1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declarations of classes that represent "derived 11 // types". These are things like "arrays of x" or "structure of x, y, z" or 12 // "function returning x taking (y,z) as parameters", etc... 13 // 14 // The implementations of these classes live in the Type.cpp file. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #ifndef LLVM_IR_DERIVEDTYPES_H 19 #define LLVM_IR_DERIVEDTYPES_H 20 21 #include "llvm/IR/Type.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/DataTypes.h" 24 25 namespace llvm { 26 27 class Value; 28 class APInt; 29 class LLVMContext; 30 template<typename T> class ArrayRef; 31 class StringRef; 32 33 /// Class to represent integer types. Note that this class is also used to 34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and 35 /// Int64Ty. 36 /// @brief Integer representation type 37 class IntegerType : public Type { 38 friend class LLVMContextImpl; 39 40 protected: IntegerType(LLVMContext & C,unsigned NumBits)41 explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ 42 setSubclassData(NumBits); 43 } 44 public: 45 /// This enum is just used to hold constants we need for IntegerType. 46 enum { 47 MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified 48 MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified 49 ///< Note that bit width is stored in the Type classes SubclassData field 50 ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits. 51 }; 52 53 /// This static method is the primary way of constructing an IntegerType. 54 /// If an IntegerType with the same NumBits value was previously instantiated, 55 /// that instance will be returned. Otherwise a new one will be created. Only 56 /// one instance with a given NumBits value is ever created. 57 /// @brief Get or create an IntegerType instance. 58 static IntegerType *get(LLVMContext &C, unsigned NumBits); 59 60 /// @brief Get the number of bits in this IntegerType getBitWidth()61 unsigned getBitWidth() const { return getSubclassData(); } 62 63 /// getBitMask - Return a bitmask with ones set for all of the bits 64 /// that can be set by an unsigned version of this type. This is 0xFF for 65 /// i8, 0xFFFF for i16, etc. getBitMask()66 uint64_t getBitMask() const { 67 return ~uint64_t(0UL) >> (64-getBitWidth()); 68 } 69 70 /// getSignBit - Return a uint64_t with just the most significant bit set (the 71 /// sign bit, if the value is treated as a signed number). getSignBit()72 uint64_t getSignBit() const { 73 return 1ULL << (getBitWidth()-1); 74 } 75 76 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. 77 /// @returns a bit mask with ones set for all the bits of this type. 78 /// @brief Get a bit mask for this type. 79 APInt getMask() const; 80 81 /// This method determines if the width of this IntegerType is a power-of-2 82 /// in terms of 8 bit bytes. 83 /// @returns true if this is a power-of-2 byte width. 84 /// @brief Is this a power-of-2 byte-width IntegerType ? 85 bool isPowerOf2ByteWidth() const; 86 87 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)88 static inline bool classof(const Type *T) { 89 return T->getTypeID() == IntegerTyID; 90 } 91 }; 92 93 94 /// FunctionType - Class to represent function types 95 /// 96 class FunctionType : public Type { 97 FunctionType(const FunctionType &) = delete; 98 const FunctionType &operator=(const FunctionType &) = delete; 99 FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs); 100 101 public: 102 /// FunctionType::get - This static method is the primary way of constructing 103 /// a FunctionType. 104 /// 105 static FunctionType *get(Type *Result, 106 ArrayRef<Type*> Params, bool isVarArg); 107 108 /// FunctionType::get - Create a FunctionType taking no parameters. 109 /// 110 static FunctionType *get(Type *Result, bool isVarArg); 111 112 /// isValidReturnType - Return true if the specified type is valid as a return 113 /// type. 114 static bool isValidReturnType(Type *RetTy); 115 116 /// isValidArgumentType - Return true if the specified type is valid as an 117 /// argument type. 118 static bool isValidArgumentType(Type *ArgTy); 119 isVarArg()120 bool isVarArg() const { return getSubclassData()!=0; } getReturnType()121 Type *getReturnType() const { return ContainedTys[0]; } 122 123 typedef Type::subtype_iterator param_iterator; param_begin()124 param_iterator param_begin() const { return ContainedTys + 1; } param_end()125 param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } params()126 ArrayRef<Type *> params() const { 127 return makeArrayRef(param_begin(), param_end()); 128 } 129 130 /// Parameter type accessors. getParamType(unsigned i)131 Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } 132 133 /// getNumParams - Return the number of fixed parameters this function type 134 /// requires. This does not consider varargs. 