1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
42
anchor()43 void Constant::anchor() { }
44
isNegativeZeroValue() const45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
49
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54 return true;
55
56 // We've already handled true FP case; any other FP vectors can't represent -0.0.
57 if (getType()->isFPOrFPVectorTy())
58 return false;
59
60 // Otherwise, just use +0.0.
61 return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
isZeroValue() const66 bool Constant::isZeroValue() const {
67 // Floating point values have an explicit -0.0 value.
68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69 return CFP->isZero();
70
71 // Otherwise, just use +0.0.
72 return isNullValue();
73 }
74
isNullValue() const75 bool Constant::isNullValue() const {
76 // 0 is null.
77 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78 return CI->isZero();
79
80 // +0.0 is null.
81 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82 return CFP->isZero() && !CFP->isNegative();
83
84 // constant zero is zero for aggregates and cpnull is null for pointers.
85 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87
isAllOnesValue() const88 bool Constant::isAllOnesValue() const {
89 // Check for -1 integers
90 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91 return CI->isMinusOne();
92
93 // Check for FP which are bitcasted from -1 integers
94 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97 // Check for constant vectors which are splats of -1 values.
98 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99 if (Constant *Splat = CV->getSplatValue())
100 return Splat->isAllOnesValue();
101
102 // Check for constant vectors which are splats of -1 values.
103 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104 if (Constant *Splat = CV->getSplatValue())
105 return Splat->isAllOnesValue();
106
107 return false;
108 }
109
isOneValue() const110 bool Constant::isOneValue() const {
111 // Check for 1 integers
112 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113 return CI->isOne();
114
115 // Check for FP which are bitcasted from 1 integers
116 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117 return CFP->getValueAPF().bitcastToAPInt() == 1;
118
119 // Check for constant vectors which are splats of 1 values.
120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121 if (Constant *Splat = CV->getSplatValue())
122 return Splat->isOneValue();
123
124 // Check for constant vectors which are splats of 1 values.
125 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126 if (Constant *Splat = CV->getSplatValue())
127 return Splat->isOneValue();
128
129 return false;
130 }
131
isMinSignedValue() const132 bool Constant::isMinSignedValue() const {
133 // Check for INT_MIN integers
134 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
135 return CI->isMinValue(/*isSigned=*/true);
136
137 // Check for FP which are bitcasted from INT_MIN integers
138 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
139 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
140
141 // Check for constant vectors which are splats of INT_MIN values.
142 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
143 if (Constant *Splat = CV->getSplatValue())
144 return Splat->isMinSignedValue();
145
146 // Check for constant vectors which are splats of INT_MIN values.
147 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
148 if (Constant *Splat = CV->getSplatValue())
149 return Splat->isMinSignedValue();
150
151 return false;
152 }
153
isNotMinSignedValue() const154 bool Constant::isNotMinSignedValue() const {
155 // Check for INT_MIN integers
156 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
157 return !CI->isMinValue(/*isSigned=*/true);
158
159 // Check for FP which are bitcasted from INT_MIN integers
160 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
161 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
162
163 // Check for constant vectors which are splats of INT_MIN values.
164 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
165 if (Constant *Splat = CV->getSplatValue())
166 return Splat->isNotMinSignedValue();
167
168 // Check for constant vectors which are splats of INT_MIN values.
169 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
170 if (Constant *Splat = CV->getSplatValue())
171 return Splat->isNotMinSignedValue();
172
173 // It *may* contain INT_MIN, we can't tell.
174 return false;
175 }
176
177 // Constructor to create a '0' constant of arbitrary type...
getNullValue(Type * Ty)178 Constant *Constant::getNullValue(Type *Ty) {
179 switch (Ty->getTypeID()) {
180 case Type::IntegerTyID:
181 return ConstantInt::get(Ty, 0);
182 case Type::HalfTyID:
183 return ConstantFP::get(Ty->getContext(),
184 APFloat::getZero(APFloat::IEEEhalf));
185 case Type::FloatTyID:
186 return ConstantFP::get(Ty->getContext(),
187 APFloat::getZero(APFloat::IEEEsingle));
188 case Type::DoubleTyID:
189 return ConstantFP::get(Ty->getContext(),
190 APFloat::getZero(APFloat::IEEEdouble));
191 case Type::X86_FP80TyID:
192 return ConstantFP::get(Ty->getContext(),
193 APFloat::getZero(APFloat::x87DoubleExtended));
194 case Type::FP128TyID:
195 return ConstantFP::get(Ty->getContext(),
196 APFloat::getZero(APFloat::IEEEquad));
197 case Type::PPC_FP128TyID:
198 return ConstantFP::get(Ty->getContext(),
199 APFloat(APFloat::PPCDoubleDouble,
200 APInt::getNullValue(128)));
201 case Type::PointerTyID:
202 return ConstantPointerNull::get(cast<PointerType>(Ty));
203 case Type::StructTyID:
204 case Type::ArrayTyID:
205 case Type::VectorTyID:
206 return ConstantAggregateZero::get(Ty);
207 default:
208 // Function, Label, or Opaque type?
209 llvm_unreachable("Cannot create a null constant of that type!");
210 }
211 }
212
getIntegerValue(Type * Ty,const APInt & V)213 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
214 Type *ScalarTy = Ty->getScalarType();
215
216 // Create the base integer constant.
217 Constant *C = ConstantInt::get(Ty->getContext(), V);
218
219 // Convert an integer to a pointer, if necessary.
220 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
221 C = ConstantExpr::getIntToPtr(C, PTy);
222
223 // Broadcast a scalar to a vector, if necessary.
224 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
225 C = ConstantVector::getSplat(VTy->getNumElements(), C);
226
227 return C;
228 }
229
getAllOnesValue(Type * Ty)230 Constant *Constant::getAllOnesValue(Type *Ty) {
231 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
232 return ConstantInt::get(Ty->getContext(),
233 APInt::getAllOnesValue(ITy->getBitWidth()));
234
235 if (Ty->isFloatingPointTy()) {
236 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
237 !Ty->isPPC_FP128Ty());
238 return ConstantFP::get(Ty->getContext(), FL);
239 }
240
241 VectorType *VTy = cast<VectorType>(Ty);
242 return ConstantVector::getSplat(VTy->getNumElements(),
243 getAllOnesValue(VTy->getElementType()));
244 }
245
246 /// getAggregateElement - For aggregates (struct/array/vector) return the
247 /// constant that corresponds to the specified element if possible, or null if
248 /// not. This can return null if the element index is a ConstantExpr, or if
249 /// 'this' is a constant expr.
getAggregateElement(unsigned Elt) const250 Constant *Constant::getAggregateElement(unsigned Elt) const {
251 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
252 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
253
254 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
255 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
256
257 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
258 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
259
260 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
261 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
262
263 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
264 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
265
266 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
267 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
268 : nullptr;
269 return nullptr;
270 }
271
getAggregateElement(Constant * Elt) const272 Constant *Constant::getAggregateElement(Constant *Elt) const {
273 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
274 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
275 return getAggregateElement(CI->getZExtValue());
276 return nullptr;
277 }
278
279
destroyConstantImpl()280 void Constant::destroyConstantImpl() {
281 // When a Constant is destroyed, there may be lingering
282 // references to the constant by other constants in the constant pool. These
283 // constants are implicitly dependent on the module that is being deleted,
284 // but they don't know that. Because we only find out when the CPV is
285 // deleted, we must now notify all of our users (that should only be
286 // Constants) that they are, in fact, invalid now and should be deleted.
287 //
288 while (!use_empty()) {
289 Value *V = user_back();
290 #ifndef NDEBUG // Only in -g mode...
291 if (!isa<Constant>(V)) {
292 dbgs() << "While deleting: " << *this
293 << "\n\nUse still stuck around after Def is destroyed: "
294 << *V << "\n\n";
295 }
296 #endif
297 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
298 cast<Constant>(V)->destroyConstant();
299
300 // The constant should remove itself from our use list...
301 assert((use_empty() || user_back() != V) && "Constant not removed!");
302 }
303
304 // Value has no outstanding references it is safe to delete it now...
305 delete this;
306 }
307
canTrapImpl(const Constant * C,SmallPtrSetImpl<const ConstantExpr * > & NonTrappingOps)308 static bool canTrapImpl(const Constant *C,
309 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
310 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
311 // The only thing that could possibly trap are constant exprs.
312 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
313 if (!CE)
314 return false;
315
316 // ConstantExpr traps if any operands can trap.
317 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
318 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
319 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
320 return true;
321 }
322 }
323
324 // Otherwise, only specific operations can trap.
325 switch (CE->getOpcode()) {
326 default:
327 return false;
328 case Instruction::UDiv:
329 case Instruction::SDiv:
330 case Instruction::FDiv:
331 case Instruction::URem:
332 case Instruction::SRem:
333 case Instruction::FRem:
334 // Div and rem can trap if the RHS is not known to be non-zero.
335 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
336 return true;
337 return false;
338 }
339 }
340
341 /// canTrap - Return true if evaluation of this constant could trap. This is
342 /// true for things like constant expressions that could divide by zero.
canTrap() const343 bool Constant::canTrap() const {
344 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
345 return canTrapImpl(this, NonTrappingOps);
346 }
347
348 /// Check if C contains a GlobalValue for which Predicate is true.
349 static bool
ConstHasGlobalValuePredicate(const Constant * C,bool (* Predicate)(const GlobalValue *))350 ConstHasGlobalValuePredicate(const Constant *C,
351 bool (*Predicate)(const GlobalValue *)) {
352 SmallPtrSet<const Constant *, 8> Visited;
353 SmallVector<const Constant *, 8> WorkList;
354 WorkList.push_back(C);
355 Visited.insert(C);
356
357 while (!WorkList.empty()) {
358 const Constant *WorkItem = WorkList.pop_back_val();
359 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
360 if (Predicate(GV))
361 return true;
362 for (const Value *Op : WorkItem->operands()) {
363 const Constant *ConstOp = dyn_cast<Constant>(Op);
364 if (!ConstOp)
365 continue;
366 if (Visited.insert(ConstOp).second)
367 WorkList.push_back(ConstOp);
368 }
369 }
370 return false;
371 }
372
373 /// Return true if the value can vary between threads.
isThreadDependent() const374 bool Constant::isThreadDependent() const {
375 auto DLLImportPredicate = [](const GlobalValue *GV) {
376 return GV->isThreadLocal();
377 };
378 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
379 }
380
isDLLImportDependent() const381 bool Constant::isDLLImportDependent() const {
382 auto DLLImportPredicate = [](const GlobalValue *GV) {
383 return GV->hasDLLImportStorageClass();
384 };
385 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
386 }
387
388 /// Return true if the constant has users other than constant exprs and other
389 /// dangling things.
isConstantUsed() const390 bool Constant::isConstantUsed() const {
391 for (const User *U : users()) {
392 const Constant *UC = dyn_cast<Constant>(U);
393 if (!UC || isa<GlobalValue>(UC))
394 return true;
395
396 if (UC->isConstantUsed())
397 return true;
398 }
399 return false;
400 }
401
402
403
404 /// getRelocationInfo - This method classifies the entry according to
405 /// whether or not it may generate a relocation entry. This must be
406 /// conservative, so if it might codegen to a relocatable entry, it should say
407 /// so. The return values are:
408 ///
409 /// NoRelocation: This constant pool entry is guaranteed to never have a
410 /// relocation applied to it (because it holds a simple constant like
411 /// '4').
412 /// LocalRelocation: This entry has relocations, but the entries are
413 /// guaranteed to be resolvable by the static linker, so the dynamic
414 /// linker will never see them.
415 /// GlobalRelocations: This entry may have arbitrary relocations.
416 ///
417 /// FIXME: This really should not be in IR.
getRelocationInfo() const418 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
419 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
420 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
421 return LocalRelocation; // Local to this file/library.
422 return GlobalRelocations; // Global reference.
423 }
424
425 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
426 return BA->getFunction()->getRelocationInfo();
427
428 // While raw uses of blockaddress need to be relocated, differences between
429 // two of them don't when they are for labels in the same function. This is a
430 // common idiom when creating a table for the indirect goto extension, so we
431 // handle it efficiently here.
