
6002 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
6003 ConstRHS, Diagnose ? &Selected : nullptr))
6004 return true;
6005
6006 if (Diagnose) {
6007 if (ConstRHS)
6008 SubType.addConst();
6009
6010 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
6011 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
6012 << Kind << SubType.getUnqualifiedType();
6013 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
6014 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
6015 } else if (!Selected)
6016 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
6017 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
6018 else if (Selected->isUserProvided()) {
6019 if (Kind == TSK_CompleteObject)
6020 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
6021 << Kind << SubType.getUnqualifiedType() << CSM;
6022 else {
6023 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
6024 << Kind << SubType.getUnqualifiedType() << CSM;
6025 S.Diag(Selected->getLocation(), diag::note_declared_at);
6026 }
6027 } else {
6028 if (Kind != TSK_CompleteObject)
6029 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
6030 << Kind << SubType.getUnqualifiedType() << CSM;
6031
6032 // Explain why the defaulted or deleted special member isn't trivial.
6033 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
6034 }
6035 }
6036
6037 return false;
6038 }
6039
6040 /// Check whether the members of a class type allow a special member to be
6041 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,bool Diagnose)6042 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
6043 Sema::CXXSpecialMember CSM,
6044 bool ConstArg, bool Diagnose) {
6045 for (const auto *FI : RD->fields()) {
6046 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
6047 continue;
6048
6049 QualType FieldType = S.Context.getBaseElementType(FI->getType());
6050
6051 // Pretend anonymous struct or union members are members of this class.
6052 if (FI->isAnonymousStructOrUnion()) {
6053 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
6054 CSM, ConstArg, Diagnose))
6055 return false;
6056 continue;
6057 }
6058
6059 // C++11 [class.ctor]p5:
6060 // A default constructor is trivial if [...]
6061 // -- no non-static data member of its class has a
6062 // brace-or-equal-initializer
6063 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
6064 if (Diagnose)
6065 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
6066 return false;
6067 }
6068
6069 // Objective C ARC 4.3.5:
6070 // [...] nontrivally ownership-qualified types are [...] not trivially
6071 // default constructible, copy constructible, move constructible, copy
6072 // assignable, move assignable, or destructible [...]
6073 if (S.getLangOpts().ObjCAutoRefCount &&
6074 FieldType.hasNonTrivialObjCLifetime()) {
6075 if (Diagnose)
6076 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
6077 << RD << FieldType.getObjCLifetime();
6078 return false;
6079 }
6080
6081 bool ConstRHS = ConstArg && !FI->isMutable();
6082 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
6083 CSM, TSK_Field, Diagnose))
6084 return false;
6085 }
6086
6087 return true;
6088 }
6089
6090 /// Diagnose why the specified class does not have a trivial special member of
6091 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)6092 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
6093 QualType Ty = Context.getRecordType(RD);
6094
6095 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
6096 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
6097 TSK_CompleteObject, /*Diagnose*/true);
6098 }
6099
6100 /// Determine whether a defaulted or deleted special member function is trivial,
6101 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
6102 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)6103 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
6104 bool Diagnose) {
6105 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
6106
6107 CXXRecordDecl *RD = MD->getParent();
6108
6109 bool ConstArg = false;
6110
6111 // C++11 [class.copy]p12, p25: [DR1593]
6112 // A [special member] is trivial if [...] its parameter-type-list is
6113 // equivalent to the parameter-type-list of an implicit declaration [...]
6114 switch (CSM) {
6115 case CXXDefaultConstructor:
6116 case CXXDestructor:
6117 // Trivial default constructors and destructors cannot have parameters.
6118 break;
6119
6120 case CXXCopyConstructor:
6121 case CXXCopyAssignment: {
6122 // Trivial copy operations always have const, non-volatile parameter types.
6123 ConstArg = true;
6124 const ParmVarDecl *Param0 = MD->getParamDecl(0);
6125 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
6126 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
6127 if (Diagnose)
6128 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6129 << Param0->getSourceRange() << Param0->getType()
6130 << Context.getLValueReferenceType(
6131 Context.getRecordType(RD).withConst());
6132 return false;
6133 }
6134 break;
6135 }
6136
6137 case CXXMoveConstructor:
6138 case CXXMoveAssignment: {
6139 // Trivial move operations always have non-cv-qualified parameters.
6140 const ParmVarDecl *Param0 = MD->getParamDecl(0);
6141 const RValueReferenceType *RT =
6142 Param0->getType()->getAs<RValueReferenceType>();
6143 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
6144 if (Diagnose)
6145 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
6146 << Param0->getSourceRange() << Param0->getType()
6147 << Context.getRValueReferenceType(Context.getRecordType(RD));
6148 return false;
6149 }
6150 break;
6151 }
6152
6153 case CXXInvalid:
6154 llvm_unreachable("not a special member");
6155 }
6156
6157 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
6158 if (Diagnose)
6159 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
6160 diag::note_nontrivial_default_arg)
6161 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
6162 return false;
6163 }
6164 if (MD->isVariadic()) {
6165 if (Diagnose)
6166 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
6167 return false;
6168 }
6169
6170 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6171 // A copy/move [constructor or assignment operator] is trivial if
6172 // -- the [member] selected to copy/move each direct base class subobject
6173 // is trivial
6174 //
6175 // C++11 [class.copy]p12, C++11 [class.copy]p25:
6176 // A [default constructor or destructor] is trivial if
6177 // -- all the direct base classes have trivial [default constructors or
6178 // destructors]
6179 for (const auto &BI : RD->bases())
6180 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
6181 ConstArg, CSM, TSK_BaseClass, Diagnose))
6182 return false;
6183
6184 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
6185 // A copy/move [constructor or assignment operator] for a class X is
6186 // trivial if
6187 // -- for each non-static data member of X that is of class type (or array
6188 // thereof), the constructor selected to copy/move that member is
6189 // trivial
6190 //
6191 // C++11 [class.copy]p12, C++11 [class.copy]p25:
6192 // A [default constructor or destructor] is trivial if
6193 // -- for all of the non-static data members of its class that are of class
6194 // type (or array thereof), each such class has a trivial [default
6195 // constructor or destructor]
6196 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
6197 return false;
6198
6199 // C++11 [class.dtor]p5:
6200 // A destructor is trivial if [...]
6201 // -- the destructor is not virtual
6202 if (CSM == CXXDestructor && MD->isVirtual()) {
6203 if (Diagnose)
6204 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
6205 return false;
6206 }
6207
6208 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
6209 // A [special member] for class X is trivial if [...]
6210 // -- class X has no virtual functions and no virtual base classes
6211 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
6212 if (!Diagnose)
6213 return false;
6214
6215 if (RD->getNumVBases()) {
6216 // Check for virtual bases. We already know that the corresponding
6217 // member in all bases is trivial, so vbases must all be direct.
6218 CXXBaseSpecifier &BS = *RD->vbases_begin();
6219 assert(BS.isVirtual());
6220 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
6221 return false;
6222 }
6223
6224 // Must have a virtual method.
6225 for (const auto *MI : RD->methods()) {
6226 if (MI->isVirtual()) {
6227 SourceLocation MLoc = MI->getLocStart();
6228 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
6229 return false;
6230 }
6231 }
6232
6233 llvm_unreachable("dynamic class with no vbases and no virtual functions");
6234 }
6235
6236 // Looks like it's trivial!
6237 return true;
6238 }
6239
6240 /// \brief Data used with FindHiddenVirtualMethod
6241 namespace {
6242 struct FindHiddenVirtualMethodData {
6243 Sema *S;
6244 CXXMethodDecl *Method;
6245 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
6246 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6247 };
6248 }
6249
6250 /// \brief Check whether any most overriden method from MD in Methods
CheckMostOverridenMethods(const CXXMethodDecl * MD,const llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)6251 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
6252 const llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
6253 if (MD->size_overridden_methods() == 0)
6254 return Methods.count(MD->getCanonicalDecl());
6255 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6256 E = MD->end_overridden_methods();
6257 I != E; ++I)
6258 if (CheckMostOverridenMethods(*I, Methods))
6259 return true;
6260 return false;
6261 }
6262
6263 /// \brief Member lookup function that determines whether a given C++
6264 /// method overloads virtual methods in a base class without overriding any,
6265 /// to be used with CXXRecordDecl::lookupInBases().
FindHiddenVirtualMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)6266 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
6267 CXXBasePath &Path,
6268 void *UserData) {
6269 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6270
6271 FindHiddenVirtualMethodData &Data
6272 = *static_cast<FindHiddenVirtualMethodData*>(UserData);
6273
6274 DeclarationName Name = Data.Method->getDeclName();
6275 assert(Name.getNameKind() == DeclarationName::Identifier);
6276
6277 bool foundSameNameMethod = false;
6278 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
6279 for (Path.Decls = BaseRecord->lookup(Name);
6280 !Path.Decls.empty();
6281 Path.Decls = Path.Decls.slice(1)) {
6282 NamedDecl *D = Path.Decls.front();
6283 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6284 MD = MD->getCanonicalDecl();
6285 foundSameNameMethod = true;
6286 // Interested only in hidden virtual methods.
6287 if (!MD->isVirtual())
6288 continue;
6289 // If the method we are checking overrides a method from its base
6290 // don't warn about the other overloaded methods. Clang deviates from GCC
6291 // by only diagnosing overloads of inherited virtual functions that do not
6292 // override any other virtual functions in the base. GCC's
6293 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
6294 // function from a base class. These cases may be better served by a
6295 // warning (not specific to virtual functions) on call sites when the call
6296 // would select a different function from the base class, were it visible.
6297 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
6298 if (!Data.S->IsOverload(Data.Method, MD, false))
6299 return true;
6300 // Collect the overload only if its hidden.
6301 if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
6302 overloadedMethods.push_back(MD);
6303 }
6304 }
6305
6306 if (foundSameNameMethod)
6307 Data.OverloadedMethods.append(overloadedMethods.begin(),
6308 overloadedMethods.end());
6309 return foundSameNameMethod;
6310 }
6311
6312 /// \brief Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSetImpl<const CXXMethodDecl * > & Methods)6313 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
6314 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
6315 if (MD->size_overridden_methods() == 0)
6316 Methods.insert(MD->getCanonicalDecl());
6317 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6318 E = MD->end_overridden_methods();
6319 I != E; ++I)
6320 AddMostOverridenMethods(*I, Methods);
6321 }
6322
6323 /// \brief Check if a method overloads virtual methods in a base class without
6324 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6325 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
6326 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6327 if (!MD->getDeclName().isIdentifier())
6328 return;
6329
6330 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
6331 /*bool RecordPaths=*/false,
6332 /*bool DetectVirtual=*/false);
6333 FindHiddenVirtualMethodData Data;
6334 Data.Method = MD;
6335 Data.S = this;
6336
6337 // Keep the base methods that were overriden or introduced in the subclass
6338 // by 'using' in a set. A base method not in this set is hidden.
6339 CXXRecordDecl *DC = MD->getParent();
6340 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
6341 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
6342 NamedDecl *ND = *I;
6343 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
6344 ND = shad->getTargetDecl();
6345 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
6346 AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
6347 }
6348
6349 if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
6350 OverloadedMethods = Data.OverloadedMethods;
6351 }
6352
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6353 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
6354 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6355 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
6356 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
6357 PartialDiagnostic PD = PDiag(
6358 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
6359 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
6360 Diag(overloadedMD->getLocation(), PD);
6361 }
6362 }
6363
6364 /// \brief Diagnose methods which overload virtual methods in a base class
6365 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)6366 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
6367 if (MD->isInvalidDecl())
6368 return;
6369
6370 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
6371 return;
6372
6373 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6374 FindHiddenVirtualMethods(MD, OverloadedMethods);
6375 if (!OverloadedMethods.empty()) {
6376 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
6377 << MD << (OverloadedMethods.size() > 1);
6378
6379 NoteHiddenVirtualMethods(MD, OverloadedMethods);
6380 }
6381 }
6382
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)6383 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
6384 Decl *TagDecl,
6385 SourceLocation LBrac,
6386 SourceLocation RBrac,
6387 AttributeList *AttrList) {
6388 if (!TagDecl)
6389 return;
6390
6391 AdjustDeclIfTemplate(TagDecl);
6392
6393 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
6394 if (l->getKind() != AttributeList::AT_Visibility)
6395 continue;
6396 l->setInvalid();
6397 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
6398 l->getName();
6399 }
6400
6401 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
6402 // strict aliasing violation!
6403 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
6404 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
6405
6406 CheckCompletedCXXClass(
6407 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
6408 }
6409
6410 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
6411 /// special functions, such as the default constructor, copy
6412 /// constructor, or destructor, to the given C++ class (C++
6413 /// [special]p1). This routine can only be executed just before the
6414 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)6415 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
6416 if (!ClassDecl->hasUserDeclaredConstructor())
6417 ++ASTContext::NumImplicitDefaultConstructors;
6418
6419 if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
6420 ++ASTContext::NumImplicitCopyConstructors;
6421
6422 // If the properties or semantics of the copy constructor couldn't be
6423 // determined while the class was being declared, force a declaration
6424 // of it now.
6425 if (ClassDecl->needsOverloadResolutionForCopyConstructor())
6426 DeclareImplicitCopyConstructor(ClassDecl);
6427 }
6428
6429 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
6430 ++ASTContext::NumImplicitMoveConstructors;
6431
6432 if (ClassDecl->needsOverloadResolutionForMoveConstructor())
6433 DeclareImplicitMoveConstructor(ClassDecl);
6434 }
6435
6436 if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
6437 ++ASTContext::NumImplicitCopyAssignmentOperators;
6438
6439 // If we have a dynamic class, then the copy assignment operator may be
6440 // virtual, so we have to declare it immediately. This ensures that, e.g.,
6441 // it shows up in the right place in the vtable and that we diagnose
6442 // problems with the implicit exception specification.
6443 if (ClassDecl->isDynamicClass() ||
6444 ClassDecl->needsOverloadResolutionForCopyAssignment())
6445 DeclareImplicitCopyAssignment(ClassDecl);
6446 }
6447
6448 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
6449 ++ASTContext::NumImplicitMoveAssignmentOperators;
6450
6451 // Likewise for the move assignment operator.
6452 if (ClassDecl->isDynamicClass() ||
6453 ClassDecl->needsOverloadResolutionForMoveAssignment())
6454 DeclareImplicitMoveAssignment(ClassDecl);
6455 }
6456
6457 if (!ClassDecl->hasUserDeclaredDestructor()) {
6458 ++ASTContext::NumImplicitDestructors;
6459
6460 // If we have a dynamic class, then the destructor may be virtual, so we
6461 // have to declare the destructor immediately. This ensures that, e.g., it
6462 // shows up in the right place in the vtable and that we diagnose problems
6463 // with the implicit exception specification.
6464 if (ClassDecl->isDynamicClass() ||
6465 ClassDecl->needsOverloadResolutionForDestructor())
6466 DeclareImplicitDestructor(ClassDecl);
6467 }
6468 }
6469
ActOnReenterTemplateScope(Scope * S,Decl * D)6470 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
6471 if (!D)
6472 return 0;
6473
6474 // The order of template parameters is not important here. All names
6475 // get added to the same scope.
6476 SmallVector<TemplateParameterList *, 4> ParameterLists;
6477
6478 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
6479 D = TD->getTemplatedDecl();
6480
6481 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
6482 ParameterLists.push_back(PSD->getTemplateParameters());
6483
6484 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
6485 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
6486 ParameterLists.push_back(DD->getTemplateParameterList(i));
6487
6488 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6489 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
6490 ParameterLists.push_back(FTD->getTemplateParameters());
6491 }
6492 }
6493
6494 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
6495 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
6496 ParameterLists.push_back(TD->getTemplateParameterList(i));
6497
6498 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
6499 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
6500 ParameterLists.push_back(CTD->getTemplateParameters());
6501 }
6502 }
6503
6504 unsigned Count = 0;
6505 for (TemplateParameterList *Params : ParameterLists) {
6506 if (Params->size() > 0)
6507 // Ignore explicit specializations; they don't contribute to the template
6508 // depth.
6509 ++Count;
6510 for (NamedDecl *Param : *Params) {
6511 if (Param->getDeclName()) {
6512 S->AddDecl(Param);
6513 IdResolver.AddDecl(Param);
6514 }
6515 }
6516 }
6517
6518 return Count;
6519 }
6520
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)6521 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6522 if (!RecordD) return;
6523 AdjustDeclIfTemplate(RecordD);
6524 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
6525 PushDeclContext(S, Record);
6526 }
6527
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)6528 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6529 if (!RecordD) return;
6530 PopDeclContext();
6531 }
6532
6533 /// This is used to implement the constant expression evaluation part of the
6534 /// attribute enable_if extension. There is nothing in standard C++ which would
6535 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)6536 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
6537 if (!Param)
6538 return;
6539
6540 S->AddDecl(Param);
6541 if (Param->getDeclName())
6542 IdResolver.AddDecl(Param);
6543 }
6544
6545 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
6546 /// parsing a top-level (non-nested) C++ class, and we are now
6547 /// parsing those parts of the given Method declaration that could
6548 /// not be parsed earlier (C++ [class.mem]p2), such as default
6549 /// arguments. This action should enter the scope of the given
6550 /// Method declaration as if we had just parsed the qualified method
6551 /// name. However, it should not bring the parameters into scope;
6552 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6553 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6554 }
6555
6556 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
6557 /// C++ method declaration. We're (re-)introducing the given
6558 /// function parameter into scope for use in parsing later parts of
6559 /// the method declaration. For example, we could see an
6560 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)6561 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6562 if (!ParamD)
6563 return;
6564
6565 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6566
6567 // If this parameter has an unparsed default argument, clear it out
6568 // to make way for the parsed default argument.
6569 if (Param->hasUnparsedDefaultArg())
6570 Param->setDefaultArg(nullptr);
6571
6572 S->AddDecl(Param);
6573 if (Param->getDeclName())
6574 IdResolver.AddDecl(Param);
6575 }
6576
6577 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6578 /// processing the delayed method declaration for Method. The method
6579 /// declaration is now considered finished. There may be a separate
6580 /// ActOnStartOfFunctionDef action later (not necessarily
6581 /// immediately!) for this method, if it was also defined inside the
6582 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6583 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6584 if (!MethodD)
6585 return;
6586
6587 AdjustDeclIfTemplate(MethodD);
6588
6589 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6590
6591 // Now that we have our default arguments, check the constructor
6592 // again. It could produce additional diagnostics or affect whether
6593 // the class has implicitly-declared destructors, among other
6594 // things.
6595 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6596 CheckConstructor(Constructor);
6597
6598 // Check the default arguments, which we may have added.
6599 if (!Method->isInvalidDecl())
6600 CheckCXXDefaultArguments(Method);
6601 }
6602
6603 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6604 /// the well-formedness of the constructor declarator @p D with type @p
6605 /// R. If there are any errors in the declarator, this routine will
6606 /// emit diagnostics and set the invalid bit to true. In any case, the type
6607 /// will be updated to reflect a well-formed type for the constructor and
6608 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6609 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6610 StorageClass &SC) {
6611 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6612
6613 // C++ [class.ctor]p3:
6614 // A constructor shall not be virtual (10.3) or static (9.4). A
6615 // constructor can be invoked for a const, volatile or const
6616 // volatile object. A constructor shall not be declared const,
6617 // volatile, or const volatile (9.3.2).
6618 if (isVirtual) {
6619 if (!D.isInvalidType())
6620 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6621 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6622 << SourceRange(D.getIdentifierLoc());
6623 D.setInvalidType();
6624 }
6625 if (SC == SC_Static) {
6626 if (!D.isInvalidType())
6627 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6628 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6629 << SourceRange(D.getIdentifierLoc());
6630 D.setInvalidType();
6631 SC = SC_None;
6632 }
6633
6634 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6635 diagnoseIgnoredQualifiers(
6636 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
6637 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
6638 D.getDeclSpec().getRestrictSpecLoc(),
6639 D.getDeclSpec().getAtomicSpecLoc());
6640 D.setInvalidType();
6641 }
6642
6643 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6644 if (FTI.TypeQuals != 0) {
6645 if (FTI.TypeQuals & Qualifiers::Const)
6646 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6647 << "const" << SourceRange(D.getIdentifierLoc());
6648 if (FTI.TypeQuals & Qualifiers::Volatile)
6649 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6650 << "volatile" << SourceRange(D.getIdentifierLoc());
6651 if (FTI.TypeQuals & Qualifiers::Restrict)
6652 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6653 << "restrict" << SourceRange(D.getIdentifierLoc());
6654 D.setInvalidType();
6655 }
6656
6657 // C++0x [class.ctor]p4:
6658 // A constructor shall not be declared with a ref-qualifier.
6659 if (FTI.hasRefQualifier()) {
6660 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6661 << FTI.RefQualifierIsLValueRef
6662 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6663 D.setInvalidType();
6664 }
6665
6666 // Rebuild the function type "R" without any type qualifiers (in
6667 // case any of the errors above fired) and with "void" as the
6668 // return type, since constructors don't have return types.
6669 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6670 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
6671 return R;
6672
6673 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6674 EPI.TypeQuals = 0;
6675 EPI.RefQualifier = RQ_None;
6676
6677 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
6678 }
6679
6680 /// CheckConstructor - Checks a fully-formed constructor for
6681 /// well-formedness, issuing any diagnostics required. Returns true if
6682 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)6683 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6684 CXXRecordDecl *ClassDecl
6685 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6686 if (!ClassDecl)
6687 return Constructor->setInvalidDecl();
6688
6689 // C++ [class.copy]p3:
6690 // A declaration of a constructor for a class X is ill-formed if
6691 // its first parameter is of type (optionally cv-qualified) X and
6692 // either there are no other parameters or else all other
6693 // parameters have default arguments.
6694 if (!Constructor->isInvalidDecl() &&
6695 ((Constructor->getNumParams() == 1) ||
6696 (Constructor->getNumParams() > 1 &&
6697 Constructor->getParamDecl(1)->hasDefaultArg())) &&
6698 Constructor->getTemplateSpecializationKind()
6699 != TSK_ImplicitInstantiation) {
6700 QualType ParamType = Constructor->getParamDecl(0)->getType();
6701 QualType ClassTy = Context.getTagDeclType(ClassDecl);
6702 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6703 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6704 const char *ConstRef
6705 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6706 : " const &";
6707 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6708 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6709
6710 // FIXME: Rather that making the constructor invalid, we should endeavor
6711 // to fix the type.
6712 Constructor->setInvalidDecl();
6713 }
6714 }
6715 }
6716
6717 /// CheckDestructor - Checks a fully-formed destructor definition for
6718 /// well-formedness, issuing any diagnostics required. Returns true
6719 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)6720 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6721 CXXRecordDecl *RD = Destructor->getParent();
6722
6723 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6724 SourceLocation Loc;
6725
6726 if (!Destructor->isImplicit())
6727 Loc = Destructor->getLocation();
6728 else
6729 Loc = RD->getLocation();
6730
6731 // If we have a virtual destructor, look up the deallocation function
6732 FunctionDecl *OperatorDelete = nullptr;
6733 DeclarationName Name =
6734 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6735 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6736 return true;
6737 // If there's no class-specific operator delete, look up the global
6738 // non-array delete.
6739 if (!OperatorDelete)
6740 OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
6741
6742 MarkFunctionReferenced(Loc, OperatorDelete);
6743
6744 Destructor->setOperatorDelete(OperatorDelete);
6745 }
6746
6747 return false;
6748 }
6749
6750 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6751 /// the well-formednes of the destructor declarator @p D with type @p
6752 /// R. If there are any errors in the declarator, this routine will
6753 /// emit diagnostics and set the declarator to invalid. Even if this happens,
6754 /// will be updated to reflect a well-formed type for the destructor and
6755 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6756 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6757 StorageClass& SC) {
6758 // C++ [class.dtor]p1:
6759 // [...] A typedef-name that names a class is a class-name
6760 // (7.1.3); however, a typedef-name that names a class shall not
6761 // be used as the identifier in the declarator for a destructor
6762 // declaration.
6763 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6764 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6765 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6766 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6767 else if (const TemplateSpecializationType *TST =
6768 DeclaratorType->getAs<TemplateSpecializationType>())
6769 if (TST->isTypeAlias())
6770 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6771 << DeclaratorType << 1;
6772
6773 // C++ [class.dtor]p2:
6774 // A destructor is used to destroy objects of its class type. A
6775 // destructor takes no parameters, and no return type can be
6776 // specified for it (not even void). The address of a destructor
6777 // shall not be taken. A destructor shall not be static. A
6778 // destructor can be invoked for a const, volatile or const
6779 // volatile object. A destructor shall not be declared const,
6780 // volatile or const volatile (9.3.2).
6781 if (SC == SC_Static) {
6782 if (!D.isInvalidType())
6783 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6784 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6785 << SourceRange(D.getIdentifierLoc())
6786 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6787
6788 SC = SC_None;
6789 }
6790 if (!D.isInvalidType()) {
6791 // Destructors don't have return types, but the parser will
6792 // happily parse something like:
6793 //
6794 // class X {
6795 // float ~X();
6796 // };
6797 //
6798 // The return type will be eliminated later.
6799 if (D.getDeclSpec().hasTypeSpecifier())
6800 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6801 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6802 << SourceRange(D.getIdentifierLoc());
6803 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6804 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
6805 SourceLocation(),
6806 D.getDeclSpec().getConstSpecLoc(),
6807 D.getDeclSpec().getVolatileSpecLoc(),
6808 D.getDeclSpec().getRestrictSpecLoc(),
6809 D.getDeclSpec().getAtomicSpecLoc());
6810 D.setInvalidType();
6811 }
6812 }
6813
6814 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6815 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6816 if (FTI.TypeQuals & Qualifiers::Const)
6817 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6818 << "const" << SourceRange(D.getIdentifierLoc());
6819 if (FTI.TypeQuals & Qualifiers::Volatile)
6820 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6821 << "volatile" << SourceRange(D.getIdentifierLoc());
6822 if (FTI.TypeQuals & Qualifiers::Restrict)
6823 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6824 << "restrict" << SourceRange(D.getIdentifierLoc());
6825 D.setInvalidType();
6826 }
6827
6828 // C++0x [class.dtor]p2:
6829 // A destructor shall not be declared with a ref-qualifier.
6830 if (FTI.hasRefQualifier()) {
6831 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6832 << FTI.RefQualifierIsLValueRef
6833 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6834 D.setInvalidType();
6835 }
6836
6837 // Make sure we don't have any parameters.
6838 if (FTIHasNonVoidParameters(FTI)) {
6839 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6840
6841 // Delete the parameters.
6842 FTI.freeParams();
6843 D.setInvalidType();
6844 }
6845
6846 // Make sure the destructor isn't variadic.
6847 if (FTI.isVariadic) {
6848 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6849 D.setInvalidType();
6850 }
6851
6852 // Rebuild the function type "R" without any type qualifiers or
6853 // parameters (in case any of the errors above fired) and with
6854 // "void" as the return type, since destructors don't have return
6855 // types.
6856 if (!D.isInvalidType())
6857 return R;
6858
6859 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6860 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6861 EPI.Variadic = false;
6862 EPI.TypeQuals = 0;
6863 EPI.RefQualifier = RQ_None;
6864 return Context.getFunctionType(Context.VoidTy, None, EPI);
6865 }
6866
extendLeft(SourceRange & R,const SourceRange & Before)6867 static void extendLeft(SourceRange &R, const SourceRange &Before) {
6868 if (Before.isInvalid())
6869 return;
6870 R.setBegin(Before.getBegin());
6871 if (R.getEnd().isInvalid())
6872 R.setEnd(Before.getEnd());
6873 }
6874
extendRight(SourceRange & R,const SourceRange & After)6875 static void extendRight(SourceRange &R, const SourceRange &After) {
6876 if (After.isInvalid())
6877 return;
6878 if (R.getBegin().isInvalid())
6879 R.setBegin(After.getBegin());
6880 R.setEnd(After.getEnd());
6881 }
6882
6883 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6884 /// well-formednes of the conversion function declarator @p D with
6885 /// type @p R. If there are any errors in the declarator, this routine
6886 /// will emit diagnostics and return true. Otherwise, it will return
6887 /// false. Either way, the type @p R will be updated to reflect a
6888 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)6889 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6890 StorageClass& SC) {
6891 // C++ [class.conv.fct]p1:
6892 // Neither parameter types nor return type can be specified. The
6893 // type of a conversion function (8.3.5) is "function taking no
6894 // parameter returning conversion-type-id."
6895 if (SC == SC_Static) {
6896 if (!D.isInvalidType())
6897 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6898 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6899 << D.getName().getSourceRange();
6900 D.setInvalidType();
6901 SC = SC_None;
6902 }
6903
6904 TypeSourceInfo *ConvTSI = nullptr;
6905 QualType ConvType =
6906 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
6907
6908 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6909 // Conversion functions don't have return types, but the parser will
6910 // happily parse something like:
6911 //
6912 // class X {
6913 // float operator bool();
6914 // };
6915 //
6916 // The return type will be changed later anyway.
6917 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6918 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6919 << SourceRange(D.getIdentifierLoc());
6920 D.setInvalidType();
6921 }
6922
6923 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6924
6925 // Make sure we don't have any parameters.
6926 if (Proto->getNumParams() > 0) {
6927 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6928
6929 // Delete the parameters.
6930 D.getFunctionTypeInfo().freeParams();
6931 D.setInvalidType();
6932 } else if (Proto->isVariadic()) {
6933 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6934 D.setInvalidType();
6935 }
6936
6937 // Diagnose "&operator bool()" and other such nonsense. This
6938 // is actually a gcc extension which we don't support.
6939 if (Proto->getReturnType() != ConvType) {
6940 bool NeedsTypedef = false;
6941 SourceRange Before, After;
6942
6943 // Walk the chunks and extract information on them for our diagnostic.
6944 bool PastFunctionChunk = false;
6945 for (auto &Chunk : D.type_objects()) {
6946 switch (Chunk.Kind) {
6947 case DeclaratorChunk::Function:
6948 if (!PastFunctionChunk) {
6949 if (Chunk.Fun.HasTrailingReturnType) {
6950 TypeSourceInfo *TRT = nullptr;
6951 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
6952 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
6953 }
6954 PastFunctionChunk = true;
6955 break;
6956 }
6957 // Fall through.
6958 case DeclaratorChunk::Array:
6959 NeedsTypedef = true;
6960 extendRight(After, Chunk.getSourceRange());
6961 break;
6962
6963 case DeclaratorChunk::Pointer:
6964 case DeclaratorChunk::BlockPointer:
6965 case DeclaratorChunk::Reference:
6966 case DeclaratorChunk::MemberPointer:
6967 extendLeft(Before, Chunk.getSourceRange());
6968 break;
6969
6970 case DeclaratorChunk::Paren:
6971 extendLeft(Before, Chunk.Loc);
6972 extendRight(After, Chunk.EndLoc);
6973 break;
6974 }
6975 }
6976
6977 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
6978 After.isValid() ? After.getBegin() :
6979 D.getIdentifierLoc();
6980 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
6981 DB << Before << After;
6982
6983 if (!NeedsTypedef) {
6984 DB << /*don't need a typedef*/0;
6985
6986 // If we can provide a correct fix-it hint, do so.
6987 if (After.isInvalid() && ConvTSI) {
6988 SourceLocation InsertLoc =
6989 PP.getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
6990 DB << FixItHint::CreateInsertion(InsertLoc, " ")
6991 << FixItHint::CreateInsertionFromRange(
6992 InsertLoc, CharSourceRange::getTokenRange(Before))
6993 << FixItHint::CreateRemoval(Before);
6994 }
6995 } else if (!Proto->getReturnType()->isDependentType()) {
6996 DB << /*typedef*/1 << Proto->getReturnType();
6997 } else if (getLangOpts().CPlusPlus11) {
6998 DB << /*alias template*/2 << Proto->getReturnType();
6999 } else {
7000 DB << /*might not be fixable*/3;
7001 }
7002
7003 // Recover by incorporating the other type chunks into the result type.
7004 // Note, this does *not* change the name of the function. This is compatible
7005 // with the GCC extension:
7006 // struct S { &operator int(); } s;
7007 // int &r = s.operator int(); // ok in GCC
7008 // S::operator int&() {} // error in GCC, function name is 'operator int'.
7009 ConvType = Proto->getReturnType();
7010 }
7011
7012 // C++ [class.conv.fct]p4:
7013 // The conversion-type-id shall not represent a function type nor
7014 // an array type.
7015 if (ConvType->isArrayType()) {
7016 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
7017 ConvType = Context.getPointerType(ConvType);
7018 D.setInvalidType();
7019 } else if (ConvType->isFunctionType()) {
7020 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
7021 ConvType = Context.getPointerType(ConvType);
7022 D.setInvalidType();
7023 }
7024
7025 // Rebuild the function type "R" without any parameters (in case any
7026 // of the errors above fired) and with the conversion type as the
7027 // return type.
