1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the C++ related Decl classes.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/TypeLoc.h"
22 #include "clang/Basic/IdentifierTable.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 using namespace clang;
26
27 //===----------------------------------------------------------------------===//
28 // Decl Allocation/Deallocation Method Implementations
29 //===----------------------------------------------------------------------===//
30
anchor()31 void AccessSpecDecl::anchor() { }
32
CreateDeserialized(ASTContext & C,unsigned ID)33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
34 return new (C, ID) AccessSpecDecl(EmptyShell());
35 }
36
getFromExternalSource(ASTContext & C) const37 void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
38 ExternalASTSource *Source = C.getExternalSource();
39 assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
40 assert(Source && "getFromExternalSource with no external source");
41
42 for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
43 I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
44 reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
45 Impl.Decls.setLazy(false);
46 }
47
DefinitionData(CXXRecordDecl * D)48 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
49 : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
50 Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
51 Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
52 HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
53 HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true),
54 HasInClassInitializer(false), HasUninitializedReferenceMember(false),
55 NeedOverloadResolutionForMoveConstructor(false),
56 NeedOverloadResolutionForMoveAssignment(false),
57 NeedOverloadResolutionForDestructor(false),
58 DefaultedMoveConstructorIsDeleted(false),
59 DefaultedMoveAssignmentIsDeleted(false),
60 DefaultedDestructorIsDeleted(false),
61 HasTrivialSpecialMembers(SMF_All),
62 DeclaredNonTrivialSpecialMembers(0),
63 HasIrrelevantDestructor(true),
64 HasConstexprNonCopyMoveConstructor(false),
65 DefaultedDefaultConstructorIsConstexpr(true),
66 HasConstexprDefaultConstructor(false),
67 HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
68 UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
69 ImplicitCopyConstructorHasConstParam(true),
70 ImplicitCopyAssignmentHasConstParam(true),
71 HasDeclaredCopyConstructorWithConstParam(false),
72 HasDeclaredCopyAssignmentWithConstParam(false),
73 IsLambda(false), IsParsingBaseSpecifiers(false), NumBases(0), NumVBases(0),
74 Bases(), VBases(),
75 Definition(D), FirstFriend() {
76 }
77
getBasesSlowCase() const78 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
79 return Bases.get(Definition->getASTContext().getExternalSource());
80 }
81
getVBasesSlowCase() const82 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
83 return VBases.get(Definition->getASTContext().getExternalSource());
84 }
85
CXXRecordDecl(Kind K,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl)86 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
87 DeclContext *DC, SourceLocation StartLoc,
88 SourceLocation IdLoc, IdentifierInfo *Id,
89 CXXRecordDecl *PrevDecl)
90 : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
91 DefinitionData(PrevDecl ? PrevDecl->DefinitionData
92 : DefinitionDataPtr(this)),
93 TemplateOrInstantiation() {}
94
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,CXXRecordDecl * PrevDecl,bool DelayTypeCreation)95 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
96 DeclContext *DC, SourceLocation StartLoc,
97 SourceLocation IdLoc, IdentifierInfo *Id,
98 CXXRecordDecl* PrevDecl,
99 bool DelayTypeCreation) {
100 CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
101 IdLoc, Id, PrevDecl);
102 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
103
104 // FIXME: DelayTypeCreation seems like such a hack
105 if (!DelayTypeCreation)
106 C.getTypeDeclType(R, PrevDecl);
107 return R;
108 }
109
110 CXXRecordDecl *
CreateLambda(const ASTContext & C,DeclContext * DC,TypeSourceInfo * Info,SourceLocation Loc,bool Dependent,bool IsGeneric,LambdaCaptureDefault CaptureDefault)111 CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
112 TypeSourceInfo *Info, SourceLocation Loc,
113 bool Dependent, bool IsGeneric,
114 LambdaCaptureDefault CaptureDefault) {
115 CXXRecordDecl *R =
116 new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
117 nullptr, nullptr);
118 R->IsBeingDefined = true;
119 R->DefinitionData =
120 new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
121 CaptureDefault);
122 R->MayHaveOutOfDateDef = false;
123 R->setImplicit(true);
124 C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
125 return R;
126 }
127
128 CXXRecordDecl *
CreateDeserialized(const ASTContext & C,unsigned ID)129 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
130 CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
131 CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
132 nullptr, nullptr);
133 R->MayHaveOutOfDateDef = false;
134 return R;
135 }
136
137 void
setBases(CXXBaseSpecifier const * const * Bases,unsigned NumBases)138 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
139 unsigned NumBases) {
140 ASTContext &C = getASTContext();
141
142 if (!data().Bases.isOffset() && data().NumBases > 0)
143 C.Deallocate(data().getBases());
144
145 if (NumBases) {
146 // C++ [dcl.init.aggr]p1:
147 // An aggregate is [...] a class with [...] no base classes [...].
148 data().Aggregate = false;
149
150 // C++ [class]p4:
151 // A POD-struct is an aggregate class...
152 data().PlainOldData = false;
153 }
154
155 // The set of seen virtual base types.
156 llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
157
158 // The virtual bases of this class.
159 SmallVector<const CXXBaseSpecifier *, 8> VBases;
160
161 data().Bases = new(C) CXXBaseSpecifier [NumBases];
162 data().NumBases = NumBases;
163 for (unsigned i = 0; i < NumBases; ++i) {
164 data().getBases()[i] = *Bases[i];
165 // Keep track of inherited vbases for this base class.
166 const CXXBaseSpecifier *Base = Bases[i];
167 QualType BaseType = Base->getType();
168 // Skip dependent types; we can't do any checking on them now.
169 if (BaseType->isDependentType())
170 continue;
171 CXXRecordDecl *BaseClassDecl
172 = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
173
174 // A class with a non-empty base class is not empty.
175 // FIXME: Standard ref?
176 if (!BaseClassDecl->isEmpty()) {
177 if (!data().Empty) {
178 // C++0x [class]p7:
179 // A standard-layout class is a class that:
180 // [...]
181 // -- either has no non-static data members in the most derived
182 // class and at most one base class with non-static data members,
183 // or has no base classes with non-static data members, and
184 // If this is the second non-empty base, then neither of these two
185 // clauses can be true.
186 data().IsStandardLayout = false;
187 }
188
189 data().Empty = false;
190 data().HasNoNonEmptyBases = false;
191 }
192
193 // C++ [class.virtual]p1:
194 // A class that declares or inherits a virtual function is called a
195 // polymorphic class.
196 if (BaseClassDecl->isPolymorphic())
197 data().Polymorphic = true;
198
199 // C++0x [class]p7:
200 // A standard-layout class is a class that: [...]
201 // -- has no non-standard-layout base classes
202 if (!BaseClassDecl->isStandardLayout())
203 data().IsStandardLayout = false;
204
205 // Record if this base is the first non-literal field or base.
206 if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
207 data().HasNonLiteralTypeFieldsOrBases = true;
208
209 // Now go through all virtual bases of this base and add them.
210 for (const auto &VBase : BaseClassDecl->vbases()) {
211 // Add this base if it's not already in the list.
212 if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
213 VBases.push_back(&VBase);
214
215 // C++11 [class.copy]p8:
216 // The implicitly-declared copy constructor for a class X will have
217 // the form 'X::X(const X&)' if each [...] virtual base class B of X
218 // has a copy constructor whose first parameter is of type
219 // 'const B&' or 'const volatile B&' [...]
220 if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
221 if (!VBaseDecl->hasCopyConstructorWithConstParam())
222 data().ImplicitCopyConstructorHasConstParam = false;
223 }
224 }
225
226 if (Base->isVirtual()) {
227 // Add this base if it's not already in the list.
228 if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
229 VBases.push_back(Base);
230
231 // C++0x [meta.unary.prop] is_empty:
232 // T is a class type, but not a union type, with ... no virtual base
233 // classes
234 data().Empty = false;
235
236 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
237 // A [default constructor, copy/move constructor, or copy/move assignment
238 // operator for a class X] is trivial [...] if:
239 // -- class X has [...] no virtual base classes
240 data().HasTrivialSpecialMembers &= SMF_Destructor;
241
242 // C++0x [class]p7:
243 // A standard-layout class is a class that: [...]
244 // -- has [...] no virtual base classes
245 data().IsStandardLayout = false;
246
247 // C++11 [dcl.constexpr]p4:
248 // In the definition of a constexpr constructor [...]
249 // -- the class shall not have any virtual base classes
250 data().DefaultedDefaultConstructorIsConstexpr = false;
251 } else {
252 // C++ [class.ctor]p5:
253 // A default constructor is trivial [...] if:
254 // -- all the direct base classes of its class have trivial default
255 // constructors.
256 if (!BaseClassDecl->hasTrivialDefaultConstructor())
257 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
258
259 // C++0x [class.copy]p13:
260 // A copy/move constructor for class X is trivial if [...]
261 // [...]
262 // -- the constructor selected to copy/move each direct base class
263 // subobject is trivial, and
264 if (!BaseClassDecl->hasTrivialCopyConstructor())
265 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
266 // If the base class doesn't have a simple move constructor, we'll eagerly
267 // declare it and perform overload resolution to determine which function
268 // it actually calls. If it does have a simple move constructor, this
269 // check is correct.
270 if (!BaseClassDecl->hasTrivialMoveConstructor())
271 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
272
273 // C++0x [class.copy]p27:
274 // A copy/move assignment operator for class X is trivial if [...]
275 // [...]
276 // -- the assignment operator selected to copy/move each direct base
277 // class subobject is trivial, and
278 if (!BaseClassDecl->hasTrivialCopyAssignment())
279 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
280 // If the base class doesn't have a simple move assignment, we'll eagerly
281 // declare it and perform overload resolution to determine which function
282 // it actually calls. If it does have a simple move assignment, this
283 // check is correct.
284 if (!BaseClassDecl->hasTrivialMoveAssignment())
285 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
286
287 // C++11 [class.ctor]p6:
288 // If that user-written default constructor would satisfy the
289 // requirements of a constexpr constructor, the implicitly-defined
290 // default constructor is constexpr.
