1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the XCoreTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "XCoreISelLowering.h"
15 #include "XCore.h"
16 #include "XCoreMachineFunctionInfo.h"
17 #include "XCoreSubtarget.h"
18 #include "XCoreTargetMachine.h"
19 #include "XCoreTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "xcore-lower"
43
44 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const45 getTargetNodeName(unsigned Opcode) const
46 {
47 switch (Opcode)
48 {
49 case XCoreISD::BL : return "XCoreISD::BL";
50 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
51 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
52 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
53 case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
54 case XCoreISD::STWSP : return "XCoreISD::STWSP";
55 case XCoreISD::RETSP : return "XCoreISD::RETSP";
56 case XCoreISD::LADD : return "XCoreISD::LADD";
57 case XCoreISD::LSUB : return "XCoreISD::LSUB";
58 case XCoreISD::LMUL : return "XCoreISD::LMUL";
59 case XCoreISD::MACCU : return "XCoreISD::MACCU";
60 case XCoreISD::MACCS : return "XCoreISD::MACCS";
61 case XCoreISD::CRC8 : return "XCoreISD::CRC8";
62 case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
63 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
64 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
65 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
66 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER";
67 default : return nullptr;
68 }
69 }
70
XCoreTargetLowering(const TargetMachine & TM,const XCoreSubtarget & Subtarget)71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
72 const XCoreSubtarget &Subtarget)
73 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
74
75 // Set up the register classes.
76 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
77
78 // Compute derived properties from the register classes
79 computeRegisterProperties(Subtarget.getRegisterInfo());
80
81 // Division is expensive
82 setIntDivIsCheap(false);
83
84 setStackPointerRegisterToSaveRestore(XCore::SP);
85
86 setSchedulingPreference(Sched::Source);
87
88 // Use i32 for setcc operations results (slt, sgt, ...).
89 setBooleanContents(ZeroOrOneBooleanContent);
90 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
91
92 // XCore does not have the NodeTypes below.
93 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
94 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
95 setOperationAction(ISD::ADDC, MVT::i32, Expand);
96 setOperationAction(ISD::ADDE, MVT::i32, Expand);
97 setOperationAction(ISD::SUBC, MVT::i32, Expand);
98 setOperationAction(ISD::SUBE, MVT::i32, Expand);
99
100 // 64bit
101 setOperationAction(ISD::ADD, MVT::i64, Custom);
102 setOperationAction(ISD::SUB, MVT::i64, Custom);
103 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
104 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
105 setOperationAction(ISD::MULHS, MVT::i32, Expand);
106 setOperationAction(ISD::MULHU, MVT::i32, Expand);
107 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
108 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
109 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
110
111 // Bit Manipulation
112 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
113 setOperationAction(ISD::ROTL , MVT::i32, Expand);
114 setOperationAction(ISD::ROTR , MVT::i32, Expand);
115 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
116 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
117
118 setOperationAction(ISD::TRAP, MVT::Other, Legal);
119
120 // Jump tables.
121 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
122
123 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
124 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
125
126 // Conversion of i64 -> double produces constantpool nodes
127 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
128
129 // Loads
130 for (MVT VT : MVT::integer_valuetypes()) {
131 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
132 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
133 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
134
135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
136 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
137 }
138
139 // Custom expand misaligned loads / stores.
140 setOperationAction(ISD::LOAD, MVT::i32, Custom);
141 setOperationAction(ISD::STORE, MVT::i32, Custom);
142
143 // Varargs
144 setOperationAction(ISD::VAEND, MVT::Other, Expand);
145 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
146 setOperationAction(ISD::VAARG, MVT::Other, Custom);
147 setOperationAction(ISD::VASTART, MVT::Other, Custom);
148
149 // Dynamic stack
150 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
151 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
152 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
153
154 // Exception handling
155 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
156 setExceptionPointerRegister(XCore::R0);
157 setExceptionSelectorRegister(XCore::R1);
158 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
159
160 // Atomic operations
161 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
162 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
163 setInsertFencesForAtomic(true);
164 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
165 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
166 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
167
168 // TRAMPOLINE is custom lowered.
169 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
170 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
171
172 // We want to custom lower some of our intrinsics.
173 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
174
175 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
176 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
177 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
178
179 // We have target-specific dag combine patterns for the following nodes:
180 setTargetDAGCombine(ISD::STORE);
181 setTargetDAGCombine(ISD::ADD);
182 setTargetDAGCombine(ISD::INTRINSIC_VOID);
183 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
184
185 setMinFunctionAlignment(1);
186 setPrefFunctionAlignment(2);
187 }
188
isZExtFree(SDValue Val,EVT VT2) const189 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
190 if (Val.getOpcode() != ISD::LOAD)
191 return false;
192
193 EVT VT1 = Val.getValueType();
194 if (!VT1.isSimple() || !VT1.isInteger() ||
195 !VT2.isSimple() || !VT2.isInteger())
196 return false;
197
198 switch (VT1.getSimpleVT().SimpleTy) {
199 default: break;
200 case MVT::i8:
201 return true;
202 }
203
204 return false;
205 }
206
207 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const208 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
209 switch (Op.getOpcode())
210 {
211 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
212 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
213 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
214 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
215 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
216 case ISD::LOAD: return LowerLOAD(Op, DAG);
217 case ISD::STORE: return LowerSTORE(Op, DAG);
218 case ISD::VAARG: return LowerVAARG(Op, DAG);
219 case ISD::VASTART: return LowerVASTART(Op, DAG);
220 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
221 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
222 // FIXME: Remove these when LegalizeDAGTypes lands.
223 case ISD::ADD:
224 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
225 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
226 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
227 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
228 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
229 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
230 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
231 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
232 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
233 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
234 default:
235 llvm_unreachable("unimplemented operand");
236 }
237 }
238
239 /// ReplaceNodeResults - Replace the results of node with an illegal result
240 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const241 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
242 SmallVectorImpl<SDValue>&Results,
243 SelectionDAG &DAG) const {
244 switch (N->getOpcode()) {
245 default:
246 llvm_unreachable("Don't know how to custom expand this!");
247 case ISD::ADD:
248 case ISD::SUB:
249 Results.push_back(ExpandADDSUB(N, DAG));
250 return;
251 }
252 }
253
254 //===----------------------------------------------------------------------===//
255 // Misc Lower Operation implementation
256 //===----------------------------------------------------------------------===//
257
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const258 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
259 const GlobalValue *GV,
260 SelectionDAG &DAG) const {
261 // FIXME there is no actual debug info here
262 SDLoc dl(GA);
263
264 if (GV->getType()->getElementType()->isFunctionTy())
265 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
266
267 const auto *GVar = dyn_cast<GlobalVariable>(GV);
268 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) ||
269 (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
270 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
271
272 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
273 }
274
IsSmallObject(const GlobalValue * GV,const XCoreTargetLowering & XTL)275 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
276 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
277 return true;
278
279 Type *ObjType = GV->getType()->getPointerElementType();
280 if (!ObjType->isSized())
281 return false;
282
283 unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType);
284 return ObjSize < CodeModelLargeSize && ObjSize != 0;
285 }
286
287 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const288 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
289 {
290 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
291 const GlobalValue *GV = GN->getGlobal();
292 SDLoc DL(GN);
293 int64_t Offset = GN->getOffset();
294 if (IsSmallObject(GV, *this)) {
295 // We can only fold positive offsets that are a multiple of the word size.
296 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
297 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
298 GA = getGlobalAddressWrapper(GA, GV, DAG);
299 // Handle the rest of the offset.
300 if (Offset != FoldedOffset) {
301 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32);
302 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
303 }
304 return GA;
305 } else {
306 // Ideally we would not fold in offset with an index <= 11.