7028 if (D.isInvalidType())
7029 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
7030
7031 // C++0x explicit conversion operators.
7032 if (D.getDeclSpec().isExplicitSpecified())
7033 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7034 getLangOpts().CPlusPlus11 ?
7035 diag::warn_cxx98_compat_explicit_conversion_functions :
7036 diag::ext_explicit_conversion_functions)
7037 << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
7038 }
7039
7040 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
7041 /// the declaration of the given C++ conversion function. This routine
7042 /// is responsible for recording the conversion function in the C++
7043 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)7044 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
7045 assert(Conversion && "Expected to receive a conversion function declaration");
7046
7047 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
7048
7049 // Make sure we aren't redeclaring the conversion function.
7050 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
7051
7052 // C++ [class.conv.fct]p1:
7053 // [...] A conversion function is never used to convert a
7054 // (possibly cv-qualified) object to the (possibly cv-qualified)
7055 // same object type (or a reference to it), to a (possibly
7056 // cv-qualified) base class of that type (or a reference to it),
7057 // or to (possibly cv-qualified) void.
7058 // FIXME: Suppress this warning if the conversion function ends up being a
7059 // virtual function that overrides a virtual function in a base class.
7060 QualType ClassType
7061 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7062 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
7063 ConvType = ConvTypeRef->getPointeeType();
7064 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
7065 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
7066 /* Suppress diagnostics for instantiations. */;
7067 else if (ConvType->isRecordType()) {
7068 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
7069 if (ConvType == ClassType)
7070 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
7071 << ClassType;
7072 else if (IsDerivedFrom(ClassType, ConvType))
7073 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
7074 << ClassType << ConvType;
7075 } else if (ConvType->isVoidType()) {
7076 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
7077 << ClassType << ConvType;
7078 }
7079
7080 if (FunctionTemplateDecl *ConversionTemplate
7081 = Conversion->getDescribedFunctionTemplate())
7082 return ConversionTemplate;
7083
7084 return Conversion;
7085 }
7086
7087 //===----------------------------------------------------------------------===//
7088 // Namespace Handling
7089 //===----------------------------------------------------------------------===//
7090
7091 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
7092 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)7093 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
7094 SourceLocation Loc,
7095 IdentifierInfo *II, bool *IsInline,
7096 NamespaceDecl *PrevNS) {
7097 assert(*IsInline != PrevNS->isInline());
7098
7099 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
7100 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
7101 // inline namespaces, with the intention of bringing names into namespace std.
7102 //
7103 // We support this just well enough to get that case working; this is not
7104 // sufficient to support reopening namespaces as inline in general.
7105 if (*IsInline && II && II->getName().startswith("__atomic") &&
7106 S.getSourceManager().isInSystemHeader(Loc)) {
7107 // Mark all prior declarations of the namespace as inline.
7108 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
7109 NS = NS->getPreviousDecl())
7110 NS->setInline(*IsInline);
7111 // Patch up the lookup table for the containing namespace. This isn't really
7112 // correct, but it's good enough for this particular case.
7113 for (auto *I : PrevNS->decls())
7114 if (auto *ND = dyn_cast<NamedDecl>(I))
7115 PrevNS->getParent()->makeDeclVisibleInContext(ND);
7116 return;
7117 }
7118
7119 if (PrevNS->isInline())
7120 // The user probably just forgot the 'inline', so suggest that it
7121 // be added back.
7122 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
7123 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
7124 else
7125 S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
7126
7127 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
7128 *IsInline = PrevNS->isInline();
7129 }
7130
7131 /// ActOnStartNamespaceDef - This is called at the start of a namespace
7132 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList)7133 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
7134 SourceLocation InlineLoc,
7135 SourceLocation NamespaceLoc,
7136 SourceLocation IdentLoc,
7137 IdentifierInfo *II,
7138 SourceLocation LBrace,
7139 AttributeList *AttrList) {
7140 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
7141 // For anonymous namespace, take the location of the left brace.
7142 SourceLocation Loc = II ? IdentLoc : LBrace;
7143 bool IsInline = InlineLoc.isValid();
7144 bool IsInvalid = false;
7145 bool IsStd = false;
7146 bool AddToKnown = false;
7147 Scope *DeclRegionScope = NamespcScope->getParent();
7148
7149 NamespaceDecl *PrevNS = nullptr;
7150 if (II) {
7151 // C++ [namespace.def]p2:
7152 // The identifier in an original-namespace-definition shall not
7153 // have been previously defined in the declarative region in
7154 // which the original-namespace-definition appears. The
7155 // identifier in an original-namespace-definition is the name of
7156 // the namespace. Subsequently in that declarative region, it is
7157 // treated as an original-namespace-name.
7158 //
7159 // Since namespace names are unique in their scope, and we don't
7160 // look through using directives, just look for any ordinary names.
7161
7162 const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
7163 Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
7164 Decl::IDNS_Namespace;
7165 NamedDecl *PrevDecl = nullptr;
7166 DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
7167 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
7168 ++I) {
7169 if ((*I)->getIdentifierNamespace() & IDNS) {
7170 PrevDecl = *I;
7171 break;
7172 }
7173 }
7174
7175 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
7176
7177 if (PrevNS) {
7178 // This is an extended namespace definition.
7179 if (IsInline != PrevNS->isInline())
7180 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
7181 &IsInline, PrevNS);
7182 } else if (PrevDecl) {
7183 // This is an invalid name redefinition.
7184 Diag(Loc, diag::err_redefinition_different_kind)
7185 << II;
7186 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7187 IsInvalid = true;
7188 // Continue on to push Namespc as current DeclContext and return it.
7189 } else if (II->isStr("std") &&
7190 CurContext->getRedeclContext()->isTranslationUnit()) {
7191 // This is the first "real" definition of the namespace "std", so update
7192 // our cache of the "std" namespace to point at this definition.
7193 PrevNS = getStdNamespace();
7194 IsStd = true;
7195 AddToKnown = !IsInline;
7196 } else {
7197 // We've seen this namespace for the first time.
7198 AddToKnown = !IsInline;
7199 }
7200 } else {
7201 // Anonymous namespaces.
7202
7203 // Determine whether the parent already has an anonymous namespace.
7204 DeclContext *Parent = CurContext->getRedeclContext();
7205 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7206 PrevNS = TU->getAnonymousNamespace();
7207 } else {
7208 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
7209 PrevNS = ND->getAnonymousNamespace();
7210 }
7211
7212 if (PrevNS && IsInline != PrevNS->isInline())
7213 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
7214 &IsInline, PrevNS);
7215 }
7216
7217 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
7218 StartLoc, Loc, II, PrevNS);
7219 if (IsInvalid)
7220 Namespc->setInvalidDecl();
7221
7222 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
7223
7224 // FIXME: Should we be merging attributes?
7225 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
7226 PushNamespaceVisibilityAttr(Attr, Loc);
7227
7228 if (IsStd)
7229 StdNamespace = Namespc;
7230 if (AddToKnown)
7231 KnownNamespaces[Namespc] = false;
7232
7233 if (II) {
7234 PushOnScopeChains(Namespc, DeclRegionScope);
7235 } else {
7236 // Link the anonymous namespace into its parent.
7237 DeclContext *Parent = CurContext->getRedeclContext();
7238 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
7239 TU->setAnonymousNamespace(Namespc);
7240 } else {
7241 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
7242 }
7243
7244 CurContext->addDecl(Namespc);
7245
7246 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
7247 // behaves as if it were replaced by
7248 // namespace unique { /* empty body */ }
7249 // using namespace unique;
7250 // namespace unique { namespace-body }
7251 // where all occurrences of 'unique' in a translation unit are
7252 // replaced by the same identifier and this identifier differs
7253 // from all other identifiers in the entire program.
7254
7255 // We just create the namespace with an empty name and then add an
7256 // implicit using declaration, just like the standard suggests.
7257 //
7258 // CodeGen enforces the "universally unique" aspect by giving all
7259 // declarations semantically contained within an anonymous
7260 // namespace internal linkage.
7261
7262 if (!PrevNS) {
7263 UsingDirectiveDecl* UD
7264 = UsingDirectiveDecl::Create(Context, Parent,
7265 /* 'using' */ LBrace,
7266 /* 'namespace' */ SourceLocation(),
7267 /* qualifier */ NestedNameSpecifierLoc(),
7268 /* identifier */ SourceLocation(),
7269 Namespc,
7270 /* Ancestor */ Parent);
7271 UD->setImplicit();
7272 Parent->addDecl(UD);
7273 }
7274 }
7275
7276 ActOnDocumentableDecl(Namespc);
7277
7278 // Although we could have an invalid decl (i.e. the namespace name is a
7279 // redefinition), push it as current DeclContext and try to continue parsing.
7280 // FIXME: We should be able to push Namespc here, so that the each DeclContext
7281 // for the namespace has the declarations that showed up in that particular
7282 // namespace definition.
7283 PushDeclContext(NamespcScope, Namespc);
7284 return Namespc;
7285 }
7286
7287 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
7288 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)7289 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
7290 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
7291 return AD->getNamespace();
7292 return dyn_cast_or_null<NamespaceDecl>(D);
7293 }
7294
7295 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
7296 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)7297 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
7298 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
7299 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
7300 Namespc->setRBraceLoc(RBrace);
7301 PopDeclContext();
7302 if (Namespc->hasAttr<VisibilityAttr>())
7303 PopPragmaVisibility(true, RBrace);
7304 }
7305
getStdBadAlloc() const7306 CXXRecordDecl *Sema::getStdBadAlloc() const {
7307 return cast_or_null<CXXRecordDecl>(
7308 StdBadAlloc.get(Context.getExternalSource()));
7309 }
7310
getStdNamespace() const7311 NamespaceDecl *Sema::getStdNamespace() const {
7312 return cast_or_null<NamespaceDecl>(
7313 StdNamespace.get(Context.getExternalSource()));
7314 }
7315
7316 /// \brief Retrieve the special "std" namespace, which may require us to
7317 /// implicitly define the namespace.
getOrCreateStdNamespace()7318 NamespaceDecl *Sema::getOrCreateStdNamespace() {
7319 if (!StdNamespace) {
7320 // The "std" namespace has not yet been defined, so build one implicitly.
7321 StdNamespace = NamespaceDecl::Create(Context,
7322 Context.getTranslationUnitDecl(),
7323 /*Inline=*/false,
7324 SourceLocation(), SourceLocation(),
7325 &PP.getIdentifierTable().get("std"),
7326 /*PrevDecl=*/nullptr);
7327 getStdNamespace()->setImplicit(true);
7328 }
7329
7330 return getStdNamespace();
7331 }
7332
isStdInitializerList(QualType Ty,QualType * Element)7333 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
7334 assert(getLangOpts().CPlusPlus &&
7335 "Looking for std::initializer_list outside of C++.");
7336
7337 // We're looking for implicit instantiations of
7338 // template <typename E> class std::initializer_list.
7339
7340 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
7341 return false;
7342
7343 ClassTemplateDecl *Template = nullptr;
7344 const TemplateArgument *Arguments = nullptr;
7345
7346 if (const RecordType *RT = Ty->getAs<RecordType>()) {
7347
7348 ClassTemplateSpecializationDecl *Specialization =
7349 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
7350 if (!Specialization)
7351 return false;
7352
7353 Template = Specialization->getSpecializedTemplate();
7354 Arguments = Specialization->getTemplateArgs().data();
7355 } else if (const TemplateSpecializationType *TST =
7356 Ty->getAs<TemplateSpecializationType>()) {
7357 Template = dyn_cast_or_null<ClassTemplateDecl>(
7358 TST->getTemplateName().getAsTemplateDecl());
7359 Arguments = TST->getArgs();
7360 }
7361 if (!Template)
7362 return false;
7363
7364 if (!StdInitializerList) {
7365 // Haven't recognized std::initializer_list yet, maybe this is it.
7366 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
7367 if (TemplateClass->getIdentifier() !=
7368 &PP.getIdentifierTable().get("initializer_list") ||
7369 !getStdNamespace()->InEnclosingNamespaceSetOf(
7370 TemplateClass->getDeclContext()))
7371 return false;
7372 // This is a template called std::initializer_list, but is it the right
7373 // template?
7374 TemplateParameterList *Params = Template->getTemplateParameters();
7375 if (Params->getMinRequiredArguments() != 1)
7376 return false;
7377 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
7378 return false;
7379
7380 // It's the right template.
7381 StdInitializerList = Template;
7382 }
7383
7384 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
7385 return false;
7386
7387 // This is an instance of std::initializer_list. Find the argument type.
7388 if (Element)
7389 *Element = Arguments[0].getAsType();
7390 return true;
7391 }
7392
LookupStdInitializerList(Sema & S,SourceLocation Loc)7393 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
7394 NamespaceDecl *Std = S.getStdNamespace();
7395 if (!Std) {
7396 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7397 return nullptr;
7398 }
7399
7400 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
7401 Loc, Sema::LookupOrdinaryName);
7402 if (!S.LookupQualifiedName(Result, Std)) {
7403 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
7404 return nullptr;
7405 }
7406 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
7407 if (!Template) {
7408 Result.suppressDiagnostics();
7409 // We found something weird. Complain about the first thing we found.
7410 NamedDecl *Found = *Result.begin();
7411 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
7412 return nullptr;
7413 }
7414
7415 // We found some template called std::initializer_list. Now verify that it's
7416 // correct.
7417 TemplateParameterList *Params = Template->getTemplateParameters();
7418 if (Params->getMinRequiredArguments() != 1 ||
7419 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
7420 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
7421 return nullptr;
7422 }
7423
7424 return Template;
7425 }
7426
BuildStdInitializerList(QualType Element,SourceLocation Loc)7427 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
7428 if (!StdInitializerList) {
7429 StdInitializerList = LookupStdInitializerList(*this, Loc);
7430 if (!StdInitializerList)
7431 return QualType();
7432 }
7433
7434 TemplateArgumentListInfo Args(Loc, Loc);
7435 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
7436 Context.getTrivialTypeSourceInfo(Element,
7437 Loc)));
7438 return Context.getCanonicalType(
7439 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
7440 }
7441
isInitListConstructor(const CXXConstructorDecl * Ctor)7442 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
7443 // C++ [dcl.init.list]p2:
7444 // A constructor is an initializer-list constructor if its first parameter
7445 // is of type std::initializer_list<E> or reference to possibly cv-qualified
7446 // std::initializer_list<E> for some type E, and either there are no other
7447 // parameters or else all other parameters have default arguments.
7448 if (Ctor->getNumParams() < 1 ||
7449 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
7450 return false;
7451
7452 QualType ArgType = Ctor->getParamDecl(0)->getType();
7453 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
7454 ArgType = RT->getPointeeType().getUnqualifiedType();
7455
7456 return isStdInitializerList(ArgType, nullptr);
7457 }
7458
7459 /// \brief Determine whether a using statement is in a context where it will be
7460 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)7461 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
7462 switch (CurContext->getDeclKind()) {
7463 case Decl::TranslationUnit:
7464 return true;
7465 case Decl::LinkageSpec:
7466 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
7467 default:
7468 return false;
7469 }
7470 }
7471
7472 namespace {
7473
7474 // Callback to only accept typo corrections that are namespaces.
7475 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
7476 public:
ValidateCandidate(const TypoCorrection & candidate)7477 bool ValidateCandidate(const TypoCorrection &candidate) override {
7478 if (NamedDecl *ND = candidate.getCorrectionDecl())
7479 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
7480 return false;
7481 }
7482 };
7483
7484 }
7485
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)7486 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
7487 CXXScopeSpec &SS,
7488 SourceLocation IdentLoc,
7489 IdentifierInfo *Ident) {
7490 R.clear();
7491 if (TypoCorrection Corrected =
7492 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
7493 llvm::make_unique<NamespaceValidatorCCC>(),
7494 Sema::CTK_ErrorRecovery)) {
7495 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
7496 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
7497 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
7498 Ident->getName().equals(CorrectedStr);
7499 S.diagnoseTypo(Corrected,
7500 S.PDiag(diag::err_using_directive_member_suggest)
7501 << Ident << DC << DroppedSpecifier << SS.getRange(),
7502 S.PDiag(diag::note_namespace_defined_here));
7503 } else {
7504 S.diagnoseTypo(Corrected,
7505 S.PDiag(diag::err_using_directive_suggest) << Ident,
7506 S.PDiag(diag::note_namespace_defined_here));
7507 }
7508 R.addDecl(Corrected.getCorrectionDecl());
7509 return true;
7510 }
7511 return false;
7512 }
7513
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)7514 Decl *Sema::ActOnUsingDirective(Scope *S,
7515 SourceLocation UsingLoc,
7516 SourceLocation NamespcLoc,
7517 CXXScopeSpec &SS,
7518 SourceLocation IdentLoc,
7519 IdentifierInfo *NamespcName,
7520 AttributeList *AttrList) {
7521 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7522 assert(NamespcName && "Invalid NamespcName.");
7523 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
7524
7525 // This can only happen along a recovery path.
7526 while (S->getFlags() & Scope::TemplateParamScope)
7527 S = S->getParent();
7528 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7529
7530 UsingDirectiveDecl *UDir = nullptr;
7531 NestedNameSpecifier *Qualifier = nullptr;
7532 if (SS.isSet())
7533 Qualifier = SS.getScopeRep();
7534
7535 // Lookup namespace name.
7536 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
7537 LookupParsedName(R, S, &SS);
7538 if (R.isAmbiguous())
7539 return nullptr;
7540
7541 if (R.empty()) {
7542 R.clear();
7543 // Allow "using namespace std;" or "using namespace ::std;" even if
7544 // "std" hasn't been defined yet, for GCC compatibility.
7545 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
7546 NamespcName->isStr("std")) {
7547 Diag(IdentLoc, diag::ext_using_undefined_std);
7548 R.addDecl(getOrCreateStdNamespace());
7549 R.resolveKind();
7550 }
7551 // Otherwise, attempt typo correction.
7552 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
7553 }
7554
7555 if (!R.empty()) {
7556 NamedDecl *Named = R.getFoundDecl();
7557 assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
7558 && "expected namespace decl");
7559
7560 // The use of a nested name specifier may trigger deprecation warnings.
7561 DiagnoseUseOfDecl(Named, IdentLoc);
7562
7563 // C++ [namespace.udir]p1:
7564 // A using-directive specifies that the names in the nominated
7565 // namespace can be used in the scope in which the
7566 // using-directive appears after the using-directive. During
7567 // unqualified name lookup (3.4.1), the names appear as if they
7568 // were declared in the nearest enclosing namespace which
7569 // contains both the using-directive and the nominated
7570 // namespace. [Note: in this context, "contains" means "contains
7571 // directly or indirectly". ]
7572
7573 // Find enclosing context containing both using-directive and
7574 // nominated namespace.
7575 NamespaceDecl *NS = getNamespaceDecl(Named);
7576 DeclContext *CommonAncestor = cast<DeclContext>(NS);
7577 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
7578 CommonAncestor = CommonAncestor->getParent();
7579
7580 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
7581 SS.getWithLocInContext(Context),
7582 IdentLoc, Named, CommonAncestor);
7583
7584 if (IsUsingDirectiveInToplevelContext(CurContext) &&
7585 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
7586 Diag(IdentLoc, diag::warn_using_directive_in_header);
7587 }
7588
7589 PushUsingDirective(S, UDir);
7590 } else {
7591 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7592 }
7593
7594 if (UDir)
7595 ProcessDeclAttributeList(S, UDir, AttrList);
7596
7597 return UDir;
7598 }
7599
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)7600 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
7601 // If the scope has an associated entity and the using directive is at
7602 // namespace or translation unit scope, add the UsingDirectiveDecl into
7603 // its lookup structure so qualified name lookup can find it.
7604 DeclContext *Ctx = S->getEntity();
7605 if (Ctx && !Ctx->isFunctionOrMethod())
7606 Ctx->addDecl(UDir);
7607 else
7608 // Otherwise, it is at block scope. The using-directives will affect lookup
7609 // only to the end of the scope.
7610 S->PushUsingDirective(UDir);
7611 }
7612
7613
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool HasTypenameKeyword,SourceLocation TypenameLoc)7614 Decl *Sema::ActOnUsingDeclaration(Scope *S,
7615 AccessSpecifier AS,
7616 bool HasUsingKeyword,
7617 SourceLocation UsingLoc,
7618 CXXScopeSpec &SS,
7619 UnqualifiedId &Name,
7620 AttributeList *AttrList,
7621 bool HasTypenameKeyword,
7622 SourceLocation TypenameLoc) {
7623 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7624
7625 switch (Name.getKind()) {
7626 case UnqualifiedId::IK_ImplicitSelfParam:
7627 case UnqualifiedId::IK_Identifier:
7628 case UnqualifiedId::IK_OperatorFunctionId:
7629 case UnqualifiedId::IK_LiteralOperatorId:
7630 case UnqualifiedId::IK_ConversionFunctionId:
7631 break;
7632
7633 case UnqualifiedId::IK_ConstructorName:
7634 case UnqualifiedId::IK_ConstructorTemplateId:
7635 // C++11 inheriting constructors.
7636 Diag(Name.getLocStart(),
7637 getLangOpts().CPlusPlus11 ?
7638 diag::warn_cxx98_compat_using_decl_constructor :
7639 diag::err_using_decl_constructor)
7640 << SS.getRange();
7641
7642 if (getLangOpts().CPlusPlus11) break;
7643
7644 return nullptr;
7645
7646 case UnqualifiedId::IK_DestructorName:
7647 Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7648 << SS.getRange();
7649 return nullptr;
7650
7651 case UnqualifiedId::IK_TemplateId:
7652 Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7653 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7654 return nullptr;
7655 }
7656
7657 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7658 DeclarationName TargetName = TargetNameInfo.getName();
7659 if (!TargetName)
7660 return nullptr;
7661
7662 // Warn about access declarations.
7663 if (!HasUsingKeyword) {
7664 Diag(Name.getLocStart(),
7665 getLangOpts().CPlusPlus11 ? diag::err_access_decl
7666 : diag::warn_access_decl_deprecated)
7667 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7668 }
7669
7670 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7671 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7672 return nullptr;
7673
7674 NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7675 TargetNameInfo, AttrList,
7676 /* IsInstantiation */ false,
7677 HasTypenameKeyword, TypenameLoc);
7678 if (UD)
7679 PushOnScopeChains(UD, S, /*AddToContext*/ false);
7680
7681 return UD;
7682 }
7683
7684 /// \brief Determine whether a using declaration considers the given
7685 /// declarations as "equivalent", e.g., if they are redeclarations of
7686 /// the same entity or are both typedefs of the same type.
7687 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)7688 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
7689 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
7690 return true;
7691
7692 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7693 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
7694 return Context.hasSameType(TD1->getUnderlyingType(),
7695 TD2->getUnderlyingType());
7696
7697 return false;
7698 }
7699
7700
7701 /// Determines whether to create a using shadow decl for a particular
7702 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)7703 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7704 const LookupResult &Previous,
7705 UsingShadowDecl *&PrevShadow) {
7706 // Diagnose finding a decl which is not from a base class of the
7707 // current class. We do this now because there are cases where this
7708 // function will silently decide not to build a shadow decl, which
7709 // will pre-empt further diagnostics.
7710 //
7711 // We don't need to do this in C++0x because we do the check once on
7712 // the qualifier.
7713 //
7714 // FIXME: diagnose the following if we care enough:
7715 // struct A { int foo; };
7716 // struct B : A { using A::foo; };
7717 // template <class T> struct C : A {};
7718 // template <class T> struct D : C<T> { using B::foo; } // <---
7719 // This is invalid (during instantiation) in C++03 because B::foo
7720 // resolves to the using decl in B, which is not a base class of D<T>.
7721 // We can't diagnose it immediately because C<T> is an unknown
7722 // specialization. The UsingShadowDecl in D<T> then points directly
7723 // to A::foo, which will look well-formed when we instantiate.
7724 // The right solution is to not collapse the shadow-decl chain.
7725 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7726 DeclContext *OrigDC = Orig->getDeclContext();
7727
7728 // Handle enums and anonymous structs.
7729 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7730 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7731 while (OrigRec->isAnonymousStructOrUnion())
7732 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7733
7734 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7735 if (OrigDC == CurContext) {
7736 Diag(Using->getLocation(),
7737 diag::err_using_decl_nested_name_specifier_is_current_class)
7738 << Using->getQualifierLoc().getSourceRange();
7739 Diag(Orig->getLocation(), diag::note_using_decl_target);
7740 return true;
7741 }
7742
7743 Diag(Using->getQualifierLoc().getBeginLoc(),
7744 diag::err_using_decl_nested_name_specifier_is_not_base_class)
7745 << Using->getQualifier()
7746 << cast<CXXRecordDecl>(CurContext)
7747 << Using->getQualifierLoc().getSourceRange();
7748 Diag(Orig->getLocation(), diag::note_using_decl_target);
7749 return true;
7750 }
7751 }
7752
7753 if (Previous.empty()) return false;
7754
7755 NamedDecl *Target = Orig;
7756 if (isa<UsingShadowDecl>(Target))
7757 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7758
7759 // If the target happens to be one of the previous declarations, we
7760 // don't have a conflict.
7761 //
7762 // FIXME: but we might be increasing its access, in which case we
7763 // should redeclare it.
7764 NamedDecl *NonTag = nullptr, *Tag = nullptr;
7765 bool FoundEquivalentDecl = false;
7766 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7767 I != E; ++I) {
7768 NamedDecl *D = (*I)->getUnderlyingDecl();
7769 if (IsEquivalentForUsingDecl(Context, D, Target)) {
7770 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
7771 PrevShadow = Shadow;
7772 FoundEquivalentDecl = true;
7773 }
7774
7775 (isa<TagDecl>(D) ? Tag : NonTag) = D;
7776 }
7777
7778 if (FoundEquivalentDecl)
7779 return false;
7780
7781 if (FunctionDecl *FD = Target->getAsFunction()) {
7782 NamedDecl *OldDecl = nullptr;
7783 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
7784 /*IsForUsingDecl*/ true)) {
7785 case Ovl_Overload:
7786 return false;
7787
7788 case Ovl_NonFunction:
7789 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7790 break;
7791
7792 // We found a decl with the exact signature.
7793 case Ovl_Match:
7794 // If we're in a record, we want to hide the target, so we
7795 // return true (without a diagnostic) to tell the caller not to
7796 // build a shadow decl.
7797 if (CurContext->isRecord())
7798 return true;
7799
7800 // If we're not in a record, this is an error.
7801 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7802 break;
7803 }
7804
7805 Diag(Target->getLocation(), diag::note_using_decl_target);
7806 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7807 return true;
7808 }
7809
7810 // Target is not a function.
7811
7812 if (isa<TagDecl>(Target)) {
7813 // No conflict between a tag and a non-tag.
7814 if (!Tag) return false;
7815
7816 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7817 Diag(Target->getLocation(), diag::note_using_decl_target);
7818 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7819 return true;
7820 }
7821
7822 // No conflict between a tag and a non-tag.
7823 if (!NonTag) return false;
7824
7825 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7826 Diag(Target->getLocation(), diag::note_using_decl_target);
7827 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7828 return true;
7829 }
7830
7831 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)7832 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7833 UsingDecl *UD,
7834 NamedDecl *Orig,
7835 UsingShadowDecl *PrevDecl) {
7836
7837 // If we resolved to another shadow declaration, just coalesce them.
7838 NamedDecl *Target = Orig;
7839 if (isa<UsingShadowDecl>(Target)) {
7840 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7841 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7842 }
7843
7844 UsingShadowDecl *Shadow
7845 = UsingShadowDecl::Create(Context, CurContext,
7846 UD->getLocation(), UD, Target);
7847 UD->addShadowDecl(Shadow);
7848
7849 Shadow->setAccess(UD->getAccess());
7850 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7851 Shadow->setInvalidDecl();
7852
7853 Shadow->setPreviousDecl(PrevDecl);
7854
7855 if (S)
7856 PushOnScopeChains(Shadow, S);
7857 else
7858 CurContext->addDecl(Shadow);
7859
7860
7861 return Shadow;
7862 }
7863
7864 /// Hides a using shadow declaration. This is required by the current
7865 /// using-decl implementation when a resolvable using declaration in a
7866 /// class is followed by a declaration which would hide or override
7867 /// one or more of the using decl's targets; for example:
7868 ///
7869 /// struct Base { void foo(int); };
7870 /// struct Derived : Base {
7871 /// using Base::foo;
7872 /// void foo(int);
7873 /// };
7874 ///
7875 /// The governing language is C++03 [namespace.udecl]p12:
7876 ///
7877 /// When a using-declaration brings names from a base class into a
7878 /// derived class scope, member functions in the derived class
7879 /// override and/or hide member functions with the same name and
7880 /// parameter types in a base class (rather than conflicting).
7881 ///
7882 /// There are two ways to implement this:
7883 /// (1) optimistically create shadow decls when they're not hidden
7884 /// by existing declarations, or
7885 /// (2) don't create any shadow decls (or at least don't make them
7886 /// visible) until we've fully parsed/instantiated the class.
7887 /// The problem with (1) is that we might have to retroactively remove
7888 /// a shadow decl, which requires several O(n) operations because the
7889 /// decl structures are (very reasonably) not designed for removal.
7890 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)7891 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7892 if (Shadow->getDeclName().getNameKind() ==
7893 DeclarationName::CXXConversionFunctionName)
7894 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7895
7896 // Remove it from the DeclContext...
7897 Shadow->getDeclContext()->removeDecl(Shadow);
7898
7899 // ...and the scope, if applicable...
7900 if (S) {
7901 S->RemoveDecl(Shadow);
7902 IdResolver.RemoveDecl(Shadow);
7903 }
7904
7905 // ...and the using decl.
7906 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7907
7908 // TODO: complain somehow if Shadow was used. It shouldn't
7909 // be possible for this to happen, because...?
7910 }
7911
7912 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)7913 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
7914 QualType DesiredBase,
7915 bool &AnyDependentBases) {
7916 // Check whether the named type is a direct base class.
7917 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
7918 for (auto &Base : Derived->bases()) {
7919 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
7920 if (CanonicalDesiredBase == BaseType)
7921 return &Base;
7922 if (BaseType->isDependentType())
7923 AnyDependentBases = true;
7924 }
7925 return nullptr;
7926 }
7927
7928 namespace {
7929 class UsingValidatorCCC : public CorrectionCandidateCallback {
7930 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)7931 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
7932 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
7933 : HasTypenameKeyword(HasTypenameKeyword),
7934 IsInstantiation(IsInstantiation), OldNNS(NNS),
7935 RequireMemberOf(RequireMemberOf) {}
7936
ValidateCandidate(const TypoCorrection & Candidate)7937 bool ValidateCandidate(const TypoCorrection &Candidate) override {
7938 NamedDecl *ND = Candidate.getCorrectionDecl();
7939
7940 // Keywords are not valid here.
7941 if (!ND || isa<NamespaceDecl>(ND))
7942 return false;
7943
7944 // Completely unqualified names are invalid for a 'using' declaration.
7945 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7946 return false;
7947
7948 if (RequireMemberOf) {
7949 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
7950 if (FoundRecord && FoundRecord->isInjectedClassName()) {
7951 // No-one ever wants a using-declaration to name an injected-class-name
7952 // of a base class, unless they're declaring an inheriting constructor.
7953 ASTContext &Ctx = ND->getASTContext();
7954 if (!Ctx.getLangOpts().CPlusPlus11)
7955 return false;
7956 QualType FoundType = Ctx.getRecordType(FoundRecord);
7957
7958 // Check that the injected-class-name is named as a member of its own
7959 // type; we don't want to suggest 'using Derived::Base;', since that
7960 // means something else.
7961 NestedNameSpecifier *Specifier =
7962 Candidate.WillReplaceSpecifier()
7963 ? Candidate.getCorrectionSpecifier()
7964 : OldNNS;
7965 if (!Specifier->getAsType() ||
7966 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
7967 return false;
7968
7969 // Check that this inheriting constructor declaration actually names a
7970 // direct base class of the current class.
7971 bool AnyDependentBases = false;
7972 if (!findDirectBaseWithType(RequireMemberOf,
7973 Ctx.getRecordType(FoundRecord),
7974 AnyDependentBases) &&
7975 !AnyDependentBases)
7976 return false;
7977 } else {
7978 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
7979 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
7980 return false;
7981
7982 // FIXME: Check that the base class member is accessible?
7983 }
7984 }
7985
7986 if (isa<TypeDecl>(ND))
7987 return HasTypenameKeyword || !IsInstantiation;
7988
7989 return !HasTypenameKeyword;
7990 }
7991
7992 private:
7993 bool HasTypenameKeyword;
7994 bool IsInstantiation;
7995 NestedNameSpecifier *OldNNS;
7996 CXXRecordDecl *RequireMemberOf;
7997 };
7998 } // end anonymous namespace
7999
8000 /// Builds a using declaration.