291 if (!BaseClassDecl->hasConstexprDefaultConstructor())
292 data().DefaultedDefaultConstructorIsConstexpr = false;
293 }
294
295 // C++ [class.ctor]p3:
296 // A destructor is trivial if all the direct base classes of its class
297 // have trivial destructors.
298 if (!BaseClassDecl->hasTrivialDestructor())
299 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
300
301 if (!BaseClassDecl->hasIrrelevantDestructor())
302 data().HasIrrelevantDestructor = false;
303
304 // C++11 [class.copy]p18:
305 // The implicitly-declared copy assignment oeprator for a class X will
306 // have the form 'X& X::operator=(const X&)' if each direct base class B
307 // of X has a copy assignment operator whose parameter is of type 'const
308 // B&', 'const volatile B&', or 'B' [...]
309 if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
310 data().ImplicitCopyAssignmentHasConstParam = false;
311
312 // C++11 [class.copy]p8:
313 // The implicitly-declared copy constructor for a class X will have
314 // the form 'X::X(const X&)' if each direct [...] base class B of X
315 // has a copy constructor whose first parameter is of type
316 // 'const B&' or 'const volatile B&' [...]
317 if (!BaseClassDecl->hasCopyConstructorWithConstParam())
318 data().ImplicitCopyConstructorHasConstParam = false;
319
320 // A class has an Objective-C object member if... or any of its bases
321 // has an Objective-C object member.
322 if (BaseClassDecl->hasObjectMember())
323 setHasObjectMember(true);
324
325 if (BaseClassDecl->hasVolatileMember())
326 setHasVolatileMember(true);
327
328 // Keep track of the presence of mutable fields.
329 if (BaseClassDecl->hasMutableFields())
330 data().HasMutableFields = true;
331
332 if (BaseClassDecl->hasUninitializedReferenceMember())
333 data().HasUninitializedReferenceMember = true;
334
335 addedClassSubobject(BaseClassDecl);
336 }
337
338 if (VBases.empty()) {
339 data().IsParsingBaseSpecifiers = false;
340 return;
341 }
342
343 // Create base specifier for any direct or indirect virtual bases.
344 data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
345 data().NumVBases = VBases.size();
346 for (int I = 0, E = VBases.size(); I != E; ++I) {
347 QualType Type = VBases[I]->getType();
348 if (!Type->isDependentType())
349 addedClassSubobject(Type->getAsCXXRecordDecl());
350 data().getVBases()[I] = *VBases[I];
351 }
352
353 data().IsParsingBaseSpecifiers = false;
354 }
355
addedClassSubobject(CXXRecordDecl * Subobj)356 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
357 // C++11 [class.copy]p11:
358 // A defaulted copy/move constructor for a class X is defined as
359 // deleted if X has:
360 // -- a direct or virtual base class B that cannot be copied/moved [...]
361 // -- a non-static data member of class type M (or array thereof)
362 // that cannot be copied or moved [...]
363 if (!Subobj->hasSimpleMoveConstructor())
364 data().NeedOverloadResolutionForMoveConstructor = true;
365
366 // C++11 [class.copy]p23:
367 // A defaulted copy/move assignment operator for a class X is defined as
368 // deleted if X has:
369 // -- a direct or virtual base class B that cannot be copied/moved [...]
370 // -- a non-static data member of class type M (or array thereof)
371 // that cannot be copied or moved [...]
372 if (!Subobj->hasSimpleMoveAssignment())
373 data().NeedOverloadResolutionForMoveAssignment = true;
374
375 // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
376 // A defaulted [ctor or dtor] for a class X is defined as
377 // deleted if X has:
378 // -- any direct or virtual base class [...] has a type with a destructor
379 // that is deleted or inaccessible from the defaulted [ctor or dtor].
380 // -- any non-static data member has a type with a destructor
381 // that is deleted or inaccessible from the defaulted [ctor or dtor].
382 if (!Subobj->hasSimpleDestructor()) {
383 data().NeedOverloadResolutionForMoveConstructor = true;
384 data().NeedOverloadResolutionForDestructor = true;
385 }
386 }
387
388 /// Callback function for CXXRecordDecl::forallBases that acknowledges
389 /// that it saw a base class.
SawBase(const CXXRecordDecl *,void *)390 static bool SawBase(const CXXRecordDecl *, void *) {
391 return true;
392 }
393
hasAnyDependentBases() const394 bool CXXRecordDecl::hasAnyDependentBases() const {
395 if (!isDependentContext())
396 return false;
397
398 return !forallBases(SawBase, nullptr);
399 }
400
isTriviallyCopyable() const401 bool CXXRecordDecl::isTriviallyCopyable() const {
402 // C++0x [class]p5:
403 // A trivially copyable class is a class that:
404 // -- has no non-trivial copy constructors,
405 if (hasNonTrivialCopyConstructor()) return false;
406 // -- has no non-trivial move constructors,
407 if (hasNonTrivialMoveConstructor()) return false;
408 // -- has no non-trivial copy assignment operators,
409 if (hasNonTrivialCopyAssignment()) return false;
410 // -- has no non-trivial move assignment operators, and
411 if (hasNonTrivialMoveAssignment()) return false;
412 // -- has a trivial destructor.
413 if (!hasTrivialDestructor()) return false;
414
415 return true;
416 }
417
markedVirtualFunctionPure()418 void CXXRecordDecl::markedVirtualFunctionPure() {
419 // C++ [class.abstract]p2:
420 // A class is abstract if it has at least one pure virtual function.
421 data().Abstract = true;
422 }
423
addedMember(Decl * D)424 void CXXRecordDecl::addedMember(Decl *D) {
425 if (!D->isImplicit() &&
426 !isa<FieldDecl>(D) &&
427 !isa<IndirectFieldDecl>(D) &&
428 (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
429 cast<TagDecl>(D)->getTagKind() == TTK_Interface))
430 data().HasOnlyCMembers = false;
431
432 // Ignore friends and invalid declarations.
433 if (D->getFriendObjectKind() || D->isInvalidDecl())
434 return;
435
436 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
437 if (FunTmpl)
438 D = FunTmpl->getTemplatedDecl();
439
440 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
441 if (Method->isVirtual()) {
442 // C++ [dcl.init.aggr]p1:
443 // An aggregate is an array or a class with [...] no virtual functions.
444 data().Aggregate = false;
445
446 // C++ [class]p4:
447 // A POD-struct is an aggregate class...
448 data().PlainOldData = false;
449
450 // Virtual functions make the class non-empty.
451 // FIXME: Standard ref?
452 data().Empty = false;
453
454 // C++ [class.virtual]p1:
455 // A class that declares or inherits a virtual function is called a
456 // polymorphic class.
457 data().Polymorphic = true;
458
459 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
460 // A [default constructor, copy/move constructor, or copy/move
461 // assignment operator for a class X] is trivial [...] if:
462 // -- class X has no virtual functions [...]
463 data().HasTrivialSpecialMembers &= SMF_Destructor;
464
465 // C++0x [class]p7:
466 // A standard-layout class is a class that: [...]
467 // -- has no virtual functions
468 data().IsStandardLayout = false;
469 }
470 }
471
472 // Notify the listener if an implicit member was added after the definition
473 // was completed.
474 if (!isBeingDefined() && D->isImplicit())
475 if (ASTMutationListener *L = getASTMutationListener())
476 L->AddedCXXImplicitMember(data().Definition, D);
477
478 // The kind of special member this declaration is, if any.
479 unsigned SMKind = 0;
480
481 // Handle constructors.
482 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
483 if (!Constructor->isImplicit()) {
484 // Note that we have a user-declared constructor.
485 data().UserDeclaredConstructor = true;
486
487 // C++ [class]p4:
488 // A POD-struct is an aggregate class [...]
489 // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
490 // type is technically an aggregate in C++0x since it wouldn't be in 03.
491 data().PlainOldData = false;
492 }
493
494 // Technically, "user-provided" is only defined for special member
495 // functions, but the intent of the standard is clearly that it should apply
496 // to all functions.
497 bool UserProvided = Constructor->isUserProvided();
498
499 if (Constructor->isDefaultConstructor()) {
500 SMKind |= SMF_DefaultConstructor;
501
502 if (UserProvided)
503 data().UserProvidedDefaultConstructor = true;
504 if (Constructor->isConstexpr())
505 data().HasConstexprDefaultConstructor = true;
506 }
507
508 if (!FunTmpl) {
509 unsigned Quals;
510 if (Constructor->isCopyConstructor(Quals)) {
511 SMKind |= SMF_CopyConstructor;
512
513 if (Quals & Qualifiers::Const)
514 data().HasDeclaredCopyConstructorWithConstParam = true;
515 } else if (Constructor->isMoveConstructor())
516 SMKind |= SMF_MoveConstructor;
517 }
518
519 // Record if we see any constexpr constructors which are neither copy
520 // nor move constructors.
521 if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
522 data().HasConstexprNonCopyMoveConstructor = true;
523
524 // C++ [dcl.init.aggr]p1:
525 // An aggregate is an array or a class with no user-declared
526 // constructors [...].
527 // C++11 [dcl.init.aggr]p1:
528 // An aggregate is an array or a class with no user-provided
529 // constructors [...].
530 if (getASTContext().getLangOpts().CPlusPlus11
531 ? UserProvided : !Constructor->isImplicit())
532 data().Aggregate = false;
533 }
534
535 // Handle destructors.
536 if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
537 SMKind |= SMF_Destructor;
538
539 if (DD->isUserProvided())
540 data().HasIrrelevantDestructor = false;
541 // If the destructor is explicitly defaulted and not trivial or not public
542 // or if the destructor is deleted, we clear HasIrrelevantDestructor in
543 // finishedDefaultedOrDeletedMember.
544
545 // C++11 [class.dtor]p5:
546 // A destructor is trivial if [...] the destructor is not virtual.
547 if (DD->isVirtual())
548 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
549 }
550
551 // Handle member functions.