432 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
433 if (CE->getOpcode() == Instruction::Sub) {
434 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
435 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
436 if (LHS && RHS &&
437 LHS->getOpcode() == Instruction::PtrToInt &&
438 RHS->getOpcode() == Instruction::PtrToInt &&
439 isa<BlockAddress>(LHS->getOperand(0)) &&
440 isa<BlockAddress>(RHS->getOperand(0)) &&
441 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
442 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
443 return NoRelocation;
444 }
445
446 PossibleRelocationsTy Result = NoRelocation;
447 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
448 Result = std::max(Result,
449 cast<Constant>(getOperand(i))->getRelocationInfo());
450
451 return Result;
452 }
453
454 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
455 /// it. This involves recursively eliminating any dead users of the
456 /// constantexpr.
removeDeadUsersOfConstant(const Constant * C)457 static bool removeDeadUsersOfConstant(const Constant *C) {
458 if (isa<GlobalValue>(C)) return false; // Cannot remove this
459
460 while (!C->use_empty()) {
461 const Constant *User = dyn_cast<Constant>(C->user_back());
462 if (!User) return false; // Non-constant usage;
463 if (!removeDeadUsersOfConstant(User))
464 return false; // Constant wasn't dead
465 }
466
467 const_cast<Constant*>(C)->destroyConstant();
468 return true;
469 }
470
471
472 /// removeDeadConstantUsers - If there are any dead constant users dangling
473 /// off of this constant, remove them. This method is useful for clients
474 /// that want to check to see if a global is unused, but don't want to deal
475 /// with potentially dead constants hanging off of the globals.
removeDeadConstantUsers() const476 void Constant::removeDeadConstantUsers() const {
477 Value::const_user_iterator I = user_begin(), E = user_end();
478 Value::const_user_iterator LastNonDeadUser = E;
479 while (I != E) {
480 const Constant *User = dyn_cast<Constant>(*I);
481 if (!User) {
482 LastNonDeadUser = I;
483 ++I;
484 continue;
485 }
486
487 if (!removeDeadUsersOfConstant(User)) {
488 // If the constant wasn't dead, remember that this was the last live use
489 // and move on to the next constant.
490 LastNonDeadUser = I;
491 ++I;
492 continue;
493 }
494
495 // If the constant was dead, then the iterator is invalidated.
496 if (LastNonDeadUser == E) {
497 I = user_begin();
498 if (I == E) break;
499 } else {
500 I = LastNonDeadUser;
501 ++I;
502 }
503 }
504 }
505
506
507
508 //===----------------------------------------------------------------------===//
509 // ConstantInt
510 //===----------------------------------------------------------------------===//
511
anchor()512 void ConstantInt::anchor() { }
513
ConstantInt(IntegerType * Ty,const APInt & V)514 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
515 : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
516 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
517 }
518
getTrue(LLVMContext & Context)519 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
520 LLVMContextImpl *pImpl = Context.pImpl;
521 if (!pImpl->TheTrueVal)
522 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
523 return pImpl->TheTrueVal;
524 }
525
getFalse(LLVMContext & Context)526 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
527 LLVMContextImpl *pImpl = Context.pImpl;
528 if (!pImpl->TheFalseVal)
529 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
530 return pImpl->TheFalseVal;
531 }
532
getTrue(Type * Ty)533 Constant *ConstantInt::getTrue(Type *Ty) {
534 VectorType *VTy = dyn_cast<VectorType>(Ty);
535 if (!VTy) {
536 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
537 return ConstantInt::getTrue(Ty->getContext());
538 }
539 assert(VTy->getElementType()->isIntegerTy(1) &&
540 "True must be vector of i1 or i1.");
541 return ConstantVector::getSplat(VTy->getNumElements(),
542 ConstantInt::getTrue(Ty->getContext()));
543 }
544
getFalse(Type * Ty)545 Constant *ConstantInt::getFalse(Type *Ty) {
546 VectorType *VTy = dyn_cast<VectorType>(Ty);
547 if (!VTy) {
548 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
549 return ConstantInt::getFalse(Ty->getContext());
550 }
551 assert(VTy->getElementType()->isIntegerTy(1) &&
552 "False must be vector of i1 or i1.");
553 return ConstantVector::getSplat(VTy->getNumElements(),
554 ConstantInt::getFalse(Ty->getContext()));
555 }
556
557 // Get a ConstantInt from an APInt.
get(LLVMContext & Context,const APInt & V)558 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
559 // get an existing value or the insertion position
560 LLVMContextImpl *pImpl = Context.pImpl;
561 ConstantInt *&Slot = pImpl->IntConstants[V];
562 if (!Slot) {
563 // Get the corresponding integer type for the bit width of the value.
564 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
565 Slot = new ConstantInt(ITy, V);
566 }
567 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
568 return Slot;
569 }
570
get(Type * Ty,uint64_t V,bool isSigned)571 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
572 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
573
574 // For vectors, broadcast the value.
575 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
576 return ConstantVector::getSplat(VTy->getNumElements(), C);
577
578 return C;
579 }
580
get(IntegerType * Ty,uint64_t V,bool isSigned)581 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
582 bool isSigned) {
583 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
584 }
585
getSigned(IntegerType * Ty,int64_t V)586 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
587 return get(Ty, V, true);
588 }
589
getSigned(Type * Ty,int64_t V)590 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
591 return get(Ty, V, true);
592 }
593
get(Type * Ty,const APInt & V)594 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
595 ConstantInt *C = get(Ty->getContext(), V);
596 assert(C->getType() == Ty->getScalarType() &&
597 "ConstantInt type doesn't match the type implied by its value!");
598
599 // For vectors, broadcast the value.
600 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601 return ConstantVector::getSplat(VTy->getNumElements(), C);
602
603 return C;
604 }
605
get(IntegerType * Ty,StringRef Str,uint8_t radix)606 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
607 uint8_t radix) {
608 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
609 }
610
611 //===----------------------------------------------------------------------===//
612 // ConstantFP
613 //===----------------------------------------------------------------------===//
614
TypeToFloatSemantics(Type * Ty)615 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
616 if (Ty->isHalfTy())
617 return &APFloat::IEEEhalf;
618 if (Ty->isFloatTy())
619 return &APFloat::IEEEsingle;
620 if (Ty->isDoubleTy())
621 return &APFloat::IEEEdouble;
622 if (Ty->isX86_FP80Ty())
623 return &APFloat::x87DoubleExtended;
624 else if (Ty->isFP128Ty())
625 return &APFloat::IEEEquad;
626
627 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
628 return &APFloat::PPCDoubleDouble;
629 }
630
anchor()631 void ConstantFP::anchor() { }
632
633 /// get() - This returns a constant fp for the specified value in the
634 /// specified type. This should only be used for simple constant values like
635 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
get(Type * Ty,double V)636 Constant *ConstantFP::get(Type *Ty, double V) {
637 LLVMContext &Context = Ty->getContext();
638
639 APFloat FV(V);
640 bool ignored;
641 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
642 APFloat::rmNearestTiesToEven, &ignored);
643 Constant *C = get(Context, FV);
644
645 // For vectors, broadcast the value.
646 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
647 return ConstantVector::getSplat(VTy->getNumElements(), C);
648
649 return C;
650 }
651
652
get(Type * Ty,StringRef Str)653 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
654 LLVMContext &Context = Ty->getContext();
655
656 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
657 Constant *C = get(Context, FV);
658
659 // For vectors, broadcast the value.
660 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
661 return ConstantVector::getSplat(VTy->getNumElements(), C);
662
663 return C;
664 }
665
getNegativeZero(Type * Ty)666 Constant *ConstantFP::getNegativeZero(Type *Ty) {
667 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
668 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
669 Constant *C = get(Ty->getContext(), NegZero);
670
671 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
672 return ConstantVector::getSplat(VTy->getNumElements(), C);
673
674 return C;
675 }
676
677
getZeroValueForNegation(Type * Ty)678 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
679 if (Ty->isFPOrFPVectorTy())
680 return getNegativeZero(Ty);
681
682 return Constant::getNullValue(Ty);
683 }
684
685
686 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)687 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
688 LLVMContextImpl* pImpl = Context.pImpl;
689
690 ConstantFP *&Slot = pImpl->FPConstants[V];
691
692 if (!Slot) {
693 Type *Ty;
694 if (&V.getSemantics() == &APFloat::IEEEhalf)
695 Ty = Type::getHalfTy(Context);
696 else if (&V.getSemantics() == &APFloat::IEEEsingle)
697 Ty = Type::getFloatTy(Context);
698 else if (&V.getSemantics() == &APFloat::IEEEdouble)
699 Ty = Type::getDoubleTy(Context);
700 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
701 Ty = Type::getX86_FP80Ty(Context);
702 else if (&V.getSemantics() == &APFloat::IEEEquad)
703 Ty = Type::getFP128Ty(Context);
704 else {
705 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
706 "Unknown FP format");
707 Ty = Type::getPPC_FP128Ty(Context);
708 }
709 Slot = new ConstantFP(Ty, V);
710 }
711
712 return Slot;
713 }
714
getInfinity(Type * Ty,bool Negative)715 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
716 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
717 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
718
719 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720 return ConstantVector::getSplat(VTy->getNumElements(), C);
721
722 return C;
723 }
724
ConstantFP(Type * Ty,const APFloat & V)725 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
726 : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
727 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
728 "FP type Mismatch");
729 }
730
isExactlyValue(const APFloat & V) const731 bool ConstantFP::isExactlyValue(const APFloat &V) const {
732 return Val.bitwiseIsEqual(V);
733 }
734
735 //===----------------------------------------------------------------------===//
736 // ConstantAggregateZero Implementation
737 //===----------------------------------------------------------------------===//
738
739 /// getSequentialElement - If this CAZ has array or vector type, return a zero
740 /// with the right element type.
getSequentialElement() const741 Constant *ConstantAggregateZero::getSequentialElement() const {
742 return Constant::getNullValue(getType()->getSequentialElementType());
743 }
744
745 /// getStructElement - If this CAZ has struct type, return a zero with the
746 /// right element type for the specified element.
getStructElement(unsigned Elt) const747 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
748 return Constant::getNullValue(getType()->getStructElementType(Elt));
749 }
750
751 /// getElementValue - Return a zero of the right value for the specified GEP
752 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const753 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
754 if (isa<SequentialType>(getType()))
755 return getSequentialElement();
756 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
757 }
758
759 /// getElementValue - Return a zero of the right value for the specified GEP
760 /// index.
getElementValue(unsigned Idx) const761 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
762 if (isa<SequentialType>(getType()))
763 return getSequentialElement();
764 return getStructElement(Idx);
765 }
766
getNumElements() const767 unsigned ConstantAggregateZero::getNumElements() const {
768 const Type *Ty = getType();
769 if (const auto *AT = dyn_cast<ArrayType>(Ty))
770 return AT->getNumElements();
771 if (const auto *VT = dyn_cast<VectorType>(Ty))
772 return VT->getNumElements();
773 return Ty->getStructNumElements();
774 }
775
776 //===----------------------------------------------------------------------===//
777 // UndefValue Implementation
778 //===----------------------------------------------------------------------===//
779
780 /// getSequentialElement - If this undef has array or vector type, return an
781 /// undef with the right element type.
getSequentialElement() const782 UndefValue *UndefValue::getSequentialElement() const {
783 return UndefValue::get(getType()->getSequentialElementType());
784 }
785
786 /// getStructElement - If this undef has struct type, return a zero with the
787 /// right element type for the specified element.
getStructElement(unsigned Elt) const788 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
789 return UndefValue::get(getType()->getStructElementType(Elt));
790 }
791
792 /// getElementValue - Return an undef of the right value for the specified GEP
793 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
getElementValue(Constant * C) const794 UndefValue *UndefValue::getElementValue(Constant *C) const {
795 if (isa<SequentialType>(getType()))
796 return getSequentialElement();
797 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
798 }
799
800 /// getElementValue - Return an undef of the right value for the specified GEP
801 /// index.
getElementValue(unsigned Idx) const802 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
803 if (isa<SequentialType>(getType()))
804 return getSequentialElement();
805 return getStructElement(Idx);
806 }
807
getNumElements() const808 unsigned UndefValue::getNumElements() const {
809 const Type *Ty = getType();
810 if (const auto *AT = dyn_cast<ArrayType>(Ty))
811 return AT->getNumElements();
812 if (const auto *VT = dyn_cast<VectorType>(Ty))
813 return VT->getNumElements();
814 return Ty->getStructNumElements();
815 }
816
817 //===----------------------------------------------------------------------===//
818 // ConstantXXX Classes
819 //===----------------------------------------------------------------------===//
820
821 template <typename ItTy, typename EltTy>
rangeOnlyContains(ItTy Start,ItTy End,EltTy Elt)822 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
823 for (; Start != End; ++Start)
824 if (*Start != Elt)
825 return false;
826 return true;
827 }
828
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)829 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
830 : Constant(T, ConstantArrayVal,
831 OperandTraits<ConstantArray>::op_end(this) - V.size(),
832 V.size()) {
833 assert(V.size() == T->getNumElements() &&
834 "Invalid initializer vector for constant array");
835 for (unsigned i = 0, e = V.size(); i != e; ++i)
836 assert(V[i]->getType() == T->getElementType() &&
837 "Initializer for array element doesn't match array element type!");
838 std::copy(V.begin(), V.end(), op_begin());
839 }
840
get(ArrayType * Ty,ArrayRef<Constant * > V)841 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
842 if (Constant *C = getImpl(Ty, V))
843 return C;
844 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
845 }
getImpl(ArrayType * Ty,ArrayRef<Constant * > V)846 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
847 // Empty arrays are canonicalized to ConstantAggregateZero.