8001 ///
8002 /// \param IsInstantiation - Whether this call arises from an
8003 /// instantiation of an unresolved using declaration. We treat
8004 /// the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,AttributeList * AttrList,bool IsInstantiation,bool HasTypenameKeyword,SourceLocation TypenameLoc)8005 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
8006 SourceLocation UsingLoc,
8007 CXXScopeSpec &SS,
8008 DeclarationNameInfo NameInfo,
8009 AttributeList *AttrList,
8010 bool IsInstantiation,
8011 bool HasTypenameKeyword,
8012 SourceLocation TypenameLoc) {
8013 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
8014 SourceLocation IdentLoc = NameInfo.getLoc();
8015 assert(IdentLoc.isValid() && "Invalid TargetName location.");
8016
8017 // FIXME: We ignore attributes for now.
8018
8019 if (SS.isEmpty()) {
8020 Diag(IdentLoc, diag::err_using_requires_qualname);
8021 return nullptr;
8022 }
8023
8024 // Do the redeclaration lookup in the current scope.
8025 LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
8026 ForRedeclaration);
8027 Previous.setHideTags(false);
8028 if (S) {
8029 LookupName(Previous, S);
8030
8031 // It is really dumb that we have to do this.
8032 LookupResult::Filter F = Previous.makeFilter();
8033 while (F.hasNext()) {
8034 NamedDecl *D = F.next();
8035 if (!isDeclInScope(D, CurContext, S))
8036 F.erase();
8037 // If we found a local extern declaration that's not ordinarily visible,
8038 // and this declaration is being added to a non-block scope, ignore it.
8039 // We're only checking for scope conflicts here, not also for violations
8040 // of the linkage rules.
8041 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
8042 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
8043 F.erase();
8044 }
8045 F.done();
8046 } else {
8047 assert(IsInstantiation && "no scope in non-instantiation");
8048 assert(CurContext->isRecord() && "scope not record in instantiation");
8049 LookupQualifiedName(Previous, CurContext);
8050 }
8051
8052 // Check for invalid redeclarations.
8053 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
8054 SS, IdentLoc, Previous))
8055 return nullptr;
8056
8057 // Check for bad qualifiers.
8058 if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
8059 return nullptr;
8060
8061 DeclContext *LookupContext = computeDeclContext(SS);
8062 NamedDecl *D;
8063 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8064 if (!LookupContext) {
8065 if (HasTypenameKeyword) {
8066 // FIXME: not all declaration name kinds are legal here
8067 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
8068 UsingLoc, TypenameLoc,
8069 QualifierLoc,
8070 IdentLoc, NameInfo.getName());
8071 } else {
8072 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
8073 QualifierLoc, NameInfo);
8074 }
8075 D->setAccess(AS);
8076 CurContext->addDecl(D);
8077 return D;
8078 }
8079
8080 auto Build = [&](bool Invalid) {
8081 UsingDecl *UD =
8082 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
8083 HasTypenameKeyword);
8084 UD->setAccess(AS);
8085 CurContext->addDecl(UD);
8086 UD->setInvalidDecl(Invalid);
8087 return UD;
8088 };
8089 auto BuildInvalid = [&]{ return Build(true); };
8090 auto BuildValid = [&]{ return Build(false); };
8091
8092 if (RequireCompleteDeclContext(SS, LookupContext))
8093 return BuildInvalid();
8094
8095 // Look up the target name.
8096 LookupResult R(*this, NameInfo, LookupOrdinaryName);
8097
8098 // Unlike most lookups, we don't always want to hide tag
8099 // declarations: tag names are visible through the using declaration
8100 // even if hidden by ordinary names, *except* in a dependent context
8101 // where it's important for the sanity of two-phase lookup.
8102 if (!IsInstantiation)
8103 R.setHideTags(false);
8104
8105 // For the purposes of this lookup, we have a base object type
8106 // equal to that of the current context.
8107 if (CurContext->isRecord()) {
8108 R.setBaseObjectType(
8109 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
8110 }
8111
8112 LookupQualifiedName(R, LookupContext);
8113
8114 // Try to correct typos if possible. If constructor name lookup finds no
8115 // results, that means the named class has no explicit constructors, and we
8116 // suppressed declaring implicit ones (probably because it's dependent or
8117 // invalid).
8118 if (R.empty() &&
8119 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
8120 if (TypoCorrection Corrected = CorrectTypo(
8121 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
8122 llvm::make_unique<UsingValidatorCCC>(
8123 HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
8124 dyn_cast<CXXRecordDecl>(CurContext)),
8125 CTK_ErrorRecovery)) {
8126 // We reject any correction for which ND would be NULL.
8127 NamedDecl *ND = Corrected.getCorrectionDecl();
8128
8129 // We reject candidates where DroppedSpecifier == true, hence the
8130 // literal '0' below.
8131 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
8132 << NameInfo.getName() << LookupContext << 0
8133 << SS.getRange());
8134
8135 // If we corrected to an inheriting constructor, handle it as one.
8136 auto *RD = dyn_cast<CXXRecordDecl>(ND);
8137 if (RD && RD->isInjectedClassName()) {
8138 // Fix up the information we'll use to build the using declaration.
8139 if (Corrected.WillReplaceSpecifier()) {
8140 NestedNameSpecifierLocBuilder Builder;
8141 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
8142 QualifierLoc.getSourceRange());
8143 QualifierLoc = Builder.getWithLocInContext(Context);
8144 }
8145
8146 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
8147 Context.getCanonicalType(Context.getRecordType(RD))));
8148 NameInfo.setNamedTypeInfo(nullptr);
8149 for (auto *Ctor : LookupConstructors(RD))
8150 R.addDecl(Ctor);
8151 } else {
8152 // FIXME: Pick up all the declarations if we found an overloaded function.
8153 R.addDecl(ND);
8154 }
8155 } else {
8156 Diag(IdentLoc, diag::err_no_member)
8157 << NameInfo.getName() << LookupContext << SS.getRange();
8158 return BuildInvalid();
8159 }
8160 }
8161
8162 if (R.isAmbiguous())
8163 return BuildInvalid();
8164
8165 if (HasTypenameKeyword) {
8166 // If we asked for a typename and got a non-type decl, error out.
8167 if (!R.getAsSingle<TypeDecl>()) {
8168 Diag(IdentLoc, diag::err_using_typename_non_type);
8169 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
8170 Diag((*I)->getUnderlyingDecl()->getLocation(),
8171 diag::note_using_decl_target);
8172 return BuildInvalid();
8173 }
8174 } else {
8175 // If we asked for a non-typename and we got a type, error out,
8176 // but only if this is an instantiation of an unresolved using
8177 // decl. Otherwise just silently find the type name.
8178 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
8179 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
8180 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
8181 return BuildInvalid();
8182 }
8183 }
8184
8185 // C++0x N2914 [namespace.udecl]p6:
8186 // A using-declaration shall not name a namespace.
8187 if (R.getAsSingle<NamespaceDecl>()) {
8188 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
8189 << SS.getRange();
8190 return BuildInvalid();
8191 }
8192
8193 UsingDecl *UD = BuildValid();
8194
8195 // The normal rules do not apply to inheriting constructor declarations.
8196 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
8197 // Suppress access diagnostics; the access check is instead performed at the
8198 // point of use for an inheriting constructor.
8199 R.suppressDiagnostics();
8200 CheckInheritingConstructorUsingDecl(UD);
8201 return UD;
8202 }
8203
8204 // Otherwise, look up the target name.
8205
8206 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8207 UsingShadowDecl *PrevDecl = nullptr;
8208 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
8209 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
8210 }
8211
8212 return UD;
8213 }
8214
8215 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)8216 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
8217 assert(!UD->hasTypename() && "expecting a constructor name");
8218
8219 const Type *SourceType = UD->getQualifier()->getAsType();
8220 assert(SourceType &&
8221 "Using decl naming constructor doesn't have type in scope spec.");
8222 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
8223
8224 // Check whether the named type is a direct base class.
8225 bool AnyDependentBases = false;
8226 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
8227 AnyDependentBases);
8228 if (!Base && !AnyDependentBases) {
8229 Diag(UD->getUsingLoc(),
8230 diag::err_using_decl_constructor_not_in_direct_base)
8231 << UD->getNameInfo().getSourceRange()
8232 << QualType(SourceType, 0) << TargetClass;
8233 UD->setInvalidDecl();
8234 return true;
8235 }
8236
8237 if (Base)
8238 Base->setInheritConstructors();
8239
8240 return false;
8241 }
8242
8243 /// Checks that the given using declaration is not an invalid
8244 /// redeclaration. Note that this is checking only for the using decl
8245 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)8246 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
8247 bool HasTypenameKeyword,
8248 const CXXScopeSpec &SS,
8249 SourceLocation NameLoc,
8250 const LookupResult &Prev) {
8251 // C++03 [namespace.udecl]p8:
8252 // C++0x [namespace.udecl]p10:
8253 // A using-declaration is a declaration and can therefore be used
8254 // repeatedly where (and only where) multiple declarations are
8255 // allowed.
8256 //
8257 // That's in non-member contexts.
8258 if (!CurContext->getRedeclContext()->isRecord())
8259 return false;
8260
8261 NestedNameSpecifier *Qual = SS.getScopeRep();
8262
8263 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
8264 NamedDecl *D = *I;
8265
8266 bool DTypename;
8267 NestedNameSpecifier *DQual;
8268 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
8269 DTypename = UD->hasTypename();
8270 DQual = UD->getQualifier();
8271 } else if (UnresolvedUsingValueDecl *UD
8272 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
8273 DTypename = false;
8274 DQual = UD->getQualifier();
8275 } else if (UnresolvedUsingTypenameDecl *UD
8276 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
8277 DTypename = true;
8278 DQual = UD->getQualifier();
8279 } else continue;
8280
8281 // using decls differ if one says 'typename' and the other doesn't.
8282 // FIXME: non-dependent using decls?
8283 if (HasTypenameKeyword != DTypename) continue;
8284
8285 // using decls differ if they name different scopes (but note that
8286 // template instantiation can cause this check to trigger when it
8287 // didn't before instantiation).
8288 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
8289 Context.getCanonicalNestedNameSpecifier(DQual))
8290 continue;
8291
8292 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
8293 Diag(D->getLocation(), diag::note_using_decl) << 1;
8294 return true;
8295 }
8296
8297 return false;
8298 }
8299
8300
8301 /// Checks that the given nested-name qualifier used in a using decl
8302 /// in the current context is appropriately related to the current
8303 /// scope. If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc)8304 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
8305 const CXXScopeSpec &SS,
8306 const DeclarationNameInfo &NameInfo,
8307 SourceLocation NameLoc) {
8308 DeclContext *NamedContext = computeDeclContext(SS);
8309
8310 if (!CurContext->isRecord()) {
8311 // C++03 [namespace.udecl]p3:
8312 // C++0x [namespace.udecl]p8:
8313 // A using-declaration for a class member shall be a member-declaration.
8314
8315 // If we weren't able to compute a valid scope, it must be a
8316 // dependent class scope.
8317 if (!NamedContext || NamedContext->isRecord()) {
8318 auto *RD = dyn_cast_or_null<CXXRecordDecl>(NamedContext);
8319 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
8320 RD = nullptr;
8321
8322 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
8323 << SS.getRange();
8324
8325 // If we have a complete, non-dependent source type, try to suggest a
8326 // way to get the same effect.
8327 if (!RD)
8328 return true;
8329
8330 // Find what this using-declaration was referring to.
8331 LookupResult R(*this, NameInfo, LookupOrdinaryName);
8332 R.setHideTags(false);
8333 R.suppressDiagnostics();
8334 LookupQualifiedName(R, RD);
8335
8336 if (R.getAsSingle<TypeDecl>()) {
8337 if (getLangOpts().CPlusPlus11) {
8338 // Convert 'using X::Y;' to 'using Y = X::Y;'.
8339 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
8340 << 0 // alias declaration
8341 << FixItHint::CreateInsertion(SS.getBeginLoc(),
8342 NameInfo.getName().getAsString() +
8343 " = ");
8344 } else {
8345 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
8346 SourceLocation InsertLoc =
8347 PP.getLocForEndOfToken(NameInfo.getLocEnd());
8348 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
8349 << 1 // typedef declaration
8350 << FixItHint::CreateReplacement(UsingLoc, "typedef")
8351 << FixItHint::CreateInsertion(
8352 InsertLoc, " " + NameInfo.getName().getAsString());
8353 }
8354 } else if (R.getAsSingle<VarDecl>()) {
8355 // Don't provide a fixit outside C++11 mode; we don't want to suggest
8356 // repeating the type of the static data member here.
8357 FixItHint FixIt;
8358 if (getLangOpts().CPlusPlus11) {
8359 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
8360 FixIt = FixItHint::CreateReplacement(
8361 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
8362 }
8363
8364 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
8365 << 2 // reference declaration
8366 << FixIt;
8367 }
8368 return true;
8369 }
8370
8371 // Otherwise, everything is known to be fine.
8372 return false;
8373 }
8374
8375 // The current scope is a record.
8376
8377 // If the named context is dependent, we can't decide much.
8378 if (!NamedContext) {
8379 // FIXME: in C++0x, we can diagnose if we can prove that the
8380 // nested-name-specifier does not refer to a base class, which is
8381 // still possible in some cases.
8382
8383 // Otherwise we have to conservatively report that things might be
8384 // okay.
8385 return false;
8386 }
8387
8388 if (!NamedContext->isRecord()) {
8389 // Ideally this would point at the last name in the specifier,
8390 // but we don't have that level of source info.
8391 Diag(SS.getRange().getBegin(),
8392 diag::err_using_decl_nested_name_specifier_is_not_class)
8393 << SS.getScopeRep() << SS.getRange();
8394 return true;
8395 }
8396
8397 if (!NamedContext->isDependentContext() &&
8398 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
8399 return true;
8400
8401 if (getLangOpts().CPlusPlus11) {
8402 // C++0x [namespace.udecl]p3:
8403 // In a using-declaration used as a member-declaration, the
8404 // nested-name-specifier shall name a base class of the class
8405 // being defined.
8406
8407 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
8408 cast<CXXRecordDecl>(NamedContext))) {
8409 if (CurContext == NamedContext) {
8410 Diag(NameLoc,
8411 diag::err_using_decl_nested_name_specifier_is_current_class)
8412 << SS.getRange();
8413 return true;
8414 }
8415
8416 Diag(SS.getRange().getBegin(),
8417 diag::err_using_decl_nested_name_specifier_is_not_base_class)
8418 << SS.getScopeRep()
8419 << cast<CXXRecordDecl>(CurContext)
8420 << SS.getRange();
8421 return true;
8422 }
8423
8424 return false;
8425 }
8426
8427 // C++03 [namespace.udecl]p4:
8428 // A using-declaration used as a member-declaration shall refer
8429 // to a member of a base class of the class being defined [etc.].
8430
8431 // Salient point: SS doesn't have to name a base class as long as
8432 // lookup only finds members from base classes. Therefore we can
8433 // diagnose here only if we can prove that that can't happen,
8434 // i.e. if the class hierarchies provably don't intersect.
8435
8436 // TODO: it would be nice if "definitely valid" results were cached
8437 // in the UsingDecl and UsingShadowDecl so that these checks didn't
8438 // need to be repeated.
8439
8440 struct UserData {
8441 llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
8442
8443 static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
8444 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8445 Data->Bases.insert(Base);
8446 return true;
8447 }
8448
8449 bool hasDependentBases(const CXXRecordDecl *Class) {
8450 return !Class->forallBases(collect, this);
8451 }
8452
8453 /// Returns true if the base is dependent or is one of the
8454 /// accumulated base classes.
8455 static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
8456 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8457 return !Data->Bases.count(Base);
8458 }
8459
8460 bool mightShareBases(const CXXRecordDecl *Class) {
8461 return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
8462 }
8463 };
8464
8465 UserData Data;
8466
8467 // Returns false if we find a dependent base.
8468 if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
8469 return false;
8470
8471 // Returns false if the class has a dependent base or if it or one
8472 // of its bases is present in the base set of the current context.
8473 if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
8474 return false;
8475
8476 Diag(SS.getRange().getBegin(),
8477 diag::err_using_decl_nested_name_specifier_is_not_base_class)
8478 << SS.getScopeRep()
8479 << cast<CXXRecordDecl>(CurContext)
8480 << SS.getRange();
8481
8482 return true;
8483 }
8484
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,AttributeList * AttrList,TypeResult Type,Decl * DeclFromDeclSpec)8485 Decl *Sema::ActOnAliasDeclaration(Scope *S,
8486 AccessSpecifier AS,
8487 MultiTemplateParamsArg TemplateParamLists,
8488 SourceLocation UsingLoc,
8489 UnqualifiedId &Name,
8490 AttributeList *AttrList,
8491 TypeResult Type,
8492 Decl *DeclFromDeclSpec) {
8493 // Skip up to the relevant declaration scope.
8494 while (S->getFlags() & Scope::TemplateParamScope)
8495 S = S->getParent();
8496 assert((S->getFlags() & Scope::DeclScope) &&
8497 "got alias-declaration outside of declaration scope");
8498
8499 if (Type.isInvalid())
8500 return nullptr;
8501
8502 bool Invalid = false;
8503 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
8504 TypeSourceInfo *TInfo = nullptr;
8505 GetTypeFromParser(Type.get(), &TInfo);
8506
8507 if (DiagnoseClassNameShadow(CurContext, NameInfo))
8508 return nullptr;
8509
8510 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
8511 UPPC_DeclarationType)) {
8512 Invalid = true;
8513 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8514 TInfo->getTypeLoc().getBeginLoc());
8515 }
8516
8517 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
8518 LookupName(Previous, S);
8519
8520 // Warn about shadowing the name of a template parameter.
8521 if (Previous.isSingleResult() &&
8522 Previous.getFoundDecl()->isTemplateParameter()) {
8523 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
8524 Previous.clear();
8525 }
8526
8527 assert(Name.Kind == UnqualifiedId::IK_Identifier &&
8528 "name in alias declaration must be an identifier");
8529 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
8530 Name.StartLocation,
8531 Name.Identifier, TInfo);
8532
8533 NewTD->setAccess(AS);
8534
8535 if (Invalid)
8536 NewTD->setInvalidDecl();
8537
8538 ProcessDeclAttributeList(S, NewTD, AttrList);
8539
8540 CheckTypedefForVariablyModifiedType(S, NewTD);
8541 Invalid |= NewTD->isInvalidDecl();
8542
8543 bool Redeclaration = false;
8544
8545 NamedDecl *NewND;
8546 if (TemplateParamLists.size()) {
8547 TypeAliasTemplateDecl *OldDecl = nullptr;
8548 TemplateParameterList *OldTemplateParams = nullptr;
8549
8550 if (TemplateParamLists.size() != 1) {
8551 Diag(UsingLoc, diag::err_alias_template_extra_headers)
8552 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
8553 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
8554 }
8555 TemplateParameterList *TemplateParams = TemplateParamLists[0];
8556
8557 // Only consider previous declarations in the same scope.
8558 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
8559 /*ExplicitInstantiationOrSpecialization*/false);
8560 if (!Previous.empty()) {
8561 Redeclaration = true;
8562
8563 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
8564 if (!OldDecl && !Invalid) {
8565 Diag(UsingLoc, diag::err_redefinition_different_kind)
8566 << Name.Identifier;
8567
8568 NamedDecl *OldD = Previous.getRepresentativeDecl();
8569 if (OldD->getLocation().isValid())
8570 Diag(OldD->getLocation(), diag::note_previous_definition);
8571
8572 Invalid = true;
8573 }
8574
8575 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
8576 if (TemplateParameterListsAreEqual(TemplateParams,
8577 OldDecl->getTemplateParameters(),
8578 /*Complain=*/true,
8579 TPL_TemplateMatch))
8580 OldTemplateParams = OldDecl->getTemplateParameters();
8581 else
8582 Invalid = true;
8583
8584 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
8585 if (!Invalid &&
8586 !Context.hasSameType(OldTD->getUnderlyingType(),
8587 NewTD->getUnderlyingType())) {
8588 // FIXME: The C++0x standard does not clearly say this is ill-formed,
8589 // but we can't reasonably accept it.
8590 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
8591 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
8592 if (OldTD->getLocation().isValid())
8593 Diag(OldTD->getLocation(), diag::note_previous_definition);
8594 Invalid = true;
8595 }
8596 }
8597 }
8598
8599 // Merge any previous default template arguments into our parameters,
8600 // and check the parameter list.
8601 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
8602 TPC_TypeAliasTemplate))
8603 return nullptr;
8604
8605 TypeAliasTemplateDecl *NewDecl =
8606 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
8607 Name.Identifier, TemplateParams,
8608 NewTD);
8609 NewTD->setDescribedAliasTemplate(NewDecl);
8610
8611 NewDecl->setAccess(AS);
8612
8613 if (Invalid)
8614 NewDecl->setInvalidDecl();
8615 else if (OldDecl)
8616 NewDecl->setPreviousDecl(OldDecl);
8617
8618 NewND = NewDecl;
8619 } else {
8620 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
8621 setTagNameForLinkagePurposes(TD, NewTD);
8622 handleTagNumbering(TD, S);
8623 }
8624 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
8625 NewND = NewTD;
8626 }
8627
8628 if (!Redeclaration)
8629 PushOnScopeChains(NewND, S);
8630
8631 ActOnDocumentableDecl(NewND);
8632 return NewND;
8633 }
8634
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)8635 Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
8636 SourceLocation AliasLoc,
8637 IdentifierInfo *Alias, CXXScopeSpec &SS,
8638 SourceLocation IdentLoc,
8639 IdentifierInfo *Ident) {
8640
8641 // Lookup the namespace name.
8642 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
8643 LookupParsedName(R, S, &SS);
8644
8645 if (R.isAmbiguous())
8646 return nullptr;
8647
8648 if (R.empty()) {
8649 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
8650 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
8651 return nullptr;
8652 }
8653 }
8654 assert(!R.isAmbiguous() && !R.empty());
8655
8656 // Check if we have a previous declaration with the same name.
8657 NamedDecl *PrevDecl = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
8658 ForRedeclaration);
8659 if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
8660 PrevDecl = nullptr;
8661
8662 NamedDecl *ND = R.getFoundDecl();
8663
8664 if (PrevDecl) {
8665 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
8666 // We already have an alias with the same name that points to the same
8667 // namespace; check that it matches.
8668 if (!AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
8669 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
8670 << Alias;
8671 Diag(PrevDecl->getLocation(), diag::note_previous_namespace_alias)
8672 << AD->getNamespace();
8673 return nullptr;
8674 }
8675 } else {
8676 unsigned DiagID = isa<NamespaceDecl>(PrevDecl)
8677 ? diag::err_redefinition
8678 : diag::err_redefinition_different_kind;
8679 Diag(AliasLoc, DiagID) << Alias;
8680 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8681 return nullptr;
8682 }
8683 }
8684
8685 // The use of a nested name specifier may trigger deprecation warnings.
8686 DiagnoseUseOfDecl(ND, IdentLoc);
8687
8688 NamespaceAliasDecl *AliasDecl =
8689 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
8690 Alias, SS.getWithLocInContext(Context),
8691 IdentLoc, ND);
8692 if (PrevDecl)
8693 AliasDecl->setPreviousDecl(cast<NamespaceAliasDecl>(PrevDecl));
8694
8695 PushOnScopeChains(AliasDecl, S);
8696 return AliasDecl;
8697 }
8698
8699 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)8700 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
8701 CXXMethodDecl *MD) {
8702 CXXRecordDecl *ClassDecl = MD->getParent();
8703
8704 // C++ [except.spec]p14:
8705 // An implicitly declared special member function (Clause 12) shall have an
8706 // exception-specification. [...]
8707 ImplicitExceptionSpecification ExceptSpec(*this);
8708 if (ClassDecl->isInvalidDecl())
8709 return ExceptSpec;
8710
8711 // Direct base-class constructors.
8712 for (const auto &B : ClassDecl->bases()) {
8713 if (B.isVirtual()) // Handled below.
8714 continue;
8715
8716 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8717 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8718 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8719 // If this is a deleted function, add it anyway. This might be conformant
8720 // with the standard. This might not. I'm not sure. It might not matter.
8721 if (Constructor)
8722 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8723 }
8724 }
8725
8726 // Virtual base-class constructors.
8727 for (const auto &B : ClassDecl->vbases()) {
8728 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8729 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8730 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8731 // If this is a deleted function, add it anyway. This might be conformant
8732 // with the standard. This might not. I'm not sure. It might not matter.
8733 if (Constructor)
8734 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8735 }
8736 }
8737
8738 // Field constructors.
8739 for (const auto *F : ClassDecl->fields()) {
8740 if (F->hasInClassInitializer()) {
8741 if (Expr *E = F->getInClassInitializer())
8742 ExceptSpec.CalledExpr(E);
8743 } else if (const RecordType *RecordTy
8744 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8745 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8746 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8747 // If this is a deleted function, add it anyway. This might be conformant
8748 // with the standard. This might not. I'm not sure. It might not matter.
8749 // In particular, the problem is that this function never gets called. It
8750 // might just be ill-formed because this function attempts to refer to
8751 // a deleted function here.
8752 if (Constructor)
8753 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8754 }
8755 }
8756
8757 return ExceptSpec;
8758 }
8759
8760 Sema::ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(CXXConstructorDecl * CD)8761 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
8762 CXXRecordDecl *ClassDecl = CD->getParent();
8763
8764 // C++ [except.spec]p14:
8765 // An inheriting constructor [...] shall have an exception-specification. [...]
8766 ImplicitExceptionSpecification ExceptSpec(*this);
8767 if (ClassDecl->isInvalidDecl())
8768 return ExceptSpec;
8769
8770 // Inherited constructor.
8771 const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8772 const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8773 // FIXME: Copying or moving the parameters could add extra exceptions to the
8774 // set, as could the default arguments for the inherited constructor. This
8775 // will be addressed when we implement the resolution of core issue 1351.
8776 ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8777
8778 // Direct base-class constructors.
8779 for (const auto &B : ClassDecl->bases()) {
8780 if (B.isVirtual()) // Handled below.
8781 continue;
8782
8783 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8784 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8785 if (BaseClassDecl == InheritedDecl)
8786 continue;
8787 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8788 if (Constructor)
8789 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8790 }
8791 }
8792
8793 // Virtual base-class constructors.
8794 for (const auto &B : ClassDecl->vbases()) {
8795 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8796 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8797 if (BaseClassDecl == InheritedDecl)
8798 continue;
8799 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8800 if (Constructor)
8801 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8802 }
8803 }
8804
8805 // Field constructors.
8806 for (const auto *F : ClassDecl->fields()) {
8807 if (F->hasInClassInitializer()) {
8808 if (Expr *E = F->getInClassInitializer())
8809 ExceptSpec.CalledExpr(E);
8810 } else if (const RecordType *RecordTy
8811 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8812 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8813 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8814 if (Constructor)
8815 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8816 }
8817 }
8818
8819 return ExceptSpec;
8820 }
8821
8822 namespace {
8823 /// RAII object to register a special member as being currently declared.
8824 struct DeclaringSpecialMember {
8825 Sema &S;
8826 Sema::SpecialMemberDecl D;
8827 bool WasAlreadyBeingDeclared;
8828
DeclaringSpecialMember__anonb9d573a20e11::DeclaringSpecialMember8829 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8830 : S(S), D(RD, CSM) {
8831 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
8832 if (WasAlreadyBeingDeclared)
8833 // This almost never happens, but if it does, ensure that our cache
8834 // doesn't contain a stale result.
8835 S.SpecialMemberCache.clear();
8836
8837 // FIXME: Register a note to be produced if we encounter an error while
8838 // declaring the special member.
8839 }
~DeclaringSpecialMember__anonb9d573a20e11::DeclaringSpecialMember8840 ~DeclaringSpecialMember() {
8841 if (!WasAlreadyBeingDeclared)
8842 S.SpecialMembersBeingDeclared.erase(D);
8843 }
8844
8845 /// \brief Are we already trying to declare this special member?
isAlreadyBeingDeclared__anonb9d573a20e11::DeclaringSpecialMember8846 bool isAlreadyBeingDeclared() const {
8847 return WasAlreadyBeingDeclared;
8848 }
8849 };
8850 }
8851
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)8852 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8853 CXXRecordDecl *ClassDecl) {
8854 // C++ [class.ctor]p5:
8855 // A default constructor for a class X is a constructor of class X
8856 // that can be called without an argument. If there is no
8857 // user-declared constructor for class X, a default constructor is
8858 // implicitly declared. An implicitly-declared default constructor
8859 // is an inline public member of its class.
8860 assert(ClassDecl->needsImplicitDefaultConstructor() &&
8861 "Should not build implicit default constructor!");
8862
8863 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8864 if (DSM.isAlreadyBeingDeclared())
8865 return nullptr;
8866
8867 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8868 CXXDefaultConstructor,
8869 false);
8870
8871 // Create the actual constructor declaration.
8872 CanQualType ClassType
8873 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8874 SourceLocation ClassLoc = ClassDecl->getLocation();
8875 DeclarationName Name
8876 = Context.DeclarationNames.getCXXConstructorName(ClassType);
8877 DeclarationNameInfo NameInfo(Name, ClassLoc);
8878 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8879 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
8880 /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
8881 /*isImplicitlyDeclared=*/true, Constexpr);
8882 DefaultCon->setAccess(AS_public);
8883 DefaultCon->setDefaulted();
8884
8885 if (getLangOpts().CUDA) {
8886 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
8887 DefaultCon,
8888 /* ConstRHS */ false,
8889 /* Diagnose */ false);
8890 }
8891
8892 // Build an exception specification pointing back at this constructor.
8893 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8894 DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8895
8896 // We don't need to use SpecialMemberIsTrivial here; triviality for default
8897 // constructors is easy to compute.
8898 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8899
8900 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8901 SetDeclDeleted(DefaultCon, ClassLoc);
8902
8903 // Note that we have declared this constructor.
8904 ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8905
8906 if (Scope *S = getScopeForContext(ClassDecl))
8907 PushOnScopeChains(DefaultCon, S, false);
8908 ClassDecl->addDecl(DefaultCon);
8909
8910 return DefaultCon;
8911 }
8912
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)8913 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8914 CXXConstructorDecl *Constructor) {
8915 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8916 !Constructor->doesThisDeclarationHaveABody() &&
8917 !Constructor->isDeleted()) &&
8918 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8919
8920 CXXRecordDecl *ClassDecl = Constructor->getParent();
8921 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8922
8923 SynthesizedFunctionScope Scope(*this, Constructor);
8924 DiagnosticErrorTrap Trap(Diags);
8925 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8926 Trap.hasErrorOccurred()) {
8927 Diag(CurrentLocation, diag::note_member_synthesized_at)
8928 << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8929 Constructor->setInvalidDecl();
8930 return;
8931 }
8932
8933 // The exception specification is needed because we are defining the
8934 // function.
8935 ResolveExceptionSpec(CurrentLocation,
8936 Constructor->getType()->castAs<FunctionProtoType>());
8937
8938 SourceLocation Loc = Constructor->getLocEnd().isValid()
8939 ? Constructor->getLocEnd()
8940 : Constructor->getLocation();
8941 Constructor->setBody(new (Context) CompoundStmt(Loc));
8942
8943 Constructor->markUsed(Context);
8944 MarkVTableUsed(CurrentLocation, ClassDecl);
8945
8946 if (ASTMutationListener *L = getASTMutationListener()) {
8947 L->CompletedImplicitDefinition(Constructor);
8948 }
8949
8950 DiagnoseUninitializedFields(*this, Constructor);
8951 }
8952
ActOnFinishDelayedMemberInitializers(Decl * D)8953 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8954 // Perform any delayed checks on exception specifications.
8955 CheckDelayedMemberExceptionSpecs();
8956 }
8957
8958 namespace {
8959 /// Information on inheriting constructors to declare.
8960 class InheritingConstructorInfo {
8961 public:
InheritingConstructorInfo(Sema & SemaRef,CXXRecordDecl * Derived)8962 InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8963 : SemaRef(SemaRef), Derived(Derived) {
8964 // Mark the constructors that we already have in the derived class.
8965 //
8966 // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8967 // unless there is a user-declared constructor with the same signature in
8968 // the class where the using-declaration appears.
8969 visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8970 }
8971
inheritAll(CXXRecordDecl * RD)8972 void inheritAll(CXXRecordDecl *RD) {
8973 visitAll(RD, &InheritingConstructorInfo::inherit);
8974 }
8975
8976 private:
8977 /// Information about an inheriting constructor.