552 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
553 if (Method->isCopyAssignmentOperator()) {
554 SMKind |= SMF_CopyAssignment;
555
556 const ReferenceType *ParamTy =
557 Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
558 if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
559 data().HasDeclaredCopyAssignmentWithConstParam = true;
560 }
561
562 if (Method->isMoveAssignmentOperator())
563 SMKind |= SMF_MoveAssignment;
564
565 // Keep the list of conversion functions up-to-date.
566 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
567 // FIXME: We use the 'unsafe' accessor for the access specifier here,
568 // because Sema may not have set it yet. That's really just a misdesign
569 // in Sema. However, LLDB *will* have set the access specifier correctly,
570 // and adds declarations after the class is technically completed,
571 // so completeDefinition()'s overriding of the access specifiers doesn't
572 // work.
573 AccessSpecifier AS = Conversion->getAccessUnsafe();
574
575 if (Conversion->getPrimaryTemplate()) {
576 // We don't record specializations.
577 } else {
578 ASTContext &Ctx = getASTContext();
579 ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
580 NamedDecl *Primary =
581 FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
582 if (Primary->getPreviousDecl())
583 Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
584 Primary, AS);
585 else
586 Conversions.addDecl(Ctx, Primary, AS);
587 }
588 }
589
590 if (SMKind) {
591 // If this is the first declaration of a special member, we no longer have
592 // an implicit trivial special member.
593 data().HasTrivialSpecialMembers &=
594 data().DeclaredSpecialMembers | ~SMKind;
595
596 if (!Method->isImplicit() && !Method->isUserProvided()) {
597 // This method is user-declared but not user-provided. We can't work out
598 // whether it's trivial yet (not until we get to the end of the class).
599 // We'll handle this method in finishedDefaultedOrDeletedMember.
600 } else if (Method->isTrivial())
601 data().HasTrivialSpecialMembers |= SMKind;
602 else
603 data().DeclaredNonTrivialSpecialMembers |= SMKind;
604
605 // Note when we have declared a declared special member, and suppress the
606 // implicit declaration of this special member.
607 data().DeclaredSpecialMembers |= SMKind;
608
609 if (!Method->isImplicit()) {
610 data().UserDeclaredSpecialMembers |= SMKind;
611
612 // C++03 [class]p4:
613 // A POD-struct is an aggregate class that has [...] no user-defined
614 // copy assignment operator and no user-defined destructor.
615 //
616 // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
617 // aggregates could not have any constructors, clear it even for an
618 // explicitly defaulted or deleted constructor.
619 // type is technically an aggregate in C++0x since it wouldn't be in 03.
620 //
621 // Also, a user-declared move assignment operator makes a class non-POD.
622 // This is an extension in C++03.
623 data().PlainOldData = false;
624 }
625 }
626
627 return;
628 }
629
630 // Handle non-static data members.
631 if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
632 // C++ [class.bit]p2:
633 // A declaration for a bit-field that omits the identifier declares an
634 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
635 // initialized.
636 if (Field->isUnnamedBitfield())
637 return;
638
639 // C++ [dcl.init.aggr]p1:
640 // An aggregate is an array or a class (clause 9) with [...] no
641 // private or protected non-static data members (clause 11).
642 //
643 // A POD must be an aggregate.
644 if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
645 data().Aggregate = false;
646 data().PlainOldData = false;
647 }
648
649 // C++0x [class]p7:
650 // A standard-layout class is a class that:
651 // [...]
652 // -- has the same access control for all non-static data members,
653 switch (D->getAccess()) {
654 case AS_private: data().HasPrivateFields = true; break;
655 case AS_protected: data().HasProtectedFields = true; break;
656 case AS_public: data().HasPublicFields = true; break;
657 case AS_none: llvm_unreachable("Invalid access specifier");
658 };
659 if ((data().HasPrivateFields + data().HasProtectedFields +
660 data().HasPublicFields) > 1)
661 data().IsStandardLayout = false;
662
663 // Keep track of the presence of mutable fields.
664 if (Field->isMutable())
665 data().HasMutableFields = true;
666
667 // C++11 [class.union]p8, DR1460:
668 // If X is a union, a non-static data member of X that is not an anonymous
669 // union is a variant member of X.
670 if (isUnion() && !Field->isAnonymousStructOrUnion())
671 data().HasVariantMembers = true;
672
673 // C++0x [class]p9:
674 // A POD struct is a class that is both a trivial class and a
675 // standard-layout class, and has no non-static data members of type
676 // non-POD struct, non-POD union (or array of such types).
677 //
678 // Automatic Reference Counting: the presence of a member of Objective-C pointer type
679 // that does not explicitly have no lifetime makes the class a non-POD.
680 ASTContext &Context = getASTContext();
681 QualType T = Context.getBaseElementType(Field->getType());
682 if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
683 if (!Context.getLangOpts().ObjCAutoRefCount) {
684 setHasObjectMember(true);
685 } else if (T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
686 // Objective-C Automatic Reference Counting:
687 // If a class has a non-static data member of Objective-C pointer
688 // type (or array thereof), it is a non-POD type and its
689 // default constructor (if any), copy constructor, move constructor,
690 // copy assignment operator, move assignment operator, and destructor are
691 // non-trivial.
692 setHasObjectMember(true);
693 struct DefinitionData &Data = data();
694 Data.PlainOldData = false;
695 Data.HasTrivialSpecialMembers = 0;
696 Data.HasIrrelevantDestructor = false;
697 }
698 } else if (!T.isCXX98PODType(Context))
699 data().PlainOldData = false;
700
701 if (T->isReferenceType()) {
702 if (!Field->hasInClassInitializer())
703 data().HasUninitializedReferenceMember = true;
704
705 // C++0x [class]p7:
706 // A standard-layout class is a class that:
707 // -- has no non-static data members of type [...] reference,
708 data().IsStandardLayout = false;
709 }
710
711 // Record if this field is the first non-literal or volatile field or base.
712 if (!T->isLiteralType(Context) || T.isVolatileQualified())
713 data().HasNonLiteralTypeFieldsOrBases = true;
714
715 if (Field->hasInClassInitializer() ||
716 (Field->isAnonymousStructOrUnion() &&
717 Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
718 data().HasInClassInitializer = true;
719
720 // C++11 [class]p5:
721 // A default constructor is trivial if [...] no non-static data member
722 // of its class has a brace-or-equal-initializer.
723 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
724
725 // C++11 [dcl.init.aggr]p1:
726 // An aggregate is a [...] class with [...] no
727 // brace-or-equal-initializers for non-static data members.
728 //
729 // This rule was removed in C++1y.
730 if (!getASTContext().getLangOpts().CPlusPlus14)
731 data().Aggregate = false;
732
733 // C++11 [class]p10:
734 // A POD struct is [...] a trivial class.
735 data().PlainOldData = false;
736 }
737
738 // C++11 [class.copy]p23:
739 // A defaulted copy/move assignment operator for a class X is defined
740 // as deleted if X has:
741 // -- a non-static data member of reference type
742 if (T->isReferenceType())
743 data().DefaultedMoveAssignmentIsDeleted = true;
744
745 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
746 CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
747 if (FieldRec->getDefinition()) {
748 addedClassSubobject(FieldRec);
749
750 // We may need to perform overload resolution to determine whether a
751 // field can be moved if it's const or volatile qualified.
752 if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
753 data().NeedOverloadResolutionForMoveConstructor = true;
754 data().NeedOverloadResolutionForMoveAssignment = true;
755 }
756
757 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
758 // A defaulted [special member] for a class X is defined as
759 // deleted if:
760 // -- X is a union-like class that has a variant member with a
761 // non-trivial [corresponding special member]
762 if (isUnion()) {
763 if (FieldRec->hasNonTrivialMoveConstructor())
764 data().DefaultedMoveConstructorIsDeleted = true;
765 if (FieldRec->hasNonTrivialMoveAssignment())
766 data().DefaultedMoveAssignmentIsDeleted = true;
767 if (FieldRec->hasNonTrivialDestructor())
768 data().DefaultedDestructorIsDeleted = true;
769 }
770
771 // C++0x [class.ctor]p5:
772 // A default constructor is trivial [...] if:
773 // -- for all the non-static data members of its class that are of
774 // class type (or array thereof), each such class has a trivial
775 // default constructor.
776 if (!FieldRec->hasTrivialDefaultConstructor())
777 data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
778
779 // C++0x [class.copy]p13:
780 // A copy/move constructor for class X is trivial if [...]
781 // [...]
782 // -- for each non-static data member of X that is of class type (or
783 // an array thereof), the constructor selected to copy/move that
784 // member is trivial;
785 if (!FieldRec->hasTrivialCopyConstructor())
786 data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
787 // If the field doesn't have a simple move constructor, we'll eagerly
788 // declare the move constructor for this class and we'll decide whether
789 // it's trivial then.
790 if (!FieldRec->hasTrivialMoveConstructor())
791 data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
792
793 // C++0x [class.copy]p27:
794 // A copy/move assignment operator for class X is trivial if [...]
795 // [...]
796 // -- for each non-static data member of X that is of class type (or
797 // an array thereof), the assignment operator selected to
798 // copy/move that member is trivial;
799 if (!FieldRec->hasTrivialCopyAssignment())
800 data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
801 // If the field doesn't have a simple move assignment, we'll eagerly
802 // declare the move assignment for this class and we'll decide whether
803 // it's trivial then.
804 if (!FieldRec->hasTrivialMoveAssignment())
805 data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
806
807 if (!FieldRec->hasTrivialDestructor())
808 data().HasTrivialSpecialMembers &= ~SMF_Destructor;
809 if (!FieldRec->hasIrrelevantDestructor())
810 data().HasIrrelevantDestructor = false;
811 if (FieldRec->hasObjectMember())
812 setHasObjectMember(true);
813 if (FieldRec->hasVolatileMember())
814 setHasVolatileMember(true);
815
816 // C++0x [class]p7:
817 // A standard-layout class is a class that:
818 // -- has no non-static data members of type non-standard-layout
819 // class (or array of such types) [...]
820 if (!FieldRec->isStandardLayout())
821 data().IsStandardLayout = false;
822
823 // C++0x [class]p7:
824 // A standard-layout class is a class that:
825 // [...]