307 Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
308 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
309 Ty = Type::getInt32Ty(*DAG.getContext());
310 Constant *Idx = ConstantInt::get(Ty, Offset);
311 Constant *GAI = ConstantExpr::getGetElementPtr(
312 Type::getInt8Ty(*DAG.getContext()), GA, Idx);
313 SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
314 return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP,
315 MachinePointerInfo(), false, false, false, 0);
316 }
317 }
318
319 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const320 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
321 {
322 SDLoc DL(Op);
323
324 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
325 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy());
326
327 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result);
328 }
329
330 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const331 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
332 {
333 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
334 // FIXME there isn't really debug info here
335 SDLoc dl(CP);
336 EVT PtrVT = Op.getValueType();
337 SDValue Res;
338 if (CP->isMachineConstantPoolEntry()) {
339 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
340 CP->getAlignment(), CP->getOffset());
341 } else {
342 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
343 CP->getAlignment(), CP->getOffset());
344 }
345 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
346 }
347
getJumpTableEncoding() const348 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
349 return MachineJumpTableInfo::EK_Inline;
350 }
351
352 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const353 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
354 {
355 SDValue Chain = Op.getOperand(0);
356 SDValue Table = Op.getOperand(1);
357 SDValue Index = Op.getOperand(2);
358 SDLoc dl(Op);
359 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
360 unsigned JTI = JT->getIndex();
361 MachineFunction &MF = DAG.getMachineFunction();
362 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
363 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
364
365 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
366 if (NumEntries <= 32) {
367 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
368 }
369 assert((NumEntries >> 31) == 0);
370 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
371 DAG.getConstant(1, MVT::i32));
372 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
373 ScaledIndex);
374 }
375
376 SDValue XCoreTargetLowering::
lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const377 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base,
378 int64_t Offset, SelectionDAG &DAG) const
379 {
380 if ((Offset & 0x3) == 0) {
381 return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(),
382 false, false, false, 0);
383 }
384 // Lower to pair of consecutive word aligned loads plus some bit shifting.
385 int32_t HighOffset = RoundUpToAlignment(Offset, 4);
386 int32_t LowOffset = HighOffset - 4;
387 SDValue LowAddr, HighAddr;
388 if (GlobalAddressSDNode *GASD =
389 dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
390 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
391 LowOffset);
392 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
393 HighOffset);
394 } else {
395 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
396 DAG.getConstant(LowOffset, MVT::i32));
397 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
398 DAG.getConstant(HighOffset, MVT::i32));
399 }
400 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32);
401 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32);
402
403 SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain,
404 LowAddr, MachinePointerInfo(),
405 false, false, false, 0);
406 SDValue High = DAG.getLoad(getPointerTy(), DL, Chain,
407 HighAddr, MachinePointerInfo(),
408 false, false, false, 0);
409 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
410 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
411 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
412 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
413 High.getValue(1));
414 SDValue Ops[] = { Result, Chain };
415 return DAG.getMergeValues(Ops, DL);
416 }
417
isWordAligned(SDValue Value,SelectionDAG & DAG)418 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
419 {
420 APInt KnownZero, KnownOne;
421 DAG.computeKnownBits(Value, KnownZero, KnownOne);
422 return KnownZero.countTrailingOnes() >= 2;
423 }
424
425 SDValue XCoreTargetLowering::
LowerLOAD(SDValue Op,SelectionDAG & DAG) const426 LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
427 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
428 LoadSDNode *LD = cast<LoadSDNode>(Op);
429 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
430 "Unexpected extension type");
431 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
432 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(),
433 LD->getAddressSpace(),
434 LD->getAlignment()))
435 return SDValue();
436
437 unsigned ABIAlignment = getDataLayout()->
438 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext()));
439 // Leave aligned load alone.
440 if (LD->getAlignment() >= ABIAlignment)
441 return SDValue();
442
443 SDValue Chain = LD->getChain();
444 SDValue BasePtr = LD->getBasePtr();
445 SDLoc DL(Op);
446
447 if (!LD->isVolatile()) {
448 const GlobalValue *GV;
449 int64_t Offset = 0;
450 if (DAG.isBaseWithConstantOffset(BasePtr) &&
451 isWordAligned(BasePtr->getOperand(0), DAG)) {
452 SDValue NewBasePtr = BasePtr->getOperand(0);
453 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
454 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
455 Offset, DAG);
456 }
457 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
458 MinAlign(GV->getAlignment(), 4) == 4) {
459 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
460 BasePtr->getValueType(0));
461 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
462 Offset, DAG);
463 }
464 }
465
466 if (LD->getAlignment() == 2) {
467 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain,
468 BasePtr, LD->getPointerInfo(), MVT::i16,
469 LD->isVolatile(), LD->isNonTemporal(),
470 LD->isInvariant(), 2);
471 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
472 DAG.getConstant(2, MVT::i32));
473 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
474 HighAddr,
475 LD->getPointerInfo().getWithOffset(2),
476 MVT::i16, LD->isVolatile(),
477 LD->isNonTemporal(), LD->isInvariant(), 2);
478 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
479 DAG.getConstant(16, MVT::i32));
480 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
481 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
482 High.getValue(1));
483 SDValue Ops[] = { Result, Chain };
484 return DAG.getMergeValues(Ops, DL);
485 }
486
487 // Lower to a call to __misaligned_load(BasePtr).
488 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
489 TargetLowering::ArgListTy Args;
490 TargetLowering::ArgListEntry Entry;
491
492 Entry.Ty = IntPtrTy;
493 Entry.Node = BasePtr;
494 Args.push_back(Entry);
495
496 TargetLowering::CallLoweringInfo CLI(DAG);
497 CLI.setDebugLoc(DL).setChain(Chain)
498 .setCallee(CallingConv::C, IntPtrTy,
499 DAG.getExternalSymbol("__misaligned_load", getPointerTy()),
500 std::move(Args), 0);
501
502 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
503 SDValue Ops[] = { CallResult.first, CallResult.second };
504 return DAG.getMergeValues(Ops, DL);
505 }
506
507 SDValue XCoreTargetLowering::
LowerSTORE(SDValue Op,SelectionDAG & DAG) const508 LowerSTORE(SDValue Op, SelectionDAG &DAG) const
509 {
510 StoreSDNode *ST = cast<StoreSDNode>(Op);
511 assert(!ST->isTruncatingStore() && "Unexpected store type");
512 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
513 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
514 ST->getAddressSpace(),
515 ST->getAlignment())) {
516 return SDValue();
517 }
518 unsigned ABIAlignment = getDataLayout()->
519 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext()));
520 // Leave aligned store alone.
521 if (ST->getAlignment() >= ABIAlignment) {
522 return SDValue();
523 }
524 SDValue Chain = ST->getChain();
525 SDValue BasePtr = ST->getBasePtr();
526 SDValue Value = ST->getValue();
527 SDLoc dl(Op);
528
529 if (ST->getAlignment() == 2) {
530 SDValue Low = Value;
531 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
532 DAG.getConstant(16, MVT::i32));
533 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr,
534 ST->getPointerInfo(), MVT::i16,
535 ST->isVolatile(), ST->isNonTemporal(),
536 2);
537 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
538 DAG.getConstant(2, MVT::i32));
539 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr,
540 ST->getPointerInfo().getWithOffset(2),
541 MVT::i16, ST->isVolatile(),
542 ST->isNonTemporal(), 2);
543 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
544 }
545
546 // Lower to a call to __misaligned_store(BasePtr, Value).