8978 struct InheritingConstructor {
InheritingConstructor__anonb9d573a20f11::InheritingConstructorInfo::InheritingConstructor8979 InheritingConstructor()
8980 : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
8981
8982 /// If \c true, a constructor with this signature is already declared
8983 /// in the derived class.
8984 bool DeclaredInDerived;
8985
8986 /// The constructor which is inherited.
8987 const CXXConstructorDecl *BaseCtor;
8988
8989 /// The derived constructor we declared.
8990 CXXConstructorDecl *DerivedCtor;
8991 };
8992
8993 /// Inheriting constructors with a given canonical type. There can be at
8994 /// most one such non-template constructor, and any number of templated
8995 /// constructors.
8996 struct InheritingConstructorsForType {
8997 InheritingConstructor NonTemplate;
8998 SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8999 Templates;
9000
getEntry__anonb9d573a20f11::InheritingConstructorInfo::InheritingConstructorsForType9001 InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
9002 if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
9003 TemplateParameterList *ParamList = FTD->getTemplateParameters();
9004 for (unsigned I = 0, N = Templates.size(); I != N; ++I)
9005 if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
9006 false, S.TPL_TemplateMatch))
9007 return Templates[I].second;
9008 Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
9009 return Templates.back().second;
9010 }
9011
9012 return NonTemplate;
9013 }
9014 };
9015
9016 /// Get or create the inheriting constructor record for a constructor.
getEntry(const CXXConstructorDecl * Ctor,QualType CtorType)9017 InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
9018 QualType CtorType) {
9019 return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
9020 .getEntry(SemaRef, Ctor);
9021 }
9022
9023 typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
9024
9025 /// Process all constructors for a class.
visitAll(const CXXRecordDecl * RD,VisitFn Callback)9026 void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
9027 for (const auto *Ctor : RD->ctors())
9028 (this->*Callback)(Ctor);
9029 for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9030 I(RD->decls_begin()), E(RD->decls_end());
9031 I != E; ++I) {
9032 const FunctionDecl *FD = (*I)->getTemplatedDecl();
9033 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
9034 (this->*Callback)(CD);
9035 }
9036 }
9037
9038 /// Note that a constructor (or constructor template) was declared in Derived.
noteDeclaredInDerived(const CXXConstructorDecl * Ctor)9039 void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
9040 getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
9041 }
9042
9043 /// Inherit a single constructor.
inherit(const CXXConstructorDecl * Ctor)9044 void inherit(const CXXConstructorDecl *Ctor) {
9045 const FunctionProtoType *CtorType =
9046 Ctor->getType()->castAs<FunctionProtoType>();
9047 ArrayRef<QualType> ArgTypes = CtorType->getParamTypes();
9048 FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
9049
9050 SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
9051
9052 // Core issue (no number yet): the ellipsis is always discarded.
9053 if (EPI.Variadic) {
9054 SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
9055 SemaRef.Diag(Ctor->getLocation(),
9056 diag::note_using_decl_constructor_ellipsis);
9057 EPI.Variadic = false;
9058 }
9059
9060 // Declare a constructor for each number of parameters.
9061 //
9062 // C++11 [class.inhctor]p1:
9063 // The candidate set of inherited constructors from the class X named in
9064 // the using-declaration consists of [... modulo defects ...] for each
9065 // constructor or constructor template of X, the set of constructors or
9066 // constructor templates that results from omitting any ellipsis parameter
9067 // specification and successively omitting parameters with a default
9068 // argument from the end of the parameter-type-list
9069 unsigned MinParams = minParamsToInherit(Ctor);
9070 unsigned Params = Ctor->getNumParams();
9071 if (Params >= MinParams) {
9072 do
9073 declareCtor(UsingLoc, Ctor,
9074 SemaRef.Context.getFunctionType(
9075 Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
9076 while (Params > MinParams &&
9077 Ctor->getParamDecl(--Params)->hasDefaultArg());
9078 }
9079 }
9080
9081 /// Find the using-declaration which specified that we should inherit the
9082 /// constructors of \p Base.
getUsingLoc(const CXXRecordDecl * Base)9083 SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
9084 // No fancy lookup required; just look for the base constructor name
9085 // directly within the derived class.
9086 ASTContext &Context = SemaRef.Context;
9087 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9088 Context.getCanonicalType(Context.getRecordType(Base)));
9089 DeclContext::lookup_result Decls = Derived->lookup(Name);
9090 return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
9091 }
9092
minParamsToInherit(const CXXConstructorDecl * Ctor)9093 unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
9094 // C++11 [class.inhctor]p3:
9095 // [F]or each constructor template in the candidate set of inherited
9096 // constructors, a constructor template is implicitly declared
9097 if (Ctor->getDescribedFunctionTemplate())
9098 return 0;
9099
9100 // For each non-template constructor in the candidate set of inherited
9101 // constructors other than a constructor having no parameters or a
9102 // copy/move constructor having a single parameter, a constructor is
9103 // implicitly declared [...]
9104 if (Ctor->getNumParams() == 0)
9105 return 1;
9106 if (Ctor->isCopyOrMoveConstructor())
9107 return 2;
9108
9109 // Per discussion on core reflector, never inherit a constructor which
9110 // would become a default, copy, or move constructor of Derived either.
9111 const ParmVarDecl *PD = Ctor->getParamDecl(0);
9112 const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
9113 return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
9114 }
9115
9116 /// Declare a single inheriting constructor, inheriting the specified
9117 /// constructor, with the given type.
declareCtor(SourceLocation UsingLoc,const CXXConstructorDecl * BaseCtor,QualType DerivedType)9118 void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
9119 QualType DerivedType) {
9120 InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
9121
9122 // C++11 [class.inhctor]p3:
9123 // ... a constructor is implicitly declared with the same constructor
9124 // characteristics unless there is a user-declared constructor with
9125 // the same signature in the class where the using-declaration appears
9126 if (Entry.DeclaredInDerived)
9127 return;
9128
9129 // C++11 [class.inhctor]p7:
9130 // If two using-declarations declare inheriting constructors with the
9131 // same signature, the program is ill-formed
9132 if (Entry.DerivedCtor) {
9133 if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
9134 // Only diagnose this once per constructor.
9135 if (Entry.DerivedCtor->isInvalidDecl())
9136 return;
9137 Entry.DerivedCtor->setInvalidDecl();
9138
9139 SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
9140 SemaRef.Diag(BaseCtor->getLocation(),
9141 diag::note_using_decl_constructor_conflict_current_ctor);
9142 SemaRef.Diag(Entry.BaseCtor->getLocation(),
9143 diag::note_using_decl_constructor_conflict_previous_ctor);
9144 SemaRef.Diag(Entry.DerivedCtor->getLocation(),
9145 diag::note_using_decl_constructor_conflict_previous_using);
9146 } else {
9147 // Core issue (no number): if the same inheriting constructor is
9148 // produced by multiple base class constructors from the same base
9149 // class, the inheriting constructor is defined as deleted.
9150 SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
9151 }
9152
9153 return;
9154 }
9155
9156 ASTContext &Context = SemaRef.Context;
9157 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
9158 Context.getCanonicalType(Context.getRecordType(Derived)));
9159 DeclarationNameInfo NameInfo(Name, UsingLoc);
9160
9161 TemplateParameterList *TemplateParams = nullptr;
9162 if (const FunctionTemplateDecl *FTD =
9163 BaseCtor->getDescribedFunctionTemplate()) {
9164 TemplateParams = FTD->getTemplateParameters();
9165 // We're reusing template parameters from a different DeclContext. This
9166 // is questionable at best, but works out because the template depth in
9167 // both places is guaranteed to be 0.
9168 // FIXME: Rebuild the template parameters in the new context, and
9169 // transform the function type to refer to them.
9170 }
9171
9172 // Build type source info pointing at the using-declaration. This is
9173 // required by template instantiation.
9174 TypeSourceInfo *TInfo =
9175 Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
9176 FunctionProtoTypeLoc ProtoLoc =
9177 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
9178
9179 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
9180 Context, Derived, UsingLoc, NameInfo, DerivedType,
9181 TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
9182 /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
9183
9184 // Build an unevaluated exception specification for this constructor.
9185 const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
9186 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9187 EPI.ExceptionSpec.Type = EST_Unevaluated;
9188 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
9189 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
9190 FPT->getParamTypes(), EPI));
9191
9192 // Build the parameter declarations.
9193 SmallVector<ParmVarDecl *, 16> ParamDecls;
9194 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
9195 TypeSourceInfo *TInfo =
9196 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
9197 ParmVarDecl *PD = ParmVarDecl::Create(
9198 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
9199 FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
9200 PD->setScopeInfo(0, I);
9201 PD->setImplicit();
9202 ParamDecls.push_back(PD);
9203 ProtoLoc.setParam(I, PD);
9204 }
9205
9206 // Set up the new constructor.
9207 DerivedCtor->setAccess(BaseCtor->getAccess());
9208 DerivedCtor->setParams(ParamDecls);
9209 DerivedCtor->setInheritedConstructor(BaseCtor);
9210 if (BaseCtor->isDeleted())
9211 SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
9212
9213 // If this is a constructor template, build the template declaration.
9214 if (TemplateParams) {
9215 FunctionTemplateDecl *DerivedTemplate =
9216 FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
9217 TemplateParams, DerivedCtor);
9218 DerivedTemplate->setAccess(BaseCtor->getAccess());
9219 DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
9220 Derived->addDecl(DerivedTemplate);
9221 } else {
9222 Derived->addDecl(DerivedCtor);
9223 }
9224
9225 Entry.BaseCtor = BaseCtor;
9226 Entry.DerivedCtor = DerivedCtor;
9227 }
9228
9229 Sema &SemaRef;
9230 CXXRecordDecl *Derived;
9231 typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
9232 MapType Map;
9233 };
9234 }
9235
DeclareInheritingConstructors(CXXRecordDecl * ClassDecl)9236 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
9237 // Defer declaring the inheriting constructors until the class is
9238 // instantiated.
9239 if (ClassDecl->isDependentContext())
9240 return;
9241
9242 // Find base classes from which we might inherit constructors.
9243 SmallVector<CXXRecordDecl*, 4> InheritedBases;
9244 for (const auto &BaseIt : ClassDecl->bases())
9245 if (BaseIt.getInheritConstructors())
9246 InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
9247
9248 // Go no further if we're not inheriting any constructors.
9249 if (InheritedBases.empty())
9250 return;
9251
9252 // Declare the inherited constructors.
9253 InheritingConstructorInfo ICI(*this, ClassDecl);
9254 for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
9255 ICI.inheritAll(InheritedBases[I]);
9256 }
9257
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)9258 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
9259 CXXConstructorDecl *Constructor) {
9260 CXXRecordDecl *ClassDecl = Constructor->getParent();
9261 assert(Constructor->getInheritedConstructor() &&
9262 !Constructor->doesThisDeclarationHaveABody() &&
9263 !Constructor->isDeleted());
9264
9265 SynthesizedFunctionScope Scope(*this, Constructor);
9266 DiagnosticErrorTrap Trap(Diags);
9267 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
9268 Trap.hasErrorOccurred()) {
9269 Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
9270 << Context.getTagDeclType(ClassDecl);
9271 Constructor->setInvalidDecl();
9272 return;
9273 }
9274
9275 SourceLocation Loc = Constructor->getLocation();
9276 Constructor->setBody(new (Context) CompoundStmt(Loc));
9277
9278 Constructor->markUsed(Context);
9279 MarkVTableUsed(CurrentLocation, ClassDecl);
9280
9281 if (ASTMutationListener *L = getASTMutationListener()) {
9282 L->CompletedImplicitDefinition(Constructor);
9283 }
9284 }
9285
9286
9287 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl * MD)9288 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
9289 CXXRecordDecl *ClassDecl = MD->getParent();
9290
9291 // C++ [except.spec]p14:
9292 // An implicitly declared special member function (Clause 12) shall have
9293 // an exception-specification.
9294 ImplicitExceptionSpecification ExceptSpec(*this);
9295 if (ClassDecl->isInvalidDecl())
9296 return ExceptSpec;
9297
9298 // Direct base-class destructors.
9299 for (const auto &B : ClassDecl->bases()) {
9300 if (B.isVirtual()) // Handled below.
9301 continue;
9302
9303 if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9304 ExceptSpec.CalledDecl(B.getLocStart(),
9305 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9306 }
9307
9308 // Virtual base-class destructors.
9309 for (const auto &B : ClassDecl->vbases()) {
9310 if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
9311 ExceptSpec.CalledDecl(B.getLocStart(),
9312 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
9313 }
9314
9315 // Field destructors.
9316 for (const auto *F : ClassDecl->fields()) {
9317 if (const RecordType *RecordTy
9318 = Context.getBaseElementType(F->getType())->getAs<RecordType>())
9319 ExceptSpec.CalledDecl(F->getLocation(),
9320 LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
9321 }
9322
9323 return ExceptSpec;
9324 }
9325
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)9326 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
9327 // C++ [class.dtor]p2:
9328 // If a class has no user-declared destructor, a destructor is
9329 // declared implicitly. An implicitly-declared destructor is an
9330 // inline public member of its class.
9331 assert(ClassDecl->needsImplicitDestructor());
9332
9333 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
9334 if (DSM.isAlreadyBeingDeclared())
9335 return nullptr;
9336
9337 // Create the actual destructor declaration.
9338 CanQualType ClassType
9339 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
9340 SourceLocation ClassLoc = ClassDecl->getLocation();
9341 DeclarationName Name
9342 = Context.DeclarationNames.getCXXDestructorName(ClassType);
9343 DeclarationNameInfo NameInfo(Name, ClassLoc);
9344 CXXDestructorDecl *Destructor
9345 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
9346 QualType(), nullptr, /*isInline=*/true,
9347 /*isImplicitlyDeclared=*/true);
9348 Destructor->setAccess(AS_public);
9349 Destructor->setDefaulted();
9350
9351 if (getLangOpts().CUDA) {
9352 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
9353 Destructor,
9354 /* ConstRHS */ false,
9355 /* Diagnose */ false);
9356 }
9357
9358 // Build an exception specification pointing back at this destructor.
9359 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
9360 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9361
9362 AddOverriddenMethods(ClassDecl, Destructor);
9363
9364 // We don't need to use SpecialMemberIsTrivial here; triviality for
9365 // destructors is easy to compute.
9366 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
9367
9368 if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
9369 SetDeclDeleted(Destructor, ClassLoc);
9370
9371 // Note that we have declared this destructor.
9372 ++ASTContext::NumImplicitDestructorsDeclared;
9373
9374 // Introduce this destructor into its scope.
9375 if (Scope *S = getScopeForContext(ClassDecl))
9376 PushOnScopeChains(Destructor, S, false);
9377 ClassDecl->addDecl(Destructor);
9378
9379 return Destructor;
9380 }
9381
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)9382 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
9383 CXXDestructorDecl *Destructor) {
9384 assert((Destructor->isDefaulted() &&
9385 !Destructor->doesThisDeclarationHaveABody() &&
9386 !Destructor->isDeleted()) &&
9387 "DefineImplicitDestructor - call it for implicit default dtor");
9388 CXXRecordDecl *ClassDecl = Destructor->getParent();
9389 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
9390
9391 if (Destructor->isInvalidDecl())
9392 return;
9393
9394 SynthesizedFunctionScope Scope(*this, Destructor);
9395
9396 DiagnosticErrorTrap Trap(Diags);
9397 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9398 Destructor->getParent());
9399
9400 if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
9401 Diag(CurrentLocation, diag::note_member_synthesized_at)
9402 << CXXDestructor << Context.getTagDeclType(ClassDecl);
9403
9404 Destructor->setInvalidDecl();
9405 return;
9406 }
9407
9408 // The exception specification is needed because we are defining the
9409 // function.
9410 ResolveExceptionSpec(CurrentLocation,
9411 Destructor->getType()->castAs<FunctionProtoType>());
9412
9413 SourceLocation Loc = Destructor->getLocEnd().isValid()
9414 ? Destructor->getLocEnd()
9415 : Destructor->getLocation();
9416 Destructor->setBody(new (Context) CompoundStmt(Loc));
9417 Destructor->markUsed(Context);
9418 MarkVTableUsed(CurrentLocation, ClassDecl);
9419
9420 if (ASTMutationListener *L = getASTMutationListener()) {
9421 L->CompletedImplicitDefinition(Destructor);
9422 }
9423 }
9424
9425 /// \brief Perform any semantic analysis which needs to be delayed until all
9426 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()9427 void Sema::ActOnFinishCXXMemberDecls() {
9428 // If the context is an invalid C++ class, just suppress these checks.
9429 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
9430 if (Record->isInvalidDecl()) {
9431 DelayedDefaultedMemberExceptionSpecs.clear();
9432 DelayedExceptionSpecChecks.clear();
9433 return;
9434 }
9435 }
9436 }
9437
getDefaultArgExprsForConstructors(Sema & S,CXXRecordDecl * Class)9438 static void getDefaultArgExprsForConstructors(Sema &S, CXXRecordDecl *Class) {
9439 // Don't do anything for template patterns.
9440 if (Class->getDescribedClassTemplate())
9441 return;
9442
9443 for (Decl *Member : Class->decls()) {
9444 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
9445 if (!CD) {
9446 // Recurse on nested classes.
9447 if (auto *NestedRD = dyn_cast<CXXRecordDecl>(Member))
9448 getDefaultArgExprsForConstructors(S, NestedRD);
9449 continue;
9450 } else if (!CD->isDefaultConstructor() || !CD->hasAttr<DLLExportAttr>()) {
9451 continue;
9452 }
9453
9454 for (unsigned I = 0, E = CD->getNumParams(); I != E; ++I) {
9455 // Skip any default arguments that we've already instantiated.
9456 if (S.Context.getDefaultArgExprForConstructor(CD, I))
9457 continue;
9458
9459 Expr *DefaultArg = S.BuildCXXDefaultArgExpr(Class->getLocation(), CD,
9460 CD->getParamDecl(I)).get();
9461 S.Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
9462 }
9463 }
9464 }
9465
ActOnFinishCXXMemberDefaultArgs(Decl * D)9466 void Sema::ActOnFinishCXXMemberDefaultArgs(Decl *D) {
9467 auto *RD = dyn_cast<CXXRecordDecl>(D);
9468
9469 // Default constructors that are annotated with __declspec(dllexport) which
9470 // have default arguments or don't use the standard calling convention are
9471 // wrapped with a thunk called the default constructor closure.
9472 if (RD && Context.getTargetInfo().getCXXABI().isMicrosoft())
9473 getDefaultArgExprsForConstructors(*this, RD);
9474 }
9475
AdjustDestructorExceptionSpec(CXXRecordDecl * ClassDecl,CXXDestructorDecl * Destructor)9476 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
9477 CXXDestructorDecl *Destructor) {
9478 assert(getLangOpts().CPlusPlus11 &&
9479 "adjusting dtor exception specs was introduced in c++11");
9480
9481 // C++11 [class.dtor]p3:
9482 // A declaration of a destructor that does not have an exception-
9483 // specification is implicitly considered to have the same exception-
9484 // specification as an implicit declaration.
9485 const FunctionProtoType *DtorType = Destructor->getType()->
9486 getAs<FunctionProtoType>();
9487 if (DtorType->hasExceptionSpec())
9488 return;
9489
9490 // Replace the destructor's type, building off the existing one. Fortunately,
9491 // the only thing of interest in the destructor type is its extended info.
9492 // The return and arguments are fixed.
9493 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
9494 EPI.ExceptionSpec.Type = EST_Unevaluated;
9495 EPI.ExceptionSpec.SourceDecl = Destructor;
9496 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
9497
9498 // FIXME: If the destructor has a body that could throw, and the newly created
9499 // spec doesn't allow exceptions, we should emit a warning, because this
9500 // change in behavior can break conforming C++03 programs at runtime.
9501 // However, we don't have a body or an exception specification yet, so it
9502 // needs to be done somewhere else.
9503 }
9504
9505 namespace {
9506 /// \brief An abstract base class for all helper classes used in building the
9507 // copy/move operators. These classes serve as factory functions and help us
9508 // avoid using the same Expr* in the AST twice.
9509 class ExprBuilder {
9510 ExprBuilder(const ExprBuilder&) = delete;
9511 ExprBuilder &operator=(const ExprBuilder&) = delete;
9512
9513 protected:
assertNotNull(Expr * E)9514 static Expr *assertNotNull(Expr *E) {
9515 assert(E && "Expression construction must not fail.");
9516 return E;
9517 }
9518
9519 public:
ExprBuilder()9520 ExprBuilder() {}
~ExprBuilder()9521 virtual ~ExprBuilder() {}
9522
9523 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
9524 };
9525
9526 class RefBuilder: public ExprBuilder {
9527 VarDecl *Var;
9528 QualType VarType;
9529
9530 public:
build(Sema & S,SourceLocation Loc) const9531 Expr *build(Sema &S, SourceLocation Loc) const override {
9532 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
9533 }
9534
RefBuilder(VarDecl * Var,QualType VarType)9535 RefBuilder(VarDecl *Var, QualType VarType)
9536 : Var(Var), VarType(VarType) {}
9537 };
9538
9539 class ThisBuilder: public ExprBuilder {
9540 public:
build(Sema & S,SourceLocation Loc) const9541 Expr *build(Sema &S, SourceLocation Loc) const override {
9542 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
9543 }
9544 };
9545
9546 class CastBuilder: public ExprBuilder {
9547 const ExprBuilder &Builder;
9548 QualType Type;
9549 ExprValueKind Kind;
9550 const CXXCastPath &Path;
9551
9552 public:
build(Sema & S,SourceLocation Loc) const9553 Expr *build(Sema &S, SourceLocation Loc) const override {
9554 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
9555 CK_UncheckedDerivedToBase, Kind,
9556 &Path).get());
9557 }
9558
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)9559 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
9560 const CXXCastPath &Path)
9561 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
9562 };
9563
9564 class DerefBuilder: public ExprBuilder {
9565 const ExprBuilder &Builder;
9566
9567 public:
build(Sema & S,SourceLocation Loc) const9568 Expr *build(Sema &S, SourceLocation Loc) const override {
9569 return assertNotNull(
9570 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
9571 }
9572
DerefBuilder(const ExprBuilder & Builder)9573 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9574 };
9575
9576 class MemberBuilder: public ExprBuilder {
9577 const ExprBuilder &Builder;
9578 QualType Type;
9579 CXXScopeSpec SS;
9580 bool IsArrow;
9581 LookupResult &MemberLookup;
9582
9583 public:
build(Sema & S,SourceLocation Loc) const9584 Expr *build(Sema &S, SourceLocation Loc) const override {
9585 return assertNotNull(S.BuildMemberReferenceExpr(
9586 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
9587 nullptr, MemberLookup, nullptr).get());
9588 }
9589
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)9590 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
9591 LookupResult &MemberLookup)
9592 : Builder(Builder), Type(Type), IsArrow(IsArrow),
9593 MemberLookup(MemberLookup) {}
9594 };
9595
9596 class MoveCastBuilder: public ExprBuilder {
9597 const ExprBuilder &Builder;
9598
9599 public:
build(Sema & S,SourceLocation Loc) const9600 Expr *build(Sema &S, SourceLocation Loc) const override {
9601 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
9602 }
9603
MoveCastBuilder(const ExprBuilder & Builder)9604 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9605 };
9606
9607 class LvalueConvBuilder: public ExprBuilder {
9608 const ExprBuilder &Builder;
9609
9610 public:
build(Sema & S,SourceLocation Loc) const9611 Expr *build(Sema &S, SourceLocation Loc) const override {
9612 return assertNotNull(
9613 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
9614 }
9615
LvalueConvBuilder(const ExprBuilder & Builder)9616 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9617 };
9618
9619 class SubscriptBuilder: public ExprBuilder {
9620 const ExprBuilder &Base;
9621 const ExprBuilder &Index;
9622
9623 public:
build(Sema & S,SourceLocation Loc) const9624 Expr *build(Sema &S, SourceLocation Loc) const override {
9625 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
9626 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
9627 }
9628
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)9629 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
9630 : Base(Base), Index(Index) {}
9631 };
9632
9633 } // end anonymous namespace
9634
9635 /// When generating a defaulted copy or move assignment operator, if a field
9636 /// should be copied with __builtin_memcpy rather than via explicit assignments,
9637 /// do so. This optimization only applies for arrays of scalars, and for arrays
9638 /// of class type where the selected copy/move-assignment operator is trivial.
9639 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)9640 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
9641 const ExprBuilder &ToB, const ExprBuilder &FromB) {
9642 // Compute the size of the memory buffer to be copied.
9643 QualType SizeType = S.Context.getSizeType();
9644 llvm::APInt Size(S.Context.getTypeSize(SizeType),
9645 S.Context.getTypeSizeInChars(T).getQuantity());
9646
9647 // Take the address of the field references for "from" and "to". We
9648 // directly construct UnaryOperators here because semantic analysis
9649 // does not permit us to take the address of an xvalue.
9650 Expr *From = FromB.build(S, Loc);
9651 From = new (S.Context) UnaryOperator(From, UO_AddrOf,
9652 S.Context.getPointerType(From->getType()),
9653 VK_RValue, OK_Ordinary, Loc);
9654 Expr *To = ToB.build(S, Loc);
9655 To = new (S.Context) UnaryOperator(To, UO_AddrOf,
9656 S.Context.getPointerType(To->getType()),
9657 VK_RValue, OK_Ordinary, Loc);
9658
9659 const Type *E = T->getBaseElementTypeUnsafe();
9660 bool NeedsCollectableMemCpy =
9661 E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
9662
9663 // Create a reference to the __builtin_objc_memmove_collectable function
9664 StringRef MemCpyName = NeedsCollectableMemCpy ?
9665 "__builtin_objc_memmove_collectable" :
9666 "__builtin_memcpy";
9667 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
9668 Sema::LookupOrdinaryName);
9669 S.LookupName(R, S.TUScope, true);
9670
9671 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
9672 if (!MemCpy)
9673 // Something went horribly wrong earlier, and we will have complained
9674 // about it.
9675 return StmtError();
9676
9677 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
9678 VK_RValue, Loc, nullptr);
9679 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
9680
9681 Expr *CallArgs[] = {
9682 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
9683 };
9684 ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
9685 Loc, CallArgs, Loc);
9686
9687 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
9688 return Call.getAs<Stmt>();
9689 }
9690
9691 /// \brief Builds a statement that copies/moves the given entity from \p From to
9692 /// \c To.
9693 ///
9694 /// This routine is used to copy/move the members of a class with an
9695 /// implicitly-declared copy/move assignment operator. When the entities being
9696 /// copied are arrays, this routine builds for loops to copy them.
9697 ///
9698 /// \param S The Sema object used for type-checking.
9699 ///
9700 /// \param Loc The location where the implicit copy/move is being generated.
9701 ///
9702 /// \param T The type of the expressions being copied/moved. Both expressions
9703 /// must have this type.
9704 ///
9705 /// \param To The expression we are copying/moving to.
9706 ///
9707 /// \param From The expression we are copying/moving from.
9708 ///
9709 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
9710 /// Otherwise, it's a non-static member subobject.
9711 ///
9712 /// \param Copying Whether we're copying or moving.
9713 ///
9714 /// \param Depth Internal parameter recording the depth of the recursion.
9715 ///
9716 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
9717 /// if a memcpy should be used instead.
9718 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)9719 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
9720 const ExprBuilder &To, const ExprBuilder &From,
9721 bool CopyingBaseSubobject, bool Copying,
9722 unsigned Depth = 0) {
9723 // C++11 [class.copy]p28:
9724 // Each subobject is assigned in the manner appropriate to its type:
9725 //
9726 // - if the subobject is of class type, as if by a call to operator= with
9727 // the subobject as the object expression and the corresponding
9728 // subobject of x as a single function argument (as if by explicit
9729 // qualification; that is, ignoring any possible virtual overriding
9730 // functions in more derived classes);
9731 //
9732 // C++03 [class.copy]p13:
9733 // - if the subobject is of class type, the copy assignment operator for
9734 // the class is used (as if by explicit qualification; that is,
9735 // ignoring any possible virtual overriding functions in more derived
9736 // classes);
9737 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
9738 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
9739
9740 // Look for operator=.
9741 DeclarationName Name
9742 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9743 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
9744 S.LookupQualifiedName(OpLookup, ClassDecl, false);
9745
9746 // Prior to C++11, filter out any result that isn't a copy/move-assignment
9747 // operator.
9748 if (!S.getLangOpts().CPlusPlus11) {
9749 LookupResult::Filter F = OpLookup.makeFilter();
9750 while (F.hasNext()) {
9751 NamedDecl *D = F.next();
9752 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
9753 if (Method->isCopyAssignmentOperator() ||
9754 (!Copying && Method->isMoveAssignmentOperator()))
9755 continue;
9756
9757 F.erase();
9758 }
9759 F.done();
9760 }
9761
9762 // Suppress the protected check (C++ [class.protected]) for each of the
9763 // assignment operators we found. This strange dance is required when
9764 // we're assigning via a base classes's copy-assignment operator. To
9765 // ensure that we're getting the right base class subobject (without
9766 // ambiguities), we need to cast "this" to that subobject type; to
9767 // ensure that we don't go through the virtual call mechanism, we need
9768 // to qualify the operator= name with the base class (see below). However,
9769 // this means that if the base class has a protected copy assignment
9770 // operator, the protected member access check will fail. So, we
9771 // rewrite "protected" access to "public" access in this case, since we
9772 // know by construction that we're calling from a derived class.
9773 if (CopyingBaseSubobject) {
9774 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9775 L != LEnd; ++L) {
9776 if (L.getAccess() == AS_protected)
9777 L.setAccess(AS_public);
9778 }
9779 }
9780
9781 // Create the nested-name-specifier that will be used to qualify the
9782 // reference to operator=; this is required to suppress the virtual
9783 // call mechanism.
9784 CXXScopeSpec SS;
9785 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9786 SS.MakeTrivial(S.Context,
9787 NestedNameSpecifier::Create(S.Context, nullptr, false,
9788 CanonicalT),
9789 Loc);
9790
9791 // Create the reference to operator=.
9792 ExprResult OpEqualRef
9793 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9794 SS, /*TemplateKWLoc=*/SourceLocation(),
9795 /*FirstQualifierInScope=*/nullptr,
9796 OpLookup,
9797 /*TemplateArgs=*/nullptr,
9798 /*SuppressQualifierCheck=*/true);
9799 if (OpEqualRef.isInvalid())
9800 return StmtError();
9801
9802 // Build the call to the assignment operator.
9803
9804 Expr *FromInst = From.build(S, Loc);
9805 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
9806 OpEqualRef.getAs<Expr>(),
9807 Loc, FromInst, Loc);
9808 if (Call.isInvalid())
9809 return StmtError();
9810
9811 // If we built a call to a trivial 'operator=' while copying an array,
9812 // bail out. We'll replace the whole shebang with a memcpy.
9813 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9814 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9815 return StmtResult((Stmt*)nullptr);
9816
9817 // Convert to an expression-statement, and clean up any produced
9818 // temporaries.
9819 return S.ActOnExprStmt(Call);
9820 }
9821
9822 // - if the subobject is of scalar type, the built-in assignment
9823 // operator is used.
9824 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9825 if (!ArrayTy) {
9826 ExprResult Assignment = S.CreateBuiltinBinOp(
9827 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9828 if (Assignment.isInvalid())
9829 return StmtError();
9830 return S.ActOnExprStmt(Assignment);
9831 }
9832
9833 // - if the subobject is an array, each element is assigned, in the
9834 // manner appropriate to the element type;
9835
9836 // Construct a loop over the array bounds, e.g.,
9837 //
9838 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9839 //
9840 // that will copy each of the array elements.
9841 QualType SizeType = S.Context.getSizeType();
9842
9843 // Create the iteration variable.
9844 IdentifierInfo *IterationVarName = nullptr;
9845 {
9846 SmallString<8> Str;
9847 llvm::raw_svector_ostream OS(Str);
9848 OS << "__i" << Depth;
9849 IterationVarName = &S.Context.Idents.get(OS.str());
9850 }
9851 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9852 IterationVarName, SizeType,
9853 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9854 SC_None);
9855
9856 // Initialize the iteration variable to zero.
9857 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9858 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9859
9860 // Creates a reference to the iteration variable.
9861 RefBuilder IterationVarRef(IterationVar, SizeType);
9862 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9863
9864 // Create the DeclStmt that holds the iteration variable.
9865 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9866
9867 // Subscript the "from" and "to" expressions with the iteration variable.
9868 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9869 MoveCastBuilder FromIndexMove(FromIndexCopy);
9870 const ExprBuilder *FromIndex;
9871 if (Copying)
9872 FromIndex = &FromIndexCopy;
9873 else
9874 FromIndex = &FromIndexMove;
9875
9876 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9877
9878 // Build the copy/move for an individual element of the array.