826 // -- has no base classes of the same type as the first non-static
827 // data member.
828 // We don't want to expend bits in the state of the record decl
829 // tracking whether this is the first non-static data member so we
830 // cheat a bit and use some of the existing state: the empty bit.
831 // Virtual bases and virtual methods make a class non-empty, but they
832 // also make it non-standard-layout so we needn't check here.
833 // A non-empty base class may leave the class standard-layout, but not
834 // if we have arrived here, and have at least one non-static data
835 // member. If IsStandardLayout remains true, then the first non-static
836 // data member must come through here with Empty still true, and Empty
837 // will subsequently be set to false below.
838 if (data().IsStandardLayout && data().Empty) {
839 for (const auto &BI : bases()) {
840 if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
841 data().IsStandardLayout = false;
842 break;
843 }
844 }
845 }
846
847 // Keep track of the presence of mutable fields.
848 if (FieldRec->hasMutableFields())
849 data().HasMutableFields = true;
850
851 // C++11 [class.copy]p13:
852 // If the implicitly-defined constructor would satisfy the
853 // requirements of a constexpr constructor, the implicitly-defined
854 // constructor is constexpr.
855 // C++11 [dcl.constexpr]p4:
856 // -- every constructor involved in initializing non-static data
857 // members [...] shall be a constexpr constructor
858 if (!Field->hasInClassInitializer() &&
859 !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
860 // The standard requires any in-class initializer to be a constant
861 // expression. We consider this to be a defect.
862 data().DefaultedDefaultConstructorIsConstexpr = false;
863
864 // C++11 [class.copy]p8:
865 // The implicitly-declared copy constructor for a class X will have
866 // the form 'X::X(const X&)' if [...] for all the non-static data
867 // members of X that are of a class type M (or array thereof), each
868 // such class type has a copy constructor whose first parameter is
869 // of type 'const M&' or 'const volatile M&'.
870 if (!FieldRec->hasCopyConstructorWithConstParam())
871 data().ImplicitCopyConstructorHasConstParam = false;
872
873 // C++11 [class.copy]p18:
874 // The implicitly-declared copy assignment oeprator for a class X will
875 // have the form 'X& X::operator=(const X&)' if [...] for all the
876 // non-static data members of X that are of a class type M (or array
877 // thereof), each such class type has a copy assignment operator whose
878 // parameter is of type 'const M&', 'const volatile M&' or 'M'.
879 if (!FieldRec->hasCopyAssignmentWithConstParam())
880 data().ImplicitCopyAssignmentHasConstParam = false;
881
882 if (FieldRec->hasUninitializedReferenceMember() &&
883 !Field->hasInClassInitializer())
884 data().HasUninitializedReferenceMember = true;
885
886 // C++11 [class.union]p8, DR1460:
887 // a non-static data member of an anonymous union that is a member of
888 // X is also a variant member of X.
889 if (FieldRec->hasVariantMembers() &&
890 Field->isAnonymousStructOrUnion())
891 data().HasVariantMembers = true;
892 }
893 } else {
894 // Base element type of field is a non-class type.
895 if (!T->isLiteralType(Context) ||
896 (!Field->hasInClassInitializer() && !isUnion()))
897 data().DefaultedDefaultConstructorIsConstexpr = false;
898
899 // C++11 [class.copy]p23:
900 // A defaulted copy/move assignment operator for a class X is defined
901 // as deleted if X has:
902 // -- a non-static data member of const non-class type (or array
903 // thereof)
904 if (T.isConstQualified())
905 data().DefaultedMoveAssignmentIsDeleted = true;
906 }
907
908 // C++0x [class]p7:
909 // A standard-layout class is a class that:
910 // [...]
911 // -- either has no non-static data members in the most derived
912 // class and at most one base class with non-static data members,
913 // or has no base classes with non-static data members, and
914 // At this point we know that we have a non-static data member, so the last
915 // clause holds.
916 if (!data().HasNoNonEmptyBases)
917 data().IsStandardLayout = false;
918
919 // If this is not a zero-length bit-field, then the class is not empty.
920 if (data().Empty) {
921 if (!Field->isBitField() ||
922 (!Field->getBitWidth()->isTypeDependent() &&
923 !Field->getBitWidth()->isValueDependent() &&
924 Field->getBitWidthValue(Context) != 0))
925 data().Empty = false;
926 }
927 }
928
929 // Handle using declarations of conversion functions.
930 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
931 if (Shadow->getDeclName().getNameKind()
932 == DeclarationName::CXXConversionFunctionName) {
933 ASTContext &Ctx = getASTContext();
934 data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
935 }
936 }
937 }
938
finishedDefaultedOrDeletedMember(CXXMethodDecl * D)939 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
940 assert(!D->isImplicit() && !D->isUserProvided());
941
942 // The kind of special member this declaration is, if any.
943 unsigned SMKind = 0;
944
945 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
946 if (Constructor->isDefaultConstructor()) {
947 SMKind |= SMF_DefaultConstructor;
948 if (Constructor->isConstexpr())
949 data().HasConstexprDefaultConstructor = true;
950 }
951 if (Constructor->isCopyConstructor())
952 SMKind |= SMF_CopyConstructor;
953 else if (Constructor->isMoveConstructor())
954 SMKind |= SMF_MoveConstructor;
955 else if (Constructor->isConstexpr())
956 // We may now know that the constructor is constexpr.
957 data().HasConstexprNonCopyMoveConstructor = true;
958 } else if (isa<CXXDestructorDecl>(D)) {
959 SMKind |= SMF_Destructor;
960 if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
961 data().HasIrrelevantDestructor = false;
962 } else if (D->isCopyAssignmentOperator())
963 SMKind |= SMF_CopyAssignment;
964 else if (D->isMoveAssignmentOperator())
965 SMKind |= SMF_MoveAssignment;
966
967 // Update which trivial / non-trivial special members we have.
968 // addedMember will have skipped this step for this member.
969 if (D->isTrivial())
970 data().HasTrivialSpecialMembers |= SMKind;
971 else
972 data().DeclaredNonTrivialSpecialMembers |= SMKind;
973 }
974
isCLike() const975 bool CXXRecordDecl::isCLike() const {
976 if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
977 !TemplateOrInstantiation.isNull())
978 return false;
979 if (!hasDefinition())
980 return true;
981
982 return isPOD() && data().HasOnlyCMembers;
983 }
984
isGenericLambda() const985 bool CXXRecordDecl::isGenericLambda() const {
986 if (!isLambda()) return false;
987 return getLambdaData().IsGenericLambda;
988 }
989
getLambdaCallOperator() const990 CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
991 if (!isLambda()) return nullptr;
992 DeclarationName Name =
993 getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
994 DeclContext::lookup_result Calls = lookup(Name);
995
996 assert(!Calls.empty() && "Missing lambda call operator!");
997 assert(Calls.size() == 1 && "More than one lambda call operator!");
998
999 NamedDecl *CallOp = Calls.front();
1000 if (FunctionTemplateDecl *CallOpTmpl =
1001 dyn_cast<FunctionTemplateDecl>(CallOp))
1002 return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1003
1004 return cast<CXXMethodDecl>(CallOp);
1005 }
1006
getLambdaStaticInvoker() const1007 CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1008 if (!isLambda()) return nullptr;
1009 DeclarationName Name =
1010 &getASTContext().Idents.get(getLambdaStaticInvokerName());
1011 DeclContext::lookup_result Invoker = lookup(Name);
1012 if (Invoker.empty()) return nullptr;
1013 assert(Invoker.size() == 1 && "More than one static invoker operator!");
1014 NamedDecl *InvokerFun = Invoker.front();
1015 if (FunctionTemplateDecl *InvokerTemplate =
1016 dyn_cast<FunctionTemplateDecl>(InvokerFun))
1017 return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1018
1019 return cast<CXXMethodDecl>(InvokerFun);
1020 }
1021
getCaptureFields(llvm::DenseMap<const VarDecl *,FieldDecl * > & Captures,FieldDecl * & ThisCapture) const1022 void CXXRecordDecl::getCaptureFields(
1023 llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1024 FieldDecl *&ThisCapture) const {
1025 Captures.clear();
1026 ThisCapture = nullptr;
1027
1028 LambdaDefinitionData &Lambda = getLambdaData();
1029 RecordDecl::field_iterator Field = field_begin();
1030 for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1031 C != CEnd; ++C, ++Field) {
1032 if (C->capturesThis())
1033 ThisCapture = *Field;
1034 else if (C->capturesVariable())
1035 Captures[C->getCapturedVar()] = *Field;
1036 }
1037 assert(Field == field_end());
1038 }
1039
1040 TemplateParameterList *
getGenericLambdaTemplateParameterList() const1041 CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1042 if (!isLambda()) return nullptr;
1043 CXXMethodDecl *CallOp = getLambdaCallOperator();
1044 if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1045 return Tmpl->getTemplateParameters();
1046 return nullptr;
1047 }
1048
GetConversionType(ASTContext & Context,NamedDecl * Conv)1049 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1050 QualType T =
1051 cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1052 ->getConversionType();
1053 return Context.getCanonicalType(T);
1054 }
1055
1056 /// Collect the visible conversions of a base class.
1057 ///
1058 /// \param Record a base class of the class we're considering
1059 /// \param InVirtual whether this base class is a virtual base (or a base
1060 /// of a virtual base)
1061 /// \param Access the access along the inheritance path to this base
1062 /// \param ParentHiddenTypes the conversions provided by the inheritors
1063 /// of this base
1064 /// \param Output the set to which to add conversions from non-virtual bases
1065 /// \param VOutput the set to which to add conversions from virtual bases
1066 /// \param HiddenVBaseCs the set of conversions which were hidden in a
1067 /// virtual base along some inheritance path
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,bool InVirtual,AccessSpecifier Access,const llvm::SmallPtrSet<CanQualType,8> & ParentHiddenTypes,ASTUnresolvedSet & Output,UnresolvedSetImpl & VOutput,llvm::SmallPtrSet<NamedDecl *,8> & HiddenVBaseCs)1068 static void CollectVisibleConversions(ASTContext &Context,
1069 CXXRecordDecl *Record,
1070 bool InVirtual,
1071 AccessSpecifier Access,
1072 const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1073 ASTUnresolvedSet &Output,
1074 UnresolvedSetImpl &VOutput,
1075 llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1076 // The set of types which have conversions in this class or its
1077 // subclasses. As an optimization, we don't copy the derived set
1078 // unless it might change.