848 if (V.empty())
849 return ConstantAggregateZero::get(Ty);
850
851 for (unsigned i = 0, e = V.size(); i != e; ++i) {
852 assert(V[i]->getType() == Ty->getElementType() &&
853 "Wrong type in array element initializer");
854 }
855
856 // If this is an all-zero array, return a ConstantAggregateZero object. If
857 // all undef, return an UndefValue, if "all simple", then return a
858 // ConstantDataArray.
859 Constant *C = V[0];
860 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
861 return UndefValue::get(Ty);
862
863 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
864 return ConstantAggregateZero::get(Ty);
865
866 // Check to see if all of the elements are ConstantFP or ConstantInt and if
867 // the element type is compatible with ConstantDataVector. If so, use it.
868 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
869 // We speculatively build the elements here even if it turns out that there
870 // is a constantexpr or something else weird in the array, since it is so
871 // uncommon for that to happen.
872 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
873 if (CI->getType()->isIntegerTy(8)) {
874 SmallVector<uint8_t, 16> Elts;
875 for (unsigned i = 0, e = V.size(); i != e; ++i)
876 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
877 Elts.push_back(CI->getZExtValue());
878 else
879 break;
880 if (Elts.size() == V.size())
881 return ConstantDataArray::get(C->getContext(), Elts);
882 } else if (CI->getType()->isIntegerTy(16)) {
883 SmallVector<uint16_t, 16> Elts;
884 for (unsigned i = 0, e = V.size(); i != e; ++i)
885 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
886 Elts.push_back(CI->getZExtValue());
887 else
888 break;
889 if (Elts.size() == V.size())
890 return ConstantDataArray::get(C->getContext(), Elts);
891 } else if (CI->getType()->isIntegerTy(32)) {
892 SmallVector<uint32_t, 16> Elts;
893 for (unsigned i = 0, e = V.size(); i != e; ++i)
894 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
895 Elts.push_back(CI->getZExtValue());
896 else
897 break;
898 if (Elts.size() == V.size())
899 return ConstantDataArray::get(C->getContext(), Elts);
900 } else if (CI->getType()->isIntegerTy(64)) {
901 SmallVector<uint64_t, 16> Elts;
902 for (unsigned i = 0, e = V.size(); i != e; ++i)
903 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
904 Elts.push_back(CI->getZExtValue());
905 else
906 break;
907 if (Elts.size() == V.size())
908 return ConstantDataArray::get(C->getContext(), Elts);
909 }
910 }
911
912 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
913 if (CFP->getType()->isFloatTy()) {
914 SmallVector<uint32_t, 16> Elts;
915 for (unsigned i = 0, e = V.size(); i != e; ++i)
916 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
917 Elts.push_back(
918 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
919 else
920 break;
921 if (Elts.size() == V.size())
922 return ConstantDataArray::getFP(C->getContext(), Elts);
923 } else if (CFP->getType()->isDoubleTy()) {
924 SmallVector<uint64_t, 16> Elts;
925 for (unsigned i = 0, e = V.size(); i != e; ++i)
926 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
927 Elts.push_back(
928 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
929 else
930 break;
931 if (Elts.size() == V.size())
932 return ConstantDataArray::getFP(C->getContext(), Elts);
933 }
934 }
935 }
936
937 // Otherwise, we really do want to create a ConstantArray.
938 return nullptr;
939 }
940
941 /// getTypeForElements - Return an anonymous struct type to use for a constant
942 /// with the specified set of elements. The list must not be empty.
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)943 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
944 ArrayRef<Constant*> V,
945 bool Packed) {
946 unsigned VecSize = V.size();
947 SmallVector<Type*, 16> EltTypes(VecSize);
948 for (unsigned i = 0; i != VecSize; ++i)
949 EltTypes[i] = V[i]->getType();
950
951 return StructType::get(Context, EltTypes, Packed);
952 }
953
954
getTypeForElements(ArrayRef<Constant * > V,bool Packed)955 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
956 bool Packed) {
957 assert(!V.empty() &&
958 "ConstantStruct::getTypeForElements cannot be called on empty list");
959 return getTypeForElements(V[0]->getContext(), V, Packed);
960 }
961
962
ConstantStruct(StructType * T,ArrayRef<Constant * > V)963 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
964 : Constant(T, ConstantStructVal,
965 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
966 V.size()) {
967 assert(V.size() == T->getNumElements() &&
968 "Invalid initializer vector for constant structure");
969 for (unsigned i = 0, e = V.size(); i != e; ++i)
970 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
971 "Initializer for struct element doesn't match struct element type!");
972 std::copy(V.begin(), V.end(), op_begin());
973 }
974
975 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)976 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
977 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
978 "Incorrect # elements specified to ConstantStruct::get");
979
980 // Create a ConstantAggregateZero value if all elements are zeros.
981 bool isZero = true;
982 bool isUndef = false;
983
984 if (!V.empty()) {
985 isUndef = isa<UndefValue>(V[0]);
986 isZero = V[0]->isNullValue();
987 if (isUndef || isZero) {
988 for (unsigned i = 0, e = V.size(); i != e; ++i) {
989 if (!V[i]->isNullValue())
990 isZero = false;
991 if (!isa<UndefValue>(V[i]))
992 isUndef = false;
993 }
994 }
995 }
996 if (isZero)
997 return ConstantAggregateZero::get(ST);
998 if (isUndef)
999 return UndefValue::get(ST);
1000
1001 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1002 }
1003
get(StructType * T,...)1004 Constant *ConstantStruct::get(StructType *T, ...) {
1005 va_list ap;
1006 SmallVector<Constant*, 8> Values;
1007 va_start(ap, T);
1008 while (Constant *Val = va_arg(ap, llvm::Constant*))
1009 Values.push_back(Val);
1010 va_end(ap);
1011 return get(T, Values);
1012 }
1013
ConstantVector(VectorType * T,ArrayRef<Constant * > V)1014 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1015 : Constant(T, ConstantVectorVal,
1016 OperandTraits<ConstantVector>::op_end(this) - V.size(),
1017 V.size()) {
1018 for (size_t i = 0, e = V.size(); i != e; i++)
1019 assert(V[i]->getType() == T->getElementType() &&
1020 "Initializer for vector element doesn't match vector element type!");
1021 std::copy(V.begin(), V.end(), op_begin());
1022 }
1023
1024 // ConstantVector accessors.
get(ArrayRef<Constant * > V)1025 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1026 if (Constant *C = getImpl(V))
1027 return C;
1028 VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1029 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1030 }
getImpl(ArrayRef<Constant * > V)1031 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1032 assert(!V.empty() && "Vectors can't be empty");
1033 VectorType *T = VectorType::get(V.front()->getType(), V.size());
1034
1035 // If this is an all-undef or all-zero vector, return a
1036 // ConstantAggregateZero or UndefValue.
1037 Constant *C = V[0];
1038 bool isZero = C->isNullValue();
1039 bool isUndef = isa<UndefValue>(C);
1040
1041 if (isZero || isUndef) {
1042 for (unsigned i = 1, e = V.size(); i != e; ++i)
1043 if (V[i] != C) {
1044 isZero = isUndef = false;
1045 break;
1046 }
1047 }
1048
1049 if (isZero)
1050 return ConstantAggregateZero::get(T);
1051 if (isUndef)
1052 return UndefValue::get(T);
1053
1054 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1055 // the element type is compatible with ConstantDataVector. If so, use it.
1056 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
1057 // We speculatively build the elements here even if it turns out that there
1058 // is a constantexpr or something else weird in the array, since it is so
1059 // uncommon for that to happen.
1060 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1061 if (CI->getType()->isIntegerTy(8)) {
1062 SmallVector<uint8_t, 16> Elts;
1063 for (unsigned i = 0, e = V.size(); i != e; ++i)
1064 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1065 Elts.push_back(CI->getZExtValue());
1066 else
1067 break;
1068 if (Elts.size() == V.size())
1069 return ConstantDataVector::get(C->getContext(), Elts);
1070 } else if (CI->getType()->isIntegerTy(16)) {
1071 SmallVector<uint16_t, 16> Elts;
1072 for (unsigned i = 0, e = V.size(); i != e; ++i)
1073 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1074 Elts.push_back(CI->getZExtValue());
1075 else
1076 break;
1077 if (Elts.size() == V.size())
1078 return ConstantDataVector::get(C->getContext(), Elts);
1079 } else if (CI->getType()->isIntegerTy(32)) {
1080 SmallVector<uint32_t, 16> Elts;
1081 for (unsigned i = 0, e = V.size(); i != e; ++i)
1082 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1083 Elts.push_back(CI->getZExtValue());
1084 else
1085 break;
1086 if (Elts.size() == V.size())
1087 return ConstantDataVector::get(C->getContext(), Elts);
1088 } else if (CI->getType()->isIntegerTy(64)) {
1089 SmallVector<uint64_t, 16> Elts;
1090 for (unsigned i = 0, e = V.size(); i != e; ++i)
1091 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1092 Elts.push_back(CI->getZExtValue());
1093 else
1094 break;
1095 if (Elts.size() == V.size())
1096 return ConstantDataVector::get(C->getContext(), Elts);
1097 }
1098 }
1099
1100 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1101 if (CFP->getType()->isFloatTy()) {
1102 SmallVector<uint32_t, 16> Elts;
1103 for (unsigned i = 0, e = V.size(); i != e; ++i)
1104 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1105 Elts.push_back(
1106 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1107 else
1108 break;
1109 if (Elts.size() == V.size())
1110 return ConstantDataVector::getFP(C->getContext(), Elts);
1111 } else if (CFP->getType()->isDoubleTy()) {
1112 SmallVector<uint64_t, 16> Elts;
1113 for (unsigned i = 0, e = V.size(); i != e; ++i)
1114 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1115 Elts.push_back(
1116 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1117 else
1118 break;
1119 if (Elts.size() == V.size())
1120 return ConstantDataVector::getFP(C->getContext(), Elts);
1121 }
1122 }
1123 }
1124
1125 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1126 // the operand list constants a ConstantExpr or something else strange.
1127 return nullptr;
1128 }
1129
getSplat(unsigned NumElts,Constant * V)1130 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1131 // If this splat is compatible with ConstantDataVector, use it instead of
1132 // ConstantVector.
1133 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1134 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1135 return ConstantDataVector::getSplat(NumElts, V);
1136
1137 SmallVector<Constant*, 32> Elts(NumElts, V);
1138 return get(Elts);
1139 }
1140
1141
1142 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1143 // can't be inline because we don't want to #include Instruction.h into
1144 // Constant.h
isCast() const1145 bool ConstantExpr::isCast() const {
1146 return Instruction::isCast(getOpcode());
1147 }
1148
isCompare() const1149 bool ConstantExpr::isCompare() const {
1150 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1151 }
1152
isGEPWithNoNotionalOverIndexing() const1153 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1154 if (getOpcode() != Instruction::GetElementPtr) return false;
1155
1156 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1157 User::const_op_iterator OI = std::next(this->op_begin());
1158
1159 // Skip the first index, as it has no static limit.
