1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
16 
17 #include "CGCall.h"
18 #include "clang/AST/GlobalDecl.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/IR/Module.h"
22 #include <vector>
23 
24 namespace llvm {
25 class FunctionType;
26 class Module;
27 class DataLayout;
28 class Type;
29 class LLVMContext;
30 class StructType;
31 }
32 
33 namespace clang {
34 class ABIInfo;
35 class ASTContext;
36 template <typename> class CanQual;
37 class CXXConstructorDecl;
38 class CXXDestructorDecl;
39 class CXXMethodDecl;
40 class CodeGenOptions;
41 class FieldDecl;
42 class FunctionProtoType;
43 class ObjCInterfaceDecl;
44 class ObjCIvarDecl;
45 class PointerType;
46 class QualType;
47 class RecordDecl;
48 class TagDecl;
49 class TargetInfo;
50 class Type;
51 typedef CanQual<Type> CanQualType;
52 
53 namespace CodeGen {
54 class CGCXXABI;
55 class CGRecordLayout;
56 class CodeGenModule;
57 class RequiredArgs;
58 
59 enum class StructorType {
60   Complete, // constructor or destructor
61   Base,     // constructor or destructor
62   Deleting  // destructor only
63 };
64 
toCXXCtorType(StructorType T)65 inline CXXCtorType toCXXCtorType(StructorType T) {
66   switch (T) {
67   case StructorType::Complete:
68     return Ctor_Complete;
69   case StructorType::Base:
70     return Ctor_Base;
71   case StructorType::Deleting:
72     llvm_unreachable("cannot have a deleting ctor");
73   }
74   llvm_unreachable("not a StructorType");
75 }
76 
getFromCtorType(CXXCtorType T)77 inline StructorType getFromCtorType(CXXCtorType T) {
78   switch (T) {
79   case Ctor_Complete:
80     return StructorType::Complete;
81   case Ctor_Base:
82     return StructorType::Base;
83   case Ctor_Comdat:
84     llvm_unreachable("not expecting a COMDAT");
85   case Ctor_CopyingClosure:
86   case Ctor_DefaultClosure:
87     llvm_unreachable("not expecting a closure");
88   }
89   llvm_unreachable("not a CXXCtorType");
90 }
91 
toCXXDtorType(StructorType T)92 inline CXXDtorType toCXXDtorType(StructorType T) {
93   switch (T) {
94   case StructorType::Complete:
95     return Dtor_Complete;
96   case StructorType::Base:
97     return Dtor_Base;
98   case StructorType::Deleting:
99     return Dtor_Deleting;
100   }
101   llvm_unreachable("not a StructorType");
102 }
103 
getFromDtorType(CXXDtorType T)104 inline StructorType getFromDtorType(CXXDtorType T) {
105   switch (T) {
106   case Dtor_Deleting:
107     return StructorType::Deleting;
108   case Dtor_Complete:
109     return StructorType::Complete;
110   case Dtor_Base:
111     return StructorType::Base;
112   case Dtor_Comdat:
113     llvm_unreachable("not expecting a COMDAT");
114   }
115   llvm_unreachable("not a CXXDtorType");
116 }
117 
118 /// CodeGenTypes - This class organizes the cross-module state that is used
119 /// while lowering AST types to LLVM types.
120 class CodeGenTypes {
121   CodeGenModule &CGM;
122   // Some of this stuff should probably be left on the CGM.
123   ASTContext &Context;
124   llvm::Module &TheModule;
125   const llvm::DataLayout &TheDataLayout;
126   const TargetInfo &Target;
127   CGCXXABI &TheCXXABI;
128 
129   // This should not be moved earlier, since its initialization depends on some
130   // of the previous reference members being already initialized
131   const ABIInfo &TheABIInfo;
132 
133   /// The opaque type map for Objective-C interfaces. All direct
134   /// manipulation is done by the runtime interfaces, which are
135   /// responsible for coercing to the appropriate type; these opaque
136   /// types are never refined.
137   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
138 
139   /// CGRecordLayouts - This maps llvm struct type with corresponding
140   /// record layout info.
141   llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
142 
143   /// RecordDeclTypes - This contains the LLVM IR type for any converted
144   /// RecordDecl.
145   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
146 
147   /// FunctionInfos - Hold memoized CGFunctionInfo results.
148   llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
149 
150   /// RecordsBeingLaidOut - This set keeps track of records that we're currently
151   /// converting to an IR type.  For example, when converting:
152   /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
153   /// types will be in this set.
154   llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
155 
156   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
157 
158   /// SkippedLayout - True if we didn't layout a function due to a being inside
159   /// a recursive struct conversion, set this to true.
160   bool SkippedLayout;
161 
162   SmallVector<const RecordDecl *, 8> DeferredRecords;
163 
164 private:
165   /// TypeCache - This map keeps cache of llvm::Types
166   /// and maps clang::Type to corresponding llvm::Type.
167   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
168 
169 public:
170   CodeGenTypes(CodeGenModule &cgm);
171   ~CodeGenTypes();
172 
getDataLayout()173   const llvm::DataLayout &getDataLayout() const { return TheDataLayout; }
getContext()174   ASTContext &getContext() const { return Context; }
getABIInfo()175   const ABIInfo &getABIInfo() const { return TheABIInfo; }
getTarget()176   const TargetInfo &getTarget() const { return Target; }
getCXXABI()177   CGCXXABI &getCXXABI() const { return TheCXXABI; }
getLLVMContext()178   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
179 
180   /// ConvertType - Convert type T into a llvm::Type.