547 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
548 TargetLowering::ArgListTy Args;
549 TargetLowering::ArgListEntry Entry;
550
551 Entry.Ty = IntPtrTy;
552 Entry.Node = BasePtr;
553 Args.push_back(Entry);
554
555 Entry.Node = Value;
556 Args.push_back(Entry);
557
558 TargetLowering::CallLoweringInfo CLI(DAG);
559 CLI.setDebugLoc(dl).setChain(Chain)
560 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
561 DAG.getExternalSymbol("__misaligned_store", getPointerTy()),
562 std::move(Args), 0);
563
564 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
565 return CallResult.second;
566 }
567
568 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const569 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
570 {
571 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
572 "Unexpected operand to lower!");
573 SDLoc dl(Op);
574 SDValue LHS = Op.getOperand(0);
575 SDValue RHS = Op.getOperand(1);
576 SDValue Zero = DAG.getConstant(0, MVT::i32);
577 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
578 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
579 LHS, RHS);
580 SDValue Lo(Hi.getNode(), 1);
581 SDValue Ops[] = { Lo, Hi };
582 return DAG.getMergeValues(Ops, dl);
583 }
584
585 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const586 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
587 {
588 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
589 "Unexpected operand to lower!");
590 SDLoc dl(Op);
591 SDValue LHS = Op.getOperand(0);
592 SDValue RHS = Op.getOperand(1);
593 SDValue Zero = DAG.getConstant(0, MVT::i32);
594 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
595 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
596 Zero, Zero);
597 SDValue Lo(Hi.getNode(), 1);
598 SDValue Ops[] = { Lo, Hi };
599 return DAG.getMergeValues(Ops, dl);
600 }
601
602 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
603 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
604 /// each intermediate result in the calculation must also have a single use.
605 /// If the Op is in the correct form the constituent parts are written to Mul0,
606 /// Mul1, Addend0 and Addend1.
607 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)608 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
609 SDValue &Addend1, bool requireIntermediatesHaveOneUse)
610 {
611 if (Op.getOpcode() != ISD::ADD)
612 return false;
613 SDValue N0 = Op.getOperand(0);
614 SDValue N1 = Op.getOperand(1);
615 SDValue AddOp;
616 SDValue OtherOp;
617 if (N0.getOpcode() == ISD::ADD) {
618 AddOp = N0;
619 OtherOp = N1;
620 } else if (N1.getOpcode() == ISD::ADD) {
621 AddOp = N1;
622 OtherOp = N0;
623 } else {
624 return false;
625 }
626 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
627 return false;
628 if (OtherOp.getOpcode() == ISD::MUL) {
629 // add(add(a,b),mul(x,y))
630 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
631 return false;
632 Mul0 = OtherOp.getOperand(0);
633 Mul1 = OtherOp.getOperand(1);
634 Addend0 = AddOp.getOperand(0);
635 Addend1 = AddOp.getOperand(1);
636 return true;
637 }
638 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
639 // add(add(mul(x,y),a),b)
640 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
641 return false;
642 Mul0 = AddOp.getOperand(0).getOperand(0);
643 Mul1 = AddOp.getOperand(0).getOperand(1);
644 Addend0 = AddOp.getOperand(1);
645 Addend1 = OtherOp;
646 return true;
647 }
648 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
649 // add(add(a,mul(x,y)),b)
650 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
651 return false;
652 Mul0 = AddOp.getOperand(1).getOperand(0);
653 Mul1 = AddOp.getOperand(1).getOperand(1);
654 Addend0 = AddOp.getOperand(0);
655 Addend1 = OtherOp;
656 return true;
657 }
658 return false;
659 }
660
661 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const662 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
663 {
664 SDValue Mul;
665 SDValue Other;
666 if (N->getOperand(0).getOpcode() == ISD::MUL) {
667 Mul = N->getOperand(0);
668 Other = N->getOperand(1);
669 } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
670 Mul = N->getOperand(1);
671 Other = N->getOperand(0);
672 } else {
673 return SDValue();
674 }
675 SDLoc dl(N);
676 SDValue LL, RL, AddendL, AddendH;
677 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
678 Mul.getOperand(0), DAG.getConstant(0, MVT::i32));
679 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
680 Mul.getOperand(1), DAG.getConstant(0, MVT::i32));
681 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
682 Other, DAG.getConstant(0, MVT::i32));
683 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
684 Other, DAG.getConstant(1, MVT::i32));
685 APInt HighMask = APInt::getHighBitsSet(64, 32);
686 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
687 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
688 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
689 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
690 // The inputs are both zero-extended.
691 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
692 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
693 AddendL, LL, RL);
694 SDValue Lo(Hi.getNode(), 1);
695 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
696 }
697 if (LHSSB > 32 && RHSSB > 32) {
698 // The inputs are both sign-extended.
699 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
700 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
701 AddendL, LL, RL);
702 SDValue Lo(Hi.getNode(), 1);
703 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
704 }
705 SDValue LH, RH;
706 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
707 Mul.getOperand(0), DAG.getConstant(1, MVT::i32));
708 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709 Mul.getOperand(1), DAG.getConstant(1, MVT::i32));
710 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
711 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
712 AddendL, LL, RL);
713 SDValue Lo(Hi.getNode(), 1);
714 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
715 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
716 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
717 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
718 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
719 }
720
721 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const722 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
723 {
724 assert(N->getValueType(0) == MVT::i64 &&
725 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
726 "Unknown operand to lower!");
727
728 if (N->getOpcode() == ISD::ADD) {
729 SDValue Result = TryExpandADDWithMul(N, DAG);
730 if (Result.getNode())
731 return Result;
732 }
733
734 SDLoc dl(N);
735
736 // Extract components
737 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
738 N->getOperand(0), DAG.getConstant(0, MVT::i32));
739 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
740 N->getOperand(0), DAG.getConstant(1, MVT::i32));
741 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
742 N->getOperand(1), DAG.getConstant(0, MVT::i32));
743 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
744 N->getOperand(1), DAG.getConstant(1, MVT::i32));
745
746 // Expand
747 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
748 XCoreISD::LSUB;
749 SDValue Zero = DAG.getConstant(0, MVT::i32);
750 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
751 LHSL, RHSL, Zero);
752 SDValue Carry(Lo.getNode(), 1);
753
754 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
755 LHSH, RHSH, Carry);
756 SDValue Ignored(Hi.getNode(), 1);
757 // Merge the pieces
758 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
759 }
760
761 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const762 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
763 {
764 // Whist llvm does not support aggregate varargs we can ignore
765 // the possibility of the ValueType being an implicit byVal vararg.
766 SDNode *Node = Op.getNode();
767 EVT VT = Node->getValueType(0); // not an aggregate
768 SDValue InChain = Node->getOperand(0);
769 SDValue VAListPtr = Node->getOperand(1);
770 EVT PtrVT = VAListPtr.getValueType();
771 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
772 SDLoc dl(Node);
773 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain,
774 VAListPtr, MachinePointerInfo(SV),
775 false, false, false, 0);
776 // Increment the pointer, VAList, to the next vararg
777 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
778 DAG.getIntPtrConstant(VT.getSizeInBits() / 8));
779 // Store the incremented VAList to the legalized pointer
780 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
781 MachinePointerInfo(SV), false, false, 0);
782 // Load the actual argument out of the pointer VAList
783 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
784 false, false, false, 0);
785 }
786
787 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const788 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
789 {
790 SDLoc dl(Op);
791 // vastart stores the address of the VarArgsFrameIndex slot into the
792 // memory location argument
793 MachineFunction &MF = DAG.getMachineFunction();
794 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
795 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
796 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
797 MachinePointerInfo(), false, false, 0);
798 }
799
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const800 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
801 SelectionDAG &DAG) const {
802 // This nodes represent llvm.frameaddress on the DAG.