1160 ++GEPI;
1161 ++OI;
1162
1163 // The remaining indices must be compile-time known integers within the
1164 // bounds of the corresponding notional static array types.
1165 for (; GEPI != E; ++GEPI, ++OI) {
1166 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1167 if (!CI) return false;
1168 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1169 if (CI->getValue().getActiveBits() > 64 ||
1170 CI->getZExtValue() >= ATy->getNumElements())
1171 return false;
1172 }
1173
1174 // All the indices checked out.
1175 return true;
1176 }
1177
hasIndices() const1178 bool ConstantExpr::hasIndices() const {
1179 return getOpcode() == Instruction::ExtractValue ||
1180 getOpcode() == Instruction::InsertValue;
1181 }
1182
getIndices() const1183 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1184 if (const ExtractValueConstantExpr *EVCE =
1185 dyn_cast<ExtractValueConstantExpr>(this))
1186 return EVCE->Indices;
1187
1188 return cast<InsertValueConstantExpr>(this)->Indices;
1189 }
1190
getPredicate() const1191 unsigned ConstantExpr::getPredicate() const {
1192 assert(isCompare());
1193 return ((const CompareConstantExpr*)this)->predicate;
1194 }
1195
1196 /// getWithOperandReplaced - Return a constant expression identical to this
1197 /// one, but with the specified operand set to the specified value.
1198 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const1199 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1200 assert(Op->getType() == getOperand(OpNo)->getType() &&
1201 "Replacing operand with value of different type!");
1202 if (getOperand(OpNo) == Op)
1203 return const_cast<ConstantExpr*>(this);
1204
1205 SmallVector<Constant*, 8> NewOps;
1206 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1207 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1208
1209 return getWithOperands(NewOps);
1210 }
1211
1212 /// getWithOperands - This returns the current constant expression with the
1213 /// operands replaced with the specified values. The specified array must
1214 /// have the same number of operands as our current one.
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty,bool OnlyIfReduced) const1215 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1216 bool OnlyIfReduced) const {
1217 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1218
1219 // If no operands changed return self.
1220 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1221 return const_cast<ConstantExpr*>(this);
1222
1223 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1224 switch (getOpcode()) {
1225 case Instruction::Trunc:
1226 case Instruction::ZExt:
1227 case Instruction::SExt:
1228 case Instruction::FPTrunc:
1229 case Instruction::FPExt:
1230 case Instruction::UIToFP:
1231 case Instruction::SIToFP:
1232 case Instruction::FPToUI:
1233 case Instruction::FPToSI:
1234 case Instruction::PtrToInt:
1235 case Instruction::IntToPtr:
1236 case Instruction::BitCast:
1237 case Instruction::AddrSpaceCast:
1238 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1239 case Instruction::Select:
1240 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1241 case Instruction::InsertElement:
1242 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1243 OnlyIfReducedTy);
1244 case Instruction::ExtractElement:
1245 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1246 case Instruction::InsertValue:
1247 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1248 OnlyIfReducedTy);
1249 case Instruction::ExtractValue:
1250 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1251 case Instruction::ShuffleVector:
1252 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1253 OnlyIfReducedTy);
1254 case Instruction::GetElementPtr:
1255 return ConstantExpr::getGetElementPtr(nullptr, Ops[0], Ops.slice(1),
1256 cast<GEPOperator>(this)->isInBounds(),
1257 OnlyIfReducedTy);
1258 case Instruction::ICmp:
1259 case Instruction::FCmp:
1260 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1261 OnlyIfReducedTy);
1262 default:
1263 assert(getNumOperands() == 2 && "Must be binary operator?");
1264 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1265 OnlyIfReducedTy);
1266 }
1267 }
1268
1269
1270 //===----------------------------------------------------------------------===//
1271 // isValueValidForType implementations
1272
isValueValidForType(Type * Ty,uint64_t Val)1273 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1274 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1275 if (Ty->isIntegerTy(1))
1276 return Val == 0 || Val == 1;
1277 if (NumBits >= 64)
1278 return true; // always true, has to fit in largest type
1279 uint64_t Max = (1ll << NumBits) - 1;
1280 return Val <= Max;
1281 }
1282
isValueValidForType(Type * Ty,int64_t Val)1283 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1284 unsigned NumBits = Ty->getIntegerBitWidth();
1285 if (Ty->isIntegerTy(1))
1286 return Val == 0 || Val == 1 || Val == -1;
1287 if (NumBits >= 64)
1288 return true; // always true, has to fit in largest type
1289 int64_t Min = -(1ll << (NumBits-1));
1290 int64_t Max = (1ll << (NumBits-1)) - 1;
1291 return (Val >= Min && Val <= Max);
1292 }
1293
isValueValidForType(Type * Ty,const APFloat & Val)1294 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1295 // convert modifies in place, so make a copy.
1296 APFloat Val2 = APFloat(Val);
1297 bool losesInfo;
1298 switch (Ty->getTypeID()) {
1299 default:
1300 return false; // These can't be represented as floating point!
1301
1302 // FIXME rounding mode needs to be more flexible
1303 case Type::HalfTyID: {
1304 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1305 return true;
1306 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1307 return !losesInfo;
1308 }
1309 case Type::FloatTyID: {
1310 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1311 return true;
1312 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1313 return !losesInfo;
1314 }
1315 case Type::DoubleTyID: {
1316 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1317 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1318 &Val2.getSemantics() == &APFloat::IEEEdouble)
1319 return true;
1320 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1321 return !losesInfo;
1322 }
1323 case Type::X86_FP80TyID:
1324 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1325 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1326 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1327 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1328 case Type::FP128TyID:
1329 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1330 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1331 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1332 &Val2.getSemantics() == &APFloat::IEEEquad;
1333 case Type::PPC_FP128TyID:
1334 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1335 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1336 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1337 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1338 }
1339 }
1340
1341
1342 //===----------------------------------------------------------------------===//
1343 // Factory Function Implementation
1344
get(Type * Ty)1345 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1346 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1347 "Cannot create an aggregate zero of non-aggregate type!");
1348
1349 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1350 if (!Entry)
1351 Entry = new ConstantAggregateZero(Ty);
1352
1353 return Entry;
1354 }
1355
1356 /// destroyConstant - Remove the constant from the constant table.
1357 ///
destroyConstant()1358 void ConstantAggregateZero::destroyConstant() {
1359 getContext().pImpl->CAZConstants.erase(getType());
1360 destroyConstantImpl();
1361 }
1362
1363 /// destroyConstant - Remove the constant from the constant table...
1364 ///
destroyConstant()1365 void ConstantArray::destroyConstant() {
1366 getType()->getContext().pImpl->ArrayConstants.remove(this);
1367 destroyConstantImpl();
1368 }
1369
1370
1371 //---- ConstantStruct::get() implementation...
1372 //
1373
1374 // destroyConstant - Remove the constant from the constant table...
1375 //
destroyConstant()1376 void ConstantStruct::destroyConstant() {
1377 getType()->getContext().pImpl->StructConstants.remove(this);
1378 destroyConstantImpl();
1379 }
1380
1381 // destroyConstant - Remove the constant from the constant table...
1382 //
destroyConstant()1383 void ConstantVector::destroyConstant() {
1384 getType()->getContext().pImpl->VectorConstants.remove(this);
1385 destroyConstantImpl();
1386 }
1387
1388 /// getSplatValue - If this is a splat vector constant, meaning that all of
1389 /// the elements have the same value, return that value. Otherwise return 0.
getSplatValue() const1390 Constant *Constant::getSplatValue() const {
1391 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1392 if (isa<ConstantAggregateZero>(this))
1393 return getNullValue(this->getType()->getVectorElementType());
1394 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1395 return CV->getSplatValue();
1396 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1397 return CV->getSplatValue();
1398 return nullptr;
1399 }
1400
1401 /// getSplatValue - If this is a splat constant, where all of the
1402 /// elements have the same value, return that value. Otherwise return null.
getSplatValue() const1403 Constant *ConstantVector::getSplatValue() const {
1404 // Check out first element.
1405 Constant *Elt = getOperand(0);
1406 // Then make sure all remaining elements point to the same value.
1407 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1408 if (getOperand(I) != Elt)
1409 return nullptr;
1410 return Elt;
1411 }
1412
1413 /// If C is a constant integer then return its value, otherwise C must be a
1414 /// vector of constant integers, all equal, and the common value is returned.
getUniqueInteger() const1415 const APInt &Constant::getUniqueInteger() const {
1416 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1417 return CI->getValue();
1418 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1419 const Constant *C = this->getAggregateElement(0U);
1420 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1421 return cast<ConstantInt>(C)->getValue();
1422 }
1423
1424
1425 //---- ConstantPointerNull::get() implementation.
1426 //
1427
get(PointerType * Ty)1428 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1429 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1430 if (!Entry)
1431 Entry = new ConstantPointerNull(Ty);
1432
1433 return Entry;
1434 }
1435
1436 // destroyConstant - Remove the constant from the constant table...
1437 //
destroyConstant()1438 void ConstantPointerNull::destroyConstant() {
1439 getContext().pImpl->CPNConstants.erase(getType());
1440 // Free the constant and any dangling references to it.
1441 destroyConstantImpl();
1442 }
1443
1444
1445 //---- UndefValue::get() implementation.
1446 //
1447
get(Type * Ty)1448 UndefValue *UndefValue::get(Type *Ty) {
1449 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1450 if (!Entry)
1451 Entry = new UndefValue(Ty);
1452
1453 return Entry;
1454 }
1455
1456 // destroyConstant - Remove the constant from the constant table.
1457 //
destroyConstant()1458 void UndefValue::destroyConstant() {
1459 // Free the constant and any dangling references to it.
1460 getContext().pImpl->UVConstants.erase(getType());
1461 destroyConstantImpl();
1462 }
1463
1464 //---- BlockAddress::get() implementation.
1465 //
1466
get(BasicBlock * BB)1467 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1468 assert(BB->getParent() && "Block must have a parent");
1469 return get(BB->getParent(), BB);
1470 }
1471
get(Function * F,BasicBlock * BB)1472 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1473 BlockAddress *&BA =
1474 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1475 if (!BA)
1476 BA = new BlockAddress(F, BB);
1477
1478 assert(BA->getFunction() == F && "Basic block moved between functions");
1479 return BA;
1480 }
1481
BlockAddress(Function * F,BasicBlock * BB)1482 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1483 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1484 &Op<0>(), 2) {
1485 setOperand(0, F);
1486 setOperand(1, BB);
1487 BB->AdjustBlockAddressRefCount(1);
1488 }
1489
lookup(const BasicBlock * BB)1490 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1491 if (!BB->hasAddressTaken())
1492 return nullptr;
1493
1494 const Function *F = BB->getParent();
1495 assert(F && "Block must have a parent");
1496 BlockAddress *BA =
1497 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1498 assert(BA && "Refcount and block address map disagree!");
1499 return BA;
1500 }
1501
1502 // destroyConstant - Remove the constant from the constant table.
1503 //
destroyConstant()1504 void BlockAddress::destroyConstant() {
1505 getFunction()->getType()->getContext().pImpl
1506 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1507 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1508 destroyConstantImpl();
1509 }
1510
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1511 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1512 // This could be replacing either the Basic Block or the Function. In either
1513 // case, we have to remove the map entry.
1514 Function *NewF = getFunction();
1515 BasicBlock *NewBB = getBasicBlock();
1516
1517 if (U == &Op<0>())
1518 NewF = cast<Function>(To->stripPointerCasts());
1519 else
1520 NewBB = cast<BasicBlock>(To);
1521
1522 // See if the 'new' entry already exists, if not, just update this in place
1523 // and return early.
1524 BlockAddress *&NewBA =
1525 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1526 if (NewBA) {
1527 replaceUsesOfWithOnConstantImpl(NewBA);
1528 return;
1529 }
1530
1531 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1532
1533 // Remove the old entry, this can't cause the map to rehash (just a
1534 // tombstone will get added).