135 /// getNumParams()136 unsigned getNumParams() const { return NumContainedTys - 1; } 137 138 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)139 static inline bool classof(const Type *T) { 140 return T->getTypeID() == FunctionTyID; 141 } 142 }; 143 144 145 /// CompositeType - Common super class of ArrayType, StructType, PointerType 146 /// and VectorType. 147 class CompositeType : public Type { 148 protected: CompositeType(LLVMContext & C,TypeID tid)149 explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) { } 150 public: 151 152 /// getTypeAtIndex - Given an index value into the type, return the type of 153 /// the element. 154 /// 155 Type *getTypeAtIndex(const Value *V); 156 Type *getTypeAtIndex(unsigned Idx); 157 bool indexValid(const Value *V) const; 158 bool indexValid(unsigned Idx) const; 159 160 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)161 static inline bool classof(const Type *T) { 162 return T->getTypeID() == ArrayTyID || 163 T->getTypeID() == StructTyID || 164 T->getTypeID() == PointerTyID || 165 T->getTypeID() == VectorTyID; 166 } 167 }; 168 169 170 /// StructType - Class to represent struct types. There are two different kinds 171 /// of struct types: Literal structs and Identified structs. 172 /// 173 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must 174 /// always have a body when created. You can get one of these by using one of 175 /// the StructType::get() forms. 176 /// 177 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not 178 /// uniqued. The names for identified structs are managed at the LLVMContext 179 /// level, so there can only be a single identified struct with a given name in 180 /// a particular LLVMContext. Identified structs may also optionally be opaque 181 /// (have no body specified). You get one of these by using one of the 182 /// StructType::create() forms. 183 /// 184 /// Independent of what kind of struct you have, the body of a struct type are 185 /// laid out in memory consequtively with the elements directly one after the 186 /// other (if the struct is packed) or (if not packed) with padding between the 187 /// elements as defined by DataLayout (which is required to match what the code 188 /// generator for a target expects). 189 /// 190 class StructType : public CompositeType { 191 StructType(const StructType &) = delete; 192 const StructType &operator=(const StructType &) = delete; StructType(LLVMContext & C)193 StructType(LLVMContext &C) 194 : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {} 195 enum { 196 /// This is the contents of the SubClassData field. 197 SCDB_HasBody = 1, 198 SCDB_Packed = 2, 199 SCDB_IsLiteral = 4, 200 SCDB_IsSized = 8 201 }; 202 203 /// SymbolTableEntry - For a named struct that actually has a name, this is a 204 /// pointer to the symbol table entry (maintained by LLVMContext) for the 205 /// struct. This is null if the type is an literal struct or if it is 206 /// a identified type that has an empty name. 207 /// 208 void *SymbolTableEntry; 209 public: 210 211 /// StructType::create - This creates an identified struct. 212 static StructType *create(LLVMContext &Context, StringRef Name); 213 static StructType *create(LLVMContext &Context); 214 215 static StructType *create(ArrayRef<Type*> Elements, 216 StringRef Name, 217 bool isPacked = false); 218 static StructType *create(ArrayRef<Type*> Elements); 219 static StructType *create(LLVMContext &Context, 220 ArrayRef<Type*> Elements, 221 StringRef Name, 222 bool isPacked = false); 223 static StructType *create(LLVMContext &Context, ArrayRef<Type*> Elements); 224 static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL; 225 226 /// StructType::get - This static method is the primary way to create a 227 /// literal StructType. 228 static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements, 229 bool isPacked = false); 230 231 /// StructType::get - Create an empty structure type. 232 /// 233 static StructType *get(LLVMContext &Context, bool isPacked = false); 234 235 /// StructType::get - This static method is a convenience method for creating 236 /// structure types by specifying the elements as arguments. Note that this 237 /// method always returns a non-packed struct, and requires at least one 238 /// element type. 239 static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL; 240 isPacked()241 bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } 242 243 /// isLiteral - Return true if this type is uniqued by structural 244 /// equivalence, false if it is a struct definition. isLiteral()245 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } 246 247 /// isOpaque - Return true if this is a type with an identity that has no body 248 /// specified yet. These prints as 'opaque' in .ll files. isOpaque()249 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } 250 251 /// isSized - Return true if this is a sized type. 252 bool isSized(SmallPtrSetImpl<const Type*> *Visited = nullptr) const; 253 254 /// hasName - Return true if this is a named struct that has a non-empty name. hasName()255 bool hasName() const { return SymbolTableEntry != nullptr; } 256 257 /// getName - Return the name for this struct type if it has an identity. 