9879 StmtResult Copy =
9880 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9881 ToIndex, *FromIndex, CopyingBaseSubobject,
9882 Copying, Depth + 1);
9883 // Bail out if copying fails or if we determined that we should use memcpy.
9884 if (Copy.isInvalid() || !Copy.get())
9885 return Copy;
9886
9887 // Create the comparison against the array bound.
9888 llvm::APInt Upper
9889 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9890 Expr *Comparison
9891 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9892 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9893 BO_NE, S.Context.BoolTy,
9894 VK_RValue, OK_Ordinary, Loc, false);
9895
9896 // Create the pre-increment of the iteration variable.
9897 Expr *Increment
9898 = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9899 SizeType, VK_LValue, OK_Ordinary, Loc);
9900
9901 // Construct the loop that copies all elements of this array.
9902 return S.ActOnForStmt(Loc, Loc, InitStmt,
9903 S.MakeFullExpr(Comparison),
9904 nullptr, S.MakeFullDiscardedValueExpr(Increment),
9905 Loc, Copy.get());
9906 }
9907
9908 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)9909 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9910 const ExprBuilder &To, const ExprBuilder &From,
9911 bool CopyingBaseSubobject, bool Copying) {
9912 // Maybe we should use a memcpy?
9913 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9914 T.isTriviallyCopyableType(S.Context))
9915 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9916
9917 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9918 CopyingBaseSubobject,
9919 Copying, 0));
9920
9921 // If we ended up picking a trivial assignment operator for an array of a
9922 // non-trivially-copyable class type, just emit a memcpy.
9923 if (!Result.isInvalid() && !Result.get())
9924 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9925
9926 return Result;
9927 }
9928
9929 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl * MD)9930 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9931 CXXRecordDecl *ClassDecl = MD->getParent();
9932
9933 ImplicitExceptionSpecification ExceptSpec(*this);
9934 if (ClassDecl->isInvalidDecl())
9935 return ExceptSpec;
9936
9937 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9938 assert(T->getNumParams() == 1 && "not a copy assignment op");
9939 unsigned ArgQuals =
9940 T->getParamType(0).getNonReferenceType().getCVRQualifiers();
9941
9942 // C++ [except.spec]p14:
9943 // An implicitly declared special member function (Clause 12) shall have an
9944 // exception-specification. [...]
9945
9946 // It is unspecified whether or not an implicit copy assignment operator
9947 // attempts to deduplicate calls to assignment operators of virtual bases are
9948 // made. As such, this exception specification is effectively unspecified.
9949 // Based on a similar decision made for constness in C++0x, we're erring on
9950 // the side of assuming such calls to be made regardless of whether they
9951 // actually happen.
9952 for (const auto &Base : ClassDecl->bases()) {
9953 if (Base.isVirtual())
9954 continue;
9955
9956 CXXRecordDecl *BaseClassDecl
9957 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9958 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9959 ArgQuals, false, 0))
9960 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9961 }
9962
9963 for (const auto &Base : ClassDecl->vbases()) {
9964 CXXRecordDecl *BaseClassDecl
9965 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9966 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9967 ArgQuals, false, 0))
9968 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9969 }
9970
9971 for (const auto *Field : ClassDecl->fields()) {
9972 QualType FieldType = Context.getBaseElementType(Field->getType());
9973 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9974 if (CXXMethodDecl *CopyAssign =
9975 LookupCopyingAssignment(FieldClassDecl,
9976 ArgQuals | FieldType.getCVRQualifiers(),
9977 false, 0))
9978 ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9979 }
9980 }
9981
9982 return ExceptSpec;
9983 }
9984
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)9985 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9986 // Note: The following rules are largely analoguous to the copy
9987 // constructor rules. Note that virtual bases are not taken into account
9988 // for determining the argument type of the operator. Note also that
9989 // operators taking an object instead of a reference are allowed.
9990 assert(ClassDecl->needsImplicitCopyAssignment());
9991
9992 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9993 if (DSM.isAlreadyBeingDeclared())
9994 return nullptr;
9995
9996 QualType ArgType = Context.getTypeDeclType(ClassDecl);
9997 QualType RetType = Context.getLValueReferenceType(ArgType);
9998 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9999 if (Const)
10000 ArgType = ArgType.withConst();
10001 ArgType = Context.getLValueReferenceType(ArgType);
10002
10003 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10004 CXXCopyAssignment,
10005 Const);
10006
10007 // An implicitly-declared copy assignment operator is an inline public
10008 // member of its class.
10009 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10010 SourceLocation ClassLoc = ClassDecl->getLocation();
10011 DeclarationNameInfo NameInfo(Name, ClassLoc);
10012 CXXMethodDecl *CopyAssignment =
10013 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10014 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10015 /*isInline=*/true, Constexpr, SourceLocation());
10016 CopyAssignment->setAccess(AS_public);
10017 CopyAssignment->setDefaulted();
10018 CopyAssignment->setImplicit();
10019
10020 if (getLangOpts().CUDA) {
10021 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
10022 CopyAssignment,
10023 /* ConstRHS */ Const,
10024 /* Diagnose */ false);
10025 }
10026
10027 // Build an exception specification pointing back at this member.
10028 FunctionProtoType::ExtProtoInfo EPI =
10029 getImplicitMethodEPI(*this, CopyAssignment);
10030 CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10031
10032 // Add the parameter to the operator.
10033 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
10034 ClassLoc, ClassLoc,
10035 /*Id=*/nullptr, ArgType,
10036 /*TInfo=*/nullptr, SC_None,
10037 nullptr);
10038 CopyAssignment->setParams(FromParam);
10039
10040 AddOverriddenMethods(ClassDecl, CopyAssignment);
10041
10042 CopyAssignment->setTrivial(
10043 ClassDecl->needsOverloadResolutionForCopyAssignment()
10044 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
10045 : ClassDecl->hasTrivialCopyAssignment());
10046
10047 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
10048 SetDeclDeleted(CopyAssignment, ClassLoc);
10049
10050 // Note that we have added this copy-assignment operator.
10051 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
10052
10053 if (Scope *S = getScopeForContext(ClassDecl))
10054 PushOnScopeChains(CopyAssignment, S, false);
10055 ClassDecl->addDecl(CopyAssignment);
10056
10057 return CopyAssignment;
10058 }
10059
10060 /// Diagnose an implicit copy operation for a class which is odr-used, but
10061 /// which is deprecated because the class has a user-declared copy constructor,
10062 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp,SourceLocation UseLoc)10063 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
10064 SourceLocation UseLoc) {
10065 assert(CopyOp->isImplicit());
10066
10067 CXXRecordDecl *RD = CopyOp->getParent();
10068 CXXMethodDecl *UserDeclaredOperation = nullptr;
10069
10070 // In Microsoft mode, assignment operations don't affect constructors and
10071 // vice versa.
10072 if (RD->hasUserDeclaredDestructor()) {
10073 UserDeclaredOperation = RD->getDestructor();
10074 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
10075 RD->hasUserDeclaredCopyConstructor() &&
10076 !S.getLangOpts().MSVCCompat) {
10077 // Find any user-declared copy constructor.
10078 for (auto *I : RD->ctors()) {
10079 if (I->isCopyConstructor()) {
10080 UserDeclaredOperation = I;
10081 break;
10082 }
10083 }
10084 assert(UserDeclaredOperation);
10085 } else if (isa<CXXConstructorDecl>(CopyOp) &&
10086 RD->hasUserDeclaredCopyAssignment() &&
10087 !S.getLangOpts().MSVCCompat) {
10088 // Find any user-declared move assignment operator.
10089 for (auto *I : RD->methods()) {
10090 if (I->isCopyAssignmentOperator()) {
10091 UserDeclaredOperation = I;
10092 break;
10093 }
10094 }
10095 assert(UserDeclaredOperation);
10096 }
10097
10098 if (UserDeclaredOperation) {
10099 S.Diag(UserDeclaredOperation->getLocation(),
10100 diag::warn_deprecated_copy_operation)
10101 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
10102 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
10103 S.Diag(UseLoc, diag::note_member_synthesized_at)
10104 << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
10105 : Sema::CXXCopyAssignment)
10106 << RD;
10107 }
10108 }
10109
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)10110 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
10111 CXXMethodDecl *CopyAssignOperator) {
10112 assert((CopyAssignOperator->isDefaulted() &&
10113 CopyAssignOperator->isOverloadedOperator() &&
10114 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
10115 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
10116 !CopyAssignOperator->isDeleted()) &&
10117 "DefineImplicitCopyAssignment called for wrong function");
10118
10119 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
10120
10121 if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
10122 CopyAssignOperator->setInvalidDecl();
10123 return;
10124 }
10125
10126 // C++11 [class.copy]p18:
10127 // The [definition of an implicitly declared copy assignment operator] is
10128 // deprecated if the class has a user-declared copy constructor or a
10129 // user-declared destructor.
10130 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
10131 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
10132
10133 CopyAssignOperator->markUsed(Context);
10134
10135 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
10136 DiagnosticErrorTrap Trap(Diags);
10137
10138 // C++0x [class.copy]p30:
10139 // The implicitly-defined or explicitly-defaulted copy assignment operator
10140 // for a non-union class X performs memberwise copy assignment of its
10141 // subobjects. The direct base classes of X are assigned first, in the
10142 // order of their declaration in the base-specifier-list, and then the
10143 // immediate non-static data members of X are assigned, in the order in
10144 // which they were declared in the class definition.
10145
10146 // The statements that form the synthesized function body.
10147 SmallVector<Stmt*, 8> Statements;
10148
10149 // The parameter for the "other" object, which we are copying from.
10150 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
10151 Qualifiers OtherQuals = Other->getType().getQualifiers();
10152 QualType OtherRefType = Other->getType();
10153 if (const LValueReferenceType *OtherRef
10154 = OtherRefType->getAs<LValueReferenceType>()) {
10155 OtherRefType = OtherRef->getPointeeType();
10156 OtherQuals = OtherRefType.getQualifiers();
10157 }
10158
10159 // Our location for everything implicitly-generated.
10160 SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
10161 ? CopyAssignOperator->getLocEnd()
10162 : CopyAssignOperator->getLocation();
10163
10164 // Builds a DeclRefExpr for the "other" object.
10165 RefBuilder OtherRef(Other, OtherRefType);
10166
10167 // Builds the "this" pointer.
10168 ThisBuilder This;
10169
10170 // Assign base classes.
10171 bool Invalid = false;
10172 for (auto &Base : ClassDecl->bases()) {
10173 // Form the assignment:
10174 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
10175 QualType BaseType = Base.getType().getUnqualifiedType();
10176 if (!BaseType->isRecordType()) {
10177 Invalid = true;
10178 continue;
10179 }
10180
10181 CXXCastPath BasePath;
10182 BasePath.push_back(&Base);
10183
10184 // Construct the "from" expression, which is an implicit cast to the
10185 // appropriately-qualified base type.
10186 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
10187 VK_LValue, BasePath);
10188
10189 // Dereference "this".
10190 DerefBuilder DerefThis(This);
10191 CastBuilder To(DerefThis,
10192 Context.getCVRQualifiedType(
10193 BaseType, CopyAssignOperator->getTypeQualifiers()),
10194 VK_LValue, BasePath);
10195
10196 // Build the copy.
10197 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
10198 To, From,
10199 /*CopyingBaseSubobject=*/true,
10200 /*Copying=*/true);
10201 if (Copy.isInvalid()) {
10202 Diag(CurrentLocation, diag::note_member_synthesized_at)
10203 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10204 CopyAssignOperator->setInvalidDecl();
10205 return;
10206 }
10207
10208 // Success! Record the copy.
10209 Statements.push_back(Copy.getAs<Expr>());
10210 }
10211
10212 // Assign non-static members.
10213 for (auto *Field : ClassDecl->fields()) {
10214 if (Field->isUnnamedBitfield())
10215 continue;
10216
10217 if (Field->isInvalidDecl()) {
10218 Invalid = true;
10219 continue;
10220 }
10221
10222 // Check for members of reference type; we can't copy those.
10223 if (Field->getType()->isReferenceType()) {
10224 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10225 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10226 Diag(Field->getLocation(), diag::note_declared_at);
10227 Diag(CurrentLocation, diag::note_member_synthesized_at)
10228 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10229 Invalid = true;
10230 continue;
10231 }
10232
10233 // Check for members of const-qualified, non-class type.
10234 QualType BaseType = Context.getBaseElementType(Field->getType());
10235 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10236 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10237 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10238 Diag(Field->getLocation(), diag::note_declared_at);
10239 Diag(CurrentLocation, diag::note_member_synthesized_at)
10240 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10241 Invalid = true;
10242 continue;
10243 }
10244
10245 // Suppress assigning zero-width bitfields.
10246 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10247 continue;
10248
10249 QualType FieldType = Field->getType().getNonReferenceType();
10250 if (FieldType->isIncompleteArrayType()) {
10251 assert(ClassDecl->hasFlexibleArrayMember() &&
10252 "Incomplete array type is not valid");
10253 continue;
10254 }
10255
10256 // Build references to the field in the object we're copying from and to.
10257 CXXScopeSpec SS; // Intentionally empty
10258 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10259 LookupMemberName);
10260 MemberLookup.addDecl(Field);
10261 MemberLookup.resolveKind();
10262
10263 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
10264
10265 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
10266
10267 // Build the copy of this field.
10268 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
10269 To, From,
10270 /*CopyingBaseSubobject=*/false,
10271 /*Copying=*/true);
10272 if (Copy.isInvalid()) {
10273 Diag(CurrentLocation, diag::note_member_synthesized_at)
10274 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10275 CopyAssignOperator->setInvalidDecl();
10276 return;
10277 }
10278
10279 // Success! Record the copy.
10280 Statements.push_back(Copy.getAs<Stmt>());
10281 }
10282
10283 if (!Invalid) {
10284 // Add a "return *this;"
10285 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10286
10287 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10288 if (Return.isInvalid())
10289 Invalid = true;
10290 else {
10291 Statements.push_back(Return.getAs<Stmt>());
10292
10293 if (Trap.hasErrorOccurred()) {
10294 Diag(CurrentLocation, diag::note_member_synthesized_at)
10295 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
10296 Invalid = true;
10297 }
10298 }
10299 }
10300
10301 // The exception specification is needed because we are defining the
10302 // function.
10303 ResolveExceptionSpec(CurrentLocation,
10304 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
10305
10306 if (Invalid) {
10307 CopyAssignOperator->setInvalidDecl();
10308 return;
10309 }
10310
10311 StmtResult Body;
10312 {
10313 CompoundScopeRAII CompoundScope(*this);
10314 Body = ActOnCompoundStmt(Loc, Loc, Statements,
10315 /*isStmtExpr=*/false);
10316 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10317 }
10318 CopyAssignOperator->setBody(Body.getAs<Stmt>());
10319
10320 if (ASTMutationListener *L = getASTMutationListener()) {
10321 L->CompletedImplicitDefinition(CopyAssignOperator);
10322 }
10323 }
10324
10325 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl * MD)10326 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
10327 CXXRecordDecl *ClassDecl = MD->getParent();
10328
10329 ImplicitExceptionSpecification ExceptSpec(*this);
10330 if (ClassDecl->isInvalidDecl())
10331 return ExceptSpec;
10332
10333 // C++0x [except.spec]p14:
10334 // An implicitly declared special member function (Clause 12) shall have an
10335 // exception-specification. [...]
10336
10337 // It is unspecified whether or not an implicit move assignment operator
10338 // attempts to deduplicate calls to assignment operators of virtual bases are
10339 // made. As such, this exception specification is effectively unspecified.
10340 // Based on a similar decision made for constness in C++0x, we're erring on
10341 // the side of assuming such calls to be made regardless of whether they
10342 // actually happen.
10343 // Note that a move constructor is not implicitly declared when there are
10344 // virtual bases, but it can still be user-declared and explicitly defaulted.
10345 for (const auto &Base : ClassDecl->bases()) {
10346 if (Base.isVirtual())
10347 continue;
10348
10349 CXXRecordDecl *BaseClassDecl
10350 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10351 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10352 0, false, 0))
10353 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10354 }
10355
10356 for (const auto &Base : ClassDecl->vbases()) {
10357 CXXRecordDecl *BaseClassDecl
10358 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10359 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
10360 0, false, 0))
10361 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
10362 }
10363
10364 for (const auto *Field : ClassDecl->fields()) {
10365 QualType FieldType = Context.getBaseElementType(Field->getType());
10366 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10367 if (CXXMethodDecl *MoveAssign =
10368 LookupMovingAssignment(FieldClassDecl,
10369 FieldType.getCVRQualifiers(),
10370 false, 0))
10371 ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
10372 }
10373 }
10374
10375 return ExceptSpec;
10376 }
10377
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)10378 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
10379 assert(ClassDecl->needsImplicitMoveAssignment());
10380
10381 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
10382 if (DSM.isAlreadyBeingDeclared())
10383 return nullptr;
10384
10385 // Note: The following rules are largely analoguous to the move
10386 // constructor rules.
10387
10388 QualType ArgType = Context.getTypeDeclType(ClassDecl);
10389 QualType RetType = Context.getLValueReferenceType(ArgType);
10390 ArgType = Context.getRValueReferenceType(ArgType);
10391
10392 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10393 CXXMoveAssignment,
10394 false);
10395
10396 // An implicitly-declared move assignment operator is an inline public
10397 // member of its class.
10398 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
10399 SourceLocation ClassLoc = ClassDecl->getLocation();
10400 DeclarationNameInfo NameInfo(Name, ClassLoc);
10401 CXXMethodDecl *MoveAssignment =
10402 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
10403 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
10404 /*isInline=*/true, Constexpr, SourceLocation());
10405 MoveAssignment->setAccess(AS_public);
10406 MoveAssignment->setDefaulted();
10407 MoveAssignment->setImplicit();
10408
10409 if (getLangOpts().CUDA) {
10410 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
10411 MoveAssignment,
10412 /* ConstRHS */ false,
10413 /* Diagnose */ false);
10414 }
10415
10416 // Build an exception specification pointing back at this member.
10417 FunctionProtoType::ExtProtoInfo EPI =
10418 getImplicitMethodEPI(*this, MoveAssignment);
10419 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
10420
10421 // Add the parameter to the operator.
10422 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
10423 ClassLoc, ClassLoc,
10424 /*Id=*/nullptr, ArgType,
10425 /*TInfo=*/nullptr, SC_None,
10426 nullptr);
10427 MoveAssignment->setParams(FromParam);
10428
10429 AddOverriddenMethods(ClassDecl, MoveAssignment);
10430
10431 MoveAssignment->setTrivial(
10432 ClassDecl->needsOverloadResolutionForMoveAssignment()
10433 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
10434 : ClassDecl->hasTrivialMoveAssignment());
10435
10436 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
10437 ClassDecl->setImplicitMoveAssignmentIsDeleted();
10438 SetDeclDeleted(MoveAssignment, ClassLoc);
10439 }
10440
10441 // Note that we have added this copy-assignment operator.
10442 ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
10443
10444 if (Scope *S = getScopeForContext(ClassDecl))
10445 PushOnScopeChains(MoveAssignment, S, false);
10446 ClassDecl->addDecl(MoveAssignment);
10447
10448 return MoveAssignment;
10449 }
10450
10451 /// Check if we're implicitly defining a move assignment operator for a class
10452 /// with virtual bases. Such a move assignment might move-assign the virtual
10453 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)10454 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
10455 SourceLocation CurrentLocation) {
10456 assert(!Class->isDependentContext() && "should not define dependent move");
10457
10458 // Only a virtual base could get implicitly move-assigned multiple times.
10459 // Only a non-trivial move assignment can observe this. We only want to
10460 // diagnose if we implicitly define an assignment operator that assigns
10461 // two base classes, both of which move-assign the same virtual base.
10462 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
10463 Class->getNumBases() < 2)
10464 return;
10465
10466 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
10467 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
10468 VBaseMap VBases;
10469
10470 for (auto &BI : Class->bases()) {
10471 Worklist.push_back(&BI);
10472 while (!Worklist.empty()) {
10473 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
10474 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
10475
10476 // If the base has no non-trivial move assignment operators,
10477 // we don't care about moves from it.
10478 if (!Base->hasNonTrivialMoveAssignment())
10479 continue;
10480
10481 // If there's nothing virtual here, skip it.
10482 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
10483 continue;
10484
10485 // If we're not actually going to call a move assignment for this base,
10486 // or the selected move assignment is trivial, skip it.
10487 Sema::SpecialMemberOverloadResult *SMOR =
10488 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
10489 /*ConstArg*/false, /*VolatileArg*/false,
10490 /*RValueThis*/true, /*ConstThis*/false,
10491 /*VolatileThis*/false);
10492 if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
10493 !SMOR->getMethod()->isMoveAssignmentOperator())
10494 continue;
10495
10496 if (BaseSpec->isVirtual()) {
10497 // We're going to move-assign this virtual base, and its move
10498 // assignment operator is not trivial. If this can happen for
10499 // multiple distinct direct bases of Class, diagnose it. (If it
10500 // only happens in one base, we'll diagnose it when synthesizing
10501 // that base class's move assignment operator.)
10502 CXXBaseSpecifier *&Existing =
10503 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
10504 .first->second;
10505 if (Existing && Existing != &BI) {
10506 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
10507 << Class << Base;
10508 S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
10509 << (Base->getCanonicalDecl() ==
10510 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10511 << Base << Existing->getType() << Existing->getSourceRange();
10512 S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
10513 << (Base->getCanonicalDecl() ==
10514 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
10515 << Base << BI.getType() << BaseSpec->getSourceRange();
10516
10517 // Only diagnose each vbase once.
10518 Existing = nullptr;
10519 }
10520 } else {
10521 // Only walk over bases that have defaulted move assignment operators.
10522 // We assume that any user-provided move assignment operator handles
10523 // the multiple-moves-of-vbase case itself somehow.
10524 if (!SMOR->getMethod()->isDefaulted())
10525 continue;
10526
10527 // We're going to move the base classes of Base. Add them to the list.
10528 for (auto &BI : Base->bases())
10529 Worklist.push_back(&BI);
10530 }
10531 }
10532 }
10533 }
10534
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)10535 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
10536 CXXMethodDecl *MoveAssignOperator) {
10537 assert((MoveAssignOperator->isDefaulted() &&
10538 MoveAssignOperator->isOverloadedOperator() &&
10539 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
10540 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
10541 !MoveAssignOperator->isDeleted()) &&
10542 "DefineImplicitMoveAssignment called for wrong function");
10543
10544 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
10545
10546 if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
10547 MoveAssignOperator->setInvalidDecl();
10548 return;
10549 }
10550
10551 MoveAssignOperator->markUsed(Context);
10552
10553 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
10554 DiagnosticErrorTrap Trap(Diags);
10555
10556 // C++0x [class.copy]p28:
10557 // The implicitly-defined or move assignment operator for a non-union class
10558 // X performs memberwise move assignment of its subobjects. The direct base
10559 // classes of X are assigned first, in the order of their declaration in the
10560 // base-specifier-list, and then the immediate non-static data members of X
10561 // are assigned, in the order in which they were declared in the class
10562 // definition.
10563
10564 // Issue a warning if our implicit move assignment operator will move
10565 // from a virtual base more than once.
10566 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
10567
10568 // The statements that form the synthesized function body.
10569 SmallVector<Stmt*, 8> Statements;
10570
10571 // The parameter for the "other" object, which we are move from.
10572 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
10573 QualType OtherRefType = Other->getType()->
10574 getAs<RValueReferenceType>()->getPointeeType();
10575 assert(!OtherRefType.getQualifiers() &&
10576 "Bad argument type of defaulted move assignment");
10577
10578 // Our location for everything implicitly-generated.
10579 SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
10580 ? MoveAssignOperator->getLocEnd()
10581 : MoveAssignOperator->getLocation();
10582
10583 // Builds a reference to the "other" object.
10584 RefBuilder OtherRef(Other, OtherRefType);
10585 // Cast to rvalue.
10586 MoveCastBuilder MoveOther(OtherRef);
10587
10588 // Builds the "this" pointer.
10589 ThisBuilder This;
10590
10591 // Assign base classes.
10592 bool Invalid = false;
10593 for (auto &Base : ClassDecl->bases()) {
10594 // C++11 [class.copy]p28:
10595 // It is unspecified whether subobjects representing virtual base classes
10596 // are assigned more than once by the implicitly-defined copy assignment
10597 // operator.
10598 // FIXME: Do not assign to a vbase that will be assigned by some other base
10599 // class. For a move-assignment, this can result in the vbase being moved
10600 // multiple times.
10601
10602 // Form the assignment:
10603 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
10604 QualType BaseType = Base.getType().getUnqualifiedType();
10605 if (!BaseType->isRecordType()) {
10606 Invalid = true;
10607 continue;
10608 }
10609
10610 CXXCastPath BasePath;
10611 BasePath.push_back(&Base);
10612
10613 // Construct the "from" expression, which is an implicit cast to the
10614 // appropriately-qualified base type.
10615 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
10616
10617 // Dereference "this".
10618 DerefBuilder DerefThis(This);
10619
10620 // Implicitly cast "this" to the appropriately-qualified base type.
10621 CastBuilder To(DerefThis,
10622 Context.getCVRQualifiedType(
10623 BaseType, MoveAssignOperator->getTypeQualifiers()),
10624 VK_LValue, BasePath);
10625
10626 // Build the move.
10627 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
10628 To, From,
10629 /*CopyingBaseSubobject=*/true,
10630 /*Copying=*/false);
10631 if (Move.isInvalid()) {
10632 Diag(CurrentLocation, diag::note_member_synthesized_at)
10633 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10634 MoveAssignOperator->setInvalidDecl();
10635 return;
10636 }
10637
10638 // Success! Record the move.
10639 Statements.push_back(Move.getAs<Expr>());
10640 }
10641
10642 // Assign non-static members.
10643 for (auto *Field : ClassDecl->fields()) {
10644 if (Field->isUnnamedBitfield())
10645 continue;
10646
10647 if (Field->isInvalidDecl()) {
10648 Invalid = true;
10649 continue;
10650 }
10651
10652 // Check for members of reference type; we can't move those.
10653 if (Field->getType()->isReferenceType()) {
10654 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10655 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10656 Diag(Field->getLocation(), diag::note_declared_at);
10657 Diag(CurrentLocation, diag::note_member_synthesized_at)
10658 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10659 Invalid = true;
10660 continue;
10661 }
10662
10663 // Check for members of const-qualified, non-class type.
10664 QualType BaseType = Context.getBaseElementType(Field->getType());
10665 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10666 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10667 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10668 Diag(Field->getLocation(), diag::note_declared_at);
10669 Diag(CurrentLocation, diag::note_member_synthesized_at)
10670 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10671 Invalid = true;
10672 continue;
10673 }
10674
10675 // Suppress assigning zero-width bitfields.
10676 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10677 continue;
10678
10679 QualType FieldType = Field->getType().getNonReferenceType();
10680 if (FieldType->isIncompleteArrayType()) {
10681 assert(ClassDecl->hasFlexibleArrayMember() &&
10682 "Incomplete array type is not valid");
10683 continue;
10684 }
10685
10686 // Build references to the field in the object we're copying from and to.
10687 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10688 LookupMemberName);
10689 MemberLookup.addDecl(Field);
10690 MemberLookup.resolveKind();
10691 MemberBuilder From(MoveOther, OtherRefType,
10692 /*IsArrow=*/false, MemberLookup);
10693 MemberBuilder To(This, getCurrentThisType(),
10694 /*IsArrow=*/true, MemberLookup);
10695
10696 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
10697 "Member reference with rvalue base must be rvalue except for reference "
10698 "members, which aren't allowed for move assignment.");
10699
10700 // Build the move of this field.
10701 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
10702 To, From,
10703 /*CopyingBaseSubobject=*/false,
10704 /*Copying=*/false);
10705 if (Move.isInvalid()) {
10706 Diag(CurrentLocation, diag::note_member_synthesized_at)
10707 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10708 MoveAssignOperator->setInvalidDecl();
10709 return;
10710 }
10711
10712 // Success! Record the copy.
10713 Statements.push_back(Move.getAs<Stmt>());
10714 }
10715
10716 if (!Invalid) {
10717 // Add a "return *this;"
10718 ExprResult ThisObj =
10719 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10720
10721 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10722 if (Return.isInvalid())
10723 Invalid = true;
10724 else {
10725 Statements.push_back(Return.getAs<Stmt>());
10726
10727 if (Trap.hasErrorOccurred()) {
10728 Diag(CurrentLocation, diag::note_member_synthesized_at)
10729 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10730 Invalid = true;
10731 }
10732 }
10733 }
10734
10735 // The exception specification is needed because we are defining the
10736 // function.
10737 ResolveExceptionSpec(CurrentLocation,
10738 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
10739
10740 if (Invalid) {
10741 MoveAssignOperator->setInvalidDecl();
10742 return;
10743 }
10744
10745 StmtResult Body;
10746 {
10747 CompoundScopeRAII CompoundScope(*this);
10748 Body = ActOnCompoundStmt(Loc, Loc, Statements,
10749 /*isStmtExpr=*/false);
10750 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10751 }
10752 MoveAssignOperator->setBody(Body.getAs<Stmt>());
10753
10754 if (ASTMutationListener *L = getASTMutationListener()) {
10755 L->CompletedImplicitDefinition(MoveAssignOperator);
10756 }
10757 }
10758
10759 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl * MD)10760 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10761 CXXRecordDecl *ClassDecl = MD->getParent();
10762
10763 ImplicitExceptionSpecification ExceptSpec(*this);
10764 if (ClassDecl->isInvalidDecl())
10765 return ExceptSpec;
10766
10767 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10768 assert(T->getNumParams() >= 1 && "not a copy ctor");
10769 unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
10770
10771 // C++ [except.spec]p14:
10772 // An implicitly declared special member function (Clause 12) shall have an
10773 // exception-specification. [...]
10774 for (const auto &Base : ClassDecl->bases()) {
10775 // Virtual bases are handled below.
10776 if (Base.isVirtual())
10777 continue;
10778
10779 CXXRecordDecl *BaseClassDecl
10780 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10781 if (CXXConstructorDecl *CopyConstructor =
10782 LookupCopyingConstructor(BaseClassDecl, Quals))
10783 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10784 }
10785 for (const auto &Base : ClassDecl->vbases()) {
10786 CXXRecordDecl *BaseClassDecl
10787 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10788 if (CXXConstructorDecl *CopyConstructor =
10789 LookupCopyingConstructor(BaseClassDecl, Quals))
10790 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10791 }
10792 for (const auto *Field : ClassDecl->fields()) {
10793 QualType FieldType = Context.getBaseElementType(Field->getType());
10794 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10795 if (CXXConstructorDecl *CopyConstructor =
10796 LookupCopyingConstructor(FieldClassDecl,
10797 Quals | FieldType.getCVRQualifiers()))
10798 ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10799 }
10800 }
10801
10802 return ExceptSpec;
10803 }
10804
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)10805 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10806 CXXRecordDecl *ClassDecl) {
10807 // C++ [class.copy]p4:
10808 // If the class definition does not explicitly declare a copy
10809 // constructor, one is declared implicitly.
10810 assert(ClassDecl->needsImplicitCopyConstructor());
10811
10812 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10813 if (DSM.isAlreadyBeingDeclared())
10814 return nullptr;
10815
10816 QualType ClassType = Context.getTypeDeclType(ClassDecl);
10817 QualType ArgType = ClassType;
10818 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10819 if (Const)
10820 ArgType = ArgType.withConst();
10821 ArgType = Context.getLValueReferenceType(ArgType);
10822
10823 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10824 CXXCopyConstructor,
10825 Const);
10826
10827 DeclarationName Name
10828 = Context.DeclarationNames.getCXXConstructorName(
10829 Context.getCanonicalType(ClassType));
10830 SourceLocation ClassLoc = ClassDecl->getLocation();
10831 DeclarationNameInfo NameInfo(Name, ClassLoc);
10832
10833 // An implicitly-declared copy constructor is an inline public
10834 // member of its class.
10835 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10836 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10837 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10838 Constexpr);
10839 CopyConstructor->setAccess(AS_public);
10840 CopyConstructor->setDefaulted();
10841
10842 if (getLangOpts().CUDA) {
10843 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
10844 CopyConstructor,
10845 /* ConstRHS */ Const,
10846 /* Diagnose */ false);
10847 }
10848
10849 // Build an exception specification pointing back at this member.
10850 FunctionProtoType::ExtProtoInfo EPI =
10851 getImplicitMethodEPI(*this, CopyConstructor);
10852 CopyConstructor->setType(
10853 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10854
10855 // Add the parameter to the constructor.