1535 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1536 getBasicBlock()));
1537 NewBA = this;
1538 setOperand(0, NewF);
1539 setOperand(1, NewBB);
1540 getBasicBlock()->AdjustBlockAddressRefCount(1);
1541 }
1542
1543 //---- ConstantExpr::get() implementations.
1544 //
1545
1546 /// This is a utility function to handle folding of casts and lookup of the
1547 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty,bool OnlyIfReduced=false)1548 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1549 bool OnlyIfReduced = false) {
1550 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1551 // Fold a few common cases
1552 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1553 return FC;
1554
1555 if (OnlyIfReduced)
1556 return nullptr;
1557
1558 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1559
1560 // Look up the constant in the table first to ensure uniqueness.
1561 ConstantExprKeyType Key(opc, C);
1562
1563 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1564 }
1565
getCast(unsigned oc,Constant * C,Type * Ty,bool OnlyIfReduced)1566 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1567 bool OnlyIfReduced) {
1568 Instruction::CastOps opc = Instruction::CastOps(oc);
1569 assert(Instruction::isCast(opc) && "opcode out of range");
1570 assert(C && Ty && "Null arguments to getCast");
1571 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1572
1573 switch (opc) {
1574 default:
1575 llvm_unreachable("Invalid cast opcode");
1576 case Instruction::Trunc:
1577 return getTrunc(C, Ty, OnlyIfReduced);
1578 case Instruction::ZExt:
1579 return getZExt(C, Ty, OnlyIfReduced);
1580 case Instruction::SExt:
1581 return getSExt(C, Ty, OnlyIfReduced);
1582 case Instruction::FPTrunc:
1583 return getFPTrunc(C, Ty, OnlyIfReduced);
1584 case Instruction::FPExt:
1585 return getFPExtend(C, Ty, OnlyIfReduced);
1586 case Instruction::UIToFP:
1587 return getUIToFP(C, Ty, OnlyIfReduced);
1588 case Instruction::SIToFP:
1589 return getSIToFP(C, Ty, OnlyIfReduced);
1590 case Instruction::FPToUI:
1591 return getFPToUI(C, Ty, OnlyIfReduced);
1592 case Instruction::FPToSI:
1593 return getFPToSI(C, Ty, OnlyIfReduced);
1594 case Instruction::PtrToInt:
1595 return getPtrToInt(C, Ty, OnlyIfReduced);
1596 case Instruction::IntToPtr:
1597 return getIntToPtr(C, Ty, OnlyIfReduced);
1598 case Instruction::BitCast:
1599 return getBitCast(C, Ty, OnlyIfReduced);
1600 case Instruction::AddrSpaceCast:
1601 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1602 }
1603 }
1604
getZExtOrBitCast(Constant * C,Type * Ty)1605 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1606 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1607 return getBitCast(C, Ty);
1608 return getZExt(C, Ty);
1609 }
1610
getSExtOrBitCast(Constant * C,Type * Ty)1611 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1612 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1613 return getBitCast(C, Ty);
1614 return getSExt(C, Ty);
1615 }
1616
getTruncOrBitCast(Constant * C,Type * Ty)1617 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1618 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1619 return getBitCast(C, Ty);
1620 return getTrunc(C, Ty);
1621 }
1622
getPointerCast(Constant * S,Type * Ty)1623 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1624 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1625 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1626 "Invalid cast");
1627
1628 if (Ty->isIntOrIntVectorTy())
1629 return getPtrToInt(S, Ty);
1630
1631 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1632 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1633 return getAddrSpaceCast(S, Ty);
1634
1635 return getBitCast(S, Ty);
1636 }
1637
getPointerBitCastOrAddrSpaceCast(Constant * S,Type * Ty)1638 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1639 Type *Ty) {
1640 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1641 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1642
1643 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1644 return getAddrSpaceCast(S, Ty);
1645
1646 return getBitCast(S, Ty);
1647 }
1648
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1649 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1650 bool isSigned) {
1651 assert(C->getType()->isIntOrIntVectorTy() &&
1652 Ty->isIntOrIntVectorTy() && "Invalid cast");
1653 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1654 unsigned DstBits = Ty->getScalarSizeInBits();
1655 Instruction::CastOps opcode =
1656 (SrcBits == DstBits ? Instruction::BitCast :
1657 (SrcBits > DstBits ? Instruction::Trunc :
1658 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1659 return getCast(opcode, C, Ty);
1660 }
1661
getFPCast(Constant * C,Type * Ty)1662 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1663 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1664 "Invalid cast");
1665 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1666 unsigned DstBits = Ty->getScalarSizeInBits();
1667 if (SrcBits == DstBits)
1668 return C; // Avoid a useless cast
1669 Instruction::CastOps opcode =
1670 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1671 return getCast(opcode, C, Ty);
1672 }
1673
getTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1674 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1675 #ifndef NDEBUG
1676 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1677 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1678 #endif
1679 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1680 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1681 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1682 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1683 "SrcTy must be larger than DestTy for Trunc!");
1684
1685 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1686 }
1687
getSExt(Constant * C,Type * Ty,bool OnlyIfReduced)1688 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1689 #ifndef NDEBUG
1690 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1691 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1692 #endif
1693 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1694 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1695 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1696 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1697 "SrcTy must be smaller than DestTy for SExt!");
1698
1699 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1700 }
1701
getZExt(Constant * C,Type * Ty,bool OnlyIfReduced)1702 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1703 #ifndef NDEBUG
1704 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1705 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1706 #endif
1707 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1708 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1709 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1710 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1711 "SrcTy must be smaller than DestTy for ZExt!");
1712
1713 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1714 }
1715
getFPTrunc(Constant * C,Type * Ty,bool OnlyIfReduced)1716 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1717 #ifndef NDEBUG
1718 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1719 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1720 #endif
1721 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1722 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1723 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1724 "This is an illegal floating point truncation!");
1725 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1726 }
1727
getFPExtend(Constant * C,Type * Ty,bool OnlyIfReduced)1728 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1729 #ifndef NDEBUG
1730 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1731 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1732 #endif
1733 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1734 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1735 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1736 "This is an illegal floating point extension!");
1737 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1738 }
1739
getUIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1740 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1741 #ifndef NDEBUG
1742 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1743 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1744 #endif
1745 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1746 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1747 "This is an illegal uint to floating point cast!");
1748 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1749 }
1750
getSIToFP(Constant * C,Type * Ty,bool OnlyIfReduced)1751 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1752 #ifndef NDEBUG
1753 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1754 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1755 #endif
1756 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1757 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1758 "This is an illegal sint to floating point cast!");
1759 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1760 }
1761
getFPToUI(Constant * C,Type * Ty,bool OnlyIfReduced)1762 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1763 #ifndef NDEBUG
1764 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1765 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1766 #endif
1767 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1768 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1769 "This is an illegal floating point to uint cast!");
1770 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1771 }
1772
getFPToSI(Constant * C,Type * Ty,bool OnlyIfReduced)1773 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1774 #ifndef NDEBUG
1775 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1776 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1777 #endif
1778 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1779 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1780 "This is an illegal floating point to sint cast!");
1781 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1782 }
1783
getPtrToInt(Constant * C,Type * DstTy,bool OnlyIfReduced)1784 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1785 bool OnlyIfReduced) {
1786 assert(C->getType()->getScalarType()->isPointerTy() &&
1787 "PtrToInt source must be pointer or pointer vector");
1788 assert(DstTy->getScalarType()->isIntegerTy() &&
1789 "PtrToInt destination must be integer or integer vector");
1790 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1791 if (isa<VectorType>(C->getType()))
1792 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1793 "Invalid cast between a different number of vector elements");
1794 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1795 }
1796
getIntToPtr(Constant * C,Type * DstTy,bool OnlyIfReduced)1797 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1798 bool OnlyIfReduced) {
1799 assert(C->getType()->getScalarType()->isIntegerTy() &&
1800 "IntToPtr source must be integer or integer vector");
1801 assert(DstTy->getScalarType()->isPointerTy() &&
1802 "IntToPtr destination must be a pointer or pointer vector");
1803 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1804 if (isa<VectorType>(C->getType()))
1805 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1806 "Invalid cast between a different number of vector elements");
1807 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1808 }
1809
getBitCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1810 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1811 bool OnlyIfReduced) {
1812 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1813 "Invalid constantexpr bitcast!");
1814
1815 // It is common to ask for a bitcast of a value to its own type, handle this
1816 // speedily.
1817 if (C->getType() == DstTy) return C;
1818
1819 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1820 }
1821
getAddrSpaceCast(Constant * C,Type * DstTy,bool OnlyIfReduced)1822 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1823 bool OnlyIfReduced) {
1824 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1825 "Invalid constantexpr addrspacecast!");
1826
1827 // Canonicalize addrspacecasts between different pointer types by first
1828 // bitcasting the pointer type and then converting the address space.
1829 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1830 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1831 Type *DstElemTy = DstScalarTy->getElementType();
1832 if (SrcScalarTy->getElementType() != DstElemTy) {
1833 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1834 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1835 // Handle vectors of pointers.
1836 MidTy = VectorType::get(MidTy, VT->getNumElements());
1837 }
1838 C = getBitCast(C, MidTy);
1839 }
1840 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1841 }
1842
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags,Type * OnlyIfReducedTy)1843 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1844 unsigned Flags, Type *OnlyIfReducedTy) {
1845 // Check the operands for consistency first.
1846 assert(Opcode >= Instruction::BinaryOpsBegin &&
1847 Opcode < Instruction::BinaryOpsEnd &&
1848 "Invalid opcode in binary constant expression");
1849 assert(C1->getType() == C2->getType() &&
1850 "Operand types in binary constant expression should match");
1851
1852 #ifndef NDEBUG
1853 switch (Opcode) {
1854 case Instruction::Add:
1855 case Instruction::Sub:
1856 case Instruction::Mul:
1857 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1858 assert(C1->getType()->isIntOrIntVectorTy() &&
1859 "Tried to create an integer operation on a non-integer type!");
1860 break;
1861 case Instruction::FAdd:
1862 case Instruction::FSub:
1863 case Instruction::FMul:
1864 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1865 assert(C1->getType()->isFPOrFPVectorTy() &&
1866 "Tried to create a floating-point operation on a "
1867 "non-floating-point type!");
1868 break;
1869 case Instruction::UDiv:
1870 case Instruction::SDiv:
1871 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1872 assert(C1->getType()->isIntOrIntVectorTy() &&
1873 "Tried to create an arithmetic operation on a non-arithmetic type!");
1874 break;
1875 case Instruction::FDiv:
1876 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1877 assert(C1->getType()->isFPOrFPVectorTy() &&
1878 "Tried to create an arithmetic operation on a non-arithmetic type!");
1879 break;
1880 case Instruction::URem:
1881 case Instruction::SRem:
1882 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1883 assert(C1->getType()->isIntOrIntVectorTy() &&
1884 "Tried to create an arithmetic operation on a non-arithmetic type!");
1885 break;
1886 case Instruction::FRem:
1887 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1888 assert(C1->getType()->isFPOrFPVectorTy() &&
1889 "Tried to create an arithmetic operation on a non-arithmetic type!");
1890 break;
1891 case Instruction::And:
1892 case Instruction::Or:
1893 case Instruction::Xor:
1894 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1895 assert(C1->getType()->isIntOrIntVectorTy() &&
1896 "Tried to create a logical operation on a non-integral type!");
1897 break;
1898 case Instruction::Shl:
1899 case Instruction::LShr:
1900 case Instruction::AShr:
1901 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1902 assert(C1->getType()->isIntOrIntVectorTy() &&
1903 "Tried to create a shift operation on a non-integer type!");
1904 break;
1905 default:
1906 break;
1907 }
1908 #endif
1909
1910 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1911 return FC; // Fold a few common cases.
1912
1913 if (OnlyIfReducedTy == C1->getType())
1914 return nullptr;
1915
1916 Constant *ArgVec[] = { C1, C2 };
1917 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1918
1919 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1920 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1921 }
1922
getSizeOf(Type * Ty)1923 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1924 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1925 // Note that a non-inbounds gep is used, as null isn't within any object.