1079 const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1080 llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1081
1082 // Collect the direct conversions and figure out which conversions
1083 // will be hidden in the subclasses.
1084 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1085 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1086 if (ConvI != ConvE) {
1087 HiddenTypesBuffer = ParentHiddenTypes;
1088 HiddenTypes = &HiddenTypesBuffer;
1089
1090 for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1091 CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1092 bool Hidden = ParentHiddenTypes.count(ConvType);
1093 if (!Hidden)
1094 HiddenTypesBuffer.insert(ConvType);
1095
1096 // If this conversion is hidden and we're in a virtual base,
1097 // remember that it's hidden along some inheritance path.
1098 if (Hidden && InVirtual)
1099 HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1100
1101 // If this conversion isn't hidden, add it to the appropriate output.
1102 else if (!Hidden) {
1103 AccessSpecifier IAccess
1104 = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1105
1106 if (InVirtual)
1107 VOutput.addDecl(I.getDecl(), IAccess);
1108 else
1109 Output.addDecl(Context, I.getDecl(), IAccess);
1110 }
1111 }
1112 }
1113
1114 // Collect information recursively from any base classes.
1115 for (const auto &I : Record->bases()) {
1116 const RecordType *RT = I.getType()->getAs<RecordType>();
1117 if (!RT) continue;
1118
1119 AccessSpecifier BaseAccess
1120 = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1121 bool BaseInVirtual = InVirtual || I.isVirtual();
1122
1123 CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1124 CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1125 *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1126 }
1127 }
1128
1129 /// Collect the visible conversions of a class.
1130 ///
1131 /// This would be extremely straightforward if it weren't for virtual
1132 /// bases. It might be worth special-casing that, really.
CollectVisibleConversions(ASTContext & Context,CXXRecordDecl * Record,ASTUnresolvedSet & Output)1133 static void CollectVisibleConversions(ASTContext &Context,
1134 CXXRecordDecl *Record,
1135 ASTUnresolvedSet &Output) {
1136 // The collection of all conversions in virtual bases that we've
1137 // found. These will be added to the output as long as they don't
1138 // appear in the hidden-conversions set.
1139 UnresolvedSet<8> VBaseCs;
1140
1141 // The set of conversions in virtual bases that we've determined to
1142 // be hidden.
1143 llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1144
1145 // The set of types hidden by classes derived from this one.
1146 llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1147
1148 // Go ahead and collect the direct conversions and add them to the
1149 // hidden-types set.
1150 CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1151 CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1152 Output.append(Context, ConvI, ConvE);
1153 for (; ConvI != ConvE; ++ConvI)
1154 HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1155
1156 // Recursively collect conversions from base classes.
1157 for (const auto &I : Record->bases()) {
1158 const RecordType *RT = I.getType()->getAs<RecordType>();
1159 if (!RT) continue;
1160
1161 CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1162 I.isVirtual(), I.getAccessSpecifier(),
1163 HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1164 }
1165
1166 // Add any unhidden conversions provided by virtual bases.
1167 for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1168 I != E; ++I) {
1169 if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1170 Output.addDecl(Context, I.getDecl(), I.getAccess());
1171 }
1172 }
1173
1174 /// getVisibleConversionFunctions - get all conversion functions visible
1175 /// in current class; including conversion function templates.
1176 llvm::iterator_range<CXXRecordDecl::conversion_iterator>
getVisibleConversionFunctions()1177 CXXRecordDecl::getVisibleConversionFunctions() {
1178 ASTContext &Ctx = getASTContext();
1179
1180 ASTUnresolvedSet *Set;
1181 if (bases_begin() == bases_end()) {
1182 // If root class, all conversions are visible.
1183 Set = &data().Conversions.get(Ctx);
1184 } else {
1185 Set = &data().VisibleConversions.get(Ctx);
1186 // If visible conversion list is not evaluated, evaluate it.
1187 if (!data().ComputedVisibleConversions) {
1188 CollectVisibleConversions(Ctx, this, *Set);
1189 data().ComputedVisibleConversions = true;
1190 }
1191 }
1192 return llvm::make_range(Set->begin(), Set->end());
1193 }
1194
removeConversion(const NamedDecl * ConvDecl)1195 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1196 // This operation is O(N) but extremely rare. Sema only uses it to
1197 // remove UsingShadowDecls in a class that were followed by a direct
1198 // declaration, e.g.:
1199 // class A : B {
1200 // using B::operator int;
1201 // operator int();
1202 // };
1203 // This is uncommon by itself and even more uncommon in conjunction
1204 // with sufficiently large numbers of directly-declared conversions
1205 // that asymptotic behavior matters.
1206
1207 ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1208 for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1209 if (Convs[I].getDecl() == ConvDecl) {
1210 Convs.erase(I);
1211 assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1212 && "conversion was found multiple times in unresolved set");
1213 return;
1214 }
1215 }
1216
1217 llvm_unreachable("conversion not found in set!");
1218 }
1219
getInstantiatedFromMemberClass() const1220 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1221 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1222 return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1223
1224 return nullptr;
1225 }
1226
1227 void
setInstantiationOfMemberClass(CXXRecordDecl * RD,TemplateSpecializationKind TSK)1228 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1229 TemplateSpecializationKind TSK) {
1230 assert(TemplateOrInstantiation.isNull() &&
1231 "Previous template or instantiation?");
1232 assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1233 TemplateOrInstantiation
1234 = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1235 }
1236
getTemplateSpecializationKind() const1237 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1238 if (const ClassTemplateSpecializationDecl *Spec
1239 = dyn_cast<ClassTemplateSpecializationDecl>(this))
1240 return Spec->getSpecializationKind();
1241
1242 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1243 return MSInfo->getTemplateSpecializationKind();
1244
1245 return TSK_Undeclared;
1246 }
1247
1248 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK)1249 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1250 if (ClassTemplateSpecializationDecl *Spec
1251 = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1252 Spec->setSpecializationKind(TSK);
1253 return;
1254 }
1255
1256 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1257 MSInfo->setTemplateSpecializationKind(TSK);
1258 return;
1259 }
1260
1261 llvm_unreachable("Not a class template or member class specialization");
1262 }
1263
getTemplateInstantiationPattern() const1264 const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1265 // If it's a class template specialization, find the template or partial
1266 // specialization from which it was instantiated.
1267 if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1268 auto From = TD->getInstantiatedFrom();
1269 if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1270 while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1271 if (NewCTD->isMemberSpecialization())
1272 break;
1273 CTD = NewCTD;
1274 }
1275 return CTD->getTemplatedDecl();
1276 }
1277 if (auto *CTPSD =
1278 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1279 while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1280 if (NewCTPSD->isMemberSpecialization())
1281 break;
1282 CTPSD = NewCTPSD;
1283 }
1284 return CTPSD;
1285 }
1286 }
1287
1288 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1289 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1290 const CXXRecordDecl *RD = this;
1291 while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1292 RD = NewRD;
1293 return RD;
1294 }
1295 }
1296
1297 assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1298 "couldn't find pattern for class template instantiation");
1299 return nullptr;
1300 }
1301
getDestructor() const1302 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1303 ASTContext &Context = getASTContext();
1304 QualType ClassType = Context.getTypeDeclType(this);
1305
1306 DeclarationName Name
1307 = Context.DeclarationNames.getCXXDestructorName(
1308 Context.getCanonicalType(ClassType));
1309
1310 DeclContext::lookup_result R = lookup(Name);
1311 if (R.empty())
1312 return nullptr;
1313
1314 CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
1315 return Dtor;
1316 }
1317
completeDefinition()1318 void CXXRecordDecl::completeDefinition() {
1319 completeDefinition(nullptr);
1320 }
1321
completeDefinition(CXXFinalOverriderMap * FinalOverriders)1322 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1323 RecordDecl::completeDefinition();
1324
1325 // If the class may be abstract (but hasn't been marked as such), check for
1326 // any pure final overriders.
1327 if (mayBeAbstract()) {
1328 CXXFinalOverriderMap MyFinalOverriders;
1329 if (!FinalOverriders) {
1330 getFinalOverriders(MyFinalOverriders);
1331 FinalOverriders = &MyFinalOverriders;
1332 }
1333
1334 bool Done = false;
1335 for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1336 MEnd = FinalOverriders->end();
1337 M != MEnd && !Done; ++M) {
1338 for (OverridingMethods::iterator SO = M->second.begin(),
1339 SOEnd = M->second.end();
1340 SO != SOEnd && !Done; ++SO) {
1341 assert(SO->second.size() > 0 &&
1342 "All virtual functions have overridding virtual functions");
1343
1344 // C++ [class.abstract]p4:
1345 // A class is abstract if it contains or inherits at least one
1346 // pure virtual function for which the final overrider is pure
1347 // virtual.
1348 if (SO->second.front().Method->isPure()) {
1349 data().Abstract = true;
1350 Done = true;
1351 break;
1352 }
1353 }
1354 }
1355 }
1356
1357 // Set access bits correctly on the directly-declared conversions.