10856 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10857 ClassLoc, ClassLoc,
10858 /*IdentifierInfo=*/nullptr,
10859 ArgType, /*TInfo=*/nullptr,
10860 SC_None, nullptr);
10861 CopyConstructor->setParams(FromParam);
10862
10863 CopyConstructor->setTrivial(
10864 ClassDecl->needsOverloadResolutionForCopyConstructor()
10865 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10866 : ClassDecl->hasTrivialCopyConstructor());
10867
10868 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10869 SetDeclDeleted(CopyConstructor, ClassLoc);
10870
10871 // Note that we have declared this constructor.
10872 ++ASTContext::NumImplicitCopyConstructorsDeclared;
10873
10874 if (Scope *S = getScopeForContext(ClassDecl))
10875 PushOnScopeChains(CopyConstructor, S, false);
10876 ClassDecl->addDecl(CopyConstructor);
10877
10878 return CopyConstructor;
10879 }
10880
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)10881 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10882 CXXConstructorDecl *CopyConstructor) {
10883 assert((CopyConstructor->isDefaulted() &&
10884 CopyConstructor->isCopyConstructor() &&
10885 !CopyConstructor->doesThisDeclarationHaveABody() &&
10886 !CopyConstructor->isDeleted()) &&
10887 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10888
10889 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10890 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10891
10892 // C++11 [class.copy]p7:
10893 // The [definition of an implicitly declared copy constructor] is
10894 // deprecated if the class has a user-declared copy assignment operator
10895 // or a user-declared destructor.
10896 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10897 diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10898
10899 SynthesizedFunctionScope Scope(*this, CopyConstructor);
10900 DiagnosticErrorTrap Trap(Diags);
10901
10902 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10903 Trap.hasErrorOccurred()) {
10904 Diag(CurrentLocation, diag::note_member_synthesized_at)
10905 << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10906 CopyConstructor->setInvalidDecl();
10907 } else {
10908 SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
10909 ? CopyConstructor->getLocEnd()
10910 : CopyConstructor->getLocation();
10911 Sema::CompoundScopeRAII CompoundScope(*this);
10912 CopyConstructor->setBody(
10913 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
10914 }
10915
10916 // The exception specification is needed because we are defining the
10917 // function.
10918 ResolveExceptionSpec(CurrentLocation,
10919 CopyConstructor->getType()->castAs<FunctionProtoType>());
10920
10921 CopyConstructor->markUsed(Context);
10922 MarkVTableUsed(CurrentLocation, ClassDecl);
10923
10924 if (ASTMutationListener *L = getASTMutationListener()) {
10925 L->CompletedImplicitDefinition(CopyConstructor);
10926 }
10927 }
10928
10929 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl * MD)10930 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10931 CXXRecordDecl *ClassDecl = MD->getParent();
10932
10933 // C++ [except.spec]p14:
10934 // An implicitly declared special member function (Clause 12) shall have an
10935 // exception-specification. [...]
10936 ImplicitExceptionSpecification ExceptSpec(*this);
10937 if (ClassDecl->isInvalidDecl())
10938 return ExceptSpec;
10939
10940 // Direct base-class constructors.
10941 for (const auto &B : ClassDecl->bases()) {
10942 if (B.isVirtual()) // Handled below.
10943 continue;
10944
10945 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10946 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10947 CXXConstructorDecl *Constructor =
10948 LookupMovingConstructor(BaseClassDecl, 0);
10949 // If this is a deleted function, add it anyway. This might be conformant
10950 // with the standard. This might not. I'm not sure. It might not matter.
10951 if (Constructor)
10952 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10953 }
10954 }
10955
10956 // Virtual base-class constructors.
10957 for (const auto &B : ClassDecl->vbases()) {
10958 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10959 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10960 CXXConstructorDecl *Constructor =
10961 LookupMovingConstructor(BaseClassDecl, 0);
10962 // If this is a deleted function, add it anyway. This might be conformant
10963 // with the standard. This might not. I'm not sure. It might not matter.
10964 if (Constructor)
10965 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10966 }
10967 }
10968
10969 // Field constructors.
10970 for (const auto *F : ClassDecl->fields()) {
10971 QualType FieldType = Context.getBaseElementType(F->getType());
10972 if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10973 CXXConstructorDecl *Constructor =
10974 LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10975 // If this is a deleted function, add it anyway. This might be conformant
10976 // with the standard. This might not. I'm not sure. It might not matter.
10977 // In particular, the problem is that this function never gets called. It
10978 // might just be ill-formed because this function attempts to refer to
10979 // a deleted function here.
10980 if (Constructor)
10981 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10982 }
10983 }
10984
10985 return ExceptSpec;
10986 }
10987
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)10988 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10989 CXXRecordDecl *ClassDecl) {
10990 assert(ClassDecl->needsImplicitMoveConstructor());
10991
10992 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10993 if (DSM.isAlreadyBeingDeclared())
10994 return nullptr;
10995
10996 QualType ClassType = Context.getTypeDeclType(ClassDecl);
10997 QualType ArgType = Context.getRValueReferenceType(ClassType);
10998
10999 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11000 CXXMoveConstructor,
11001 false);
11002
11003 DeclarationName Name
11004 = Context.DeclarationNames.getCXXConstructorName(
11005 Context.getCanonicalType(ClassType));
11006 SourceLocation ClassLoc = ClassDecl->getLocation();
11007 DeclarationNameInfo NameInfo(Name, ClassLoc);
11008
11009 // C++11 [class.copy]p11:
11010 // An implicitly-declared copy/move constructor is an inline public
11011 // member of its class.
11012 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
11013 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
11014 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
11015 Constexpr);
11016 MoveConstructor->setAccess(AS_public);
11017 MoveConstructor->setDefaulted();
11018
11019 if (getLangOpts().CUDA) {
11020 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
11021 MoveConstructor,
11022 /* ConstRHS */ false,
11023 /* Diagnose */ false);
11024 }
11025
11026 // Build an exception specification pointing back at this member.
11027 FunctionProtoType::ExtProtoInfo EPI =
11028 getImplicitMethodEPI(*this, MoveConstructor);
11029 MoveConstructor->setType(
11030 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
11031
11032 // Add the parameter to the constructor.
11033 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
11034 ClassLoc, ClassLoc,
11035 /*IdentifierInfo=*/nullptr,
11036 ArgType, /*TInfo=*/nullptr,
11037 SC_None, nullptr);
11038 MoveConstructor->setParams(FromParam);
11039
11040 MoveConstructor->setTrivial(
11041 ClassDecl->needsOverloadResolutionForMoveConstructor()
11042 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
11043 : ClassDecl->hasTrivialMoveConstructor());
11044
11045 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
11046 ClassDecl->setImplicitMoveConstructorIsDeleted();
11047 SetDeclDeleted(MoveConstructor, ClassLoc);
11048 }
11049
11050 // Note that we have declared this constructor.
11051 ++ASTContext::NumImplicitMoveConstructorsDeclared;
11052
11053 if (Scope *S = getScopeForContext(ClassDecl))
11054 PushOnScopeChains(MoveConstructor, S, false);
11055 ClassDecl->addDecl(MoveConstructor);
11056
11057 return MoveConstructor;
11058 }
11059
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)11060 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
11061 CXXConstructorDecl *MoveConstructor) {
11062 assert((MoveConstructor->isDefaulted() &&
11063 MoveConstructor->isMoveConstructor() &&
11064 !MoveConstructor->doesThisDeclarationHaveABody() &&
11065 !MoveConstructor->isDeleted()) &&
11066 "DefineImplicitMoveConstructor - call it for implicit move ctor");
11067
11068 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
11069 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
11070
11071 SynthesizedFunctionScope Scope(*this, MoveConstructor);
11072 DiagnosticErrorTrap Trap(Diags);
11073
11074 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
11075 Trap.hasErrorOccurred()) {
11076 Diag(CurrentLocation, diag::note_member_synthesized_at)
11077 << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
11078 MoveConstructor->setInvalidDecl();
11079 } else {
11080 SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
11081 ? MoveConstructor->getLocEnd()
11082 : MoveConstructor->getLocation();
11083 Sema::CompoundScopeRAII CompoundScope(*this);
11084 MoveConstructor->setBody(ActOnCompoundStmt(
11085 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
11086 }
11087
11088 // The exception specification is needed because we are defining the
11089 // function.
11090 ResolveExceptionSpec(CurrentLocation,
11091 MoveConstructor->getType()->castAs<FunctionProtoType>());
11092
11093 MoveConstructor->markUsed(Context);
11094 MarkVTableUsed(CurrentLocation, ClassDecl);
11095
11096 if (ASTMutationListener *L = getASTMutationListener()) {
11097 L->CompletedImplicitDefinition(MoveConstructor);
11098 }
11099 }
11100
isImplicitlyDeleted(FunctionDecl * FD)11101 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
11102 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
11103 }
11104
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11105 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
11106 SourceLocation CurrentLocation,
11107 CXXConversionDecl *Conv) {
11108 CXXRecordDecl *Lambda = Conv->getParent();
11109 CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
11110 // If we are defining a specialization of a conversion to function-ptr
11111 // cache the deduced template arguments for this specialization
11112 // so that we can use them to retrieve the corresponding call-operator
11113 // and static-invoker.
11114 const TemplateArgumentList *DeducedTemplateArgs = nullptr;
11115
11116 // Retrieve the corresponding call-operator specialization.
11117 if (Lambda->isGenericLambda()) {
11118 assert(Conv->isFunctionTemplateSpecialization());
11119 FunctionTemplateDecl *CallOpTemplate =
11120 CallOp->getDescribedFunctionTemplate();
11121 DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
11122 void *InsertPos = nullptr;
11123 FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
11124 DeducedTemplateArgs->asArray(),
11125 InsertPos);
11126 assert(CallOpSpec &&
11127 "Conversion operator must have a corresponding call operator");
11128 CallOp = cast<CXXMethodDecl>(CallOpSpec);
11129 }
11130 // Mark the call operator referenced (and add to pending instantiations
11131 // if necessary).
11132 // For both the conversion and static-invoker template specializations
11133 // we construct their body's in this function, so no need to add them
11134 // to the PendingInstantiations.
11135 MarkFunctionReferenced(CurrentLocation, CallOp);
11136
11137 SynthesizedFunctionScope Scope(*this, Conv);
11138 DiagnosticErrorTrap Trap(Diags);
11139
11140 // Retrieve the static invoker...
11141 CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
11142 // ... and get the corresponding specialization for a generic lambda.
11143 if (Lambda->isGenericLambda()) {
11144 assert(DeducedTemplateArgs &&
11145 "Must have deduced template arguments from Conversion Operator");
11146 FunctionTemplateDecl *InvokeTemplate =
11147 Invoker->getDescribedFunctionTemplate();
11148 void *InsertPos = nullptr;
11149 FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
11150 DeducedTemplateArgs->asArray(),
11151 InsertPos);
11152 assert(InvokeSpec &&
11153 "Must have a corresponding static invoker specialization");
11154 Invoker = cast<CXXMethodDecl>(InvokeSpec);
11155 }
11156 // Construct the body of the conversion function { return __invoke; }.
11157 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
11158 VK_LValue, Conv->getLocation()).get();
11159 assert(FunctionRef && "Can't refer to __invoke function?");
11160 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
11161 Conv->setBody(new (Context) CompoundStmt(Context, Return,
11162 Conv->getLocation(),
11163 Conv->getLocation()));
11164
11165 Conv->markUsed(Context);
11166 Conv->setReferenced();
11167
11168 // Fill in the __invoke function with a dummy implementation. IR generation
11169 // will fill in the actual details.
11170 Invoker->markUsed(Context);
11171 Invoker->setReferenced();
11172 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
11173
11174 if (ASTMutationListener *L = getASTMutationListener()) {
11175 L->CompletedImplicitDefinition(Conv);
11176 L->CompletedImplicitDefinition(Invoker);
11177 }
11178 }
11179
11180
11181
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)11182 void Sema::DefineImplicitLambdaToBlockPointerConversion(
11183 SourceLocation CurrentLocation,
11184 CXXConversionDecl *Conv)
11185 {
11186 assert(!Conv->getParent()->isGenericLambda());
11187
11188 Conv->markUsed(Context);
11189
11190 SynthesizedFunctionScope Scope(*this, Conv);
11191 DiagnosticErrorTrap Trap(Diags);
11192
11193 // Copy-initialize the lambda object as needed to capture it.
11194 Expr *This = ActOnCXXThis(CurrentLocation).get();
11195 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
11196
11197 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
11198 Conv->getLocation(),
11199 Conv, DerefThis);
11200
11201 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
11202 // behavior. Note that only the general conversion function does this
11203 // (since it's unusable otherwise); in the case where we inline the
11204 // block literal, it has block literal lifetime semantics.
11205 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
11206 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
11207 CK_CopyAndAutoreleaseBlockObject,
11208 BuildBlock.get(), nullptr, VK_RValue);
11209
11210 if (BuildBlock.isInvalid()) {
11211 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11212 Conv->setInvalidDecl();
11213 return;
11214 }
11215
11216 // Create the return statement that returns the block from the conversion
11217 // function.
11218 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
11219 if (Return.isInvalid()) {
11220 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
11221 Conv->setInvalidDecl();
11222 return;
11223 }
11224
11225 // Set the body of the conversion function.
11226 Stmt *ReturnS = Return.get();
11227 Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
11228 Conv->getLocation(),
11229 Conv->getLocation()));
11230
11231 // We're done; notify the mutation listener, if any.
11232 if (ASTMutationListener *L = getASTMutationListener()) {
11233 L->CompletedImplicitDefinition(Conv);
11234 }
11235 }
11236
11237 /// \brief Determine whether the given list arguments contains exactly one
11238 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)11239 static bool hasOneRealArgument(MultiExprArg Args) {
11240 switch (Args.size()) {
11241 case 0:
11242 return false;
11243
11244 default:
11245 if (!Args[1]->isDefaultArgument())
11246 return false;
11247
11248 // fall through
11249 case 1:
11250 return !Args[0]->isDefaultArgument();
11251 }
11252
11253 return false;
11254 }
11255
11256 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11257 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11258 CXXConstructorDecl *Constructor,
11259 MultiExprArg ExprArgs,
11260 bool HadMultipleCandidates,
11261 bool IsListInitialization,
11262 bool IsStdInitListInitialization,
11263 bool RequiresZeroInit,
11264 unsigned ConstructKind,
11265 SourceRange ParenRange) {
11266 bool Elidable = false;
11267
11268 // C++0x [class.copy]p34:
11269 // When certain criteria are met, an implementation is allowed to
11270 // omit the copy/move construction of a class object, even if the
11271 // copy/move constructor and/or destructor for the object have
11272 // side effects. [...]
11273 // - when a temporary class object that has not been bound to a
11274 // reference (12.2) would be copied/moved to a class object
11275 // with the same cv-unqualified type, the copy/move operation
11276 // can be omitted by constructing the temporary object
11277 // directly into the target of the omitted copy/move
11278 if (ConstructKind == CXXConstructExpr::CK_Complete &&
11279 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
11280 Expr *SubExpr = ExprArgs[0];
11281 Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
11282 }
11283
11284 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
11285 Elidable, ExprArgs, HadMultipleCandidates,
11286 IsListInitialization,
11287 IsStdInitListInitialization, RequiresZeroInit,
11288 ConstructKind, ParenRange);
11289 }
11290
11291 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
11292 /// including handling of its default argument expressions.
11293 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool IsStdInitListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)11294 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
11295 CXXConstructorDecl *Constructor, bool Elidable,
11296 MultiExprArg ExprArgs,
11297 bool HadMultipleCandidates,
11298 bool IsListInitialization,
11299 bool IsStdInitListInitialization,
11300 bool RequiresZeroInit,
11301 unsigned ConstructKind,
11302 SourceRange ParenRange) {
11303 MarkFunctionReferenced(ConstructLoc, Constructor);
11304 return CXXConstructExpr::Create(
11305 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
11306 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
11307 RequiresZeroInit,
11308 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
11309 ParenRange);
11310 }
11311
BuildCXXDefaultInitExpr(SourceLocation Loc,FieldDecl * Field)11312 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
11313 assert(Field->hasInClassInitializer());
11314
11315 // If we already have the in-class initializer nothing needs to be done.
11316 if (Field->getInClassInitializer())
11317 return CXXDefaultInitExpr::Create(Context, Loc, Field);
11318
11319 // Maybe we haven't instantiated the in-class initializer. Go check the
11320 // pattern FieldDecl to see if it has one.
11321 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
11322
11323 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
11324 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
11325 DeclContext::lookup_result Lookup =
11326 ClassPattern->lookup(Field->getDeclName());
11327 assert(Lookup.size() == 1);
11328 FieldDecl *Pattern = cast<FieldDecl>(Lookup[0]);
11329 if (InstantiateInClassInitializer(Loc, Field, Pattern,
11330 getTemplateInstantiationArgs(Field)))
11331 return ExprError();
11332 return CXXDefaultInitExpr::Create(Context, Loc, Field);
11333 }
11334
11335 // DR1351:
11336 // If the brace-or-equal-initializer of a non-static data member
11337 // invokes a defaulted default constructor of its class or of an
11338 // enclosing class in a potentially evaluated subexpression, the
11339 // program is ill-formed.
11340 //
11341 // This resolution is unworkable: the exception specification of the
11342 // default constructor can be needed in an unevaluated context, in
11343 // particular, in the operand of a noexcept-expression, and we can be
11344 // unable to compute an exception specification for an enclosed class.
11345 //
11346 // Any attempt to resolve the exception specification of a defaulted default
11347 // constructor before the initializer is lexically complete will ultimately
11348 // come here at which point we can diagnose it.
11349 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
11350 if (OutermostClass == ParentRD) {
11351 Diag(Field->getLocEnd(), diag::err_in_class_initializer_not_yet_parsed)
11352 << ParentRD << Field;
11353 } else {
11354 Diag(Field->getLocEnd(),
11355 diag::err_in_class_initializer_not_yet_parsed_outer_class)
11356 << ParentRD << OutermostClass << Field;
11357 }
11358
11359 return ExprError();
11360 }
11361
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)11362 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
11363 if (VD->isInvalidDecl()) return;
11364
11365 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
11366 if (ClassDecl->isInvalidDecl()) return;
11367 if (ClassDecl->hasIrrelevantDestructor()) return;
11368 if (ClassDecl->isDependentContext()) return;
11369
11370 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
11371 MarkFunctionReferenced(VD->getLocation(), Destructor);
11372 CheckDestructorAccess(VD->getLocation(), Destructor,
11373 PDiag(diag::err_access_dtor_var)
11374 << VD->getDeclName()
11375 << VD->getType());
11376 DiagnoseUseOfDecl(Destructor, VD->getLocation());
11377
11378 if (Destructor->isTrivial()) return;
11379 if (!VD->hasGlobalStorage()) return;
11380
11381 // Emit warning for non-trivial dtor in global scope (a real global,
11382 // class-static, function-static).
11383 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
11384
11385 // TODO: this should be re-enabled for static locals by !CXAAtExit
11386 if (!VD->isStaticLocal())
11387 Diag(VD->getLocation(), diag::warn_global_destructor);
11388 }
11389
11390 /// \brief Given a constructor and the set of arguments provided for the
11391 /// constructor, convert the arguments and add any required default arguments
11392 /// to form a proper call to this constructor.
11393 ///
11394 /// \returns true if an error occurred, false otherwise.
11395 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)11396 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
11397 MultiExprArg ArgsPtr,
11398 SourceLocation Loc,
11399 SmallVectorImpl<Expr*> &ConvertedArgs,
11400 bool AllowExplicit,
11401 bool IsListInitialization) {
11402 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
11403 unsigned NumArgs = ArgsPtr.size();
11404 Expr **Args = ArgsPtr.data();
11405
11406 const FunctionProtoType *Proto
11407 = Constructor->getType()->getAs<FunctionProtoType>();
11408 assert(Proto && "Constructor without a prototype?");
11409 unsigned NumParams = Proto->getNumParams();
11410
11411 // If too few arguments are available, we'll fill in the rest with defaults.
11412 if (NumArgs < NumParams)
11413 ConvertedArgs.reserve(NumParams);
11414 else
11415 ConvertedArgs.reserve(NumArgs);
11416
11417 VariadicCallType CallType =
11418 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
11419 SmallVector<Expr *, 8> AllArgs;
11420 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
11421 Proto, 0,
11422 llvm::makeArrayRef(Args, NumArgs),
11423 AllArgs,
11424 CallType, AllowExplicit,
11425 IsListInitialization);
11426 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
11427
11428 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
11429
11430 CheckConstructorCall(Constructor,
11431 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
11432 Proto, Loc);
11433
11434 return Invalid;
11435 }
11436
11437 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)11438 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
11439 const FunctionDecl *FnDecl) {
11440 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
11441 if (isa<NamespaceDecl>(DC)) {
11442 return SemaRef.Diag(FnDecl->getLocation(),
11443 diag::err_operator_new_delete_declared_in_namespace)
11444 << FnDecl->getDeclName();
11445 }
11446
11447 if (isa<TranslationUnitDecl>(DC) &&
11448 FnDecl->getStorageClass() == SC_Static) {
11449 return SemaRef.Diag(FnDecl->getLocation(),
11450 diag::err_operator_new_delete_declared_static)
11451 << FnDecl->getDeclName();
11452 }
11453
11454 return false;
11455 }
11456
11457 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)11458 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
11459 CanQualType ExpectedResultType,
11460 CanQualType ExpectedFirstParamType,
11461 unsigned DependentParamTypeDiag,
11462 unsigned InvalidParamTypeDiag) {
11463 QualType ResultType =
11464 FnDecl->getType()->getAs<FunctionType>()->getReturnType();
11465
11466 // Check that the result type is not dependent.
11467 if (ResultType->isDependentType())
11468 return SemaRef.Diag(FnDecl->getLocation(),
11469 diag::err_operator_new_delete_dependent_result_type)
11470 << FnDecl->getDeclName() << ExpectedResultType;
11471
11472 // Check that the result type is what we expect.
11473 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
11474 return SemaRef.Diag(FnDecl->getLocation(),
11475 diag::err_operator_new_delete_invalid_result_type)
11476 << FnDecl->getDeclName() << ExpectedResultType;
11477
11478 // A function template must have at least 2 parameters.
11479 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
11480 return SemaRef.Diag(FnDecl->getLocation(),
11481 diag::err_operator_new_delete_template_too_few_parameters)
11482 << FnDecl->getDeclName();
11483
11484 // The function decl must have at least 1 parameter.
11485 if (FnDecl->getNumParams() == 0)
11486 return SemaRef.Diag(FnDecl->getLocation(),
11487 diag::err_operator_new_delete_too_few_parameters)
11488 << FnDecl->getDeclName();
11489
11490 // Check the first parameter type is not dependent.
11491 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
11492 if (FirstParamType->isDependentType())
11493 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
11494 << FnDecl->getDeclName() << ExpectedFirstParamType;
11495
11496 // Check that the first parameter type is what we expect.
11497 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
11498 ExpectedFirstParamType)
11499 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
11500 << FnDecl->getDeclName() << ExpectedFirstParamType;
11501
11502 return false;
11503 }
11504
11505 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)11506 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
11507 // C++ [basic.stc.dynamic.allocation]p1:
11508 // A program is ill-formed if an allocation function is declared in a
11509 // namespace scope other than global scope or declared static in global
11510 // scope.
11511 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11512 return true;
11513
11514 CanQualType SizeTy =
11515 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
11516
11517 // C++ [basic.stc.dynamic.allocation]p1:
11518 // The return type shall be void*. The first parameter shall have type
11519 // std::size_t.
11520 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
11521 SizeTy,
11522 diag::err_operator_new_dependent_param_type,
11523 diag::err_operator_new_param_type))
11524 return true;
11525
11526 // C++ [basic.stc.dynamic.allocation]p1:
11527 // The first parameter shall not have an associated default argument.
11528 if (FnDecl->getParamDecl(0)->hasDefaultArg())
11529 return SemaRef.Diag(FnDecl->getLocation(),
11530 diag::err_operator_new_default_arg)
11531 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
11532
11533 return false;
11534 }
11535
11536 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)11537 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
11538 // C++ [basic.stc.dynamic.deallocation]p1:
11539 // A program is ill-formed if deallocation functions are declared in a
11540 // namespace scope other than global scope or declared static in global
11541 // scope.
11542 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
11543 return true;
11544
11545 // C++ [basic.stc.dynamic.deallocation]p2:
11546 // Each deallocation function shall return void and its first parameter
11547 // shall be void*.
11548 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
11549 SemaRef.Context.VoidPtrTy,
11550 diag::err_operator_delete_dependent_param_type,
11551 diag::err_operator_delete_param_type))
11552 return true;
11553
11554 return false;
11555 }
11556
11557 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
11558 /// of this overloaded operator is well-formed. If so, returns false;
11559 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)11560 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
11561 assert(FnDecl && FnDecl->isOverloadedOperator() &&
11562 "Expected an overloaded operator declaration");
11563
11564 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
11565
11566 // C++ [over.oper]p5:
11567 // The allocation and deallocation functions, operator new,
11568 // operator new[], operator delete and operator delete[], are
11569 // described completely in 3.7.3. The attributes and restrictions
11570 // found in the rest of this subclause do not apply to them unless
11571 // explicitly stated in 3.7.3.
11572 if (Op == OO_Delete || Op == OO_Array_Delete)
11573 return CheckOperatorDeleteDeclaration(*this, FnDecl);
11574
11575 if (Op == OO_New || Op == OO_Array_New)
11576 return CheckOperatorNewDeclaration(*this, FnDecl);
11577
11578 // C++ [over.oper]p6:
11579 // An operator function shall either be a non-static member
11580 // function or be a non-member function and have at least one
11581 // parameter whose type is a class, a reference to a class, an
11582 // enumeration, or a reference to an enumeration.
11583 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
11584 if (MethodDecl->isStatic())
11585 return Diag(FnDecl->getLocation(),
11586 diag::err_operator_overload_static) << FnDecl->getDeclName();
11587 } else {
11588 bool ClassOrEnumParam = false;
11589 for (auto Param : FnDecl->params()) {
11590 QualType ParamType = Param->getType().getNonReferenceType();
11591 if (ParamType->isDependentType() || ParamType->isRecordType() ||
11592 ParamType->isEnumeralType()) {
11593 ClassOrEnumParam = true;
11594 break;
11595 }
11596 }
11597
11598 if (!ClassOrEnumParam)
11599 return Diag(FnDecl->getLocation(),
11600 diag::err_operator_overload_needs_class_or_enum)
11601 << FnDecl->getDeclName();
11602 }
11603
11604 // C++ [over.oper]p8:
11605 // An operator function cannot have default arguments (8.3.6),
11606 // except where explicitly stated below.
11607 //
11608 // Only the function-call operator allows default arguments
11609 // (C++ [over.call]p1).
11610 if (Op != OO_Call) {
11611 for (auto Param : FnDecl->params()) {
11612 if (Param->hasDefaultArg())
11613 return Diag(Param->getLocation(),
11614 diag::err_operator_overload_default_arg)
11615 << FnDecl->getDeclName() << Param->getDefaultArgRange();
11616 }
11617 }
11618
11619 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
11620 { false, false, false }
11621 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11622 , { Unary, Binary, MemberOnly }
11623 #include "clang/Basic/OperatorKinds.def"
11624 };
11625
11626 bool CanBeUnaryOperator = OperatorUses[Op][0];
11627 bool CanBeBinaryOperator = OperatorUses[Op][1];
11628 bool MustBeMemberOperator = OperatorUses[Op][2];
11629
11630 // C++ [over.oper]p8:
11631 // [...] Operator functions cannot have more or fewer parameters
11632 // than the number required for the corresponding operator, as
11633 // described in the rest of this subclause.
11634 unsigned NumParams = FnDecl->getNumParams()
11635 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
11636 if (Op != OO_Call &&
11637 ((NumParams == 1 && !CanBeUnaryOperator) ||
11638 (NumParams == 2 && !CanBeBinaryOperator) ||
11639 (NumParams < 1) || (NumParams > 2))) {
11640 // We have the wrong number of parameters.
11641 unsigned ErrorKind;
11642 if (CanBeUnaryOperator && CanBeBinaryOperator) {
11643 ErrorKind = 2; // 2 -> unary or binary.
11644 } else if (CanBeUnaryOperator) {
11645 ErrorKind = 0; // 0 -> unary
11646 } else {
11647 assert(CanBeBinaryOperator &&
11648 "All non-call overloaded operators are unary or binary!");
11649 ErrorKind = 1; // 1 -> binary
11650 }
11651
11652 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
11653 << FnDecl->getDeclName() << NumParams << ErrorKind;
11654 }
11655
11656 // Overloaded operators other than operator() cannot be variadic.
11657 if (Op != OO_Call &&
11658 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
11659 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
11660 << FnDecl->getDeclName();
11661 }
11662
11663 // Some operators must be non-static member functions.
11664 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
11665 return Diag(FnDecl->getLocation(),
11666 diag::err_operator_overload_must_be_member)
11667 << FnDecl->getDeclName();
11668 }
11669
11670 // C++ [over.inc]p1:
11671 // The user-defined function called operator++ implements the
11672 // prefix and postfix ++ operator. If this function is a member
11673 // function with no parameters, or a non-member function with one
11674 // parameter of class or enumeration type, it defines the prefix
11675 // increment operator ++ for objects of that type. If the function
11676 // is a member function with one parameter (which shall be of type
11677 // int) or a non-member function with two parameters (the second
11678 // of which shall be of type int), it defines the postfix
11679 // increment operator ++ for objects of that type.
11680 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
11681 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
11682 QualType ParamType = LastParam->getType();
11683
11684 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
11685 !ParamType->isDependentType())
11686 return Diag(LastParam->getLocation(),
11687 diag::err_operator_overload_post_incdec_must_be_int)
11688 << LastParam->getType() << (Op == OO_MinusMinus);
11689 }
11690
11691 return false;
11692 }
11693
11694 /// CheckLiteralOperatorDeclaration - Check whether the declaration
11695 /// of this literal operator function is well-formed. If so, returns
11696 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)11697 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
11698 if (isa<CXXMethodDecl>(FnDecl)) {
11699 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
11700 << FnDecl->getDeclName();
11701 return true;
11702 }
11703
11704 if (FnDecl->isExternC()) {
11705 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
11706 return true;
11707 }
11708
11709 bool Valid = false;
11710
11711 // This might be the definition of a literal operator template.
11712 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
11713 // This might be a specialization of a literal operator template.
11714 if (!TpDecl)
11715 TpDecl = FnDecl->getPrimaryTemplate();
11716
11717 // template <char...> type operator "" name() and
11718 // template <class T, T...> type operator "" name() are the only valid
11719 // template signatures, and the only valid signatures with no parameters.
11720 if (TpDecl) {
11721 if (FnDecl->param_size() == 0) {
11722 // Must have one or two template parameters
11723 TemplateParameterList *Params = TpDecl->getTemplateParameters();
11724 if (Params->size() == 1) {
11725 NonTypeTemplateParmDecl *PmDecl =
11726 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
11727
11728 // The template parameter must be a char parameter pack.
11729 if (PmDecl && PmDecl->isTemplateParameterPack() &&
11730 Context.hasSameType(PmDecl->getType(), Context.CharTy))
11731 Valid = true;
11732 } else if (Params->size() == 2) {
11733 TemplateTypeParmDecl *PmType =
11734 dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
11735 NonTypeTemplateParmDecl *PmArgs =
11736 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
11737
11738 // The second template parameter must be a parameter pack with the
11739 // first template parameter as its type.
11740 if (PmType && PmArgs &&
11741 !PmType->isTemplateParameterPack() &&
11742 PmArgs->isTemplateParameterPack()) {
11743 const TemplateTypeParmType *TArgs =
11744 PmArgs->getType()->getAs<TemplateTypeParmType>();
11745 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
11746 TArgs->getIndex() == PmType->getIndex()) {
11747 Valid = true;
11748 if (ActiveTemplateInstantiations.empty())
11749 Diag(FnDecl->getLocation(),
11750 diag::ext_string_literal_operator_template);
11751 }
11752 }
11753 }
11754 }
11755 } else if (FnDecl->param_size()) {
11756 // Check the first parameter
11757 FunctionDecl::param_iterator Param = FnDecl->param_begin();
11758
11759 QualType T = (*Param)->getType().getUnqualifiedType();
11760
11761 // unsigned long long int, long double, and any character type are allowed
11762 // as the only parameters.
11763 if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
11764 Context.hasSameType(T, Context.LongDoubleTy) ||
11765 Context.hasSameType(T, Context.CharTy) ||
11766 Context.hasSameType(T, Context.WideCharTy) ||
11767 Context.hasSameType(T, Context.Char16Ty) ||
11768 Context.hasSameType(T, Context.Char32Ty)) {
11769 if (++Param == FnDecl->param_end())
11770 Valid = true;
11771 goto FinishedParams;
11772 }
11773
11774 // Otherwise it must be a pointer to const; let's strip those qualifiers.