1926 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1927 Constant *GEP = getGetElementPtr(
1928 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1929 return getPtrToInt(GEP,
1930 Type::getInt64Ty(Ty->getContext()));
1931 }
1932
getAlignOf(Type * Ty)1933 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1934 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1935 // Note that a non-inbounds gep is used, as null isn't within any object.
1936 Type *AligningTy =
1937 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1938 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1939 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1940 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1941 Constant *Indices[2] = { Zero, One };
1942 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1943 return getPtrToInt(GEP,
1944 Type::getInt64Ty(Ty->getContext()));
1945 }
1946
getOffsetOf(StructType * STy,unsigned FieldNo)1947 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1948 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1949 FieldNo));
1950 }
1951
getOffsetOf(Type * Ty,Constant * FieldNo)1952 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1953 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1954 // Note that a non-inbounds gep is used, as null isn't within any object.
1955 Constant *GEPIdx[] = {
1956 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1957 FieldNo
1958 };
1959 Constant *GEP = getGetElementPtr(
1960 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1961 return getPtrToInt(GEP,
1962 Type::getInt64Ty(Ty->getContext()));
1963 }
1964
getCompare(unsigned short Predicate,Constant * C1,Constant * C2,bool OnlyIfReduced)1965 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1966 Constant *C2, bool OnlyIfReduced) {
1967 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1968
1969 switch (Predicate) {
1970 default: llvm_unreachable("Invalid CmpInst predicate");
1971 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1972 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1973 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1974 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1975 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1976 case CmpInst::FCMP_TRUE:
1977 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1978
1979 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1980 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1981 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1982 case CmpInst::ICMP_SLE:
1983 return getICmp(Predicate, C1, C2, OnlyIfReduced);
1984 }
1985 }
1986
getSelect(Constant * C,Constant * V1,Constant * V2,Type * OnlyIfReducedTy)1987 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1988 Type *OnlyIfReducedTy) {
1989 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1990
1991 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1992 return SC; // Fold common cases
1993
1994 if (OnlyIfReducedTy == V1->getType())
1995 return nullptr;
1996
1997 Constant *ArgVec[] = { C, V1, V2 };
1998 ConstantExprKeyType Key(Instruction::Select, ArgVec);
1999
2000 LLVMContextImpl *pImpl = C->getContext().pImpl;
2001 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2002 }
2003
getGetElementPtr(Type * Ty,Constant * C,ArrayRef<Value * > Idxs,bool InBounds,Type * OnlyIfReducedTy)2004 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2005 ArrayRef<Value *> Idxs, bool InBounds,
2006 Type *OnlyIfReducedTy) {
2007 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
2008 return FC; // Fold a few common cases.
2009
2010 if (!Ty)
2011 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2012 else
2013 assert(Ty ==
2014 cast<PointerType>(C->getType()->getScalarType())->getElementType());
2015 // Get the result type of the getelementptr!
2016 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2017 assert(DestTy && "GEP indices invalid!");
2018 unsigned AS = C->getType()->getPointerAddressSpace();
2019 Type *ReqTy = DestTy->getPointerTo(AS);
2020 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2021 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
2022
2023 if (OnlyIfReducedTy == ReqTy)
2024 return nullptr;
2025
2026 // Look up the constant in the table first to ensure uniqueness
2027 std::vector<Constant*> ArgVec;
2028 ArgVec.reserve(1 + Idxs.size());
2029 ArgVec.push_back(C);
2030 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2031 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
2032 "getelementptr index type missmatch");
2033 assert((!Idxs[i]->getType()->isVectorTy() ||
2034 ReqTy->getVectorNumElements() ==
2035 Idxs[i]->getType()->getVectorNumElements()) &&
2036 "getelementptr index type missmatch");
2037 ArgVec.push_back(cast<Constant>(Idxs[i]));
2038 }
2039 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2040 InBounds ? GEPOperator::IsInBounds : 0);
2041
2042 LLVMContextImpl *pImpl = C->getContext().pImpl;
2043 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2044 }
2045
getICmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2046 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2047 Constant *RHS, bool OnlyIfReduced) {
2048 assert(LHS->getType() == RHS->getType());
2049 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2050 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2051
2052 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2053 return FC; // Fold a few common cases...
2054
2055 if (OnlyIfReduced)
2056 return nullptr;
2057
2058 // Look up the constant in the table first to ensure uniqueness
2059 Constant *ArgVec[] = { LHS, RHS };
2060 // Get the key type with both the opcode and predicate
2061 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2062
2063 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2064 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2065 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2066
2067 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2068 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2069 }
2070
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS,bool OnlyIfReduced)2071 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2072 Constant *RHS, bool OnlyIfReduced) {
2073 assert(LHS->getType() == RHS->getType());
2074 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2075
2076 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2077 return FC; // Fold a few common cases...
2078
2079 if (OnlyIfReduced)
2080 return nullptr;
2081
2082 // Look up the constant in the table first to ensure uniqueness
2083 Constant *ArgVec[] = { LHS, RHS };
2084 // Get the key type with both the opcode and predicate
2085 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2086
2087 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2088 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2089 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2090
2091 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2092 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2093 }
2094
getExtractElement(Constant * Val,Constant * Idx,Type * OnlyIfReducedTy)2095 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2096 Type *OnlyIfReducedTy) {
2097 assert(Val->getType()->isVectorTy() &&
2098 "Tried to create extractelement operation on non-vector type!");
2099 assert(Idx->getType()->isIntegerTy() &&
2100 "Extractelement index must be an integer type!");
2101
2102 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2103 return FC; // Fold a few common cases.
2104
2105 Type *ReqTy = Val->getType()->getVectorElementType();
2106 if (OnlyIfReducedTy == ReqTy)
2107 return nullptr;
2108
2109 // Look up the constant in the table first to ensure uniqueness
2110 Constant *ArgVec[] = { Val, Idx };
2111 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2112
2113 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2114 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2115 }
2116
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx,Type * OnlyIfReducedTy)2117 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2118 Constant *Idx, Type *OnlyIfReducedTy) {
2119 assert(Val->getType()->isVectorTy() &&
2120 "Tried to create insertelement operation on non-vector type!");
2121 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2122 "Insertelement types must match!");
2123 assert(Idx->getType()->isIntegerTy() &&
2124 "Insertelement index must be i32 type!");
2125
2126 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2127 return FC; // Fold a few common cases.
2128
2129 if (OnlyIfReducedTy == Val->getType())
2130 return nullptr;
2131
2132 // Look up the constant in the table first to ensure uniqueness
2133 Constant *ArgVec[] = { Val, Elt, Idx };
2134 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2135
2136 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2137 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2138 }
2139
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask,Type * OnlyIfReducedTy)2140 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2141 Constant *Mask, Type *OnlyIfReducedTy) {
2142 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2143 "Invalid shuffle vector constant expr operands!");
2144
2145 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2146 return FC; // Fold a few common cases.
2147
2148 unsigned NElts = Mask->getType()->getVectorNumElements();
2149 Type *EltTy = V1->getType()->getVectorElementType();
2150 Type *ShufTy = VectorType::get(EltTy, NElts);
2151
2152 if (OnlyIfReducedTy == ShufTy)
2153 return nullptr;
2154
2155 // Look up the constant in the table first to ensure uniqueness
2156 Constant *ArgVec[] = { V1, V2, Mask };
2157 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2158
2159 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2160 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2161 }
2162
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2163 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2164 ArrayRef<unsigned> Idxs,
2165 Type *OnlyIfReducedTy) {
2166 assert(Agg->getType()->isFirstClassType() &&
2167 "Non-first-class type for constant insertvalue expression");
2168
2169 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2170 Idxs) == Val->getType() &&
2171 "insertvalue indices invalid!");
2172 Type *ReqTy = Val->getType();
2173
2174 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2175 return FC;
2176
2177 if (OnlyIfReducedTy == ReqTy)
2178 return nullptr;
2179
2180 Constant *ArgVec[] = { Agg, Val };
2181 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2182
2183 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2184 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2185 }
2186
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs,Type * OnlyIfReducedTy)2187 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2188 Type *OnlyIfReducedTy) {
2189 assert(Agg->getType()->isFirstClassType() &&
2190 "Tried to create extractelement operation on non-first-class type!");
2191
2192 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2193 (void)ReqTy;
2194 assert(ReqTy && "extractvalue indices invalid!");
2195
2196 assert(Agg->getType()->isFirstClassType() &&
2197 "Non-first-class type for constant extractvalue expression");
2198 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2199 return FC;
2200
2201 if (OnlyIfReducedTy == ReqTy)
2202 return nullptr;
2203
2204 Constant *ArgVec[] = { Agg };
2205 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2206
2207 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2208 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2209 }
2210
getNeg(Constant * C,bool HasNUW,bool HasNSW)2211 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2212 assert(C->getType()->isIntOrIntVectorTy() &&
2213 "Cannot NEG a nonintegral value!");
2214 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2215 C, HasNUW, HasNSW);
2216 }
2217
getFNeg(Constant * C)2218 Constant *ConstantExpr::getFNeg(Constant *C) {
2219 assert(C->getType()->isFPOrFPVectorTy() &&
2220 "Cannot FNEG a non-floating-point value!");
2221 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2222 }
2223
getNot(Constant * C)2224 Constant *ConstantExpr::getNot(Constant *C) {
2225 assert(C->getType()->isIntOrIntVectorTy() &&
2226 "Cannot NOT a nonintegral value!");
2227 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2228 }
2229
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2230 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2231 bool HasNUW, bool HasNSW) {
2232 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2233 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2234 return get(Instruction::Add, C1, C2, Flags);
2235 }
2236
getFAdd(Constant * C1,Constant * C2)2237 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2238 return get(Instruction::FAdd, C1, C2);
2239 }
2240
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2241 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2242 bool HasNUW, bool HasNSW) {
2243 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2244 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2245 return get(Instruction::Sub, C1, C2, Flags);
2246 }
2247
getFSub(Constant * C1,Constant * C2)2248 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2249 return get(Instruction::FSub, C1, C2);
2250 }
2251
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2252 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2253 bool HasNUW, bool HasNSW) {
2254 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2255 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2256 return get(Instruction::Mul, C1, C2, Flags);
2257 }
2258
getFMul(Constant * C1,Constant * C2)2259 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2260 return get(Instruction::FMul, C1, C2);
2261 }
2262
getUDiv(Constant * C1,Constant * C2,bool isExact)2263 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2264 return get(Instruction::UDiv, C1, C2,
2265 isExact ? PossiblyExactOperator::IsExact : 0);
2266 }
2267
getSDiv(Constant * C1,Constant * C2,bool isExact)2268 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2269 return get(Instruction::SDiv, C1, C2,
2270 isExact ? PossiblyExactOperator::IsExact : 0);
2271 }
2272
getFDiv(Constant * C1,Constant * C2)2273 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2274 return get(Instruction::FDiv, C1, C2);
2275 }
2276
getURem(Constant * C1,Constant * C2)2277 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2278 return get(Instruction::URem, C1, C2);
2279 }
2280
getSRem(Constant * C1,Constant * C2)2281 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2282 return get(Instruction::SRem, C1, C2);
2283 }
2284
getFRem(Constant * C1,Constant * C2)2285 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2286 return get(Instruction::FRem, C1, C2);
2287 }
2288
getAnd(Constant * C1,Constant * C2)2289 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2290 return get(Instruction::And, C1, C2);
2291 }
2292
getOr(Constant * C1,Constant * C2)2293 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2294 return get(Instruction::Or, C1, C2);
2295 }
2296
getXor(Constant * C1,Constant * C2)2297 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2298 return get(Instruction::Xor, C1, C2);
2299 }
2300
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)2301 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2302 bool HasNUW, bool HasNSW) {
2303 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2304 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2305 return get(Instruction::Shl, C1, C2, Flags);
2306 }
2307
getLShr(Constant * C1,Constant * C2,bool isExact)2308 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2309 return get(Instruction::LShr, C1, C2,
2310 isExact ? PossiblyExactOperator::IsExact : 0);
2311 }
2312
getAShr(Constant * C1,Constant * C2,bool isExact)2313 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2314 return get(Instruction::AShr, C1, C2,
2315 isExact ? PossiblyExactOperator::IsExact : 0);
2316 }
2317
2318 /// getBinOpIdentity - Return the identity for the given binary operation,
2319 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2320 /// returns null if the operator doesn't have an identity.
getBinOpIdentity(unsigned Opcode,Type * Ty)2321 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2322 switch (Opcode) {
2323 default:
2324 // Doesn't have an identity.