1358 for (conversion_iterator I = conversion_begin(), E = conversion_end();
1359 I != E; ++I)
1360 I.setAccess((*I)->getAccess());
1361 }
1362
mayBeAbstract() const1363 bool CXXRecordDecl::mayBeAbstract() const {
1364 if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1365 isDependentContext())
1366 return false;
1367
1368 for (const auto &B : bases()) {
1369 CXXRecordDecl *BaseDecl
1370 = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1371 if (BaseDecl->isAbstract())
1372 return true;
1373 }
1374
1375 return false;
1376 }
1377
anchor()1378 void CXXMethodDecl::anchor() { }
1379
isStatic() const1380 bool CXXMethodDecl::isStatic() const {
1381 const CXXMethodDecl *MD = getCanonicalDecl();
1382
1383 if (MD->getStorageClass() == SC_Static)
1384 return true;
1385
1386 OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1387 return isStaticOverloadedOperator(OOK);
1388 }
1389
recursivelyOverrides(const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)1390 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1391 const CXXMethodDecl *BaseMD) {
1392 for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
1393 E = DerivedMD->end_overridden_methods(); I != E; ++I) {
1394 const CXXMethodDecl *MD = *I;
1395 if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1396 return true;
1397 if (recursivelyOverrides(MD, BaseMD))
1398 return true;
1399 }
1400 return false;
1401 }
1402
1403 CXXMethodDecl *
getCorrespondingMethodInClass(const CXXRecordDecl * RD,bool MayBeBase)1404 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1405 bool MayBeBase) {
1406 if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1407 return this;
1408
1409 // Lookup doesn't work for destructors, so handle them separately.
1410 if (isa<CXXDestructorDecl>(this)) {
1411 CXXMethodDecl *MD = RD->getDestructor();
1412 if (MD) {
1413 if (recursivelyOverrides(MD, this))
1414 return MD;
1415 if (MayBeBase && recursivelyOverrides(this, MD))
1416 return MD;
1417 }
1418 return nullptr;
1419 }
1420
1421 for (auto *ND : RD->lookup(getDeclName())) {
1422 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
1423 if (!MD)
1424 continue;
1425 if (recursivelyOverrides(MD, this))
1426 return MD;
1427 if (MayBeBase && recursivelyOverrides(this, MD))
1428 return MD;
1429 }
1430
1431 for (const auto &I : RD->bases()) {
1432 const RecordType *RT = I.getType()->getAs<RecordType>();
1433 if (!RT)
1434 continue;
1435 const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1436 CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1437 if (T)
1438 return T;
1439 }
1440
1441 return nullptr;
1442 }
1443
1444 CXXMethodDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInline,bool isConstexpr,SourceLocation EndLocation)1445 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1446 SourceLocation StartLoc,
1447 const DeclarationNameInfo &NameInfo,
1448 QualType T, TypeSourceInfo *TInfo,
1449 StorageClass SC, bool isInline,
1450 bool isConstexpr, SourceLocation EndLocation) {
1451 return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1452 T, TInfo, SC, isInline, isConstexpr,
1453 EndLocation);
1454 }
1455
CreateDeserialized(ASTContext & C,unsigned ID)1456 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1457 return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1458 DeclarationNameInfo(), QualType(), nullptr,
1459 SC_None, false, false, SourceLocation());
1460 }
1461
isUsualDeallocationFunction() const1462 bool CXXMethodDecl::isUsualDeallocationFunction() const {
1463 if (getOverloadedOperator() != OO_Delete &&
1464 getOverloadedOperator() != OO_Array_Delete)
1465 return false;
1466
1467 // C++ [basic.stc.dynamic.deallocation]p2:
1468 // A template instance is never a usual deallocation function,
1469 // regardless of its signature.
1470 if (getPrimaryTemplate())
1471 return false;
1472
1473 // C++ [basic.stc.dynamic.deallocation]p2:
1474 // If a class T has a member deallocation function named operator delete
1475 // with exactly one parameter, then that function is a usual (non-placement)
1476 // deallocation function. [...]
1477 if (getNumParams() == 1)
1478 return true;
1479
1480 // C++ [basic.stc.dynamic.deallocation]p2:
1481 // [...] If class T does not declare such an operator delete but does
1482 // declare a member deallocation function named operator delete with
1483 // exactly two parameters, the second of which has type std::size_t (18.1),
1484 // then this function is a usual deallocation function.
1485 ASTContext &Context = getASTContext();
1486 if (getNumParams() != 2 ||
1487 !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
1488 Context.getSizeType()))
1489 return false;
1490
1491 // This function is a usual deallocation function if there are no
1492 // single-parameter deallocation functions of the same kind.
1493 DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
1494 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
1495 I != E; ++I) {
1496 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1497 if (FD->getNumParams() == 1)
1498 return false;
1499 }
1500
1501 return true;
1502 }
1503
isCopyAssignmentOperator() const1504 bool CXXMethodDecl::isCopyAssignmentOperator() const {
1505 // C++0x [class.copy]p17:
1506 // A user-declared copy assignment operator X::operator= is a non-static
1507 // non-template member function of class X with exactly one parameter of
1508 // type X, X&, const X&, volatile X& or const volatile X&.
1509 if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1510 /*non-static*/ isStatic() ||
1511 /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1512 getNumParams() != 1)
1513 return false;
1514
1515 QualType ParamType = getParamDecl(0)->getType();
1516 if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1517 ParamType = Ref->getPointeeType();
1518
1519 ASTContext &Context = getASTContext();
1520 QualType ClassType
1521 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1522 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1523 }
1524
isMoveAssignmentOperator() const1525 bool CXXMethodDecl::isMoveAssignmentOperator() const {
1526 // C++0x [class.copy]p19:
1527 // A user-declared move assignment operator X::operator= is a non-static
1528 // non-template member function of class X with exactly one parameter of type
1529 // X&&, const X&&, volatile X&&, or const volatile X&&.
1530 if (getOverloadedOperator() != OO_Equal || isStatic() ||
1531 getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1532 getNumParams() != 1)
1533 return false;
1534
1535 QualType ParamType = getParamDecl(0)->getType();
1536 if (!isa<RValueReferenceType>(ParamType))
1537 return false;
1538 ParamType = ParamType->getPointeeType();
1539
1540 ASTContext &Context = getASTContext();
1541 QualType ClassType
1542 = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1543 return Context.hasSameUnqualifiedType(ClassType, ParamType);
1544 }
1545
addOverriddenMethod(const CXXMethodDecl * MD)1546 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1547 assert(MD->isCanonicalDecl() && "Method is not canonical!");
1548 assert(!MD->getParent()->isDependentContext() &&
1549 "Can't add an overridden method to a class template!");
1550 assert(MD->isVirtual() && "Method is not virtual!");
1551
1552 getASTContext().addOverriddenMethod(this, MD);
1553 }
1554
begin_overridden_methods() const1555 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1556 if (isa<CXXConstructorDecl>(this)) return nullptr;
1557 return getASTContext().overridden_methods_begin(this);
1558 }
1559
end_overridden_methods() const1560 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1561 if (isa<CXXConstructorDecl>(this)) return nullptr;
1562 return getASTContext().overridden_methods_end(this);
1563 }
1564
size_overridden_methods() const1565 unsigned CXXMethodDecl::size_overridden_methods() const {
1566 if (isa<CXXConstructorDecl>(this)) return 0;
1567 return getASTContext().overridden_methods_size(this);
1568 }
1569
getThisType(ASTContext & C) const1570 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1571 // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1572 // If the member function is declared const, the type of this is const X*,
1573 // if the member function is declared volatile, the type of this is
1574 // volatile X*, and if the member function is declared const volatile,
1575 // the type of this is const volatile X*.
1576
1577 assert(isInstance() && "No 'this' for static methods!");
1578
1579 QualType ClassTy = C.getTypeDeclType(getParent());
1580 ClassTy = C.getQualifiedType(ClassTy,
1581 Qualifiers::fromCVRMask(getTypeQualifiers()));
1582 return C.getPointerType(ClassTy);
1583 }
1584
hasInlineBody() const1585 bool CXXMethodDecl::hasInlineBody() const {
1586 // If this function is a template instantiation, look at the template from
1587 // which it was instantiated.