803 // It takes one operand, the index of the frame address to return.
804 // An index of zero corresponds to the current function's frame address.
805 // An index of one to the parent's frame address, and so on.
806 // Depths > 0 not supported yet!
807 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
808 return SDValue();
809
810 MachineFunction &MF = DAG.getMachineFunction();
811 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
812 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
813 RegInfo->getFrameRegister(MF), MVT::i32);
814 }
815
816 SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const817 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
818 // This nodes represent llvm.returnaddress on the DAG.
819 // It takes one operand, the index of the return address to return.
820 // An index of zero corresponds to the current function's return address.
821 // An index of one to the parent's return address, and so on.
822 // Depths > 0 not supported yet!
823 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
824 return SDValue();
825
826 MachineFunction &MF = DAG.getMachineFunction();
827 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
828 int FI = XFI->createLRSpillSlot(MF);
829 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
830 return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN,
831 MachinePointerInfo::getFixedStack(FI), false, false,
832 false, 0);
833 }
834
835 SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const836 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
837 // This node represents offset from frame pointer to first on-stack argument.
838 // This is needed for correct stack adjustment during unwind.
839 // However, we don't know the offset until after the frame has be finalised.
840 // This is done during the XCoreFTAOElim pass.
841 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
842 }
843
844 SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const845 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
846 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
847 // This node represents 'eh_return' gcc dwarf builtin, which is used to
848 // return from exception. The general meaning is: adjust stack by OFFSET and
849 // pass execution to HANDLER.
850 MachineFunction &MF = DAG.getMachineFunction();
851 SDValue Chain = Op.getOperand(0);
852 SDValue Offset = Op.getOperand(1);
853 SDValue Handler = Op.getOperand(2);
854 SDLoc dl(Op);
855
856 // Absolute SP = (FP + FrameToArgs) + Offset
857 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
858 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
859 RegInfo->getFrameRegister(MF), MVT::i32);
860 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
861 MVT::i32);
862 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
863 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
864
865 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
866 // which leaves 2 caller saved registers, R2 & R3 for us to use.
867 unsigned StackReg = XCore::R2;
868 unsigned HandlerReg = XCore::R3;
869
870 SDValue OutChains[] = {
871 DAG.getCopyToReg(Chain, dl, StackReg, Stack),
872 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
873 };
874
875 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
876
877 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
878 DAG.getRegister(StackReg, MVT::i32),
879 DAG.getRegister(HandlerReg, MVT::i32));
880
881 }
882
883 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const884 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
885 return Op.getOperand(0);
886 }
887
888 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const889 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
890 SDValue Chain = Op.getOperand(0);
891 SDValue Trmp = Op.getOperand(1); // trampoline
892 SDValue FPtr = Op.getOperand(2); // nested function
893 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
894
895 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
896
897 // .align 4
898 // LDAPF_u10 r11, nest
899 // LDW_2rus r11, r11[0]
900 // STWSP_ru6 r11, sp[0]
901 // LDAPF_u10 r11, fptr
902 // LDW_2rus r11, r11[0]
903 // BAU_1r r11
904 // nest:
905 // .word nest
906 // fptr:
907 // .word fptr
908 SDValue OutChains[5];
909
910 SDValue Addr = Trmp;
911
912 SDLoc dl(Op);
913 OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32),
914 Addr, MachinePointerInfo(TrmpAddr), false, false,
915 0);
916
917 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
918 DAG.getConstant(4, MVT::i32));
919 OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32),
920 Addr, MachinePointerInfo(TrmpAddr, 4), false,
921 false, 0);
922
923 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
924 DAG.getConstant(8, MVT::i32));
925 OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32),
926 Addr, MachinePointerInfo(TrmpAddr, 8), false,
927 false, 0);
928
929 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
930 DAG.getConstant(12, MVT::i32));
931 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr,
932 MachinePointerInfo(TrmpAddr, 12), false, false,
933 0);
934
935 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
936 DAG.getConstant(16, MVT::i32));
937 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr,
938 MachinePointerInfo(TrmpAddr, 16), false, false,
939 0);
940
941 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
942 }
943
944 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const945 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
946 SDLoc DL(Op);
947 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
948 switch (IntNo) {
949 case Intrinsic::xcore_crc8:
950 EVT VT = Op.getValueType();
951 SDValue Data =
952 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
953 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
954 SDValue Crc(Data.getNode(), 1);
955 SDValue Results[] = { Crc, Data };
956 return DAG.getMergeValues(Results, DL);
957 }
958 return SDValue();
959 }
960
961 SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const962 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
963 SDLoc DL(Op);
964 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
965 }
966
967 SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const968 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
969 AtomicSDNode *N = cast<AtomicSDNode>(Op);
970 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
971 assert(N->getOrdering() <= Monotonic &&
972 "setInsertFencesForAtomic(true) and yet greater than Monotonic");
973 if (N->getMemoryVT() == MVT::i32) {
974 if (N->getAlignment() < 4)
975 report_fatal_error("atomic load must be aligned");
976 return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(),
977 N->getBasePtr(), N->getPointerInfo(),
978 N->isVolatile(), N->isNonTemporal(),
979 N->isInvariant(), N->getAlignment(),
980 N->getAAInfo(), N->getRanges());
981 }
982 if (N->getMemoryVT() == MVT::i16) {
983 if (N->getAlignment() < 2)
984 report_fatal_error("atomic load must be aligned");
985 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
986 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
987 N->isVolatile(), N->isNonTemporal(),
988 N->isInvariant(), N->getAlignment(), N->getAAInfo());
989 }
990 if (N->getMemoryVT() == MVT::i8)
991 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
992 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
993 N->isVolatile(), N->isNonTemporal(),
994 N->isInvariant(), N->getAlignment(), N->getAAInfo());
995 return SDValue();
996 }
997
998 SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const999 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
1000 AtomicSDNode *N = cast<AtomicSDNode>(Op);
1001 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
1002 assert(N->getOrdering() <= Monotonic &&
1003 "setInsertFencesForAtomic(true) and yet greater than Monotonic");
1004 if (N->getMemoryVT() == MVT::i32) {
1005 if (N->getAlignment() < 4)
1006 report_fatal_error("atomic store must be aligned");
1007 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(),
1008 N->getBasePtr(), N->getPointerInfo(),
1009 N->isVolatile(), N->isNonTemporal(),
1010 N->getAlignment(), N->getAAInfo());
1011 }
1012 if (N->getMemoryVT() == MVT::i16) {
1013 if (N->getAlignment() < 2)
1014 report_fatal_error("atomic store must be aligned");
1015 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1016 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
1017 N->isVolatile(), N->isNonTemporal(),
1018 N->getAlignment(), N->getAAInfo());
1019 }
1020 if (N->getMemoryVT() == MVT::i8)
1021 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
1022 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
1023 N->isVolatile(), N->isNonTemporal(),
1024 N->getAlignment(), N->getAAInfo());
1025 return SDValue();
1026 }
1027
1028 //===----------------------------------------------------------------------===//
1029 // Calling Convention Implementation
1030 //===----------------------------------------------------------------------===//
1031
1032 #include "XCoreGenCallingConv.inc"
1033
1034 //===----------------------------------------------------------------------===//
1035 // Call Calling Convention Implementation
1036 //===----------------------------------------------------------------------===//
1037
1038 /// XCore call implementation
1039 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1040 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1041 SmallVectorImpl<SDValue> &InVals) const {
1042 SelectionDAG &DAG = CLI.DAG;
1043 SDLoc &dl = CLI.DL;
1044 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1045 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1046 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1047 SDValue Chain = CLI.Chain;
1048 SDValue Callee = CLI.Callee;
1049 bool &isTailCall = CLI.IsTailCall;
1050 CallingConv::ID CallConv = CLI.CallConv;
1051 bool isVarArg = CLI.IsVarArg;
1052
1053 // XCore target does not yet support tail call optimization.