2325 return nullptr;
2326
2327 case Instruction::Add:
2328 case Instruction::Or:
2329 case Instruction::Xor:
2330 return Constant::getNullValue(Ty);
2331
2332 case Instruction::Mul:
2333 return ConstantInt::get(Ty, 1);
2334
2335 case Instruction::And:
2336 return Constant::getAllOnesValue(Ty);
2337 }
2338 }
2339
2340 /// getBinOpAbsorber - Return the absorbing element for the given binary
2341 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2342 /// every X. For example, this returns zero for integer multiplication.
2343 /// It returns null if the operator doesn't have an absorbing element.
getBinOpAbsorber(unsigned Opcode,Type * Ty)2344 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2345 switch (Opcode) {
2346 default:
2347 // Doesn't have an absorber.
2348 return nullptr;
2349
2350 case Instruction::Or:
2351 return Constant::getAllOnesValue(Ty);
2352
2353 case Instruction::And:
2354 case Instruction::Mul:
2355 return Constant::getNullValue(Ty);
2356 }
2357 }
2358
2359 // destroyConstant - Remove the constant from the constant table...
2360 //
destroyConstant()2361 void ConstantExpr::destroyConstant() {
2362 getType()->getContext().pImpl->ExprConstants.remove(this);
2363 destroyConstantImpl();
2364 }
2365
getOpcodeName() const2366 const char *ConstantExpr::getOpcodeName() const {
2367 return Instruction::getOpcodeName(getOpcode());
2368 }
2369
2370
2371
2372 GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant * C,ArrayRef<Constant * > IdxList,Type * DestTy)2373 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2374 Type *DestTy)
2375 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2376 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2377 - (IdxList.size()+1), IdxList.size()+1) {
2378 OperandList[0] = C;
2379 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2380 OperandList[i+1] = IdxList[i];
2381 }
2382
2383 //===----------------------------------------------------------------------===//
2384 // ConstantData* implementations
2385
anchor()2386 void ConstantDataArray::anchor() {}
anchor()2387 void ConstantDataVector::anchor() {}
2388
2389 /// getElementType - Return the element type of the array/vector.
getElementType() const2390 Type *ConstantDataSequential::getElementType() const {
2391 return getType()->getElementType();
2392 }
2393
getRawDataValues() const2394 StringRef ConstantDataSequential::getRawDataValues() const {
2395 return StringRef(DataElements, getNumElements()*getElementByteSize());
2396 }
2397
2398 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2399 /// formed with a vector or array of the specified element type.
2400 /// ConstantDataArray only works with normal float and int types that are
2401 /// stored densely in memory, not with things like i42 or x86_f80.
isElementTypeCompatible(const Type * Ty)2402 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2403 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2404 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2405 switch (IT->getBitWidth()) {
2406 case 8:
2407 case 16:
2408 case 32:
2409 case 64:
2410 return true;
2411 default: break;
2412 }
2413 }
2414 return false;
2415 }
2416
2417 /// getNumElements - Return the number of elements in the array or vector.
getNumElements() const2418 unsigned ConstantDataSequential::getNumElements() const {
2419 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2420 return AT->getNumElements();
2421 return getType()->getVectorNumElements();
2422 }
2423
2424
2425 /// getElementByteSize - Return the size in bytes of the elements in the data.
getElementByteSize() const2426 uint64_t ConstantDataSequential::getElementByteSize() const {
2427 return getElementType()->getPrimitiveSizeInBits()/8;
2428 }
2429
2430 /// getElementPointer - Return the start of the specified element.
getElementPointer(unsigned Elt) const2431 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2432 assert(Elt < getNumElements() && "Invalid Elt");
2433 return DataElements+Elt*getElementByteSize();
2434 }
2435
2436
2437 /// isAllZeros - return true if the array is empty or all zeros.
isAllZeros(StringRef Arr)2438 static bool isAllZeros(StringRef Arr) {
2439 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2440 if (*I != 0)
2441 return false;
2442 return true;
2443 }
2444
2445 /// getImpl - This is the underlying implementation of all of the
2446 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2447 /// the correct element type. We take the bytes in as a StringRef because
2448 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
getImpl(StringRef Elements,Type * Ty)2449 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2450 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2451 // If the elements are all zero or there are no elements, return a CAZ, which
2452 // is more dense and canonical.
2453 if (isAllZeros(Elements))
2454 return ConstantAggregateZero::get(Ty);
2455
2456 // Do a lookup to see if we have already formed one of these.
2457 auto &Slot =
2458 *Ty->getContext()
2459 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2460 .first;
2461
2462 // The bucket can point to a linked list of different CDS's that have the same
2463 // body but different types. For example, 0,0,0,1 could be a 4 element array
2464 // of i8, or a 1-element array of i32. They'll both end up in the same
2465 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2466 ConstantDataSequential **Entry = &Slot.second;
2467 for (ConstantDataSequential *Node = *Entry; Node;
2468 Entry = &Node->Next, Node = *Entry)
2469 if (Node->getType() == Ty)
2470 return Node;
2471
2472 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2473 // and return it.
2474 if (isa<ArrayType>(Ty))
2475 return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2476
2477 assert(isa<VectorType>(Ty));
2478 return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2479 }
2480
destroyConstant()2481 void ConstantDataSequential::destroyConstant() {
2482 // Remove the constant from the StringMap.
2483 StringMap<ConstantDataSequential*> &CDSConstants =
2484 getType()->getContext().pImpl->CDSConstants;
2485
2486 StringMap<ConstantDataSequential*>::iterator Slot =
2487 CDSConstants.find(getRawDataValues());
2488
2489 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2490
2491 ConstantDataSequential **Entry = &Slot->getValue();
2492
2493 // Remove the entry from the hash table.
2494 if (!(*Entry)->Next) {
2495 // If there is only one value in the bucket (common case) it must be this
2496 // entry, and removing the entry should remove the bucket completely.
2497 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2498 getContext().pImpl->CDSConstants.erase(Slot);
2499 } else {
2500 // Otherwise, there are multiple entries linked off the bucket, unlink the
2501 // node we care about but keep the bucket around.
2502 for (ConstantDataSequential *Node = *Entry; ;
2503 Entry = &Node->Next, Node = *Entry) {
2504 assert(Node && "Didn't find entry in its uniquing hash table!");
2505 // If we found our entry, unlink it from the list and we're done.
2506 if (Node == this) {
2507 *Entry = Node->Next;
2508 break;
2509 }
2510 }
2511 }
2512
2513 // If we were part of a list, make sure that we don't delete the list that is
2514 // still owned by the uniquing map.
2515 Next = nullptr;
2516
2517 // Finally, actually delete it.
2518 destroyConstantImpl();
2519 }
2520
2521 /// get() constructors - Return a constant with array type with an element
2522 /// count and element type matching the ArrayRef passed in. Note that this
2523 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2524 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2525 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2526 const char *Data = reinterpret_cast<const char *>(Elts.data());
2527 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2528 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2529 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2530 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2531 const char *Data = reinterpret_cast<const char *>(Elts.data());
2532 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2533 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2534 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2535 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2536 const char *Data = reinterpret_cast<const char *>(Elts.data());
2537 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2538 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2539 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2540 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2541 const char *Data = reinterpret_cast<const char *>(Elts.data());
2542 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2543 }
get(LLVMContext & Context,ArrayRef<float> Elts)2544 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2545 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2546 const char *Data = reinterpret_cast<const char *>(Elts.data());
2547 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2548 }
get(LLVMContext & Context,ArrayRef<double> Elts)2549 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2550 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2551 const char *Data = reinterpret_cast<const char *>(Elts.data());
2552 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2553 }
2554
2555 /// getFP() constructors - Return a constant with array type with an element
2556 /// count and element type of float with precision matching the number of
2557 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2558 /// double for 64bits) Note that this can return a ConstantAggregateZero
2559 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2560 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2561 ArrayRef<uint16_t> Elts) {
2562 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2563 const char *Data = reinterpret_cast<const char *>(Elts.data());
2564 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2565 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2566 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2567 ArrayRef<uint32_t> Elts) {
2568 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2569 const char *Data = reinterpret_cast<const char *>(Elts.data());
2570 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2571 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2572 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2573 ArrayRef<uint64_t> Elts) {
2574 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2575 const char *Data = reinterpret_cast<const char *>(Elts.data());
2576 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2577 }
2578
2579 /// getString - This method constructs a CDS and initializes it with a text
2580 /// string. The default behavior (AddNull==true) causes a null terminator to
2581 /// be placed at the end of the array (increasing the length of the string by
2582 /// one more than the StringRef would normally indicate. Pass AddNull=false
2583 /// to disable this behavior.
getString(LLVMContext & Context,StringRef Str,bool AddNull)2584 Constant *ConstantDataArray::getString(LLVMContext &Context,
2585 StringRef Str, bool AddNull) {
2586 if (!AddNull) {
2587 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2588 return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2589 Str.size()));
2590 }
2591
2592 SmallVector<uint8_t, 64> ElementVals;
2593 ElementVals.append(Str.begin(), Str.end());
2594 ElementVals.push_back(0);
2595 return get(Context, ElementVals);
2596 }
2597
2598 /// get() constructors - Return a constant with vector type with an element
2599 /// count and element type matching the ArrayRef passed in. Note that this
2600 /// can return a ConstantAggregateZero object.
get(LLVMContext & Context,ArrayRef<uint8_t> Elts)2601 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2602 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2603 const char *Data = reinterpret_cast<const char *>(Elts.data());
2604 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2605 }
get(LLVMContext & Context,ArrayRef<uint16_t> Elts)2606 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2607 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2608 const char *Data = reinterpret_cast<const char *>(Elts.data());
2609 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2610 }
get(LLVMContext & Context,ArrayRef<uint32_t> Elts)2611 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2612 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2613 const char *Data = reinterpret_cast<const char *>(Elts.data());
2614 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2615 }
get(LLVMContext & Context,ArrayRef<uint64_t> Elts)2616 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2617 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2618 const char *Data = reinterpret_cast<const char *>(Elts.data());
2619 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2620 }
get(LLVMContext & Context,ArrayRef<float> Elts)2621 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2622 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2623 const char *Data = reinterpret_cast<const char *>(Elts.data());
2624 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2625 }
get(LLVMContext & Context,ArrayRef<double> Elts)2626 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2627 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2628 const char *Data = reinterpret_cast<const char *>(Elts.data());
2629 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2630 }
2631
2632 /// getFP() constructors - Return a constant with vector type with an element
2633 /// count and element type of float with the precision matching the number of
2634 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2635 /// double for 64bits) Note that this can return a ConstantAggregateZero
2636 /// object.
getFP(LLVMContext & Context,ArrayRef<uint16_t> Elts)2637 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2638 ArrayRef<uint16_t> Elts) {
2639 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2640 const char *Data = reinterpret_cast<const char *>(Elts.data());
2641 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2642 }
getFP(LLVMContext & Context,ArrayRef<uint32_t> Elts)2643 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2644 ArrayRef<uint32_t> Elts) {
2645 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2646 const char *Data = reinterpret_cast<const char *>(Elts.data());
2647 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2648 }
getFP(LLVMContext & Context,ArrayRef<uint64_t> Elts)2649 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2650 ArrayRef<uint64_t> Elts) {
2651 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2652 const char *Data = reinterpret_cast<const char *>(Elts.data());
2653 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2654 }
2655
getSplat(unsigned NumElts,Constant * V)2656 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2657 assert(isElementTypeCompatible(V->getType()) &&
2658 "Element type not compatible with ConstantData");
2659 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2660 if (CI->getType()->isIntegerTy(8)) {
2661 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2662 return get(V->getContext(), Elts);
2663 }
2664 if (CI->getType()->isIntegerTy(16)) {
2665 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2666 return get(V->getContext(), Elts);
2667 }
2668 if (CI->getType()->isIntegerTy(32)) {
2669 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2670 return get(V->getContext(), Elts);
2671 }
2672 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2673 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2674 return get(V->getContext(), Elts);
2675 }
2676
2677 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2678 if (CFP->getType()->isFloatTy()) {
2679 SmallVector<uint32_t, 16> Elts(
2680 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2681 return getFP(V->getContext(), Elts);
2682 }
2683 if (CFP->getType()->isDoubleTy()) {
2684 SmallVector<uint64_t, 16> Elts(
2685 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2686 return getFP(V->getContext(), Elts);
2687 }
2688 }
2689 return ConstantVector::getSplat(NumElts, V);
2690 }
2691
2692
2693 /// getElementAsInteger - If this is a sequential container of integers (of
2694 /// any size), return the specified element in the low bits of a uint64_t.
getElementAsInteger(unsigned Elt) const2695 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2696 assert(isa<IntegerType>(getElementType()) &&
2697 "Accessor can only be used when element is an integer");
2698 const char *EltPtr = getElementPointer(Elt);
2699
2700 // The data is stored in host byte order, make sure to cast back to the right
2701 // type to load with the right endianness.