1588 const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1589 if (!CheckFn)
1590 CheckFn = this;
1591
1592 const FunctionDecl *fn;
1593 return CheckFn->hasBody(fn) && !fn->isOutOfLine();
1594 }
1595
isLambdaStaticInvoker() const1596 bool CXXMethodDecl::isLambdaStaticInvoker() const {
1597 const CXXRecordDecl *P = getParent();
1598 if (P->isLambda()) {
1599 if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
1600 if (StaticInvoker == this) return true;
1601 if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
1602 return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
1603 }
1604 }
1605 return false;
1606 }
1607
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,bool IsVirtual,SourceLocation L,Expr * Init,SourceLocation R,SourceLocation EllipsisLoc)1608 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1609 TypeSourceInfo *TInfo, bool IsVirtual,
1610 SourceLocation L, Expr *Init,
1611 SourceLocation R,
1612 SourceLocation EllipsisLoc)
1613 : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1614 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1615 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1616 {
1617 }
1618
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1619 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1620 FieldDecl *Member,
1621 SourceLocation MemberLoc,
1622 SourceLocation L, Expr *Init,
1623 SourceLocation R)
1624 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1625 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1626 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1627 {
1628 }
1629
CXXCtorInitializer(ASTContext & Context,IndirectFieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R)1630 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1631 IndirectFieldDecl *Member,
1632 SourceLocation MemberLoc,
1633 SourceLocation L, Expr *Init,
1634 SourceLocation R)
1635 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1636 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1637 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1638 {
1639 }
1640
CXXCtorInitializer(ASTContext & Context,TypeSourceInfo * TInfo,SourceLocation L,Expr * Init,SourceLocation R)1641 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1642 TypeSourceInfo *TInfo,
1643 SourceLocation L, Expr *Init,
1644 SourceLocation R)
1645 : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
1646 LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
1647 IsWritten(false), SourceOrderOrNumArrayIndices(0)
1648 {
1649 }
1650
CXXCtorInitializer(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1651 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1652 FieldDecl *Member,
1653 SourceLocation MemberLoc,
1654 SourceLocation L, Expr *Init,
1655 SourceLocation R,
1656 VarDecl **Indices,
1657 unsigned NumIndices)
1658 : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1659 LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1660 IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
1661 {
1662 VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
1663 memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
1664 }
1665
Create(ASTContext & Context,FieldDecl * Member,SourceLocation MemberLoc,SourceLocation L,Expr * Init,SourceLocation R,VarDecl ** Indices,unsigned NumIndices)1666 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
1667 FieldDecl *Member,
1668 SourceLocation MemberLoc,
1669 SourceLocation L, Expr *Init,
1670 SourceLocation R,
1671 VarDecl **Indices,
1672 unsigned NumIndices) {
1673 void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
1674 sizeof(VarDecl *) * NumIndices,
1675 llvm::alignOf<CXXCtorInitializer>());
1676 return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
1677 Indices, NumIndices);
1678 }
1679
getBaseClassLoc() const1680 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
1681 if (isBaseInitializer())
1682 return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
1683 else
1684 return TypeLoc();
1685 }
1686
getBaseClass() const1687 const Type *CXXCtorInitializer::getBaseClass() const {
1688 if (isBaseInitializer())
1689 return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
1690 else
1691 return nullptr;
1692 }
1693
getSourceLocation() const1694 SourceLocation CXXCtorInitializer::getSourceLocation() const {
1695 if (isInClassMemberInitializer())
1696 return getAnyMember()->getLocation();
1697
1698 if (isAnyMemberInitializer())
1699 return getMemberLocation();
1700
1701 if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
1702 return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
1703
1704 return SourceLocation();
1705 }
1706
getSourceRange() const1707 SourceRange CXXCtorInitializer::getSourceRange() const {
1708 if (isInClassMemberInitializer()) {
1709 FieldDecl *D = getAnyMember();
1710 if (Expr *I = D->getInClassInitializer())
1711 return I->getSourceRange();
1712 return SourceRange();
1713 }
1714
1715 return SourceRange(getSourceLocation(), getRParenLoc());
1716 }
1717
anchor()1718 void CXXConstructorDecl::anchor() { }
1719
1720 CXXConstructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1721 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1722 return new (C, ID) CXXConstructorDecl(C, nullptr, SourceLocation(),
1723 DeclarationNameInfo(), QualType(),
1724 nullptr, false, false, false, false);
1725 }
1726
1727 CXXConstructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isExplicit,bool isInline,bool isImplicitlyDeclared,bool isConstexpr)1728 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1729 SourceLocation StartLoc,
1730 const DeclarationNameInfo &NameInfo,
1731 QualType T, TypeSourceInfo *TInfo,
1732 bool isExplicit, bool isInline,
1733 bool isImplicitlyDeclared, bool isConstexpr) {
1734 assert(NameInfo.getName().getNameKind()
1735 == DeclarationName::CXXConstructorName &&
1736 "Name must refer to a constructor");
1737 return new (C, RD) CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1738 isExplicit, isInline,
1739 isImplicitlyDeclared, isConstexpr);
1740 }
1741
init_begin() const1742 CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
1743 return CtorInitializers.get(getASTContext().getExternalSource());
1744 }
1745
getTargetConstructor() const1746 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
1747 assert(isDelegatingConstructor() && "Not a delegating constructor!");
1748 Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
1749 if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
1750 return Construct->getConstructor();
1751
1752 return nullptr;
1753 }
1754
isDefaultConstructor() const1755 bool CXXConstructorDecl::isDefaultConstructor() const {
1756 // C++ [class.ctor]p5:
1757 // A default constructor for a class X is a constructor of class
1758 // X that can be called without an argument.
1759 return (getNumParams() == 0) ||
1760 (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
1761 }
1762
1763 bool
isCopyConstructor(unsigned & TypeQuals) const1764 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
1765 return isCopyOrMoveConstructor(TypeQuals) &&
1766 getParamDecl(0)->getType()->isLValueReferenceType();
1767 }
1768
isMoveConstructor(unsigned & TypeQuals) const1769 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
1770 return isCopyOrMoveConstructor(TypeQuals) &&
1771 getParamDecl(0)->getType()->isRValueReferenceType();
1772 }
1773
1774 /// \brief Determine whether this is a copy or move constructor.
isCopyOrMoveConstructor(unsigned & TypeQuals) const1775 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
1776 // C++ [class.copy]p2:
1777 // A non-template constructor for class X is a copy constructor
1778 // if its first parameter is of type X&, const X&, volatile X& or
1779 // const volatile X&, and either there are no other parameters
1780 // or else all other parameters have default arguments (8.3.6).
1781 // C++0x [class.copy]p3:
1782 // A non-template constructor for class X is a move constructor if its
1783 // first parameter is of type X&&, const X&&, volatile X&&, or
1784 // const volatile X&&, and either there are no other parameters or else
1785 // all other parameters have default arguments.
1786 if ((getNumParams() < 1) ||
1787 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1788 (getPrimaryTemplate() != nullptr) ||
1789 (getDescribedFunctionTemplate() != nullptr))
1790 return false;
1791
1792 const ParmVarDecl *Param = getParamDecl(0);
1793
1794 // Do we have a reference type?
1795 const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
1796 if (!ParamRefType)
1797 return false;
1798
1799 // Is it a reference to our class type?
1800 ASTContext &Context = getASTContext();
1801
1802 CanQualType PointeeType
1803 = Context.getCanonicalType(ParamRefType->getPointeeType());
1804 CanQualType ClassTy
1805 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1806 if (PointeeType.getUnqualifiedType() != ClassTy)
1807 return false;
1808
1809 // FIXME: other qualifiers?
1810
1811 // We have a copy or move constructor.
1812 TypeQuals = PointeeType.getCVRQualifiers();
1813 return true;
1814 }
1815
isConvertingConstructor(bool AllowExplicit) const1816 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
1817 // C++ [class.conv.ctor]p1:
1818 // A constructor declared without the function-specifier explicit
1819 // that can be called with a single parameter specifies a
1820 // conversion from the type of its first parameter to the type of
1821 // its class. Such a constructor is called a converting
1822 // constructor.
1823 if (isExplicit() && !AllowExplicit)
1824 return false;
1825
1826 return (getNumParams() == 0 &&
1827 getType()->getAs<FunctionProtoType>()->isVariadic()) ||
1828 (getNumParams() == 1) ||
1829 (getNumParams() > 1 &&
1830 (getParamDecl(1)->hasDefaultArg() ||
1831 getParamDecl(1)->isParameterPack()));
1832 }
1833
isSpecializationCopyingObject() const1834 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
1835 if ((getNumParams() < 1) ||
1836 (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
1837 (getDescribedFunctionTemplate() != nullptr))
1838 return false;
1839
1840 const ParmVarDecl *Param = getParamDecl(0);
1841
1842 ASTContext &Context = getASTContext();
1843 CanQualType ParamType = Context.getCanonicalType(Param->getType());
1844
1845 // Is it the same as our our class type?
1846 CanQualType ClassTy
1847 = Context.getCanonicalType(Context.getTagDeclType(getParent()));
1848 if (ParamType.getUnqualifiedType() != ClassTy)
1849 return false;
1850
1851 return true;
1852 }
1853
getInheritedConstructor() const1854 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
1855 // Hack: we store the inherited constructor in the overridden method table
1856 method_iterator It = getASTContext().overridden_methods_begin(this);
1857 if (It == getASTContext().overridden_methods_end(this))
1858 return nullptr;
1859
1860 return cast<CXXConstructorDecl>(*It);
1861 }
1862
1863 void
setInheritedConstructor(const CXXConstructorDecl * BaseCtor)1864 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
1865 // Hack: we store the inherited constructor in the overridden method table
1866 assert(getASTContext().overridden_methods_size(this) == 0 &&
1867 "Base ctor already set.");
1868 getASTContext().addOverriddenMethod(this, BaseCtor);
1869 }
1870
anchor()1871 void CXXDestructorDecl::anchor() { }
1872
1873 CXXDestructorDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1874 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1875 return new (C, ID)
1876 CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
1877 QualType(), nullptr, false, false);
1878 }
1879
1880 CXXDestructorDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isImplicitlyDeclared)1881 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1882 SourceLocation StartLoc,
1883 const DeclarationNameInfo &NameInfo,
1884 QualType T, TypeSourceInfo *TInfo,
1885 bool isInline, bool isImplicitlyDeclared) {
1886 assert(NameInfo.getName().getNameKind()
1887 == DeclarationName::CXXDestructorName &&
1888 "Name must refer to a destructor");
1889 return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1890 isInline, isImplicitlyDeclared);
1891 }
1892
setOperatorDelete(FunctionDecl * OD)1893 void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD) {
1894 auto *First = cast<CXXDestructorDecl>(getFirstDecl());
1895 if (OD && !First->OperatorDelete) {
1896 First->OperatorDelete = OD;
1897 if (auto *L = getASTMutationListener())
1898 L->ResolvedOperatorDelete(First, OD);
1899 }
1900 }
1901
anchor()1902 void CXXConversionDecl::anchor() { }
1903
1904 CXXConversionDecl *
CreateDeserialized(ASTContext & C,unsigned ID)1905 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1906 return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
1907 DeclarationNameInfo(), QualType(),
1908 nullptr, false, false, false,