258 /// This may return an empty string for an unnamed struct type. Do not call 259 /// this on an literal type. 260 StringRef getName() const; 261 262 /// setName - Change the name of this type to the specified name, or to a name 263 /// with a suffix if there is a collision. Do not call this on an literal 264 /// type. 265 void setName(StringRef Name); 266 267 /// setBody - Specify a body for an opaque identified type. 268 void setBody(ArrayRef<Type*> Elements, bool isPacked = false); 269 void setBody(Type *elt1, ...) LLVM_END_WITH_NULL; 270 271 /// isValidElementType - Return true if the specified type is valid as a 272 /// element type. 273 static bool isValidElementType(Type *ElemTy); 274 275 276 // Iterator access to the elements. 277 typedef Type::subtype_iterator element_iterator; element_begin()278 element_iterator element_begin() const { return ContainedTys; } element_end()279 element_iterator element_end() const { return &ContainedTys[NumContainedTys];} elements()280 ArrayRef<Type *> const elements() const { 281 return makeArrayRef(element_begin(), element_end()); 282 } 283 284 /// isLayoutIdentical - Return true if this is layout identical to the 285 /// specified struct. 286 bool isLayoutIdentical(StructType *Other) const; 287 288 /// Random access to the elements getNumElements()289 unsigned getNumElements() const { return NumContainedTys; } getElementType(unsigned N)290 Type *getElementType(unsigned N) const { 291 assert(N < NumContainedTys && "Element number out of range!"); 292 return ContainedTys[N]; 293 } 294 295 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)296 static inline bool classof(const Type *T) { 297 return T->getTypeID() == StructTyID; 298 } 299 }; 300 301 /// SequentialType - This is the superclass of the array, pointer and vector 302 /// type classes. All of these represent "arrays" in memory. The array type 303 /// represents a specifically sized array, pointer types are unsized/unknown 304 /// size arrays, vector types represent specifically sized arrays that 305 /// allow for use of SIMD instructions. SequentialType holds the common 306 /// features of all, which stem from the fact that all three lay their 307 /// components out in memory identically. 308 /// 309 class SequentialType : public CompositeType { 310 Type *ContainedType; ///< Storage for the single contained type. 311 SequentialType(const SequentialType &) = delete; 312 const SequentialType &operator=(const SequentialType &) = delete; 313 314 protected: SequentialType(TypeID TID,Type * ElType)315 SequentialType(TypeID TID, Type *ElType) 316 : CompositeType(ElType->getContext(), TID), ContainedType(ElType) { 317 ContainedTys = &ContainedType; 318 NumContainedTys = 1; 319 } 320 321 public: getElementType()322 Type *getElementType() const { return ContainedTys[0]; } 323 324 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)325 static inline bool classof(const Type *T) { 326 return T->getTypeID() == ArrayTyID || 327 T->getTypeID() == PointerTyID || 328 T->getTypeID() == VectorTyID; 329 } 330 }; 331 332 333 /// ArrayType - Class to represent array types. 334 /// 335 class ArrayType : public SequentialType { 336 uint64_t NumElements; 337 338 ArrayType(const ArrayType &) = delete; 339 const ArrayType &operator=(const ArrayType &) = delete; 340 ArrayType(Type *ElType, uint64_t NumEl); 341 public: 342 /// ArrayType::get - This static method is the primary way to construct an 343 /// ArrayType 344 /// 345 static ArrayType *get(Type *ElementType, uint64_t NumElements); 346 347 /// isValidElementType - Return true if the specified type is valid as a 348 /// element type. 349 static bool isValidElementType(Type *ElemTy); 350 getNumElements()351 uint64_t getNumElements() const { return NumElements; } 352 353 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)354 static inline bool classof(const Type *T) { 355 return T->getTypeID() == ArrayTyID; 356 } 357 }; 358 359 /// VectorType - Class to represent vector types. 360 /// 361 class VectorType : public SequentialType { 362 unsigned NumElements; 363 364 VectorType(const VectorType &) = delete; 365 const VectorType &operator=(const VectorType &) = delete; 366 VectorType(Type *ElType, unsigned NumEl); 367 public: 368 /// VectorType::get - This static method is the primary way to construct an 369 /// VectorType. 