11775 const PointerType *PT = T->getAs<PointerType>();
11776 if (!PT)
11777 goto FinishedParams;
11778 T = PT->getPointeeType();
11779 if (!T.isConstQualified() || T.isVolatileQualified())
11780 goto FinishedParams;
11781 T = T.getUnqualifiedType();
11782
11783 // Move on to the second parameter;
11784 ++Param;
11785
11786 // If there is no second parameter, the first must be a const char *
11787 if (Param == FnDecl->param_end()) {
11788 if (Context.hasSameType(T, Context.CharTy))
11789 Valid = true;
11790 goto FinishedParams;
11791 }
11792
11793 // const char *, const wchar_t*, const char16_t*, and const char32_t*
11794 // are allowed as the first parameter to a two-parameter function
11795 if (!(Context.hasSameType(T, Context.CharTy) ||
11796 Context.hasSameType(T, Context.WideCharTy) ||
11797 Context.hasSameType(T, Context.Char16Ty) ||
11798 Context.hasSameType(T, Context.Char32Ty)))
11799 goto FinishedParams;
11800
11801 // The second and final parameter must be an std::size_t
11802 T = (*Param)->getType().getUnqualifiedType();
11803 if (Context.hasSameType(T, Context.getSizeType()) &&
11804 ++Param == FnDecl->param_end())
11805 Valid = true;
11806 }
11807
11808 // FIXME: This diagnostic is absolutely terrible.
11809 FinishedParams:
11810 if (!Valid) {
11811 Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11812 << FnDecl->getDeclName();
11813 return true;
11814 }
11815
11816 // A parameter-declaration-clause containing a default argument is not
11817 // equivalent to any of the permitted forms.
11818 for (auto Param : FnDecl->params()) {
11819 if (Param->hasDefaultArg()) {
11820 Diag(Param->getDefaultArgRange().getBegin(),
11821 diag::err_literal_operator_default_argument)
11822 << Param->getDefaultArgRange();
11823 break;
11824 }
11825 }
11826
11827 StringRef LiteralName
11828 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11829 if (LiteralName[0] != '_') {
11830 // C++11 [usrlit.suffix]p1:
11831 // Literal suffix identifiers that do not start with an underscore
11832 // are reserved for future standardization.
11833 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11834 << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11835 }
11836
11837 return false;
11838 }
11839
11840 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11841 /// linkage specification, including the language and (if present)
11842 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
11843 /// language string literal. LBraceLoc, if valid, provides the location of
11844 /// the '{' brace. Otherwise, this linkage specification does not
11845 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)11846 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11847 Expr *LangStr,
11848 SourceLocation LBraceLoc) {
11849 StringLiteral *Lit = cast<StringLiteral>(LangStr);
11850 if (!Lit->isAscii()) {
11851 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
11852 << LangStr->getSourceRange();
11853 return nullptr;
11854 }
11855
11856 StringRef Lang = Lit->getString();
11857 LinkageSpecDecl::LanguageIDs Language;
11858 if (Lang == "C")
11859 Language = LinkageSpecDecl::lang_c;
11860 else if (Lang == "C++")
11861 Language = LinkageSpecDecl::lang_cxx;
11862 else {
11863 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
11864 << LangStr->getSourceRange();
11865 return nullptr;
11866 }
11867
11868 // FIXME: Add all the various semantics of linkage specifications
11869
11870 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
11871 LangStr->getExprLoc(), Language,
11872 LBraceLoc.isValid());
11873 CurContext->addDecl(D);
11874 PushDeclContext(S, D);
11875 return D;
11876 }
11877
11878 /// ActOnFinishLinkageSpecification - Complete the definition of
11879 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
11880 /// valid, it's the position of the closing '}' brace in a linkage
11881 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)11882 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11883 Decl *LinkageSpec,
11884 SourceLocation RBraceLoc) {
11885 if (RBraceLoc.isValid()) {
11886 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11887 LSDecl->setRBraceLoc(RBraceLoc);
11888 }
11889 PopDeclContext();
11890 return LinkageSpec;
11891 }
11892
ActOnEmptyDeclaration(Scope * S,AttributeList * AttrList,SourceLocation SemiLoc)11893 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11894 AttributeList *AttrList,
11895 SourceLocation SemiLoc) {
11896 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11897 // Attribute declarations appertain to empty declaration so we handle
11898 // them here.
11899 if (AttrList)
11900 ProcessDeclAttributeList(S, ED, AttrList);
11901
11902 CurContext->addDecl(ED);
11903 return ED;
11904 }
11905
11906 /// \brief Perform semantic analysis for the variable declaration that
11907 /// occurs within a C++ catch clause, returning the newly-created
11908 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)11909 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11910 TypeSourceInfo *TInfo,
11911 SourceLocation StartLoc,
11912 SourceLocation Loc,
11913 IdentifierInfo *Name) {
11914 bool Invalid = false;
11915 QualType ExDeclType = TInfo->getType();
11916
11917 // Arrays and functions decay.
11918 if (ExDeclType->isArrayType())
11919 ExDeclType = Context.getArrayDecayedType(ExDeclType);
11920 else if (ExDeclType->isFunctionType())
11921 ExDeclType = Context.getPointerType(ExDeclType);
11922
11923 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11924 // The exception-declaration shall not denote a pointer or reference to an
11925 // incomplete type, other than [cv] void*.
11926 // N2844 forbids rvalue references.
11927 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11928 Diag(Loc, diag::err_catch_rvalue_ref);
11929 Invalid = true;
11930 }
11931
11932 QualType BaseType = ExDeclType;
11933 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11934 unsigned DK = diag::err_catch_incomplete;
11935 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11936 BaseType = Ptr->getPointeeType();
11937 Mode = 1;
11938 DK = diag::err_catch_incomplete_ptr;
11939 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11940 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11941 BaseType = Ref->getPointeeType();
11942 Mode = 2;
11943 DK = diag::err_catch_incomplete_ref;
11944 }
11945 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11946 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11947 Invalid = true;
11948
11949 if (!Invalid && !ExDeclType->isDependentType() &&
11950 RequireNonAbstractType(Loc, ExDeclType,
11951 diag::err_abstract_type_in_decl,
11952 AbstractVariableType))
11953 Invalid = true;
11954
11955 // Only the non-fragile NeXT runtime currently supports C++ catches
11956 // of ObjC types, and no runtime supports catching ObjC types by value.
11957 if (!Invalid && getLangOpts().ObjC1) {
11958 QualType T = ExDeclType;
11959 if (const ReferenceType *RT = T->getAs<ReferenceType>())
11960 T = RT->getPointeeType();
11961
11962 if (T->isObjCObjectType()) {
11963 Diag(Loc, diag::err_objc_object_catch);
11964 Invalid = true;
11965 } else if (T->isObjCObjectPointerType()) {
11966 // FIXME: should this be a test for macosx-fragile specifically?
11967 if (getLangOpts().ObjCRuntime.isFragile())
11968 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11969 }
11970 }
11971
11972 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11973 ExDeclType, TInfo, SC_None);
11974 ExDecl->setExceptionVariable(true);
11975
11976 // In ARC, infer 'retaining' for variables of retainable type.
11977 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11978 Invalid = true;
11979
11980 if (!Invalid && !ExDeclType->isDependentType()) {
11981 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11982 // Insulate this from anything else we might currently be parsing.
11983 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11984
11985 // C++ [except.handle]p16:
11986 // The object declared in an exception-declaration or, if the
11987 // exception-declaration does not specify a name, a temporary (12.2) is
11988 // copy-initialized (8.5) from the exception object. [...]
11989 // The object is destroyed when the handler exits, after the destruction
11990 // of any automatic objects initialized within the handler.
11991 //
11992 // We just pretend to initialize the object with itself, then make sure
11993 // it can be destroyed later.
11994 QualType initType = Context.getExceptionObjectType(ExDeclType);
11995
11996 InitializedEntity entity =
11997 InitializedEntity::InitializeVariable(ExDecl);
11998 InitializationKind initKind =
11999 InitializationKind::CreateCopy(Loc, SourceLocation());
12000
12001 Expr *opaqueValue =
12002 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
12003 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
12004 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
12005 if (result.isInvalid())
12006 Invalid = true;
12007 else {
12008 // If the constructor used was non-trivial, set this as the
12009 // "initializer".
12010 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
12011 if (!construct->getConstructor()->isTrivial()) {
12012 Expr *init = MaybeCreateExprWithCleanups(construct);
12013 ExDecl->setInit(init);
12014 }
12015
12016 // And make sure it's destructable.
12017 FinalizeVarWithDestructor(ExDecl, recordType);
12018 }
12019 }
12020 }
12021
12022 if (Invalid)
12023 ExDecl->setInvalidDecl();
12024
12025 return ExDecl;
12026 }
12027
12028 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
12029 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)12030 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
12031 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12032 bool Invalid = D.isInvalidType();
12033
12034 // Check for unexpanded parameter packs.
12035 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12036 UPPC_ExceptionType)) {
12037 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12038 D.getIdentifierLoc());
12039 Invalid = true;
12040 }
12041
12042 IdentifierInfo *II = D.getIdentifier();
12043 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
12044 LookupOrdinaryName,
12045 ForRedeclaration)) {
12046 // The scope should be freshly made just for us. There is just no way
12047 // it contains any previous declaration, except for function parameters in
12048 // a function-try-block's catch statement.
12049 assert(!S->isDeclScope(PrevDecl));
12050 if (isDeclInScope(PrevDecl, CurContext, S)) {
12051 Diag(D.getIdentifierLoc(), diag::err_redefinition)
12052 << D.getIdentifier();
12053 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12054 Invalid = true;
12055 } else if (PrevDecl->isTemplateParameter())
12056 // Maybe we will complain about the shadowed template parameter.
12057 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12058 }
12059
12060 if (D.getCXXScopeSpec().isSet() && !Invalid) {
12061 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
12062 << D.getCXXScopeSpec().getRange();
12063 Invalid = true;
12064 }
12065
12066 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
12067 D.getLocStart(),
12068 D.getIdentifierLoc(),
12069 D.getIdentifier());
12070 if (Invalid)
12071 ExDecl->setInvalidDecl();
12072
12073 // Add the exception declaration into this scope.
12074 if (II)
12075 PushOnScopeChains(ExDecl, S);
12076 else
12077 CurContext->addDecl(ExDecl);
12078
12079 ProcessDeclAttributes(S, ExDecl, D);
12080 return ExDecl;
12081 }
12082
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)12083 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12084 Expr *AssertExpr,
12085 Expr *AssertMessageExpr,
12086 SourceLocation RParenLoc) {
12087 StringLiteral *AssertMessage =
12088 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
12089
12090 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
12091 return nullptr;
12092
12093 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
12094 AssertMessage, RParenLoc, false);
12095 }
12096
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)12097 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
12098 Expr *AssertExpr,
12099 StringLiteral *AssertMessage,
12100 SourceLocation RParenLoc,
12101 bool Failed) {
12102 assert(AssertExpr != nullptr && "Expected non-null condition");
12103 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
12104 !Failed) {
12105 // In a static_assert-declaration, the constant-expression shall be a
12106 // constant expression that can be contextually converted to bool.
12107 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
12108 if (Converted.isInvalid())
12109 Failed = true;
12110
12111 llvm::APSInt Cond;
12112 if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
12113 diag::err_static_assert_expression_is_not_constant,
12114 /*AllowFold=*/false).isInvalid())
12115 Failed = true;
12116
12117 if (!Failed && !Cond) {
12118 SmallString<256> MsgBuffer;
12119 llvm::raw_svector_ostream Msg(MsgBuffer);
12120 if (AssertMessage)
12121 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
12122 Diag(StaticAssertLoc, diag::err_static_assert_failed)
12123 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
12124 Failed = true;
12125 }
12126 }
12127
12128 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
12129 AssertExpr, AssertMessage, RParenLoc,
12130 Failed);
12131
12132 CurContext->addDecl(Decl);
12133 return Decl;
12134 }
12135
12136 /// \brief Perform semantic analysis of the given friend type declaration.
12137 ///
12138 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)12139 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
12140 SourceLocation FriendLoc,
12141 TypeSourceInfo *TSInfo) {
12142 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
12143
12144 QualType T = TSInfo->getType();
12145 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
12146
12147 // C++03 [class.friend]p2:
12148 // An elaborated-type-specifier shall be used in a friend declaration
12149 // for a class.*
12150 //
12151 // * The class-key of the elaborated-type-specifier is required.
12152 if (!ActiveTemplateInstantiations.empty()) {
12153 // Do not complain about the form of friend template types during
12154 // template instantiation; we will already have complained when the
12155 // template was declared.
12156 } else {
12157 if (!T->isElaboratedTypeSpecifier()) {
12158 // If we evaluated the type to a record type, suggest putting
12159 // a tag in front.
12160 if (const RecordType *RT = T->getAs<RecordType>()) {
12161 RecordDecl *RD = RT->getDecl();
12162
12163 SmallString<16> InsertionText(" ");
12164 InsertionText += RD->getKindName();
12165
12166 Diag(TypeRange.getBegin(),
12167 getLangOpts().CPlusPlus11 ?
12168 diag::warn_cxx98_compat_unelaborated_friend_type :
12169 diag::ext_unelaborated_friend_type)
12170 << (unsigned) RD->getTagKind()
12171 << T
12172 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
12173 InsertionText);
12174 } else {
12175 Diag(FriendLoc,
12176 getLangOpts().CPlusPlus11 ?
12177 diag::warn_cxx98_compat_nonclass_type_friend :
12178 diag::ext_nonclass_type_friend)
12179 << T
12180 << TypeRange;
12181 }
12182 } else if (T->getAs<EnumType>()) {
12183 Diag(FriendLoc,
12184 getLangOpts().CPlusPlus11 ?
12185 diag::warn_cxx98_compat_enum_friend :
12186 diag::ext_enum_friend)
12187 << T
12188 << TypeRange;
12189 }
12190
12191 // C++11 [class.friend]p3:
12192 // A friend declaration that does not declare a function shall have one
12193 // of the following forms:
12194 // friend elaborated-type-specifier ;
12195 // friend simple-type-specifier ;
12196 // friend typename-specifier ;
12197 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
12198 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
12199 }
12200
12201 // If the type specifier in a friend declaration designates a (possibly
12202 // cv-qualified) class type, that class is declared as a friend; otherwise,
12203 // the friend declaration is ignored.
12204 return FriendDecl::Create(Context, CurContext,
12205 TSInfo->getTypeLoc().getLocStart(), TSInfo,
12206 FriendLoc);
12207 }
12208
12209 /// Handle a friend tag declaration where the scope specifier was
12210 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)12211 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
12212 unsigned TagSpec, SourceLocation TagLoc,
12213 CXXScopeSpec &SS,
12214 IdentifierInfo *Name,
12215 SourceLocation NameLoc,
12216 AttributeList *Attr,
12217 MultiTemplateParamsArg TempParamLists) {
12218 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
12219
12220 bool isExplicitSpecialization = false;
12221 bool Invalid = false;
12222
12223 if (TemplateParameterList *TemplateParams =
12224 MatchTemplateParametersToScopeSpecifier(
12225 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
12226 isExplicitSpecialization, Invalid)) {
12227 if (TemplateParams->size() > 0) {
12228 // This is a declaration of a class template.
12229 if (Invalid)
12230 return nullptr;
12231
12232 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
12233 NameLoc, Attr, TemplateParams, AS_public,
12234 /*ModulePrivateLoc=*/SourceLocation(),
12235 FriendLoc, TempParamLists.size() - 1,
12236 TempParamLists.data()).get();
12237 } else {
12238 // The "template<>" header is extraneous.
12239 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
12240 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
12241 isExplicitSpecialization = true;
12242 }
12243 }
12244
12245 if (Invalid) return nullptr;
12246
12247 bool isAllExplicitSpecializations = true;
12248 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
12249 if (TempParamLists[I]->size()) {
12250 isAllExplicitSpecializations = false;
12251 break;
12252 }
12253 }
12254
12255 // FIXME: don't ignore attributes.
12256
12257 // If it's explicit specializations all the way down, just forget
12258 // about the template header and build an appropriate non-templated
12259 // friend. TODO: for source fidelity, remember the headers.
12260 if (isAllExplicitSpecializations) {
12261 if (SS.isEmpty()) {
12262 bool Owned = false;
12263 bool IsDependent = false;
12264 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
12265 Attr, AS_public,
12266 /*ModulePrivateLoc=*/SourceLocation(),
12267 MultiTemplateParamsArg(), Owned, IsDependent,
12268 /*ScopedEnumKWLoc=*/SourceLocation(),
12269 /*ScopedEnumUsesClassTag=*/false,
12270 /*UnderlyingType=*/TypeResult(),
12271 /*IsTypeSpecifier=*/false);
12272 }
12273
12274 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12275 ElaboratedTypeKeyword Keyword
12276 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12277 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
12278 *Name, NameLoc);
12279 if (T.isNull())
12280 return nullptr;
12281
12282 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12283 if (isa<DependentNameType>(T)) {
12284 DependentNameTypeLoc TL =
12285 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12286 TL.setElaboratedKeywordLoc(TagLoc);
12287 TL.setQualifierLoc(QualifierLoc);
12288 TL.setNameLoc(NameLoc);
12289 } else {
12290 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
12291 TL.setElaboratedKeywordLoc(TagLoc);
12292 TL.setQualifierLoc(QualifierLoc);
12293 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
12294 }
12295
12296 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12297 TSI, FriendLoc, TempParamLists);
12298 Friend->setAccess(AS_public);
12299 CurContext->addDecl(Friend);
12300 return Friend;
12301 }
12302
12303 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
12304
12305
12306
12307 // Handle the case of a templated-scope friend class. e.g.
12308 // template <class T> class A<T>::B;
12309 // FIXME: we don't support these right now.
12310 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
12311 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
12312 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
12313 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
12314 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
12315 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
12316 TL.setElaboratedKeywordLoc(TagLoc);
12317 TL.setQualifierLoc(SS.getWithLocInContext(Context));
12318 TL.setNameLoc(NameLoc);
12319
12320 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
12321 TSI, FriendLoc, TempParamLists);
12322 Friend->setAccess(AS_public);
12323 Friend->setUnsupportedFriend(true);
12324 CurContext->addDecl(Friend);
12325 return Friend;
12326 }
12327
12328
12329 /// Handle a friend type declaration. This works in tandem with
12330 /// ActOnTag.
12331 ///
12332 /// Notes on friend class templates:
12333 ///
12334 /// We generally treat friend class declarations as if they were
12335 /// declaring a class. So, for example, the elaborated type specifier
12336 /// in a friend declaration is required to obey the restrictions of a
12337 /// class-head (i.e. no typedefs in the scope chain), template
12338 /// parameters are required to match up with simple template-ids, &c.
12339 /// However, unlike when declaring a template specialization, it's
12340 /// okay to refer to a template specialization without an empty
12341 /// template parameter declaration, e.g.
12342 /// friend class A<T>::B<unsigned>;
12343 /// We permit this as a special case; if there are any template
12344 /// parameters present at all, require proper matching, i.e.
12345 /// template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)12346 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
12347 MultiTemplateParamsArg TempParams) {
12348 SourceLocation Loc = DS.getLocStart();
12349
12350 assert(DS.isFriendSpecified());
12351 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12352
12353 // Try to convert the decl specifier to a type. This works for
12354 // friend templates because ActOnTag never produces a ClassTemplateDecl
12355 // for a TUK_Friend.
12356 Declarator TheDeclarator(DS, Declarator::MemberContext);
12357 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
12358 QualType T = TSI->getType();
12359 if (TheDeclarator.isInvalidType())
12360 return nullptr;
12361
12362 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
12363 return nullptr;
12364
12365 // This is definitely an error in C++98. It's probably meant to
12366 // be forbidden in C++0x, too, but the specification is just
12367 // poorly written.
12368 //
12369 // The problem is with declarations like the following:
12370 // template <T> friend A<T>::foo;
12371 // where deciding whether a class C is a friend or not now hinges
12372 // on whether there exists an instantiation of A that causes
12373 // 'foo' to equal C. There are restrictions on class-heads
12374 // (which we declare (by fiat) elaborated friend declarations to
12375 // be) that makes this tractable.
12376 //
12377 // FIXME: handle "template <> friend class A<T>;", which
12378 // is possibly well-formed? Who even knows?
12379 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
12380 Diag(Loc, diag::err_tagless_friend_type_template)
12381 << DS.getSourceRange();
12382 return nullptr;
12383 }
12384
12385 // C++98 [class.friend]p1: A friend of a class is a function
12386 // or class that is not a member of the class . . .
12387 // This is fixed in DR77, which just barely didn't make the C++03
12388 // deadline. It's also a very silly restriction that seriously
12389 // affects inner classes and which nobody else seems to implement;
12390 // thus we never diagnose it, not even in -pedantic.
12391 //
12392 // But note that we could warn about it: it's always useless to
12393 // friend one of your own members (it's not, however, worthless to
12394 // friend a member of an arbitrary specialization of your template).
12395
12396 Decl *D;
12397 if (unsigned NumTempParamLists = TempParams.size())
12398 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
12399 NumTempParamLists,
12400 TempParams.data(),
12401 TSI,
12402 DS.getFriendSpecLoc());
12403 else
12404 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
12405
12406 if (!D)
12407 return nullptr;
12408
12409 D->setAccess(AS_public);
12410 CurContext->addDecl(D);
12411
12412 return D;
12413 }
12414
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)12415 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
12416 MultiTemplateParamsArg TemplateParams) {
12417 const DeclSpec &DS = D.getDeclSpec();
12418
12419 assert(DS.isFriendSpecified());
12420 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
12421
12422 SourceLocation Loc = D.getIdentifierLoc();
12423 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12424
12425 // C++ [class.friend]p1
12426 // A friend of a class is a function or class....
12427 // Note that this sees through typedefs, which is intended.
12428 // It *doesn't* see through dependent types, which is correct
12429 // according to [temp.arg.type]p3:
12430 // If a declaration acquires a function type through a
12431 // type dependent on a template-parameter and this causes
12432 // a declaration that does not use the syntactic form of a
12433 // function declarator to have a function type, the program
12434 // is ill-formed.
12435 if (!TInfo->getType()->isFunctionType()) {
12436 Diag(Loc, diag::err_unexpected_friend);
12437
12438 // It might be worthwhile to try to recover by creating an
12439 // appropriate declaration.
12440 return nullptr;
12441 }
12442
12443 // C++ [namespace.memdef]p3
12444 // - If a friend declaration in a non-local class first declares a
12445 // class or function, the friend class or function is a member
12446 // of the innermost enclosing namespace.
12447 // - The name of the friend is not found by simple name lookup
12448 // until a matching declaration is provided in that namespace
12449 // scope (either before or after the class declaration granting
12450 // friendship).
12451 // - If a friend function is called, its name may be found by the
12452 // name lookup that considers functions from namespaces and
12453 // classes associated with the types of the function arguments.
12454 // - When looking for a prior declaration of a class or a function
12455 // declared as a friend, scopes outside the innermost enclosing
12456 // namespace scope are not considered.
12457
12458 CXXScopeSpec &SS = D.getCXXScopeSpec();
12459 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
12460 DeclarationName Name = NameInfo.getName();
12461 assert(Name);
12462
12463 // Check for unexpanded parameter packs.
12464 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
12465 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
12466 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
12467 return nullptr;
12468
12469 // The context we found the declaration in, or in which we should
12470 // create the declaration.
12471 DeclContext *DC;
12472 Scope *DCScope = S;
12473 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12474 ForRedeclaration);
12475
12476 // There are five cases here.
12477 // - There's no scope specifier and we're in a local class. Only look
12478 // for functions declared in the immediately-enclosing block scope.
12479 // We recover from invalid scope qualifiers as if they just weren't there.
12480 FunctionDecl *FunctionContainingLocalClass = nullptr;
12481 if ((SS.isInvalid() || !SS.isSet()) &&
12482 (FunctionContainingLocalClass =
12483 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
12484 // C++11 [class.friend]p11:
12485 // If a friend declaration appears in a local class and the name
12486 // specified is an unqualified name, a prior declaration is
12487 // looked up without considering scopes that are outside the
12488 // innermost enclosing non-class scope. For a friend function
12489 // declaration, if there is no prior declaration, the program is
12490 // ill-formed.
12491
12492 // Find the innermost enclosing non-class scope. This is the block
12493 // scope containing the local class definition (or for a nested class,
12494 // the outer local class).
12495 DCScope = S->getFnParent();
12496
12497 // Look up the function name in the scope.
12498 Previous.clear(LookupLocalFriendName);
12499 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
12500
12501 if (!Previous.empty()) {
12502 // All possible previous declarations must have the same context:
12503 // either they were declared at block scope or they are members of
12504 // one of the enclosing local classes.
12505 DC = Previous.getRepresentativeDecl()->getDeclContext();
12506 } else {
12507 // This is ill-formed, but provide the context that we would have
12508 // declared the function in, if we were permitted to, for error recovery.
12509 DC = FunctionContainingLocalClass;
12510 }
12511 adjustContextForLocalExternDecl(DC);
12512
12513 // C++ [class.friend]p6:
12514 // A function can be defined in a friend declaration of a class if and
12515 // only if the class is a non-local class (9.8), the function name is
12516 // unqualified, and the function has namespace scope.
12517 if (D.isFunctionDefinition()) {
12518 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
12519 }
12520
12521 // - There's no scope specifier, in which case we just go to the
12522 // appropriate scope and look for a function or function template
12523 // there as appropriate.
12524 } else if (SS.isInvalid() || !SS.isSet()) {
12525 // C++11 [namespace.memdef]p3:
12526 // If the name in a friend declaration is neither qualified nor
12527 // a template-id and the declaration is a function or an
12528 // elaborated-type-specifier, the lookup to determine whether
12529 // the entity has been previously declared shall not consider
12530 // any scopes outside the innermost enclosing namespace.
12531 bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
12532
12533 // Find the appropriate context according to the above.
12534 DC = CurContext;
12535
12536 // Skip class contexts. If someone can cite chapter and verse
12537 // for this behavior, that would be nice --- it's what GCC and
12538 // EDG do, and it seems like a reasonable intent, but the spec
12539 // really only says that checks for unqualified existing
12540 // declarations should stop at the nearest enclosing namespace,
12541 // not that they should only consider the nearest enclosing
12542 // namespace.
12543 while (DC->isRecord())
12544 DC = DC->getParent();
12545
12546 DeclContext *LookupDC = DC;
12547 while (LookupDC->isTransparentContext())
12548 LookupDC = LookupDC->getParent();
12549
12550 while (true) {
12551 LookupQualifiedName(Previous, LookupDC);
12552
12553 if (!Previous.empty()) {
12554 DC = LookupDC;
12555 break;
12556 }
12557
12558 if (isTemplateId) {
12559 if (isa<TranslationUnitDecl>(LookupDC)) break;
12560 } else {
12561 if (LookupDC->isFileContext()) break;
12562 }
12563 LookupDC = LookupDC->getParent();
12564 }
12565
12566 DCScope = getScopeForDeclContext(S, DC);
12567
12568 // - There's a non-dependent scope specifier, in which case we
12569 // compute it and do a previous lookup there for a function
12570 // or function template.
12571 } else if (!SS.getScopeRep()->isDependent()) {
12572 DC = computeDeclContext(SS);
12573 if (!DC) return nullptr;
12574
12575 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
12576
12577 LookupQualifiedName(Previous, DC);
12578
12579 // Ignore things found implicitly in the wrong scope.
12580 // TODO: better diagnostics for this case. Suggesting the right
12581 // qualified scope would be nice...
12582 LookupResult::Filter F = Previous.makeFilter();
12583 while (F.hasNext()) {
12584 NamedDecl *D = F.next();
12585 if (!DC->InEnclosingNamespaceSetOf(
12586 D->getDeclContext()->getRedeclContext()))
12587 F.erase();
12588 }
12589 F.done();
12590
12591 if (Previous.empty()) {
12592 D.setInvalidType();
12593 Diag(Loc, diag::err_qualified_friend_not_found)
12594 << Name << TInfo->getType();
12595 return nullptr;
12596 }
12597
12598 // C++ [class.friend]p1: A friend of a class is a function or
12599 // class that is not a member of the class . . .
12600 if (DC->Equals(CurContext))
12601 Diag(DS.getFriendSpecLoc(),
12602 getLangOpts().CPlusPlus11 ?
12603 diag::warn_cxx98_compat_friend_is_member :
12604 diag::err_friend_is_member);
12605
12606 if (D.isFunctionDefinition()) {
12607 // C++ [class.friend]p6:
12608 // A function can be defined in a friend declaration of a class if and
12609 // only if the class is a non-local class (9.8), the function name is
12610 // unqualified, and the function has namespace scope.
12611 SemaDiagnosticBuilder DB
12612 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
12613
12614 DB << SS.getScopeRep();
12615 if (DC->isFileContext())
12616 DB << FixItHint::CreateRemoval(SS.getRange());
12617 SS.clear();
12618 }
12619
12620 // - There's a scope specifier that does not match any template
12621 // parameter lists, in which case we use some arbitrary context,
12622 // create a method or method template, and wait for instantiation.
12623 // - There's a scope specifier that does match some template
12624 // parameter lists, which we don't handle right now.
12625 } else {
12626 if (D.isFunctionDefinition()) {
12627 // C++ [class.friend]p6:
12628 // A function can be defined in a friend declaration of a class if and
12629 // only if the class is a non-local class (9.8), the function name is
12630 // unqualified, and the function has namespace scope.
12631 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
12632 << SS.getScopeRep();
12633 }
12634
12635 DC = CurContext;
12636 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
12637 }
12638
12639 if (!DC->isRecord()) {
12640 // This implies that it has to be an operator or function.
12641 if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
12642 D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
12643 D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
12644 Diag(Loc, diag::err_introducing_special_friend) <<
12645 (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
12646 D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
12647 return nullptr;
12648 }
12649 }
12650
12651 // FIXME: This is an egregious hack to cope with cases where the scope stack
12652 // does not contain the declaration context, i.e., in an out-of-line
12653 // definition of a class.
12654 Scope FakeDCScope(S, Scope::DeclScope, Diags);
12655 if (!DCScope) {
12656 FakeDCScope.setEntity(DC);
12657 DCScope = &FakeDCScope;
12658 }
12659
12660 bool AddToScope = true;
12661 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
12662 TemplateParams, AddToScope);
12663 if (!ND) return nullptr;
12664
12665 assert(ND->getLexicalDeclContext() == CurContext);
12666
12667 // If we performed typo correction, we might have added a scope specifier
12668 // and changed the decl context.
12669 DC = ND->getDeclContext();
12670
12671 // Add the function declaration to the appropriate lookup tables,
12672 // adjusting the redeclarations list as necessary. We don't
12673 // want to do this yet if the friending class is dependent.
12674 //
12675 // Also update the scope-based lookup if the target context's
12676 // lookup context is in lexical scope.
12677 if (!CurContext->isDependentContext()) {
12678 DC = DC->getRedeclContext();
12679 DC->makeDeclVisibleInContext(ND);
12680 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12681 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
12682 }
12683
12684 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
12685 D.getIdentifierLoc(), ND,
12686 DS.getFriendSpecLoc());
12687 FrD->setAccess(AS_public);
12688 CurContext->addDecl(FrD);
12689
12690 if (ND->isInvalidDecl()) {
12691 FrD->setInvalidDecl();
12692 } else {
12693 if (DC->isRecord()) CheckFriendAccess(ND);
12694
12695 FunctionDecl *FD;
12696 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
12697 FD = FTD->getTemplatedDecl();
12698 else
12699 FD = cast<FunctionDecl>(ND);
12700
12701 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
12702 // default argument expression, that declaration shall be a definition
12703 // and shall be the only declaration of the function or function
12704 // template in the translation unit.
12705 if (functionDeclHasDefaultArgument(FD)) {
12706 if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
12707 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
12708 Diag(OldFD->getLocation(), diag::note_previous_declaration);
12709 } else if (!D.isFunctionDefinition())
12710 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
12711 }
12712
12713 // Mark templated-scope function declarations as unsupported.
12714 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
12715 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
12716 << SS.getScopeRep() << SS.getRange()
12717 << cast<CXXRecordDecl>(CurContext);
12718 FrD->setUnsupportedFriend(true);
12719 }
12720 }
12721
12722 return ND;
12723 }
12724
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)12725 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
12726 AdjustDeclIfTemplate(Dcl);
12727
12728 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
12729 if (!Fn) {
12730 Diag(DelLoc, diag::err_deleted_non_function);
12731 return;
12732 }
12733
12734 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
12735 // Don't consider the implicit declaration we generate for explicit
12736 // specializations. FIXME: Do not generate these implicit declarations.