2702 switch (getElementType()->getIntegerBitWidth()) {
2703 default: llvm_unreachable("Invalid bitwidth for CDS");
2704 case 8:
2705 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2706 case 16:
2707 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2708 case 32:
2709 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2710 case 64:
2711 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2712 }
2713 }
2714
2715 /// getElementAsAPFloat - If this is a sequential container of floating point
2716 /// type, return the specified element as an APFloat.
getElementAsAPFloat(unsigned Elt) const2717 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2718 const char *EltPtr = getElementPointer(Elt);
2719
2720 switch (getElementType()->getTypeID()) {
2721 default:
2722 llvm_unreachable("Accessor can only be used when element is float/double!");
2723 case Type::FloatTyID: {
2724 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2725 return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2726 }
2727 case Type::DoubleTyID: {
2728 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2729 return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2730 }
2731 }
2732 }
2733
2734 /// getElementAsFloat - If this is an sequential container of floats, return
2735 /// the specified element as a float.
getElementAsFloat(unsigned Elt) const2736 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2737 assert(getElementType()->isFloatTy() &&
2738 "Accessor can only be used when element is a 'float'");
2739 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2740 return *const_cast<float *>(EltPtr);
2741 }
2742
2743 /// getElementAsDouble - If this is an sequential container of doubles, return
2744 /// the specified element as a float.
getElementAsDouble(unsigned Elt) const2745 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2746 assert(getElementType()->isDoubleTy() &&
2747 "Accessor can only be used when element is a 'float'");
2748 const double *EltPtr =
2749 reinterpret_cast<const double *>(getElementPointer(Elt));
2750 return *const_cast<double *>(EltPtr);
2751 }
2752
2753 /// getElementAsConstant - Return a Constant for a specified index's element.
2754 /// Note that this has to compute a new constant to return, so it isn't as
2755 /// efficient as getElementAsInteger/Float/Double.
getElementAsConstant(unsigned Elt) const2756 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2757 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2758 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2759
2760 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2761 }
2762
2763 /// isString - This method returns true if this is an array of i8.
isString() const2764 bool ConstantDataSequential::isString() const {
2765 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2766 }
2767
2768 /// isCString - This method returns true if the array "isString", ends with a
2769 /// nul byte, and does not contains any other nul bytes.
isCString() const2770 bool ConstantDataSequential::isCString() const {
2771 if (!isString())
2772 return false;
2773
2774 StringRef Str = getAsString();
2775
2776 // The last value must be nul.
2777 if (Str.back() != 0) return false;
2778
2779 // Other elements must be non-nul.
2780 return Str.drop_back().find(0) == StringRef::npos;
2781 }
2782
2783 /// getSplatValue - If this is a splat constant, meaning that all of the
2784 /// elements have the same value, return that value. Otherwise return nullptr.
getSplatValue() const2785 Constant *ConstantDataVector::getSplatValue() const {
2786 const char *Base = getRawDataValues().data();
2787
2788 // Compare elements 1+ to the 0'th element.
2789 unsigned EltSize = getElementByteSize();
2790 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2791 if (memcmp(Base, Base+i*EltSize, EltSize))
2792 return nullptr;
2793
2794 // If they're all the same, return the 0th one as a representative.
2795 return getElementAsConstant(0);
2796 }
2797
2798 //===----------------------------------------------------------------------===//
2799 // replaceUsesOfWithOnConstant implementations
2800
2801 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2802 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2803 /// etc.
2804 ///
2805 /// Note that we intentionally replace all uses of From with To here. Consider
2806 /// a large array that uses 'From' 1000 times. By handling this case all here,
2807 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2808 /// single invocation handles all 1000 uses. Handling them one at a time would
2809 /// work, but would be really slow because it would have to unique each updated
2810 /// array instance.
2811 ///
replaceUsesOfWithOnConstantImpl(Constant * Replacement)2812 void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
2813 // I do need to replace this with an existing value.
2814 assert(Replacement != this && "I didn't contain From!");
2815
2816 // Everyone using this now uses the replacement.
2817 replaceAllUsesWith(Replacement);
2818
2819 // Delete the old constant!
2820 destroyConstant();
2821 }
2822
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2823 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2824 Use *U) {
2825 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2826 Constant *ToC = cast<Constant>(To);
2827
2828 SmallVector<Constant*, 8> Values;
2829 Values.reserve(getNumOperands()); // Build replacement array.
2830
2831 // Fill values with the modified operands of the constant array. Also,
2832 // compute whether this turns into an all-zeros array.
2833 unsigned NumUpdated = 0;
2834
2835 // Keep track of whether all the values in the array are "ToC".
2836 bool AllSame = true;
2837 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2838 Constant *Val = cast<Constant>(O->get());
2839 if (Val == From) {
2840 Val = ToC;
2841 ++NumUpdated;
2842 }
2843 Values.push_back(Val);
2844 AllSame &= Val == ToC;
2845 }
2846
2847 if (AllSame && ToC->isNullValue()) {
2848 replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2849 return;
2850 }
2851 if (AllSame && isa<UndefValue>(ToC)) {
2852 replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2853 return;
2854 }
2855
2856 // Check for any other type of constant-folding.
2857 if (Constant *C = getImpl(getType(), Values)) {
2858 replaceUsesOfWithOnConstantImpl(C);
2859 return;
2860 }
2861
2862 // Update to the new value.
2863 if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2864 Values, this, From, ToC, NumUpdated, U - OperandList))
2865 replaceUsesOfWithOnConstantImpl(C);
2866 }
2867
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2868 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2869 Use *U) {
2870 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2871 Constant *ToC = cast<Constant>(To);
2872
2873 unsigned OperandToUpdate = U-OperandList;
2874 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2875
2876 SmallVector<Constant*, 8> Values;
2877 Values.reserve(getNumOperands()); // Build replacement struct.
2878
2879 // Fill values with the modified operands of the constant struct. Also,
2880 // compute whether this turns into an all-zeros struct.
2881 bool isAllZeros = false;
2882 bool isAllUndef = false;
2883 if (ToC->isNullValue()) {
2884 isAllZeros = true;
2885 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2886 Constant *Val = cast<Constant>(O->get());
2887 Values.push_back(Val);
2888 if (isAllZeros) isAllZeros = Val->isNullValue();
2889 }
2890 } else if (isa<UndefValue>(ToC)) {
2891 isAllUndef = true;
2892 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2893 Constant *Val = cast<Constant>(O->get());
2894 Values.push_back(Val);
2895 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2896 }
2897 } else {
2898 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2899 Values.push_back(cast<Constant>(O->get()));
2900 }
2901 Values[OperandToUpdate] = ToC;
2902
2903 if (isAllZeros) {
2904 replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2905 return;
2906 }
2907 if (isAllUndef) {
2908 replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2909 return;
2910 }
2911
2912 // Update to the new value.
2913 if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
2914 Values, this, From, ToC))
2915 replaceUsesOfWithOnConstantImpl(C);
2916 }
2917
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2918 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2919 Use *U) {
2920 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2921 Constant *ToC = cast<Constant>(To);
2922
2923 SmallVector<Constant*, 8> Values;
2924 Values.reserve(getNumOperands()); // Build replacement array...
2925 unsigned NumUpdated = 0;
2926 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2927 Constant *Val = getOperand(i);
2928 if (Val == From) {
2929 ++NumUpdated;
2930 Val = ToC;
2931 }
2932 Values.push_back(Val);
2933 }
2934
2935 if (Constant *C = getImpl(Values)) {
2936 replaceUsesOfWithOnConstantImpl(C);
2937 return;
2938 }
2939
2940 // Update to the new value.
2941 if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2942 Values, this, From, ToC, NumUpdated, U - OperandList))
2943 replaceUsesOfWithOnConstantImpl(C);
2944 }
2945
replaceUsesOfWithOnConstant(Value * From,Value * ToV,Use * U)2946 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2947 Use *U) {
2948 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2949 Constant *To = cast<Constant>(ToV);
2950
2951 SmallVector<Constant*, 8> NewOps;
2952 unsigned NumUpdated = 0;
2953 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2954 Constant *Op = getOperand(i);
2955 if (Op == From) {
2956 ++NumUpdated;
2957 Op = To;
2958 }
2959 NewOps.push_back(Op);
2960 }
2961 assert(NumUpdated && "I didn't contain From!");
2962
2963 if (Constant *C = getWithOperands(NewOps, getType(), true)) {
2964 replaceUsesOfWithOnConstantImpl(C);
2965 return;
2966 }
2967
2968 // Update to the new value.
2969 if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2970 NewOps, this, From, To, NumUpdated, U - OperandList))
2971 replaceUsesOfWithOnConstantImpl(C);
2972 }
2973
getAsInstruction()2974 Instruction *ConstantExpr::getAsInstruction() {
2975 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2976 ArrayRef<Value*> Ops(ValueOperands);
2977
2978 switch (getOpcode()) {
2979 case Instruction::Trunc:
2980 case Instruction::ZExt:
2981 case Instruction::SExt:
2982 case Instruction::FPTrunc:
2983 case Instruction::FPExt:
2984 case Instruction::UIToFP:
2985 case Instruction::SIToFP:
2986 case Instruction::FPToUI:
2987 case Instruction::FPToSI:
2988 case Instruction::PtrToInt:
2989 case Instruction::IntToPtr:
2990 case Instruction::BitCast:
2991 case Instruction::AddrSpaceCast:
2992 return CastInst::Create((Instruction::CastOps)getOpcode(),
2993 Ops[0], getType());
2994 case Instruction::Select:
2995 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2996 case Instruction::InsertElement:
2997 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2998 case Instruction::ExtractElement:
2999 return ExtractElementInst::Create(Ops[0], Ops[1]);
3000 case Instruction::InsertValue:
3001 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3002 case Instruction::ExtractValue:
3003 return ExtractValueInst::Create(Ops[0], getIndices());
3004 case Instruction::ShuffleVector:
3005 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3006
3007 case Instruction::GetElementPtr: {
3008 const auto *GO = cast<GEPOperator>(this);
3009 if (GO->isInBounds())
3010 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3011 Ops[0], Ops.slice(1));
3012 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3013 Ops.slice(1));
3014 }
3015 case Instruction::ICmp:
3016 case Instruction::FCmp:
3017 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3018 getPredicate(), Ops[0], Ops[1]);
3019
3020 default:
3021 assert(getNumOperands() == 2 && "Must be binary operator?");
3022 BinaryOperator *BO =
3023 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3024 Ops[0], Ops[1]);
3025 if (isa<OverflowingBinaryOperator>(BO)) {
3026 BO->setHasNoUnsignedWrap(SubclassOptionalData &
3027 OverflowingBinaryOperator::NoUnsignedWrap);
3028 BO->setHasNoSignedWrap(SubclassOptionalData &
3029 OverflowingBinaryOperator::NoSignedWrap);
3030 }
3031 if (isa<PossiblyExactOperator>(BO))
3032 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3033 return BO;
3034 }
3035 }
3036