1054 isTailCall = false;
1055
1056 // For now, only CallingConv::C implemented
1057 switch (CallConv)
1058 {
1059 default:
1060 llvm_unreachable("Unsupported calling convention");
1061 case CallingConv::Fast:
1062 case CallingConv::C:
1063 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1064 Outs, OutVals, Ins, dl, DAG, InVals);
1065 }
1066 }
1067
1068 /// LowerCallResult - Lower the result values of a call into the
1069 /// appropriate copies out of appropriate physical registers / memory locations.
1070 static SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,const SmallVectorImpl<CCValAssign> & RVLocs,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals)1071 LowerCallResult(SDValue Chain, SDValue InFlag,
1072 const SmallVectorImpl<CCValAssign> &RVLocs,
1073 SDLoc dl, SelectionDAG &DAG,
1074 SmallVectorImpl<SDValue> &InVals) {
1075 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1076 // Copy results out of physical registers.
1077 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1078 const CCValAssign &VA = RVLocs[i];
1079 if (VA.isRegLoc()) {
1080 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1081 InFlag).getValue(1);
1082 InFlag = Chain.getValue(2);
1083 InVals.push_back(Chain.getValue(0));
1084 } else {
1085 assert(VA.isMemLoc());
1086 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1087 InVals.size()));
1088 // Reserve space for this result.
1089 InVals.push_back(SDValue());
1090 }
1091 }
1092
1093 // Copy results out of memory.
1094 SmallVector<SDValue, 4> MemOpChains;
1095 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1096 int offset = ResultMemLocs[i].first;
1097 unsigned index = ResultMemLocs[i].second;
1098 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1099 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) };
1100 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1101 InVals[index] = load;
1102 MemOpChains.push_back(load.getValue(1));
1103 }
1104
1105 // Transform all loads nodes into one single node because
1106 // all load nodes are independent of each other.
1107 if (!MemOpChains.empty())
1108 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1109
1110 return Chain;
1111 }
1112
1113 /// LowerCCCCallTo - functions arguments are copied from virtual
1114 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1115 /// CALLSEQ_END are emitted.
1116 /// TODO: isTailCall, sret.
1117 SDValue
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1118 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
1119 CallingConv::ID CallConv, bool isVarArg,
1120 bool isTailCall,
1121 const SmallVectorImpl<ISD::OutputArg> &Outs,
1122 const SmallVectorImpl<SDValue> &OutVals,
1123 const SmallVectorImpl<ISD::InputArg> &Ins,
1124 SDLoc dl, SelectionDAG &DAG,
1125 SmallVectorImpl<SDValue> &InVals) const {
1126
1127 // Analyze operands of the call, assigning locations to each operand.
1128 SmallVector<CCValAssign, 16> ArgLocs;
1129 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1130 *DAG.getContext());
1131
1132 // The ABI dictates there should be one stack slot available to the callee
1133 // on function entry (for saving lr).
1134 CCInfo.AllocateStack(4, 4);
1135
1136 CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1137
1138 SmallVector<CCValAssign, 16> RVLocs;
1139 // Analyze return values to determine the number of bytes of stack required.
1140 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1141 *DAG.getContext());
1142 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4);
1143 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1144
1145 // Get a count of how many bytes are to be pushed on the stack.
1146 unsigned NumBytes = RetCCInfo.getNextStackOffset();
1147
1148 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes,
1149 getPointerTy(), true), dl);
1150
1151 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1152 SmallVector<SDValue, 12> MemOpChains;
1153
1154 // Walk the register/memloc assignments, inserting copies/loads.
1155 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156 CCValAssign &VA = ArgLocs[i];
1157 SDValue Arg = OutVals[i];
1158
1159 // Promote the value if needed.
1160 switch (VA.getLocInfo()) {
1161 default: llvm_unreachable("Unknown loc info!");
1162 case CCValAssign::Full: break;
1163 case CCValAssign::SExt:
1164 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1165 break;
1166 case CCValAssign::ZExt:
1167 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1168 break;
1169 case CCValAssign::AExt:
1170 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1171 break;
1172 }
1173
1174 // Arguments that can be passed on register must be kept at
1175 // RegsToPass vector
1176 if (VA.isRegLoc()) {
1177 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1178 } else {
1179 assert(VA.isMemLoc());
1180
1181 int Offset = VA.getLocMemOffset();
1182
1183 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1184 Chain, Arg,
1185 DAG.getConstant(Offset/4, MVT::i32)));
1186 }
1187 }
1188
1189 // Transform all store nodes into one single node because
1190 // all store nodes are independent of each other.
1191 if (!MemOpChains.empty())
1192 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1193
1194 // Build a sequence of copy-to-reg nodes chained together with token
1195 // chain and flag operands which copy the outgoing args into registers.
1196 // The InFlag in necessary since all emitted instructions must be
1197 // stuck together.
1198 SDValue InFlag;
1199 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1200 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1201 RegsToPass[i].second, InFlag);
1202 InFlag = Chain.getValue(1);
1203 }
1204
1205 // If the callee is a GlobalAddress node (quite common, every direct call is)
1206 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1207 // Likewise ExternalSymbol -> TargetExternalSymbol.
1208 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1209 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1210 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1211 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1212
1213 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1214 // = Chain, Callee, Reg#1, Reg#2, ...
1215 //
1216 // Returns a chain & a flag for retval copy to use.
1217 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1218 SmallVector<SDValue, 8> Ops;
1219 Ops.push_back(Chain);
1220 Ops.push_back(Callee);
1221
1222 // Add argument registers to the end of the list so that they are
1223 // known live into the call.
1224 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1225 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1226 RegsToPass[i].second.getValueType()));
1227
1228 if (InFlag.getNode())
1229 Ops.push_back(InFlag);
1230
1231 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1232 InFlag = Chain.getValue(1);
1233
1234 // Create the CALLSEQ_END node.
1235 Chain = DAG.getCALLSEQ_END(Chain,
1236 DAG.getConstant(NumBytes, getPointerTy(), true),
1237 DAG.getConstant(0, getPointerTy(), true),
1238 InFlag, dl);
1239 InFlag = Chain.getValue(1);
1240
1241 // Handle result values, copying them out of physregs into vregs that we
1242 // return.
1243 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1244 }
1245
1246 //===----------------------------------------------------------------------===//
1247 // Formal Arguments Calling Convention Implementation
1248 //===----------------------------------------------------------------------===//
1249
1250 namespace {
1251 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1252 }
1253
1254 /// XCore formal arguments implementation
1255 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1256 XCoreTargetLowering::LowerFormalArguments(SDValue Chain,
1257 CallingConv::ID CallConv,
1258 bool isVarArg,
1259 const SmallVectorImpl<ISD::InputArg> &Ins,
1260 SDLoc dl,
1261 SelectionDAG &DAG,
1262 SmallVectorImpl<SDValue> &InVals)
1263 const {
1264 switch (CallConv)
1265 {
1266 default:
1267 llvm_unreachable("Unsupported calling convention");
1268 case CallingConv::C:
1269 case CallingConv::Fast:
1270 return LowerCCCArguments(Chain, CallConv, isVarArg,
1271 Ins, dl, DAG, InVals);
1272 }
1273 }
1274
1275 /// LowerCCCArguments - transform physical registers into
1276 /// virtual registers and generate load operations for
1277 /// arguments places on the stack.