370 /// 371 static VectorType *get(Type *ElementType, unsigned NumElements); 372 373 /// VectorType::getInteger - This static method gets a VectorType with the 374 /// same number of elements as the input type, and the element type is an 375 /// integer type of the same width as the input element type. 376 /// getInteger(VectorType * VTy)377 static VectorType *getInteger(VectorType *VTy) { 378 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 379 assert(EltBits && "Element size must be of a non-zero size"); 380 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits); 381 return VectorType::get(EltTy, VTy->getNumElements()); 382 } 383 384 /// VectorType::getExtendedElementVectorType - This static method is like 385 /// getInteger except that the element types are twice as wide as the 386 /// elements in the input type. 387 /// getExtendedElementVectorType(VectorType * VTy)388 static VectorType *getExtendedElementVectorType(VectorType *VTy) { 389 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 390 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2); 391 return VectorType::get(EltTy, VTy->getNumElements()); 392 } 393 394 /// VectorType::getTruncatedElementVectorType - This static method is like 395 /// getInteger except that the element types are half as wide as the 396 /// elements in the input type. 397 /// getTruncatedElementVectorType(VectorType * VTy)398 static VectorType *getTruncatedElementVectorType(VectorType *VTy) { 399 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 400 assert((EltBits & 1) == 0 && 401 "Cannot truncate vector element with odd bit-width"); 402 Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2); 403 return VectorType::get(EltTy, VTy->getNumElements()); 404 } 405 406 /// VectorType::getHalfElementsVectorType - This static method returns 407 /// a VectorType with half as many elements as the input type and the 408 /// same element type. 409 /// getHalfElementsVectorType(VectorType * VTy)410 static VectorType *getHalfElementsVectorType(VectorType *VTy) { 411 unsigned NumElts = VTy->getNumElements(); 412 assert ((NumElts & 1) == 0 && 413 "Cannot halve vector with odd number of elements."); 414 return VectorType::get(VTy->getElementType(), NumElts/2); 415 } 416 417 /// VectorType::getDoubleElementsVectorType - This static method returns 418 /// a VectorType with twice as many elements as the input type and the 419 /// same element type. 420 /// getDoubleElementsVectorType(VectorType * VTy)421 static VectorType *getDoubleElementsVectorType(VectorType *VTy) { 422 unsigned NumElts = VTy->getNumElements(); 423 return VectorType::get(VTy->getElementType(), NumElts*2); 424 } 425 426 /// isValidElementType - Return true if the specified type is valid as a 427 /// element type. 428 static bool isValidElementType(Type *ElemTy); 429 430 /// @brief Return the number of elements in the Vector type. getNumElements()431 unsigned getNumElements() const { return NumElements; } 432 433 /// @brief Return the number of bits in the Vector type. 434 /// Returns zero when the vector is a vector of pointers. getBitWidth()435 unsigned getBitWidth() const { 436 return NumElements * getElementType()->getPrimitiveSizeInBits(); 437 } 438 439 /// Methods for support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)440 static inline bool classof(const Type *T) { 441 return T->getTypeID() == VectorTyID; 442 } 443 }; 444 445 446 /// PointerType - Class to represent pointers. 447 /// 448 class PointerType : public SequentialType { 449 PointerType(const PointerType &) = delete; 450 const PointerType &operator=(const PointerType &) = delete; 451 explicit PointerType(Type *ElType, unsigned AddrSpace); 452 public: 453 /// PointerType::get - This constructs a pointer to an object of the specified 454 /// type in a numbered address space. 455 static PointerType *get(Type *ElementType, unsigned AddressSpace); 456 457 /// PointerType::getUnqual - This constructs a pointer to an object of the 458 /// specified type in the generic address space (address space zero). getUnqual(Type * ElementType)459 static PointerType *getUnqual(Type *ElementType) { 460 return PointerType::get(ElementType, 0); 461 } 462 463 /// isValidElementType - Return true if the specified type is valid as a 464 /// element type. 465 static bool isValidElementType(Type *ElemTy); 466 467 /// @brief Return the address space of the Pointer type. getAddressSpace()468 inline unsigned getAddressSpace() const { return getSubclassData(); } 469 470 /// Implement support type inquiry through isa, cast, and dyn_cast. classof(const Type * T)471 static inline bool classof(const Type *T) { 472 return T->getTypeID() == PointerTyID; 473 } 474 }; 475 476 } // End llvm namespace 477 478 #endif 479