1909 SourceLocation());
1910 }
1911
1912 CXXConversionDecl *
Create(ASTContext & C,CXXRecordDecl * RD,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,bool isInline,bool isExplicit,bool isConstexpr,SourceLocation EndLocation)1913 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1914 SourceLocation StartLoc,
1915 const DeclarationNameInfo &NameInfo,
1916 QualType T, TypeSourceInfo *TInfo,
1917 bool isInline, bool isExplicit,
1918 bool isConstexpr, SourceLocation EndLocation) {
1919 assert(NameInfo.getName().getNameKind()
1920 == DeclarationName::CXXConversionFunctionName &&
1921 "Name must refer to a conversion function");
1922 return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
1923 isInline, isExplicit, isConstexpr,
1924 EndLocation);
1925 }
1926
isLambdaToBlockPointerConversion() const1927 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
1928 return isImplicit() && getParent()->isLambda() &&
1929 getConversionType()->isBlockPointerType();
1930 }
1931
anchor()1932 void LinkageSpecDecl::anchor() { }
1933
Create(ASTContext & C,DeclContext * DC,SourceLocation ExternLoc,SourceLocation LangLoc,LanguageIDs Lang,bool HasBraces)1934 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
1935 DeclContext *DC,
1936 SourceLocation ExternLoc,
1937 SourceLocation LangLoc,
1938 LanguageIDs Lang,
1939 bool HasBraces) {
1940 return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
1941 }
1942
CreateDeserialized(ASTContext & C,unsigned ID)1943 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
1944 unsigned ID) {
1945 return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
1946 SourceLocation(), lang_c, false);
1947 }
1948
anchor()1949 void UsingDirectiveDecl::anchor() { }
1950
Create(ASTContext & C,DeclContext * DC,SourceLocation L,SourceLocation NamespaceLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Used,DeclContext * CommonAncestor)1951 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
1952 SourceLocation L,
1953 SourceLocation NamespaceLoc,
1954 NestedNameSpecifierLoc QualifierLoc,
1955 SourceLocation IdentLoc,
1956 NamedDecl *Used,
1957 DeclContext *CommonAncestor) {
1958 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
1959 Used = NS->getOriginalNamespace();
1960 return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
1961 IdentLoc, Used, CommonAncestor);
1962 }
1963
CreateDeserialized(ASTContext & C,unsigned ID)1964 UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
1965 unsigned ID) {
1966 return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
1967 SourceLocation(),
1968 NestedNameSpecifierLoc(),
1969 SourceLocation(), nullptr, nullptr);
1970 }
1971
getNominatedNamespace()1972 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
1973 if (NamespaceAliasDecl *NA =
1974 dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
1975 return NA->getNamespace();
1976 return cast_or_null<NamespaceDecl>(NominatedNamespace);
1977 }
1978
NamespaceDecl(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1979 NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
1980 SourceLocation StartLoc, SourceLocation IdLoc,
1981 IdentifierInfo *Id, NamespaceDecl *PrevDecl)
1982 : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
1983 redeclarable_base(C), LocStart(StartLoc), RBraceLoc(),
1984 AnonOrFirstNamespaceAndInline(nullptr, Inline) {
1985 setPreviousDecl(PrevDecl);
1986
1987 if (PrevDecl)
1988 AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
1989 }
1990
Create(ASTContext & C,DeclContext * DC,bool Inline,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,NamespaceDecl * PrevDecl)1991 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
1992 bool Inline, SourceLocation StartLoc,
1993 SourceLocation IdLoc, IdentifierInfo *Id,
1994 NamespaceDecl *PrevDecl) {
1995 return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
1996 PrevDecl);
1997 }
1998
CreateDeserialized(ASTContext & C,unsigned ID)1999 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2000 return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2001 SourceLocation(), nullptr, nullptr);
2002 }
2003
getNextRedeclarationImpl()2004 NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2005 return getNextRedeclaration();
2006 }
getPreviousDeclImpl()2007 NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2008 return getPreviousDecl();
2009 }
getMostRecentDeclImpl()2010 NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2011 return getMostRecentDecl();
2012 }
2013
anchor()2014 void NamespaceAliasDecl::anchor() { }
2015
getNextRedeclarationImpl()2016 NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2017 return getNextRedeclaration();
2018 }
getPreviousDeclImpl()2019 NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2020 return getPreviousDecl();
2021 }
getMostRecentDeclImpl()2022 NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2023 return getMostRecentDecl();
2024 }
2025
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,NestedNameSpecifierLoc QualifierLoc,SourceLocation IdentLoc,NamedDecl * Namespace)2026 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2027 SourceLocation UsingLoc,
2028 SourceLocation AliasLoc,
2029 IdentifierInfo *Alias,
2030 NestedNameSpecifierLoc QualifierLoc,
2031 SourceLocation IdentLoc,
2032 NamedDecl *Namespace) {
2033 // FIXME: Preserve the aliased namespace as written.
2034 if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2035 Namespace = NS->getOriginalNamespace();
2036 return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2037 QualifierLoc, IdentLoc, Namespace);
2038 }
2039
2040 NamespaceAliasDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2041 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2042 return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2043 SourceLocation(), nullptr,
2044 NestedNameSpecifierLoc(),
2045 SourceLocation(), nullptr);
2046 }
2047
anchor()2048 void UsingShadowDecl::anchor() { }
2049
2050 UsingShadowDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2051 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2052 return new (C, ID) UsingShadowDecl(C, nullptr, SourceLocation(),
2053 nullptr, nullptr);
2054 }
2055
getUsingDecl() const2056 UsingDecl *UsingShadowDecl::getUsingDecl() const {
2057 const UsingShadowDecl *Shadow = this;
2058 while (const UsingShadowDecl *NextShadow =
2059 dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2060 Shadow = NextShadow;
2061 return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2062 }
2063
anchor()2064 void UsingDecl::anchor() { }
2065
addShadowDecl(UsingShadowDecl * S)2066 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2067 assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2068 "declaration already in set");
2069 assert(S->getUsingDecl() == this);
2070
2071 if (FirstUsingShadow.getPointer())
2072 S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2073 FirstUsingShadow.setPointer(S);
2074 }
2075
removeShadowDecl(UsingShadowDecl * S)2076 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2077 assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2078 "declaration not in set");
2079 assert(S->getUsingDecl() == this);
2080
2081 // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2082
2083 if (FirstUsingShadow.getPointer() == S) {
2084 FirstUsingShadow.setPointer(
2085 dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2086 S->UsingOrNextShadow = this;
2087 return;
2088 }
2089
2090 UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2091 while (Prev->UsingOrNextShadow != S)
2092 Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2093 Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2094 S->UsingOrNextShadow = this;
2095 }
2096
Create(ASTContext & C,DeclContext * DC,SourceLocation UL,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo,bool HasTypename)2097 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2098 NestedNameSpecifierLoc QualifierLoc,
2099 const DeclarationNameInfo &NameInfo,
2100 bool HasTypename) {
2101 return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2102 }
2103
CreateDeserialized(ASTContext & C,unsigned ID)2104 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2105 return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2106 NestedNameSpecifierLoc(), DeclarationNameInfo(),
2107 false);
2108 }
2109
getSourceRange() const2110 SourceRange UsingDecl::getSourceRange() const {
2111 SourceLocation Begin = isAccessDeclaration()
2112 ? getQualifierLoc().getBeginLoc() : UsingLocation;
2113 return SourceRange(Begin, getNameInfo().getEndLoc());
2114 }
2115
anchor()2116 void UnresolvedUsingValueDecl::anchor() { }
2117
2118 UnresolvedUsingValueDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,NestedNameSpecifierLoc QualifierLoc,const DeclarationNameInfo & NameInfo)2119 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2120 SourceLocation UsingLoc,
2121 NestedNameSpecifierLoc QualifierLoc,
2122 const DeclarationNameInfo &NameInfo) {
2123 return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2124 QualifierLoc, NameInfo);
2125 }
2126
2127 UnresolvedUsingValueDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2128 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2129 return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2130 SourceLocation(),
2131 NestedNameSpecifierLoc(),
2132 DeclarationNameInfo());
2133 }
2134
getSourceRange() const2135 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2136 SourceLocation Begin = isAccessDeclaration()
2137 ? getQualifierLoc().getBeginLoc() : UsingLocation;
2138 return SourceRange(Begin, getNameInfo().getEndLoc());
2139 }
2140
anchor()2141 void UnresolvedUsingTypenameDecl::anchor() { }
2142
2143 UnresolvedUsingTypenameDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation UsingLoc,SourceLocation TypenameLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TargetNameLoc,DeclarationName TargetName)2144 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2145 SourceLocation UsingLoc,
2146 SourceLocation TypenameLoc,
2147 NestedNameSpecifierLoc QualifierLoc,
2148 SourceLocation TargetNameLoc,
2149 DeclarationName TargetName) {
2150 return new (C, DC) UnresolvedUsingTypenameDecl(
2151 DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2152 TargetName.getAsIdentifierInfo());
2153 }
2154
2155 UnresolvedUsingTypenameDecl *
CreateDeserialized(ASTContext & C,unsigned ID)2156 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2157 return new (C, ID) UnresolvedUsingTypenameDecl(
2158 nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2159 SourceLocation(), nullptr);
2160 }
2161
anchor()2162 void StaticAssertDecl::anchor() { }
2163
Create(ASTContext & C,DeclContext * DC,SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * Message,SourceLocation RParenLoc,bool Failed)2164 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2165 SourceLocation StaticAssertLoc,
2166 Expr *AssertExpr,
2167 StringLiteral *Message,
2168 SourceLocation RParenLoc,
2169 bool Failed) {
2170 return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2171 RParenLoc, Failed);
2172 }
2173
CreateDeserialized(ASTContext & C,unsigned ID)2174 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2175 unsigned ID) {
2176 return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2177 nullptr, SourceLocation(), false);
2178 }
2179
Create(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,TypeSourceInfo * TInfo,SourceLocation StartL,IdentifierInfo * Getter,IdentifierInfo * Setter)2180 MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2181 SourceLocation L, DeclarationName N,
2182 QualType T, TypeSourceInfo *TInfo,
2183 SourceLocation StartL,
2184 IdentifierInfo *Getter,
2185 IdentifierInfo *Setter) {
2186 return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2187 }
2188
CreateDeserialized(ASTContext & C,unsigned ID)2189 MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2190 unsigned ID) {
2191 return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2192 DeclarationName(), QualType(), nullptr,
2193 SourceLocation(), nullptr, nullptr);
2194 }
2195
getAccessName(AccessSpecifier AS)2196 static const char *getAccessName(AccessSpecifier AS) {
2197 switch (AS) {
2198 case AS_none:
2199 llvm_unreachable("Invalid access specifier!");
2200 case AS_public:
2201 return "public";
2202 case AS_private:
2203 return "private";
2204 case AS_protected:
2205 return "protected";
2206 }
2207 llvm_unreachable("Invalid access specifier!");
2208 }
2209
operator <<(const DiagnosticBuilder & DB,AccessSpecifier AS)2210 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2211 AccessSpecifier AS) {
2212 return DB << getAccessName(AS);
2213 }
2214
operator <<(const PartialDiagnostic & DB,AccessSpecifier AS)2215 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2216 AccessSpecifier AS) {
2217 return DB << getAccessName(AS);
2218 }
2219