12737 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
12738 Prev->getPreviousDecl()) &&
12739 !Prev->isDefined()) {
12740 Diag(DelLoc, diag::err_deleted_decl_not_first);
12741 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
12742 Prev->isImplicit() ? diag::note_previous_implicit_declaration
12743 : diag::note_previous_declaration);
12744 }
12745 // If the declaration wasn't the first, we delete the function anyway for
12746 // recovery.
12747 Fn = Fn->getCanonicalDecl();
12748 }
12749
12750 // dllimport/dllexport cannot be deleted.
12751 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
12752 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
12753 Fn->setInvalidDecl();
12754 }
12755
12756 if (Fn->isDeleted())
12757 return;
12758
12759 // See if we're deleting a function which is already known to override a
12760 // non-deleted virtual function.
12761 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
12762 bool IssuedDiagnostic = false;
12763 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
12764 E = MD->end_overridden_methods();
12765 I != E; ++I) {
12766 if (!(*MD->begin_overridden_methods())->isDeleted()) {
12767 if (!IssuedDiagnostic) {
12768 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
12769 IssuedDiagnostic = true;
12770 }
12771 Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
12772 }
12773 }
12774 }
12775
12776 // C++11 [basic.start.main]p3:
12777 // A program that defines main as deleted [...] is ill-formed.
12778 if (Fn->isMain())
12779 Diag(DelLoc, diag::err_deleted_main);
12780
12781 Fn->setDeletedAsWritten();
12782 }
12783
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)12784 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
12785 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
12786
12787 if (MD) {
12788 if (MD->getParent()->isDependentType()) {
12789 MD->setDefaulted();
12790 MD->setExplicitlyDefaulted();
12791 return;
12792 }
12793
12794 CXXSpecialMember Member = getSpecialMember(MD);
12795 if (Member == CXXInvalid) {
12796 if (!MD->isInvalidDecl())
12797 Diag(DefaultLoc, diag::err_default_special_members);
12798 return;
12799 }
12800
12801 MD->setDefaulted();
12802 MD->setExplicitlyDefaulted();
12803
12804 // If this definition appears within the record, do the checking when
12805 // the record is complete.
12806 const FunctionDecl *Primary = MD;
12807 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
12808 // Find the uninstantiated declaration that actually had the '= default'
12809 // on it.
12810 Pattern->isDefined(Primary);
12811
12812 // If the method was defaulted on its first declaration, we will have
12813 // already performed the checking in CheckCompletedCXXClass. Such a
12814 // declaration doesn't trigger an implicit definition.
12815 if (Primary == Primary->getCanonicalDecl())
12816 return;
12817
12818 CheckExplicitlyDefaultedSpecialMember(MD);
12819
12820 if (MD->isInvalidDecl())
12821 return;
12822
12823 switch (Member) {
12824 case CXXDefaultConstructor:
12825 DefineImplicitDefaultConstructor(DefaultLoc,
12826 cast<CXXConstructorDecl>(MD));
12827 break;
12828 case CXXCopyConstructor:
12829 DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12830 break;
12831 case CXXCopyAssignment:
12832 DefineImplicitCopyAssignment(DefaultLoc, MD);
12833 break;
12834 case CXXDestructor:
12835 DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12836 break;
12837 case CXXMoveConstructor:
12838 DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12839 break;
12840 case CXXMoveAssignment:
12841 DefineImplicitMoveAssignment(DefaultLoc, MD);
12842 break;
12843 case CXXInvalid:
12844 llvm_unreachable("Invalid special member.");
12845 }
12846 } else {
12847 Diag(DefaultLoc, diag::err_default_special_members);
12848 }
12849 }
12850
SearchForReturnInStmt(Sema & Self,Stmt * S)12851 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12852 for (Stmt::child_range CI = S->children(); CI; ++CI) {
12853 Stmt *SubStmt = *CI;
12854 if (!SubStmt)
12855 continue;
12856 if (isa<ReturnStmt>(SubStmt))
12857 Self.Diag(SubStmt->getLocStart(),
12858 diag::err_return_in_constructor_handler);
12859 if (!isa<Expr>(SubStmt))
12860 SearchForReturnInStmt(Self, SubStmt);
12861 }
12862 }
12863
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)12864 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12865 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12866 CXXCatchStmt *Handler = TryBlock->getHandler(I);
12867 SearchForReturnInStmt(*this, Handler);
12868 }
12869 }
12870
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)12871 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12872 const CXXMethodDecl *Old) {
12873 const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12874 const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12875
12876 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12877
12878 // If the calling conventions match, everything is fine
12879 if (NewCC == OldCC)
12880 return false;
12881
12882 // If the calling conventions mismatch because the new function is static,
12883 // suppress the calling convention mismatch error; the error about static
12884 // function override (err_static_overrides_virtual from
12885 // Sema::CheckFunctionDeclaration) is more clear.
12886 if (New->getStorageClass() == SC_Static)
12887 return false;
12888
12889 Diag(New->getLocation(),
12890 diag::err_conflicting_overriding_cc_attributes)
12891 << New->getDeclName() << New->getType() << Old->getType();
12892 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12893 return true;
12894 }
12895
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)12896 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12897 const CXXMethodDecl *Old) {
12898 QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
12899 QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
12900
12901 if (Context.hasSameType(NewTy, OldTy) ||
12902 NewTy->isDependentType() || OldTy->isDependentType())
12903 return false;
12904
12905 // Check if the return types are covariant
12906 QualType NewClassTy, OldClassTy;
12907
12908 /// Both types must be pointers or references to classes.
12909 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12910 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12911 NewClassTy = NewPT->getPointeeType();
12912 OldClassTy = OldPT->getPointeeType();
12913 }
12914 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12915 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12916 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12917 NewClassTy = NewRT->getPointeeType();
12918 OldClassTy = OldRT->getPointeeType();
12919 }
12920 }
12921 }
12922
12923 // The return types aren't either both pointers or references to a class type.
12924 if (NewClassTy.isNull()) {
12925 Diag(New->getLocation(),
12926 diag::err_different_return_type_for_overriding_virtual_function)
12927 << New->getDeclName() << NewTy << OldTy
12928 << New->getReturnTypeSourceRange();
12929 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12930 << Old->getReturnTypeSourceRange();
12931
12932 return true;
12933 }
12934
12935 // C++ [class.virtual]p6:
12936 // If the return type of D::f differs from the return type of B::f, the
12937 // class type in the return type of D::f shall be complete at the point of
12938 // declaration of D::f or shall be the class type D.
12939 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12940 if (!RT->isBeingDefined() &&
12941 RequireCompleteType(New->getLocation(), NewClassTy,
12942 diag::err_covariant_return_incomplete,
12943 New->getDeclName()))
12944 return true;
12945 }
12946
12947 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12948 // Check if the new class derives from the old class.
12949 if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12950 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
12951 << New->getDeclName() << NewTy << OldTy
12952 << New->getReturnTypeSourceRange();
12953 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12954 << Old->getReturnTypeSourceRange();
12955 return true;
12956 }
12957
12958 // Check if we the conversion from derived to base is valid.
12959 if (CheckDerivedToBaseConversion(
12960 NewClassTy, OldClassTy,
12961 diag::err_covariant_return_inaccessible_base,
12962 diag::err_covariant_return_ambiguous_derived_to_base_conv,
12963 New->getLocation(), New->getReturnTypeSourceRange(),
12964 New->getDeclName(), nullptr)) {
12965 // FIXME: this note won't trigger for delayed access control
12966 // diagnostics, and it's impossible to get an undelayed error
12967 // here from access control during the original parse because
12968 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12969 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12970 << Old->getReturnTypeSourceRange();
12971 return true;
12972 }
12973 }
12974
12975 // The qualifiers of the return types must be the same.
12976 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12977 Diag(New->getLocation(),
12978 diag::err_covariant_return_type_different_qualifications)
12979 << New->getDeclName() << NewTy << OldTy
12980 << New->getReturnTypeSourceRange();
12981 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12982 << Old->getReturnTypeSourceRange();
12983 return true;
12984 };
12985
12986
12987 // The new class type must have the same or less qualifiers as the old type.
12988 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12989 Diag(New->getLocation(),
12990 diag::err_covariant_return_type_class_type_more_qualified)
12991 << New->getDeclName() << NewTy << OldTy
12992 << New->getReturnTypeSourceRange();
12993 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12994 << Old->getReturnTypeSourceRange();
12995 return true;
12996 };
12997
12998 return false;
12999 }
13000
13001 /// \brief Mark the given method pure.
13002 ///
13003 /// \param Method the method to be marked pure.
13004 ///
13005 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)13006 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
13007 SourceLocation EndLoc = InitRange.getEnd();
13008 if (EndLoc.isValid())
13009 Method->setRangeEnd(EndLoc);
13010
13011 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
13012 Method->setPure();
13013 return false;
13014 }
13015
13016 if (!Method->isInvalidDecl())
13017 Diag(Method->getLocation(), diag::err_non_virtual_pure)
13018 << Method->getDeclName() << InitRange;
13019 return true;
13020 }
13021
13022 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(const Decl * D)13023 static bool isStaticDataMember(const Decl *D) {
13024 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
13025 return Var->isStaticDataMember();
13026
13027 return false;
13028 }
13029
13030 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
13031 /// an initializer for the out-of-line declaration 'Dcl'. The scope
13032 /// is a fresh scope pushed for just this purpose.
13033 ///
13034 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
13035 /// static data member of class X, names should be looked up in the scope of
13036 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)13037 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
13038 // If there is no declaration, there was an error parsing it.
13039 if (!D || D->isInvalidDecl())
13040 return;
13041
13042 // We will always have a nested name specifier here, but this declaration
13043 // might not be out of line if the specifier names the current namespace:
13044 // extern int n;
13045 // int ::n = 0;
13046 if (D->isOutOfLine())
13047 EnterDeclaratorContext(S, D->getDeclContext());
13048
13049 // If we are parsing the initializer for a static data member, push a
13050 // new expression evaluation context that is associated with this static
13051 // data member.
13052 if (isStaticDataMember(D))
13053 PushExpressionEvaluationContext(PotentiallyEvaluated, D);
13054 }
13055
13056 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
13057 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)13058 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
13059 // If there is no declaration, there was an error parsing it.
13060 if (!D || D->isInvalidDecl())
13061 return;
13062
13063 if (isStaticDataMember(D))
13064 PopExpressionEvaluationContext();
13065
13066 if (D->isOutOfLine())
13067 ExitDeclaratorContext(S);
13068 }
13069
13070 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
13071 /// C++ if/switch/while/for statement.
13072 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)13073 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
13074 // C++ 6.4p2:
13075 // The declarator shall not specify a function or an array.
13076 // The type-specifier-seq shall not contain typedef and shall not declare a
13077 // new class or enumeration.
13078 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
13079 "Parser allowed 'typedef' as storage class of condition decl.");
13080
13081 Decl *Dcl = ActOnDeclarator(S, D);
13082 if (!Dcl)
13083 return true;
13084
13085 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
13086 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
13087 << D.getSourceRange();
13088 return true;
13089 }
13090
13091 return Dcl;
13092 }
13093
LoadExternalVTableUses()13094 void Sema::LoadExternalVTableUses() {
13095 if (!ExternalSource)
13096 return;
13097
13098 SmallVector<ExternalVTableUse, 4> VTables;
13099 ExternalSource->ReadUsedVTables(VTables);
13100 SmallVector<VTableUse, 4> NewUses;
13101 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
13102 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
13103 = VTablesUsed.find(VTables[I].Record);
13104 // Even if a definition wasn't required before, it may be required now.
13105 if (Pos != VTablesUsed.end()) {
13106 if (!Pos->second && VTables[I].DefinitionRequired)
13107 Pos->second = true;
13108 continue;
13109 }
13110
13111 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
13112 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
13113 }
13114
13115 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
13116 }
13117
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)13118 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
13119 bool DefinitionRequired) {
13120 // Ignore any vtable uses in unevaluated operands or for classes that do
13121 // not have a vtable.
13122 if (!Class->isDynamicClass() || Class->isDependentContext() ||
13123 CurContext->isDependentContext() || isUnevaluatedContext())
13124 return;
13125
13126 // Try to insert this class into the map.
13127 LoadExternalVTableUses();
13128 Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13129 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
13130 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
13131 if (!Pos.second) {
13132 // If we already had an entry, check to see if we are promoting this vtable
13133 // to require a definition. If so, we need to reappend to the VTableUses
13134 // list, since we may have already processed the first entry.
13135 if (DefinitionRequired && !Pos.first->second) {
13136 Pos.first->second = true;
13137 } else {
13138 // Otherwise, we can early exit.
13139 return;
13140 }
13141 } else {
13142 // The Microsoft ABI requires that we perform the destructor body
13143 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
13144 // the deleting destructor is emitted with the vtable, not with the
13145 // destructor definition as in the Itanium ABI.
13146 // If it has a definition, we do the check at that point instead.
13147 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13148 Class->hasUserDeclaredDestructor() &&
13149 !Class->getDestructor()->isDefined() &&
13150 !Class->getDestructor()->isDeleted()) {
13151 CXXDestructorDecl *DD = Class->getDestructor();
13152 ContextRAII SavedContext(*this, DD);
13153 CheckDestructor(DD);
13154 }
13155 }
13156
13157 // Local classes need to have their virtual members marked
13158 // immediately. For all other classes, we mark their virtual members
13159 // at the end of the translation unit.
13160 if (Class->isLocalClass())
13161 MarkVirtualMembersReferenced(Loc, Class);
13162 else
13163 VTableUses.push_back(std::make_pair(Class, Loc));
13164 }
13165
DefineUsedVTables()13166 bool Sema::DefineUsedVTables() {
13167 LoadExternalVTableUses();
13168 if (VTableUses.empty())
13169 return false;
13170
13171 // Note: The VTableUses vector could grow as a result of marking
13172 // the members of a class as "used", so we check the size each
13173 // time through the loop and prefer indices (which are stable) to
13174 // iterators (which are not).
13175 bool DefinedAnything = false;
13176 for (unsigned I = 0; I != VTableUses.size(); ++I) {
13177 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
13178 if (!Class)
13179 continue;
13180
13181 SourceLocation Loc = VTableUses[I].second;
13182
13183 bool DefineVTable = true;
13184
13185 // If this class has a key function, but that key function is
13186 // defined in another translation unit, we don't need to emit the
13187 // vtable even though we're using it.
13188 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
13189 if (KeyFunction && !KeyFunction->hasBody()) {
13190 // The key function is in another translation unit.
13191 DefineVTable = false;
13192 TemplateSpecializationKind TSK =
13193 KeyFunction->getTemplateSpecializationKind();
13194 assert(TSK != TSK_ExplicitInstantiationDefinition &&
13195 TSK != TSK_ImplicitInstantiation &&
13196 "Instantiations don't have key functions");
13197 (void)TSK;
13198 } else if (!KeyFunction) {
13199 // If we have a class with no key function that is the subject
13200 // of an explicit instantiation declaration, suppress the
13201 // vtable; it will live with the explicit instantiation
13202 // definition.
13203 bool IsExplicitInstantiationDeclaration
13204 = Class->getTemplateSpecializationKind()
13205 == TSK_ExplicitInstantiationDeclaration;
13206 for (auto R : Class->redecls()) {
13207 TemplateSpecializationKind TSK
13208 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
13209 if (TSK == TSK_ExplicitInstantiationDeclaration)
13210 IsExplicitInstantiationDeclaration = true;
13211 else if (TSK == TSK_ExplicitInstantiationDefinition) {
13212 IsExplicitInstantiationDeclaration = false;
13213 break;
13214 }
13215 }
13216
13217 if (IsExplicitInstantiationDeclaration)
13218 DefineVTable = false;
13219 }
13220
13221 // The exception specifications for all virtual members may be needed even
13222 // if we are not providing an authoritative form of the vtable in this TU.
13223 // We may choose to emit it available_externally anyway.
13224 if (!DefineVTable) {
13225 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
13226 continue;
13227 }
13228
13229 // Mark all of the virtual members of this class as referenced, so
13230 // that we can build a vtable. Then, tell the AST consumer that a
13231 // vtable for this class is required.
13232 DefinedAnything = true;
13233 MarkVirtualMembersReferenced(Loc, Class);
13234 CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
13235 if (VTablesUsed[Canonical])
13236 Consumer.HandleVTable(Class);
13237
13238 // Optionally warn if we're emitting a weak vtable.
13239 if (Class->isExternallyVisible() &&
13240 Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
13241 const FunctionDecl *KeyFunctionDef = nullptr;
13242 if (!KeyFunction ||
13243 (KeyFunction->hasBody(KeyFunctionDef) &&
13244 KeyFunctionDef->isInlined()))
13245 Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
13246 TSK_ExplicitInstantiationDefinition
13247 ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
13248 << Class;
13249 }
13250 }
13251 VTableUses.clear();
13252
13253 return DefinedAnything;
13254 }
13255
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)13256 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
13257 const CXXRecordDecl *RD) {
13258 for (const auto *I : RD->methods())
13259 if (I->isVirtual() && !I->isPure())
13260 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
13261 }
13262
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)13263 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
13264 const CXXRecordDecl *RD) {
13265 // Mark all functions which will appear in RD's vtable as used.
13266 CXXFinalOverriderMap FinalOverriders;
13267 RD->getFinalOverriders(FinalOverriders);
13268 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
13269 E = FinalOverriders.end();
13270 I != E; ++I) {
13271 for (OverridingMethods::const_iterator OI = I->second.begin(),
13272 OE = I->second.end();
13273 OI != OE; ++OI) {
13274 assert(OI->second.size() > 0 && "no final overrider");
13275 CXXMethodDecl *Overrider = OI->second.front().Method;
13276
13277 // C++ [basic.def.odr]p2:
13278 // [...] A virtual member function is used if it is not pure. [...]
13279 if (!Overrider->isPure())
13280 MarkFunctionReferenced(Loc, Overrider);
13281 }
13282 }
13283
13284 // Only classes that have virtual bases need a VTT.
13285 if (RD->getNumVBases() == 0)
13286 return;
13287
13288 for (const auto &I : RD->bases()) {
13289 const CXXRecordDecl *Base =
13290 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
13291 if (Base->getNumVBases() == 0)
13292 continue;
13293 MarkVirtualMembersReferenced(Loc, Base);
13294 }
13295 }
13296
13297 /// SetIvarInitializers - This routine builds initialization ASTs for the
13298 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)13299 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
13300 if (!getLangOpts().CPlusPlus)
13301 return;
13302 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
13303 SmallVector<ObjCIvarDecl*, 8> ivars;
13304 CollectIvarsToConstructOrDestruct(OID, ivars);
13305 if (ivars.empty())
13306 return;
13307 SmallVector<CXXCtorInitializer*, 32> AllToInit;
13308 for (unsigned i = 0; i < ivars.size(); i++) {
13309 FieldDecl *Field = ivars[i];
13310 if (Field->isInvalidDecl())
13311 continue;
13312
13313 CXXCtorInitializer *Member;
13314 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
13315 InitializationKind InitKind =
13316 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
13317
13318 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
13319 ExprResult MemberInit =
13320 InitSeq.Perform(*this, InitEntity, InitKind, None);
13321 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
13322 // Note, MemberInit could actually come back empty if no initialization
13323 // is required (e.g., because it would call a trivial default constructor)
13324 if (!MemberInit.get() || MemberInit.isInvalid())
13325 continue;
13326
13327 Member =
13328 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
13329 SourceLocation(),
13330 MemberInit.getAs<Expr>(),
13331 SourceLocation());
13332 AllToInit.push_back(Member);
13333
13334 // Be sure that the destructor is accessible and is marked as referenced.
13335 if (const RecordType *RecordTy =
13336 Context.getBaseElementType(Field->getType())
13337 ->getAs<RecordType>()) {
13338 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
13339 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
13340 MarkFunctionReferenced(Field->getLocation(), Destructor);
13341 CheckDestructorAccess(Field->getLocation(), Destructor,
13342 PDiag(diag::err_access_dtor_ivar)
13343 << Context.getBaseElementType(Field->getType()));
13344 }
13345 }
13346 }
13347 ObjCImplementation->setIvarInitializers(Context,
13348 AllToInit.data(), AllToInit.size());
13349 }
13350 }
13351
13352 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)13353 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
13354 llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
13355 llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
13356 llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
13357 Sema &S) {
13358 if (Ctor->isInvalidDecl())
13359 return;
13360
13361 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
13362
13363 // Target may not be determinable yet, for instance if this is a dependent
13364 // call in an uninstantiated template.
13365 if (Target) {
13366 const FunctionDecl *FNTarget = nullptr;
13367 (void)Target->hasBody(FNTarget);
13368 Target = const_cast<CXXConstructorDecl*>(
13369 cast_or_null<CXXConstructorDecl>(FNTarget));
13370 }
13371
13372 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
13373 // Avoid dereferencing a null pointer here.
13374 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
13375
13376 if (!Current.insert(Canonical).second)
13377 return;
13378
13379 // We know that beyond here, we aren't chaining into a cycle.
13380 if (!Target || !Target->isDelegatingConstructor() ||
13381 Target->isInvalidDecl() || Valid.count(TCanonical)) {
13382 Valid.insert(Current.begin(), Current.end());
13383 Current.clear();
13384 // We've hit a cycle.
13385 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
13386 Current.count(TCanonical)) {
13387 // If we haven't diagnosed this cycle yet, do so now.
13388 if (!Invalid.count(TCanonical)) {
13389 S.Diag((*Ctor->init_begin())->getSourceLocation(),
13390 diag::warn_delegating_ctor_cycle)
13391 << Ctor;
13392
13393 // Don't add a note for a function delegating directly to itself.
13394 if (TCanonical != Canonical)
13395 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
13396
13397 CXXConstructorDecl *C = Target;
13398 while (C->getCanonicalDecl() != Canonical) {
13399 const FunctionDecl *FNTarget = nullptr;
13400 (void)C->getTargetConstructor()->hasBody(FNTarget);
13401 assert(FNTarget && "Ctor cycle through bodiless function");
13402
13403 C = const_cast<CXXConstructorDecl*>(
13404 cast<CXXConstructorDecl>(FNTarget));
13405 S.Diag(C->getLocation(), diag::note_which_delegates_to);
13406 }
13407 }
13408
13409 Invalid.insert(Current.begin(), Current.end());
13410 Current.clear();
13411 } else {
13412 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
13413 }
13414 }
13415
13416
CheckDelegatingCtorCycles()13417 void Sema::CheckDelegatingCtorCycles() {
13418 llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
13419
13420 for (DelegatingCtorDeclsType::iterator
13421 I = DelegatingCtorDecls.begin(ExternalSource),
13422 E = DelegatingCtorDecls.end();
13423 I != E; ++I)
13424 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
13425
13426 for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
13427 CE = Invalid.end();
13428 CI != CE; ++CI)
13429 (*CI)->setInvalidDecl();
13430 }
13431
13432 namespace {
13433 /// \brief AST visitor that finds references to the 'this' expression.
13434 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
13435 Sema &S;
13436
13437 public:
FindCXXThisExpr(Sema & S)13438 explicit FindCXXThisExpr(Sema &S) : S(S) { }
13439
VisitCXXThisExpr(CXXThisExpr * E)13440 bool VisitCXXThisExpr(CXXThisExpr *E) {
13441 S.Diag(E->getLocation(), diag::err_this_static_member_func)
13442 << E->isImplicit();
13443 return false;
13444 }
13445 };
13446 }
13447
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)13448 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
13449 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13450 if (!TSInfo)
13451 return false;
13452
13453 TypeLoc TL = TSInfo->getTypeLoc();
13454 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13455 if (!ProtoTL)
13456 return false;
13457
13458 // C++11 [expr.prim.general]p3:
13459 // [The expression this] shall not appear before the optional
13460 // cv-qualifier-seq and it shall not appear within the declaration of a
13461 // static member function (although its type and value category are defined
13462 // within a static member function as they are within a non-static member
13463 // function). [ Note: this is because declaration matching does not occur
13464 // until the complete declarator is known. - end note ]
13465 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13466 FindCXXThisExpr Finder(*this);
13467
13468 // If the return type came after the cv-qualifier-seq, check it now.
13469 if (Proto->hasTrailingReturn() &&
13470 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
13471 return true;
13472
13473 // Check the exception specification.
13474 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
13475 return true;
13476
13477 return checkThisInStaticMemberFunctionAttributes(Method);
13478 }
13479
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)13480 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
13481 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
13482 if (!TSInfo)
13483 return false;
13484
13485 TypeLoc TL = TSInfo->getTypeLoc();
13486 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
13487 if (!ProtoTL)
13488 return false;
13489
13490 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
13491 FindCXXThisExpr Finder(*this);
13492
13493 switch (Proto->getExceptionSpecType()) {
13494 case EST_Unparsed:
13495 case EST_Uninstantiated:
13496 case EST_Unevaluated:
13497 case EST_BasicNoexcept:
13498 case EST_DynamicNone:
13499 case EST_MSAny:
13500 case EST_None:
13501 break;
13502
13503 case EST_ComputedNoexcept:
13504 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
13505 return true;
13506
13507 case EST_Dynamic:
13508 for (const auto &E : Proto->exceptions()) {
13509 if (!Finder.TraverseType(E))
13510 return true;
13511 }
13512 break;
13513 }
13514
13515 return false;
13516 }
13517
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)13518 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
13519 FindCXXThisExpr Finder(*this);
13520
13521 // Check attributes.
13522 for (const auto *A : Method->attrs()) {
13523 // FIXME: This should be emitted by tblgen.
13524 Expr *Arg = nullptr;
13525 ArrayRef<Expr *> Args;
13526 if (const auto *G = dyn_cast<GuardedByAttr>(A))
13527 Arg = G->getArg();
13528 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
13529 Arg = G->getArg();
13530 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
13531 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
13532 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
13533 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
13534 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
13535 Arg = ETLF->getSuccessValue();
13536 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
13537 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
13538 Arg = STLF->getSuccessValue();
13539 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
13540 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
13541 Arg = LR->getArg();
13542 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
13543 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
13544 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
13545 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13546 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
13547 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13548 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
13549 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
13550 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
13551 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
13552
13553 if (Arg && !Finder.TraverseStmt(Arg))
13554 return true;
13555
13556 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
13557 if (!Finder.TraverseStmt(Args[I]))
13558 return true;
13559 }
13560 }
13561
13562 return false;
13563 }
13564
checkExceptionSpecification(bool IsTopLevel,ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExceptionSpecInfo & ESI)13565 void Sema::checkExceptionSpecification(
13566 bool IsTopLevel, ExceptionSpecificationType EST,
13567 ArrayRef<ParsedType> DynamicExceptions,
13568 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
13569 SmallVectorImpl<QualType> &Exceptions,
13570 FunctionProtoType::ExceptionSpecInfo &ESI) {
13571 Exceptions.clear();
13572 ESI.Type = EST;
13573 if (EST == EST_Dynamic) {
13574 Exceptions.reserve(DynamicExceptions.size());
13575 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
13576 // FIXME: Preserve type source info.
13577 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
13578
13579 if (IsTopLevel) {
13580 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
13581 collectUnexpandedParameterPacks(ET, Unexpanded);
13582 if (!Unexpanded.empty()) {
13583 DiagnoseUnexpandedParameterPacks(
13584 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
13585 Unexpanded);
13586 continue;
13587 }
13588 }
13589
13590 // Check that the type is valid for an exception spec, and
13591 // drop it if not.
13592 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
13593 Exceptions.push_back(ET);
13594 }
13595 ESI.Exceptions = Exceptions;
13596 return;
13597 }
13598
13599 if (EST == EST_ComputedNoexcept) {
13600 // If an error occurred, there's no expression here.
13601 if (NoexceptExpr) {
13602 assert((NoexceptExpr->isTypeDependent() ||
13603 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
13604 Context.BoolTy) &&
13605 "Parser should have made sure that the expression is boolean");
13606 if (IsTopLevel && NoexceptExpr &&
13607 DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
13608 ESI.Type = EST_BasicNoexcept;
13609 return;
13610 }
13611
13612 if (!NoexceptExpr->isValueDependent())
13613 NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
13614 diag::err_noexcept_needs_constant_expression,
13615 /*AllowFold*/ false).get();
13616 ESI.NoexceptExpr = NoexceptExpr;
13617 }
13618 return;
13619 }
13620 }
13621
actOnDelayedExceptionSpecification(Decl * MethodD,ExceptionSpecificationType EST,SourceRange SpecificationRange,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr)13622 void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
13623 ExceptionSpecificationType EST,
13624 SourceRange SpecificationRange,
13625 ArrayRef<ParsedType> DynamicExceptions,
13626 ArrayRef<SourceRange> DynamicExceptionRanges,
13627 Expr *NoexceptExpr) {
13628 if (!MethodD)
13629 return;
13630
13631 // Dig out the method we're referring to.
13632 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
13633 MethodD = FunTmpl->getTemplatedDecl();
13634
13635 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
13636 if (!Method)
13637 return;
13638
13639 // Check the exception specification.
13640 llvm::SmallVector<QualType, 4> Exceptions;
13641 FunctionProtoType::ExceptionSpecInfo ESI;
13642 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
13643 DynamicExceptionRanges, NoexceptExpr, Exceptions,
13644 ESI);
13645
13646 // Update the exception specification on the function type.
13647 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
13648
13649 if (Method->isStatic())
13650 checkThisInStaticMemberFunctionExceptionSpec(Method);
13651
13652 if (Method->isVirtual()) {
13653 // Check overrides, which we previously had to delay.
13654 for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
13655 OEnd = Method->end_overridden_methods();
13656 O != OEnd; ++O)
13657 CheckOverridingFunctionExceptionSpec(Method, *O);
13658 }
13659 }
13660
13661 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
13662 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,AttributeList * MSPropertyAttr)13663 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
13664 SourceLocation DeclStart,
13665 Declarator &D, Expr *BitWidth,
13666 InClassInitStyle InitStyle,
13667 AccessSpecifier AS,
13668 AttributeList *MSPropertyAttr) {
13669 IdentifierInfo *II = D.getIdentifier();
13670 if (!II) {
13671 Diag(DeclStart, diag::err_anonymous_property);
13672 return nullptr;
13673 }
13674 SourceLocation Loc = D.getIdentifierLoc();
13675
13676 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13677 QualType T = TInfo->getType();
13678 if (getLangOpts().CPlusPlus) {
13679 CheckExtraCXXDefaultArguments(D);
13680
13681 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
13682 UPPC_DataMemberType)) {
13683 D.setInvalidType();
13684 T = Context.IntTy;
13685 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
13686 }
13687 }
13688
13689 DiagnoseFunctionSpecifiers(D.getDeclSpec());
13690
13691 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
13692 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
13693 diag::err_invalid_thread)
13694 << DeclSpec::getSpecifierName(TSCS);
13695
13696 // Check to see if this name was declared as a member previously
13697 NamedDecl *PrevDecl = nullptr;
13698 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
13699 LookupName(Previous, S);
13700 switch (Previous.getResultKind()) {
13701 case LookupResult::Found:
13702 case LookupResult::FoundUnresolvedValue:
13703 PrevDecl = Previous.getAsSingle<NamedDecl>();
13704 break;
13705
13706 case LookupResult::FoundOverloaded:
13707 PrevDecl = Previous.getRepresentativeDecl();
13708 break;
13709
13710 case LookupResult::NotFound:
13711 case LookupResult::NotFoundInCurrentInstantiation:
13712 case LookupResult::Ambiguous:
13713 break;
13714 }
13715
13716 if (PrevDecl && PrevDecl->isTemplateParameter()) {
13717 // Maybe we will complain about the shadowed template parameter.
13718 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13719 // Just pretend that we didn't see the previous declaration.
13720 PrevDecl = nullptr;
13721 }
13722
13723 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
13724 PrevDecl = nullptr;
13725
13726 SourceLocation TSSL = D.getLocStart();
13727 const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
13728 MSPropertyDecl *NewPD = MSPropertyDecl::Create(
13729 Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
13730 ProcessDeclAttributes(TUScope, NewPD, D);
13731 NewPD->setAccess(AS);
13732
13733 if (NewPD->isInvalidDecl())
13734 Record->setInvalidDecl();
13735
13736 if (D.getDeclSpec().isModulePrivateSpecified())
13737 NewPD->setModulePrivate();
13738
13739 if (NewPD->isInvalidDecl() && PrevDecl) {
13740 // Don't introduce NewFD into scope; there's already something
13741 // with the same name in the same scope.
13742 } else if (II) {
13743 PushOnScopeChains(NewPD, S);
13744 } else
13745 Record->addDecl(NewPD);
13746
13747 return NewPD;
13748 }
13749