1278 /// TODO: sret
1279 SDValue
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1280 XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
1281 CallingConv::ID CallConv,
1282 bool isVarArg,
1283 const SmallVectorImpl<ISD::InputArg>
1284 &Ins,
1285 SDLoc dl,
1286 SelectionDAG &DAG,
1287 SmallVectorImpl<SDValue> &InVals) const {
1288 MachineFunction &MF = DAG.getMachineFunction();
1289 MachineFrameInfo *MFI = MF.getFrameInfo();
1290 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1291 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1292
1293 // Assign locations to all of the incoming arguments.
1294 SmallVector<CCValAssign, 16> ArgLocs;
1295 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1296 *DAG.getContext());
1297
1298 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1299
1300 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1301
1302 unsigned LRSaveSize = StackSlotSize;
1303
1304 if (!isVarArg)
1305 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1306
1307 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1308 // scheduler clobbering a register before it has been copied.
1309 // The stages are:
1310 // 1. CopyFromReg (and load) arg & vararg registers.
1311 // 2. Chain CopyFromReg nodes into a TokenFactor.
1312 // 3. Memcpy 'byVal' args & push final InVals.
1313 // 4. Chain mem ops nodes into a TokenFactor.
1314 SmallVector<SDValue, 4> CFRegNode;
1315 SmallVector<ArgDataPair, 4> ArgData;
1316 SmallVector<SDValue, 4> MemOps;
1317
1318 // 1a. CopyFromReg (and load) arg registers.
1319 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1320
1321 CCValAssign &VA = ArgLocs[i];
1322 SDValue ArgIn;
1323
1324 if (VA.isRegLoc()) {
1325 // Arguments passed in registers
1326 EVT RegVT = VA.getLocVT();
1327 switch (RegVT.getSimpleVT().SimpleTy) {
1328 default:
1329 {
1330 #ifndef NDEBUG
1331 errs() << "LowerFormalArguments Unhandled argument type: "
1332 << RegVT.getSimpleVT().SimpleTy << "\n";
1333 #endif
1334 llvm_unreachable(nullptr);
1335 }
1336 case MVT::i32:
1337 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1338 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1339 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1340 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1341 }
1342 } else {
1343 // sanity check
1344 assert(VA.isMemLoc());
1345 // Load the argument to a virtual register
1346 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1347 if (ObjSize > StackSlotSize) {
1348 errs() << "LowerFormalArguments Unhandled argument type: "
1349 << EVT(VA.getLocVT()).getEVTString()
1350 << "\n";
1351 }
1352 // Create the frame index object for this incoming parameter...
1353 int FI = MFI->CreateFixedObject(ObjSize,
1354 LRSaveSize + VA.getLocMemOffset(),
1355 true);
1356
1357 // Create the SelectionDAG nodes corresponding to a load
1358 //from this parameter
1359 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1360 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1361 MachinePointerInfo::getFixedStack(FI),
1362 false, false, false, 0);
1363 }
1364 const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1365 ArgData.push_back(ADP);
1366 }
1367
1368 // 1b. CopyFromReg vararg registers.
1369 if (isVarArg) {
1370 // Argument registers
1371 static const MCPhysReg ArgRegs[] = {
1372 XCore::R0, XCore::R1, XCore::R2, XCore::R3
1373 };
1374 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1375 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1376 if (FirstVAReg < array_lengthof(ArgRegs)) {
1377 int offset = 0;
1378 // Save remaining registers, storing higher register numbers at a higher
1379 // address
1380 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1381 // Create a stack slot
1382 int FI = MFI->CreateFixedObject(4, offset, true);
1383 if (i == (int)FirstVAReg) {
1384 XFI->setVarArgsFrameIndex(FI);
1385 }
1386 offset -= StackSlotSize;
1387 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1388 // Move argument from phys reg -> virt reg
1389 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1390 RegInfo.addLiveIn(ArgRegs[i], VReg);
1391 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1392 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1393 // Move argument from virt reg -> stack
1394 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1395 MachinePointerInfo(), false, false, 0);
1396 MemOps.push_back(Store);
1397 }
1398 } else {
1399 // This will point to the next argument passed via stack.
1400 XFI->setVarArgsFrameIndex(
1401 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1402 true));
1403 }
1404 }
1405
1406 // 2. chain CopyFromReg nodes into a TokenFactor.
1407 if (!CFRegNode.empty())
1408 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1409
1410 // 3. Memcpy 'byVal' args & push final InVals.
1411 // Aggregates passed "byVal" need to be copied by the callee.
1412 // The callee will use a pointer to this copy, rather than the original
1413 // pointer.
1414 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(),
1415 ArgDE = ArgData.end();
1416 ArgDI != ArgDE; ++ArgDI) {
1417 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) {
1418 unsigned Size = ArgDI->Flags.getByValSize();
1419 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign());
1420 // Create a new object on the stack and copy the pointee into it.
1421 int FI = MFI->CreateStackObject(Size, Align, false);
1422 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1423 InVals.push_back(FIN);
1424 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV,
1425 DAG.getConstant(Size, MVT::i32),
1426 Align, false, false, false,
1427 MachinePointerInfo(),
1428 MachinePointerInfo()));
1429 } else {
1430 InVals.push_back(ArgDI->SDV);
1431 }
1432 }
1433
1434 // 4, chain mem ops nodes into a TokenFactor.
1435 if (!MemOps.empty()) {
1436 MemOps.push_back(Chain);
1437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1438 }
1439
1440 return Chain;
1441 }
1442
1443 //===----------------------------------------------------------------------===//
1444 // Return Value Calling Convention Implementation
1445 //===----------------------------------------------------------------------===//
1446
1447 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1448 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1449 bool isVarArg,
1450 const SmallVectorImpl<ISD::OutputArg> &Outs,
1451 LLVMContext &Context) const {
1452 SmallVector<CCValAssign, 16> RVLocs;
1453 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1454 if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1455 return false;
1456 if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1457 return false;
1458 return true;
1459 }
1460
1461 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const1462 XCoreTargetLowering::LowerReturn(SDValue Chain,
1463 CallingConv::ID CallConv, bool isVarArg,
1464 const SmallVectorImpl<ISD::OutputArg> &Outs,
1465 const SmallVectorImpl<SDValue> &OutVals,
1466 SDLoc dl, SelectionDAG &DAG) const {
1467
1468 XCoreFunctionInfo *XFI =
1469 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1470 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1471
1472 // CCValAssign - represent the assignment of
1473 // the return value to a location
1474 SmallVector<CCValAssign, 16> RVLocs;
1475
1476 // CCState - Info about the registers and stack slot.
1477 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1478 *DAG.getContext());
1479
1480 // Analyze return values.
1481 if (!isVarArg)
1482 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4);
1483
1484 CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1485
1486 SDValue Flag;
1487 SmallVector<SDValue, 4> RetOps(1, Chain);
1488
1489 // Return on XCore is always a "retsp 0"
1490 RetOps.push_back(DAG.getConstant(0, MVT::i32));
1491
1492 SmallVector<SDValue, 4> MemOpChains;
1493 // Handle return values that must be copied to memory.
1494 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1495 CCValAssign &VA = RVLocs[i];
1496 if (VA.isRegLoc())
1497 continue;
1498 assert(VA.isMemLoc());
1499 if (isVarArg) {
1500 report_fatal_error("Can't return value from vararg function in memory");
1501 }
1502
1503 int Offset = VA.getLocMemOffset();
1504 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1505 // Create the frame index object for the memory location.
1506 int FI = MFI->CreateFixedObject(ObjSize, Offset, false);
1507
1508 // Create a SelectionDAG node corresponding to a store
1509 // to this memory location.