181   llvm::Type *ConvertType(QualType T);
182 
183   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
184   /// ConvertType in that it is used to convert to the memory representation for
185   /// a type.  For example, the scalar representation for _Bool is i1, but the
186   /// memory representation is usually i8 or i32, depending on the target.
187   llvm::Type *ConvertTypeForMem(QualType T);
188 
189   /// GetFunctionType - Get the LLVM function type for \arg Info.
190   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
191 
192   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
193 
194   /// isFuncTypeConvertible - Utility to check whether a function type can
195   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
196   /// type).
197   bool isFuncTypeConvertible(const FunctionType *FT);
198   bool isFuncParamTypeConvertible(QualType Ty);
199 
200   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
201   /// given a CXXMethodDecl. If the method to has an incomplete return type,
202   /// and/or incomplete argument types, this will return the opaque type.
203   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
204 
205   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
206 
207   /// UpdateCompletedType - When we find the full definition for a TagDecl,
208   /// replace the 'opaque' type we previously made for it if applicable.
209   void UpdateCompletedType(const TagDecl *TD);
210 
211   /// getNullaryFunctionInfo - Get the function info for a void()
212   /// function with standard CC.
213   const CGFunctionInfo &arrangeNullaryFunction();
214 
215   // The arrangement methods are split into three families:
216   //   - those meant to drive the signature and prologue/epilogue
217   //     of a function declaration or definition,
218   //   - those meant for the computation of the LLVM type for an abstract
219   //     appearance of a function, and
220   //   - those meant for performing the IR-generation of a call.
221   // They differ mainly in how they deal with optional (i.e. variadic)
222   // arguments, as well as unprototyped functions.
223   //
224   // Key points:
225   // - The CGFunctionInfo for emitting a specific call site must include
226   //   entries for the optional arguments.
227   // - The function type used at the call site must reflect the formal
228   //   signature of the declaration being called, or else the call will
229   //   go awry.
230   // - For the most part, unprototyped functions are called by casting to
231   //   a formal signature inferred from the specific argument types used
232   //   at the call-site.  However, some targets (e.g. x86-64) screw with
233   //   this for compatibility reasons.
234 
235   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
236   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
237   const CGFunctionInfo &
238   arrangeFreeFunctionDeclaration(QualType ResTy, const FunctionArgList &Args,
239                                  const FunctionType::ExtInfo &Info,
240                                  bool isVariadic);
241 
242   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
243   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
244                                                         QualType receiverType);
245 
246   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
247   const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
248                                                       StructorType Type);
249   const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
250                                                   const CXXConstructorDecl *D,
251                                                   CXXCtorType CtorKind,
252                                                   unsigned ExtraArgs);
253   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
254                                                 const FunctionType *Ty,
255                                                 bool ChainCall);
256   const CGFunctionInfo &arrangeFreeFunctionCall(QualType ResTy,
257                                                 const CallArgList &args,
258                                                 FunctionType::ExtInfo info,
259                                                 RequiredArgs required);
260   const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
261                                                  const FunctionType *type);
262 
263   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
264                                              const FunctionProtoType *type,
265                                              RequiredArgs required);
266   const CGFunctionInfo &arrangeMSMemberPointerThunk(const CXXMethodDecl *MD);
267   const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
268                                                  CXXCtorType CT);
269 
270   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
271   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
272   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
273                                              const FunctionProtoType *FTP);
274 
275   /// "Arrange" the LLVM information for a call or type with the given
276   /// signature.  This is largely an internal method; other clients
277   /// should use one of the above routines, which ultimately defer to
278   /// this.
279   ///
280   /// \param argTypes - must all actually be canonical as params
281   const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
282                                                 bool instanceMethod,
283                                                 bool chainCall,
284                                                 ArrayRef<CanQualType> argTypes,
285                                                 FunctionType::ExtInfo info,
286                                                 RequiredArgs args);
287 
288   /// \brief Compute a new LLVM record layout object for the given record.
289   CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
290                                       llvm::StructType *Ty);
291 
292   /// addRecordTypeName - Compute a name from the given record decl with an
293   /// optional suffix and name the given LLVM type using it.
294   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
295                          StringRef suffix);
296 
297 
298 public:  // These are internal details of CGT that shouldn't be used externally.
299   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
300   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
301 
302   /// getExpandedTypes - Expand the type \arg Ty into the LLVM
303   /// argument types it would be passed as. See ABIArgInfo::Expand.
304   void getExpandedTypes(QualType Ty,
305                         SmallVectorImpl<llvm::Type *>::iterator &TI);
306 
307   /// IsZeroInitializable - Return whether a type can be
308   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
309   bool isZeroInitializable(QualType T);
310 
311   /// IsZeroInitializable - Return whether a record type can be
312   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
313   bool isZeroInitializable(const CXXRecordDecl *RD);
314 
315   bool isRecordLayoutComplete(const Type *Ty) const;
noRecordsBeingLaidOut()316   bool noRecordsBeingLaidOut() const {
317     return RecordsBeingLaidOut.empty();
318   }
isRecordBeingLaidOut(const Type * Ty)319   bool isRecordBeingLaidOut(const Type *Ty) const {
320     return RecordsBeingLaidOut.count(Ty);
321   }
322 
323 };
324 
325 }  // end namespace CodeGen
326 }  // end namespace clang
327 
328 #endif
329