1510 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1511 MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN,
1512 MachinePointerInfo::getFixedStack(FI), false, false,
1513 0));
1514 }
1515
1516 // Transform all store nodes into one single node because
1517 // all stores are independent of each other.
1518 if (!MemOpChains.empty())
1519 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1520
1521 // Now handle return values copied to registers.
1522 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1523 CCValAssign &VA = RVLocs[i];
1524 if (!VA.isRegLoc())
1525 continue;
1526 // Copy the result values into the output registers.
1527 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1528
1529 // guarantee that all emitted copies are
1530 // stuck together, avoiding something bad
1531 Flag = Chain.getValue(1);
1532 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1533 }
1534
1535 RetOps[0] = Chain; // Update chain.
1536
1537 // Add the flag if we have it.
1538 if (Flag.getNode())
1539 RetOps.push_back(Flag);
1540
1541 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1542 }
1543
1544 //===----------------------------------------------------------------------===//
1545 // Other Lowering Code
1546 //===----------------------------------------------------------------------===//
1547
1548 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const1549 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1550 MachineBasicBlock *BB) const {
1551 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1552 DebugLoc dl = MI->getDebugLoc();
1553 assert((MI->getOpcode() == XCore::SELECT_CC) &&
1554 "Unexpected instr type to insert");
1555
1556 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1557 // control-flow pattern. The incoming instruction knows the destination vreg
1558 // to set, the condition code register to branch on, the true/false values to
1559 // select between, and a branch opcode to use.
1560 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1561 MachineFunction::iterator It = BB;
1562 ++It;
1563
1564 // thisMBB:
1565 // ...
1566 // TrueVal = ...
1567 // cmpTY ccX, r1, r2
1568 // bCC copy1MBB
1569 // fallthrough --> copy0MBB
1570 MachineBasicBlock *thisMBB = BB;
1571 MachineFunction *F = BB->getParent();
1572 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1573 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1574 F->insert(It, copy0MBB);
1575 F->insert(It, sinkMBB);
1576
1577 // Transfer the remainder of BB and its successor edges to sinkMBB.
1578 sinkMBB->splice(sinkMBB->begin(), BB,
1579 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1580 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1581
1582 // Next, add the true and fallthrough blocks as its successors.
1583 BB->addSuccessor(copy0MBB);
1584 BB->addSuccessor(sinkMBB);
1585
1586 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1587 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
1588
1589 // copy0MBB:
1590 // %FalseValue = ...
1591 // # fallthrough to sinkMBB
1592 BB = copy0MBB;
1593
1594 // Update machine-CFG edges
1595 BB->addSuccessor(sinkMBB);
1596
1597 // sinkMBB:
1598 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1599 // ...
1600 BB = sinkMBB;
1601 BuildMI(*BB, BB->begin(), dl,
1602 TII.get(XCore::PHI), MI->getOperand(0).getReg())
1603 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
1604 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
1605
1606 MI->eraseFromParent(); // The pseudo instruction is gone now.
1607 return BB;
1608 }
1609
1610 //===----------------------------------------------------------------------===//
1611 // Target Optimization Hooks
1612 //===----------------------------------------------------------------------===//
1613
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1614 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1615 DAGCombinerInfo &DCI) const {
1616 SelectionDAG &DAG = DCI.DAG;
1617 SDLoc dl(N);
1618 switch (N->getOpcode()) {
1619 default: break;
1620 case ISD::INTRINSIC_VOID:
1621 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1622 case Intrinsic::xcore_outt:
1623 case Intrinsic::xcore_outct:
1624 case Intrinsic::xcore_chkct: {
1625 SDValue OutVal = N->getOperand(3);
1626 // These instructions ignore the high bits.
1627 if (OutVal.hasOneUse()) {
1628 unsigned BitWidth = OutVal.getValueSizeInBits();
1629 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1630 APInt KnownZero, KnownOne;
1631 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1632 !DCI.isBeforeLegalizeOps());
1633 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1634 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
1635 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
1636 TLO))
1637 DCI.CommitTargetLoweringOpt(TLO);
1638 }
1639 break;
1640 }
1641 case Intrinsic::xcore_setpt: {
1642 SDValue Time = N->getOperand(3);
1643 // This instruction ignores the high bits.
1644 if (Time.hasOneUse()) {
1645 unsigned BitWidth = Time.getValueSizeInBits();
1646 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1647 APInt KnownZero, KnownOne;
1648 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1649 !DCI.isBeforeLegalizeOps());
1650 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1651 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
1652 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
1653 TLO))
1654 DCI.CommitTargetLoweringOpt(TLO);
1655 }
1656 break;
1657 }
1658 }
1659 break;
1660 case XCoreISD::LADD: {
1661 SDValue N0 = N->getOperand(0);
1662 SDValue N1 = N->getOperand(1);
1663 SDValue N2 = N->getOperand(2);
1664 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1665 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1666 EVT VT = N0.getValueType();
1667
1668 // canonicalize constant to RHS
1669 if (N0C && !N1C)
1670 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1671
1672 // fold (ladd 0, 0, x) -> 0, x & 1
1673 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1674 SDValue Carry = DAG.getConstant(0, VT);
1675 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1676 DAG.getConstant(1, VT));
1677 SDValue Ops[] = { Result, Carry };
1678 return DAG.getMergeValues(Ops, dl);
1679 }
1680
1681 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1682 // low bit set
1683 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1684 APInt KnownZero, KnownOne;
1685 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1686 VT.getSizeInBits() - 1);
1687 DAG.computeKnownBits(N2, KnownZero, KnownOne);
1688 if ((KnownZero & Mask) == Mask) {
1689 SDValue Carry = DAG.getConstant(0, VT);
1690 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1691 SDValue Ops[] = { Result, Carry };
1692 return DAG.getMergeValues(Ops, dl);
1693 }
1694 }
1695 }
1696 break;
1697 case XCoreISD::LSUB: {
1698 SDValue N0 = N->getOperand(0);
1699 SDValue N1 = N->getOperand(1);
1700 SDValue N2 = N->getOperand(2);
1701 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1702 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1703 EVT VT = N0.getValueType();
1704
1705 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1706 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) {
1707 APInt KnownZero, KnownOne;
1708 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1709 VT.getSizeInBits() - 1);
1710 DAG.computeKnownBits(N2, KnownZero, KnownOne);
1711 if ((KnownZero & Mask) == Mask) {
1712 SDValue Borrow = N2;
1713 SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1714 DAG.getConstant(0, VT), N2);
1715 SDValue Ops[] = { Result, Borrow };
1716 return DAG.getMergeValues(Ops, dl);
1717 }
1718 }
1719
1720 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1721 // low bit set
1722 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) {
1723 APInt KnownZero, KnownOne;
1724 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1725 VT.getSizeInBits() - 1);
1726 DAG.computeKnownBits(N2, KnownZero, KnownOne);
1727 if ((KnownZero & Mask) == Mask) {
1728 SDValue Borrow = DAG.getConstant(0, VT);
1729 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1730 SDValue Ops[] = { Result, Borrow };
1731 return DAG.getMergeValues(Ops, dl);
1732 }
1733 }
1734 }
1735 break;
1736 case XCoreISD::LMUL: {
1737 SDValue N0 = N->getOperand(0);
1738 SDValue N1 = N->getOperand(1);
1739 SDValue N2 = N->getOperand(2);
1740 SDValue N3 = N->getOperand(3);
1741 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1742 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1743 EVT VT = N0.getValueType();
1744 // Canonicalize multiplicative constant to RHS. If both multiplicative
1745 // operands are constant canonicalize smallest to RHS.
1746 if ((N0C && !N1C) ||
1747 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1748 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1749 N1, N0, N2, N3);
1750
1751 // lmul(x, 0, a, b)
1752 if (N1C && N1C->isNullValue()) {
1753 // If the high result is unused fold to add(a, b)
1754 if (N->hasNUsesOfValue(0, 0)) {
1755 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1756 SDValue Ops[] = { Lo, Lo };
1757 return DAG.getMergeValues(Ops, dl);
1758 }
1759 // Otherwise fold to ladd(a, b, 0)
1760 SDValue Result =
1761 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1762 SDValue Carry(Result.getNode(), 1);
1763 SDValue Ops[] = { Carry, Result };
1764 return DAG.getMergeValues(Ops, dl);
1765 }
1766 }
1767 break;
1768 case ISD::ADD: {
1769 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1770 // lmul(x, y, a, b). The high result of lmul will be ignored.
1771 // This is only profitable if the intermediate results are unused
1772 // elsewhere.
1773 SDValue Mul0, Mul1, Addend0, Addend1;
1774 if (N->getValueType(0) == MVT::i32 &&
1775 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1776 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1777 DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1778 Mul1, Addend0, Addend1);
1779 SDValue Result(Ignored.getNode(), 1);
1780 return Result;
1781 }
1782 APInt HighMask = APInt::getHighBitsSet(64, 32);
1783 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1784 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1785 // before type legalization as it is messy to match the operands after
1786 // that.
1787 if (N->getValueType(0) == MVT::i64 &&
1788 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1789 DAG.MaskedValueIsZero(Mul0, HighMask) &&
1790 DAG.MaskedValueIsZero(Mul1, HighMask) &&
1791 DAG.MaskedValueIsZero(Addend0, HighMask) &&
1792 DAG.MaskedValueIsZero(Addend1, HighMask)) {
1793 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1794 Mul0, DAG.getConstant(0, MVT::i32));
1795 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1796 Mul1, DAG.getConstant(0, MVT::i32));
1797 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1798 Addend0, DAG.getConstant(0, MVT::i32));
1799 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1800 Addend1, DAG.getConstant(0, MVT::i32));
1801 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1802 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1803 Addend0L, Addend1L);
1804 SDValue Lo(Hi.getNode(), 1);
1805 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1806 }
1807 }
1808 break;
1809 case ISD::STORE: {
1810 // Replace unaligned store of unaligned load with memmove.
1811 StoreSDNode *ST = cast<StoreSDNode>(N);
1812 if (!DCI.isBeforeLegalize() ||
1813 allowsMisalignedMemoryAccesses(ST->getMemoryVT(),
1814 ST->getAddressSpace(),
1815 ST->getAlignment()) ||
1816 ST->isVolatile() || ST->isIndexed()) {
1817 break;
1818 }
1819 SDValue Chain = ST->getChain();
1820
1821 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1822 if (StoreBits % 8) {
1823 break;
1824 }
1825 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(
1826 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext()));
1827 unsigned Alignment = ST->getAlignment();
1828 if (Alignment >= ABIAlignment) {
1829 break;
1830 }
1831
1832 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1833 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1834 LD->getAlignment() == Alignment &&
1835 !LD->isVolatile() && !LD->isIndexed() &&
1836 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1837 bool isTail = isInTailCallPosition(DAG, ST, Chain);
1838 return DAG.getMemmove(Chain, dl, ST->getBasePtr(),
1839 LD->getBasePtr(),
1840 DAG.getConstant(StoreBits/8, MVT::i32),
1841 Alignment, false, isTail, ST->getPointerInfo(),
1842 LD->getPointerInfo());
1843 }
1844 }
1845 break;
1846 }
1847 }
1848 return SDValue();
1849 }
1850
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const1851 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1852 APInt &KnownZero,
1853 APInt &KnownOne,
1854 const SelectionDAG &DAG,
1855 unsigned Depth) const {
1856 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
1857 switch (Op.getOpcode()) {
1858 default: break;
1859 case XCoreISD::LADD:
1860 case XCoreISD::LSUB:
1861 if (Op.getResNo() == 1) {
1862 // Top bits of carry / borrow are clear.
1863 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1864 KnownZero.getBitWidth() - 1);
1865 }
1866 break;
1867 case ISD::INTRINSIC_W_CHAIN:
1868 {
1869 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1870 switch (IntNo) {
1871 case Intrinsic::xcore_getts:
1872 // High bits are known to be zero.
1873 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1874 KnownZero.getBitWidth() - 16);
1875 break;
1876 case Intrinsic::xcore_int:
1877 case Intrinsic::xcore_inct:
1878 // High bits are known to be zero.
1879 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1880 KnownZero.getBitWidth() - 8);
1881 break;
1882 case Intrinsic::xcore_testct:
1883 // Result is either 0 or 1.
1884 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1885 KnownZero.getBitWidth() - 1);
1886 break;
1887 case Intrinsic::xcore_testwct:
1888 // Result is in the range 0 - 4.
1889 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(),
1890 KnownZero.getBitWidth() - 3);
1891 break;
1892 }
1893 }
1894 break;
1895 }
1896 }
1897
1898 //===----------------------------------------------------------------------===//
1899 // Addressing mode description hooks
1900 //===----------------------------------------------------------------------===//
1901
isImmUs(int64_t val)1902 static inline bool isImmUs(int64_t val)
1903 {
1904 return (val >= 0 && val <= 11);
1905 }
1906
isImmUs2(int64_t val)1907 static inline bool isImmUs2(int64_t val)
1908 {
1909 return (val%2 == 0 && isImmUs(val/2));
1910 }
1911
isImmUs4(int64_t val)1912 static inline bool isImmUs4(int64_t val)
1913 {
1914 return (val%4 == 0 && isImmUs(val/4));
1915 }
1916
1917 /// isLegalAddressingMode - Return true if the addressing mode represented
1918 /// by AM is legal for this target, for a load/store of the specified type.
1919 bool
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const1920 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1921 Type *Ty) const {
1922 if (Ty->getTypeID() == Type::VoidTyID)
1923 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1924
1925 const DataLayout *TD = TM.getDataLayout();
1926 unsigned Size = TD->getTypeAllocSize(Ty);
1927 if (AM.BaseGV) {
1928 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1929 AM.BaseOffs%4 == 0;
1930 }
1931
1932 switch (Size) {
1933 case 1:
1934 // reg + imm
1935 if (AM.Scale == 0) {
1936 return isImmUs(AM.BaseOffs);
1937 }
1938 // reg + reg
1939 return AM.Scale == 1 && AM.BaseOffs == 0;
1940 case 2:
1941 case 3:
1942 // reg + imm
1943 if (AM.Scale == 0) {
1944 return isImmUs2(AM.BaseOffs);
1945 }
1946 // reg + reg<<1
1947 return AM.Scale == 2 && AM.BaseOffs == 0;
1948 default:
1949 // reg + imm
1950 if (AM.Scale == 0) {
1951 return isImmUs4(AM.BaseOffs);
1952 }
1953 // reg + reg<<2
1954 return AM.Scale == 4 && AM.BaseOffs == 0;
1955 }
1956 }
1957
1958 //===----------------------------------------------------------------------===//
1959 // XCore Inline Assembly Support
1960 //===----------------------------------------------------------------------===//
1961
1962 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,const std::string & Constraint,MVT VT) const1963 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1964 const std::string &Constraint,
1965 MVT VT) const {
1966 if (Constraint.size() == 1) {
1967 switch (Constraint[0]) {
1968 default : break;
1969 case 'r':
1970 return std::make_pair(0U, &XCore::GRRegsRegClass);
1971 }
1972 }
1973 // Use the default implementation in TargetLowering to convert the register
1974 // constraint into a member of a register class.
1975 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1976 }
1977